751
|
Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12:E1795. [PMID: 32560310 PMCID: PMC7353315 DOI: 10.3390/nu12061795] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| | - Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Dermatology, Besançon University Hospital, 25000 Besancon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
752
|
Velichko E, Makarov S, Nepomnyashchaya E, Dong G. Molecular Aggregation in Immune System Activation Studied by Dynamic Light Scattering. BIOLOGY 2020; 9:biology9060123. [PMID: 32545635 PMCID: PMC7345249 DOI: 10.3390/biology9060123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/20/2023]
Abstract
Determination of the concentration and size of the circulating immune complexes in the blood is an essential part of diagnostics of immune diseases. In this work, we suggest using the dynamic light scattering method to determine the sizes of circulating immune complexes in blood serum. By the dynamic light scattering spectrometer, we found that for healthy and sick donors, the size and concentration of circulating immune complexes differed significantly. The dynamics of formation of these complexes were also examined in this work. It was shown that the formation of immune complexes in the blood of healthy donors is faster than the same reactions in the blood serum of donors with diseases. The results can be used in the diagnostics of the immune status and detection of chronic inflammation. We can recommend the dynamic light scattering method for implementation in biomedical diagnostics.
Collapse
Affiliation(s)
- Elena Velichko
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.Petersburg Polytechnic University, St. Petersburg 195251, Russia; (S.M.); (E.N.)
- Correspondence: (E.V.); (G.D.)
| | - Sergey Makarov
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.Petersburg Polytechnic University, St. Petersburg 195251, Russia; (S.M.); (E.N.)
| | - Elina Nepomnyashchaya
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.Petersburg Polytechnic University, St. Petersburg 195251, Russia; (S.M.); (E.N.)
| | - Ge Dong
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
- Correspondence: (E.V.); (G.D.)
| |
Collapse
|
753
|
Dai Z, Zhang J, Wu Q, Fang H, Shi C, Li Z, Lin C, Tang D, Wang D. Intestinal microbiota: a new force in cancer immunotherapy. Cell Commun Signal 2020; 18:90. [PMID: 32522267 PMCID: PMC7288675 DOI: 10.1186/s12964-020-00599-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer displays high levels of heterogeneity and mutation potential, and curing cancer remains a challenge that clinicians and researchers are eager to overcome. In recent years, the emergence of cancer immunotherapy has brought hope to many patients with cancer. Cancer immunotherapy reactivates the immune function of immune cells by blocking immune checkpoints, thereby restoring the anti-tumor activity of immune cells. However, immune-related adverse events are a common complication of checkpoint blockade, which might be caused by the physiological role of checkpoint pathways in regulating adaptive immunity and preventing autoimmunity. In this context, the intestinal microbiota has shown great potential in the immunotherapy of cancer. The intestinal microbiota not only regulates the immune function of the body, but also optimizes the therapeutic effect of immune checkpoint inhibitors, thus reducing the occurrence of complications. Therefore, manipulating the intestinal microbiota is expected to enhance the effectiveness of immune checkpoint inhibitors and reduce adverse reactions, which will lead to new breakthroughs in immunotherapy and cancer management. Video abstract.
Collapse
Affiliation(s)
- Zhujiang Dai
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Jingqiu Zhang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 P. R. China
| | - Qi Wu
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Huiwen Fang
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Chunfeng Shi
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Zhen Li
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Chaobiao Lin
- Clinical Medical college, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 P. R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001 P. R. China
| |
Collapse
|
754
|
Abstract
People living with rheumatic diseases frequently encounter cancer, either as a potential harm of antirheumatic therapies or as a comorbidity that alters the conversation about management. This article provides a general overview of the issues related to cancer and rheumatic disease and serves as a springboard for the remaining chapters in this issue. Several topics are reviewed, including epidemiology, bidirectional causal pathways, and issues related to medications. Although uncertainties remain, the issue of cancer is of great importance to patients with rheumatic diseases, and an individualized, person-centered approach to assessment and management is necessary.
Collapse
Affiliation(s)
- John Manley Davis
- Division of Rheumatology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
| |
Collapse
|
755
|
Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, McNulty S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 2020; 11:793. [PMID: 32581786 PMCID: PMC7287489 DOI: 10.3389/fphar.2020.00793] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
P2X7 is a transmembrane receptor expressed in multiple cell types including neurons, dendritic cells, macrophages, monocytes, B and T cells where it can drive a wide range of physiological responses from pain transduction to immune response. Upon activation by its main ligand, extracellular ATP, P2X7 can form a nonselective channel for cations to enter the cell. Prolonged activation of P2X7, via high levels of extracellular ATP over an extended time period can lead to the formation of a macropore, leading to depolarization of the plasma membrane and ultimately to cell death. Thus, dependent on its activation state, P2X7 can either drive cell survival and proliferation, or induce cell death. In cancer, P2X7 has been shown to have a broad range of functions, including playing key roles in the development and spread of tumor cells. It is therefore unsurprising that P2X7 has been reported to be upregulated in several malignancies. Critically, ATP is present at high extracellular concentrations in the tumor microenvironment (TME) compared to levels observed in normal tissues. These high levels of ATP should present a survival challenge for cancer cells, potentially leading to constitutive receptor activation, prolonged macropore formation and ultimately to cell death. Therefore, to deliver the proven advantages for P2X7 in driving tumor survival and metastatic potential, the P2X7 macropore must be tightly controlled while retaining other functions. Studies have shown that commonly expressed P2X7 splice variants, distinct SNPs and post-translational receptor modifications can impair the capacity of P2X7 to open the macropore. These receptor modifications and potentially others may ultimately protect cancer cells from the negative consequences associated with constitutive activation of P2X7. Significantly, the effects of both P2X7 agonists and antagonists in preclinical tumor models of cancer demonstrate the potential for agents modifying P2X7 function, to provide innovative cancer therapies. This review summarizes recent advances in understanding of the structure and functions of P2X7 and how these impact P2X7 roles in cancer progression. We also review potential therapeutic approaches directed against P2X7.
Collapse
Affiliation(s)
- Romain Lara
- Biosceptre (UK) Limited, Cambridge, United Kingdom
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mike Philpott
- Centre for Cutaneous Research, Blizard Institute, Bart's & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
756
|
Moles L, Otaegui D. The Impact of Diet on Microbiota Evolution and Human Health. Is Diet an Adequate Tool for Microbiota Modulation? Nutrients 2020; 12:nu12061654. [PMID: 32498430 PMCID: PMC7352211 DOI: 10.3390/nu12061654] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 02/08/2023] Open
Abstract
The human microbiome is emerging as an interesting field in research into the prevention of health problems and recovery from illness in humans. The complex ecosystem formed by the microbiota is continuously interacting with its host and the environment. Diet could be assumed to be one of the most prominent factors influencing the microbiota composition. Nevertheless, and in spite of numerous strategies proposed to modulate the human microbiota through dietary means, guidelines to achieve this goal have yet to be established. This review assesses the correlation between social and dietary changes over the course of human evolution and the adaptation of the human microbiota to those changes. In addition, it discusses the main dietary strategies for modulating the microbiota and the difficulties of putting them properly into practice.
Collapse
|
757
|
Comparative Analysis of Age- and Gender-Associated Microbiome in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12061447. [PMID: 32498338 PMCID: PMC7352186 DOI: 10.3390/cancers12061447] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
The intra-tumor microbiota has been increasingly implicated in cancer pathogenesis. In this study, we aimed to examine the microbiome in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) and determine its compositional differences with relation to age and gender. After grouping 497 LUAD and 433 LUSC patients by age and gender and removing potential contaminants, we identified differentially abundant microbes in each patient cohort vs. adjacent normal samples. We then correlated dysregulated microbes with patient survival rates, immune infiltration, immune and cancer pathways, and genomic alterations. We found that most age and gender cohorts in both LUAD and LUSC contained unique, significantly dysregulated microbes. For example, LUAD-associated Escherichia coli str. K-12 substr. W3110 was dysregulated in older female and male patients and correlated with both patient survival and genomic alterations. For LUSC, the most prominent bacterial species that we identified was Pseudomonas putida str. KT2440, which was uniquely associated with young LUSC male patients and immune infiltration. In conclusion, we found differentially abundant microbes implicated with age and gender that are also associated with genomic alterations and immune dysregulations. Further investigation should be conducted to determine the relationship between gender and age-associated microbes and the pathogenesis of lung cancer.
Collapse
|
758
|
Zhang X, Pan Z. Influence of microbiota on immunity and immunotherapy for gastric and esophageal cancers. Gastroenterol Rep (Oxf) 2020; 8:206-214. [PMID: 32665852 PMCID: PMC7333930 DOI: 10.1093/gastro/goaa014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric and esophageal cancers are multifactorial and multistage-involved malignancy. While the impact of gut microbiota on overall human health and diseases has been well documented, the influence of gastric and esophageal microbiota on gastric and esophageal cancers remains unclear. This review will discuss the reported alteration in the composition of gastric and esophageal microbiota in normal and disease conditions, and the potential role of dysbiosis in carcinogenesis and tumorigenesis. This review will also discuss how dysbiosis stimulates local and systemic immunity, which may impact on the immunotherapy for cancer.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
759
|
Abstract
Immunotherapies have drastically improved clinical outcomes in a wide range of malignancies. Nevertheless, patient responses remain highly variable, and reliable biomarkers that predict responses accurately are not yet fully understood. Compelling evidence from preclinical studies and observational data from clinical cohorts have shown that commensal microorganisms that reside in the human gastrointestinal tract, collectively termed the ‘microbiome’, can actively modify responses to chemotherapeutic agents and immunotherapies by influencing host immunosurveillance. Notably, microbial correlates are largely context specific, and response signatures may vary by patient population, geographic location and type of anticancer treatment. Therefore, the incongruence of beneficial microbiome signatures across studies, along with an emerging understanding of the mechanisms underlying the interactions between the microbiome, metabolome and host immune system, highlight a critical need for additional comprehensive and standardized multi-omics studies. Future research should consider key host factors, such as diet and use of medication, in both preclinical animal models and large-scale, multicenter clinical trials. In addition, there is a strong rationale to evaluate the microbiome as a tumor-extrinsic biomarker of clinical outcomes and to test the therapeutic potential of derived microbial products (e.g. defined microbial consortia), with the eventual goal of improving the efficacy of existing anticancer treatments. This review discusses the importance of the microbiome from the perspective of cancer immunotherapies, and outlines future steps that may contribute to wide-ranging clinical and translational benefits that may improve the health and quality of life of patients with cancer. The gut microbiome impacts the outcomes of cancer treatment by influencing host immunosurveillance. Modulation of microbiota represents a novel therapeutic strategy to improve responses. Incongruent beneficial bacterial signatures complicate the design of modulators. Reverse translation processes can be used to characterize candidate bacteria. Rationally designed microbial consortia catalyze transition to a healthy ecology.
Collapse
|
760
|
Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res 2020; 30:507-519. [PMID: 32467593 PMCID: PMC7264181 DOI: 10.1038/s41422-020-0337-2] [Citation(s) in RCA: 479] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy holds the potential to induce durable responses, but only a minority of patients currently respond. The etiologies of primary and secondary resistance to immunotherapy are multifaceted, deriving not only from tumor intrinsic factors, but also from the complex interplay between cancer and its microenvironment. In addressing frontiers in clinical immunotherapy, we describe two categories of approaches to the design of novel drugs and combination therapies: the first involves direct modification of the tumor, while the second indirectly enhances immunogenicity through alteration of the microenvironment. By systematically addressing the factors that mediate resistance, we are able to identify mechanistically-driven novel approaches to improve immunotherapy outcomes.
Collapse
Affiliation(s)
| | - Allison Betof Warner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Medicine, New York, NY, 10065, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
761
|
Vargason AM, Santhosh S, Anselmo AC. Surface Modifications for Improved Delivery and Function of Therapeutic Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001705. [PMID: 32410314 DOI: 10.1002/smll.202001705] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Live therapeutic bacteria (LTBs) hold promise to treat microbiome-related diseases. However, few approaches to improve the colonization of LTBs in the gastrointestinal tract exist, despite colonization being a prerequisite for efficacy of many LTBs. Here, a modular platform to rapidly modify the surface of LTBs to enable receptor-specific interactions with target surfaces is reported. Inspired by bacterial adhesins that facilitate colonization, synthetic adhesins (SAs) are developed for LTBs in the form of antibodies conjugated to their surface. The SA platform is nontoxic, does not alter LTB growth kinetics, and can be used with any antibody or bacterial strain combination. By improving adhesion, SA-modified bacteria demonstrate enhanced in vitro pathogen exclusion from cell monolayers. In vivo kinetics of SA-modified LTBs is tracked in the feces and intestines of treated mice, demonstrating that SA-modified bacteria alter short-term intestinal transit and improve LTB colonization and pharmacokinetics. This platform enables rapid formation of an intestinal niche, leading to an increased maximum concentration and a 20% improvement in total LTB exposure. This work is the first application of traditional pharmacokinetic analysis to design and evaluate LTB drug delivery systems and provides a platform toward controlling adhesion, colonization, and efficacy of LTBs.
Collapse
Affiliation(s)
- Ava M Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Shruti Santhosh
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| |
Collapse
|
762
|
Hicks RJ, Iravani A, Sandhu S. 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography for Assessing Tumor Response to Immunotherapy in Solid Tumors: Melanoma and Beyond. PET Clin 2020; 15:11-22. [PMID: 31735298 DOI: 10.1016/j.cpet.2019.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complexity of the immune response and diversity of targets challenges conventional conceptual frameworks used in selecting and monitoring treatment with immune check-point inhibitors. The limitations of anatomic imaging in assessing response have been recognized. Varying patterns of response have been recognized. These patterns have different implications for the continuation and duration of therapy. Evidence supporting the role of 18F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography as a prognostic biomarker and in characterizing response is presented. An added benefit of this approach is the ability to detect immune-related inflammatory reactions, often in advance of severe or life-threatening clinical manifestations.
Collapse
Affiliation(s)
- Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia; Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Amir Iravani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia; Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia; Department of Medical Oncology, the Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
763
|
Li M, Li C, Wu X, Chen T, Ren L, Xu B, Cao J. Microbiota-driven interleukin-17 production provides immune protection against invasive candidiasis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:268. [PMID: 32460890 PMCID: PMC7251893 DOI: 10.1186/s13054-020-02977-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Background The intestinal microbiota plays a crucial role in human health, which could affect host immunity and the susceptibility to infectious diseases. However, the role of intestinal microbiota in the immunopathology of invasive candidiasis remains unknown. Methods In this work, an antibiotic cocktail was used to eliminate the intestinal microbiota of conventional-housed (CNV) C57/BL6 mice, and then both antibiotic-treated (ABX) mice and CNV mice were intravenously infected with Candida albicans to investigate their differential responses to infection. Furthermore, fecal microbiota transplantation (FMT) was applied to ABX mice in order to assess its effects on host immunity against invasive candidiasis after restoring the intestinal microbiota, and 16S ribosomal RNA gene sequencing was conducted on fecal samples from both uninfected ABX and CNV group of mice to analyze their microbiomes. Results We found that ABX mice displayed significantly increased weight loss, mortality, and organ damage during invasive candidiasis when compared with CNV mice, which could be alleviated by FMT. In addition, the level of IL-17A in ABX mice was significantly lower than that in the CNV group during invasive candidiasis. Treatment with recombinant IL-17A could improve the survival of ABX mice during invasive candidiasis. Besides, the microbial diversity of ABX mice was significantly reduced, and the intestinal microbiota structure of ABX mice was significantly deviated from the CNV mice. Conclusions Our data revealed that intestinal microbiota plays a protective role in invasive candidiasis by enhancing IL-17A production in our model system.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Congya Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), No.1 Shuanghu Branch Road, Yubei District, Chongqing, 401120, China
| | - Xianan Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Tangtian Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Ren
- Medical Examination Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Ju Cao
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
764
|
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
|
765
|
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30:492-506. [PMID: 32433595 PMCID: PMC7264227 DOI: 10.1038/s41422-020-0332-7] [Citation(s) in RCA: 2039] [Impact Index Per Article: 407.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Danping Zheng
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Timur Liwinski
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel. .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
766
|
Szymczak A, Ferenc S, Majewska J, Miernikiewicz P, Gnus J, Witkiewicz W, Dąbrowska K. Application of 16S rRNA gene sequencing in Helicobacter pylori detection. PeerJ 2020; 8:e9099. [PMID: 32440373 PMCID: PMC7229771 DOI: 10.7717/peerj.9099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is one of the major stomach microbiome components, promoting development of inflammation and gastric cancer in humans. H. pylori has a unique ability to transform into a coccoidal form which is difficult to detect by many diagnostic methods, such as urease activity detection, and even histopathological examination. Here we present a comparison of three methods for H. pylori identification: histological assessment (with eosin, hematoxylin, and Giemsa staining), polymerase chain reaction (PCR) detection of urease (ureA specific primers), and detection by 16S rRNA gene sequencing. The study employed biopsies from the antral part of the stomach (N = 40). All samples were assessed histologically which revealed H. pylori in eight patients. Bacterial DNA isolated from the bioptates was used as a template for PCR reaction and 16S rRNA gene sequencing that revealed H. pylori in 13 and in 20 patients, respectively. Thus, 16S rRNA gene sequencing was the most sensitive method for detection of H. pylori in stomach biopsy samples.
Collapse
Affiliation(s)
- Aleksander Szymczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Stanisław Ferenc
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Joanna Majewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paulina Miernikiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jan Gnus
- Medical Academy in Wroclaw, Wrocław, Poland
| | - Wojciech Witkiewicz
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Krystyna Dąbrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
767
|
Principe DR, Rana A. Updated risk factors to inform early pancreatic cancer screening and identify high risk patients. Cancer Lett 2020; 485:56-65. [PMID: 32389710 DOI: 10.1016/j.canlet.2020.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) is associated with poor clinical outcomes and incomplete responses to conventional therapy. Therefore, there is an unmet clinical need to better understand the predisposing factors for pancreatic cancer in hopes of providing early screening to high-risk patients. While select risk factors such as age, race, and family history, or predisposing syndromes are unavoidable, there are several new and established risk factors that allow for intervention, namely by counseling patients to make the appropriate lifestyle modifications. Here, we discuss the best-studied risk factors for PDAC such as tobacco use and chronic pancreatitis, as well as newly emerging risk factors including select nutritional deficits, bacterial infections, and psychosocial factors. As several of these risk factors appear to be additive or synergistic, by understanding their relationships and offering coordinated, multidisciplinary care to high-risk patients, it may be possible to reduce pancreatic cancer incidence and improve clinical outcomes through early detection.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
768
|
Diao X. Antibiotics and proton pump inhibitors suppress the efficacy of immunotherapy against non-small cell lung cancer. Thorac Cancer 2020; 11:1763-1764. [PMID: 32374445 DOI: 10.1111/1759-7714.13470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xiayao Diao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
769
|
Elsalem L, Jum'ah AA, Alfaqih MA, Aloudat O. The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clin Exp Gastroenterol 2020; 13:151-185. [PMID: 32440192 PMCID: PMC7211962 DOI: 10.2147/ceg.s243337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
The microbiota has an essential role in the pathogenesis of many gastrointestinal diseases including cancer. This effect is mediated through different mechanisms such as damaging DNA, activation of oncogenic pathways, production of carcinogenic metabolites, stimulation of chronic inflammation, and inhibition of antitumor immunity. Recently, the concept of "pharmacomicrobiomics" has emerged as a new field concerned with exploring the interplay between drugs and microbes. Mounting evidence indicates that the microbiota and their metabolites have a major impact on the pharmacodynamics and therapeutic responses toward anticancer drugs including conventional chemotherapy and molecular-targeted therapeutics. In addition, microbiota appears as an attractive target for cancer prevention and treatment. In this review, we discuss the role of bacterial microbiota in the pathogenesis of different cancer types affecting the gastrointestinal tract system. We also scrutinize the evidence regarding the role of microbiota in anticancer drug responses. Further, we discuss the use of probiotics, fecal microbiota transplantation, and antibiotics, either alone or in combination with anticancer drugs for prevention and treatment of gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad A Jum'ah
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Osama Aloudat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
770
|
Puccini A, Battaglin F, Iaia ML, Lenz HJ, Salem ME. Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies. J Immunother Cancer 2020; 8:e000404. [PMID: 32393474 PMCID: PMC7223273 DOI: 10.1136/jitc-2019-000404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
In the last few years, the unprecedented results of immune checkpoint inhibitors have led to a paradigm shift in clinical practice for the treatment of several cancer types. However, the vast majority of patients with gastrointestinal cancer do not benefit from immunotherapy. To date, microsatellite instability high and DNA mismatch repair deficiency are the only robust predictive biomarkers of response to immune checkpoint inhibitors. Unfortunately, these patients comprise only 5%-10% of all gastrointestinal cancers. Several mechanisms of both innate and adaptive resistance to immunotherapy have been recognized that may be at least in part responsible for the failure of immune checkpoint inhibitors in this population of patients. In the first part of this review article, we provide an overview of the main clinical trials with immune checkpoint inhibitors in patients with gastrointestinal cancer and the role of predictive biomarkers. In the second part, we discuss the actual body of knowledge in terms of mechanisms of resistance to immunotherapy and the most promising approach that are currently under investigation in order to expand the population of patients with gastrointestinal cancer who could benefit from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alberto Puccini
- University of Genoa, Medical Oncology Unit 1, Ospedale Policlinico San Martino IRCCS, Genova, Italy
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Maria Laura Iaia
- University of Genoa, Medical Oncology Unit 1, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Mohamed E Salem
- Department of Medical Oncology, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| |
Collapse
|
771
|
Dong X, Pan P, Zheng DW, Bao P, Zeng X, Zhang XZ. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. SCIENCE ADVANCES 2020; 6:eaba1590. [PMID: 32440552 PMCID: PMC7228756 DOI: 10.1126/sciadv.aba1590] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/03/2020] [Indexed: 05/17/2023]
Abstract
Mounting evidence suggests that the gut microbiota contribute to colorectal cancer (CRC) tumorigenesis, in which the symbiotic Fusobacterium nucleatum (Fn) selectively increases immunosuppressive myeloid-derived suppressor cells (MDSCs) to hamper the host's anticancer immune response. Here, a specifically Fn-binding M13 phage was screened by phage display technology. Then, silver nanoparticles (AgNP) were assembled electrostatically on its surface capsid protein (M13@Ag) to achieve specific clearance of Fn and remodel the tumor-immune microenvironment. Both in vitro and in vivo studies showed that of M13@Ag treatment could scavenge Fn in gut and lead to reduction in MDSC amplification in the tumor site. In addition, antigen-presenting cells (APCs) were activated by M13 phages to further awaken the host immune system for CRC suppression. M13@Ag combined with immune checkpoint inhibitors (α-PD1) or chemotherapeutics (FOLFIRI) significantly prolonged overall mouse survival in the orthotopic CRC model.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Corresponding author.
| |
Collapse
|
772
|
Koustas E, Sarantis P, Papavassiliou AG, Karamouzis MV. The Resistance Mechanisms of Checkpoint Inhibitors in Solid Tumors. Biomolecules 2020; 10:666. [PMID: 32344837 PMCID: PMC7277892 DOI: 10.3390/biom10050666] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023] Open
Abstract
The emergence of cancer immunotherapy has already shown some remarkable results, having changed the treatment strategy in clinical practice for solid tumors. Despite these promising long-term responses, patients seem to lack the ability to respond to immune checkpoint inhibitors, thus demonstrating a primary resistance to immunotherapy. Moreover, a significant number of patients who initially respond to treatment eventually acquire resistance to immunotherapy. Both resistance mechanisms are a result of a complex interaction among different molecules, pathways, and cellular processes. Several resistance mechanisms, such as tumor microenvironment modification, autophagy, genetic and epigenetic alterations, tumor mutational burden, neo-antigens, and modulation of gut microbiota have already been identified, while more continue to be uncovered. In this review, we discuss the latest milestones in the field of immunotherapy, resistance mechanisms against this type of therapy as well as putative therapeutic strategies to overcome resistance in solid tumors.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Athanasios G. Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (P.S.); (A.G.P.)
- First Department of Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
773
|
Tremblay A, Fatani A, Ford AL, Piano A, Nagulesapillai V, Auger J, MacPherson CW, Christman MC, Tompkins TA, Dahl WJ. Safety and Effect of a Low- and High-Dose Multi-Strain Probiotic Supplement on Microbiota in a General Adult Population: A Randomized, Double-Blind, Placebo-Controlled Study. J Diet Suppl 2020; 18:227-247. [DOI: 10.1080/19390211.2020.1749751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec, Canada
| | - Asmaa Fatani
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Amanda L. Ford
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Amanda Piano
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec, Canada
| | | | - Jeremie Auger
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec, Canada
| | - Chad W. MacPherson
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec, Canada
| | | | - Thomas A. Tompkins
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec, Canada
| | - Wendy J. Dahl
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| |
Collapse
|
774
|
Jang BS, Chang JH, Chie EK, Kim K, Park JW, Kim MJ, Song EJ, Nam YD, Kang SW, Jeong SY, Kim HJ. Gut Microbiome Composition Is Associated with a Pathologic Response After Preoperative Chemoradiation in Patients with Rectal Cancer. Int J Radiat Oncol Biol Phys 2020; 107:736-746. [PMID: 32315676 DOI: 10.1016/j.ijrobp.2020.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE There are ongoing investigations to find promising biomarkers for predicting a complete response (CR) after concurrent chemoradiation (CCRT) in rectal cancer. We aimed to find the predictive value in the gut microbiome in terms of response after preoperative CCRT. METHODS AND MATERIALS We collected a total of 45 fecal samples from patients with rectal cancer before CCRT. Tumor response after CCRT was assessed according to the American Joint Committee on Cancer tumor regression grading system. Analysis of linear discriminant analysis effect size and MetaCyc pathway abundance predictions were performed to compare composition and metabolic function of microbiome between patients with and without CR. We also established a Bayesian network model to identify microbial networks and species to be related with CCRT response. RESULTS Seven patients (15.6%) demonstrated pathologically CR, and 38 patients (84.4%) showed non-CR after preoperative CCRT. Between CR and non-CR patients, there was a significant difference in terms of β-diversity (P = .028), but no difference in α-diversity was found. Bacteroidales (Bacteroidaceae, Rikenellaceae, Bacteroides) were relatively more abundant in patients with non-CR than those with CR. Pathways related to anabolic function predominated in CR patients. According to Bayesian network analysis, Duodenibacillus massiliensis was linked with the improved CR rate. CONCLUSIONS From the fecal microbiome using samples obtained before preoperative CCRT, differences in microbial community composition and functions were observed between patients with and without CR in rectal cancer. However, the finding that a specific taxon may be linked with the improved therapeutic response should be verified in a prospective setting.
Collapse
Affiliation(s)
- Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyubo Kim
- Department of Radiation Oncology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji Won Park
- Department of Surgery, Seoul National University Hospital, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Min Jung Kim
- Department of Surgery, Seoul National University Hospital, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Ji Song
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Korea; Research Group of Healthcare, Korea Food Research Institute, Wanju, Korea
| | - Young-Do Nam
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Korea; Research Group of Healthcare, Korea Food Research Institute, Wanju, Korea
| | - Seung Wan Kang
- Department of Nursing, Seoul National University College of Nursing, Seoul, Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University Hospital, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea; Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
775
|
Galloway-Peña JR, Kontoyiannis DP. The gut mycobiome: The overlooked constituent of clinical outcomes and treatment complications in patients with cancer and other immunosuppressive conditions. PLoS Pathog 2020; 16:e1008353. [PMID: 32240277 PMCID: PMC7117661 DOI: 10.1371/journal.ppat.1008353] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jessica R. Galloway-Peña
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| |
Collapse
|
776
|
El Bairi K, Jabi R, Trapani D, Boutallaka H, Ouled Amar Bencheikh B, Bouziane M, Amrani M, Afqir S, Maleb A. Can the microbiota predict response to systemic cancer therapy, surgical outcomes, and survival? The answer is in the gut. Expert Rev Clin Pharmacol 2020; 13:403-421. [PMID: 32308061 DOI: 10.1080/17512433.2020.1758063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The gut microbiota seems to play a key role in tumorigenesis, across various hallmarks of cancer. Recent evidence suggests its potential use as a biomarker predicting drug response and adding prognostic information, generally in the context of immuno-oncology. AREAS COVERED In this review, we focus on the modulating effects of gut microbiota dysbiosis on various anticancer molecules used in practice, including cytotoxic and immune-modulating agents, primarily immune-checkpoint inhibitors (ICI). Pubmed/Medline-based literature search was conducted to find potential original studies that discuss gut microbiota as a prognostic and predictive biomarker for cancer therapy. We also looked at the US ClinicalTrials.gov website to find additional studies particularly ongoing human clinical trials. EXPERT COMMENTARY Sequencing of stool-derived materials and tissue samples from cancer patients and animal models has shown a significant enrichment of various bacteria such as Fusobacterium nucleatum and Bacteroides fragilis were associated with resistant disease and poorer outcomes. Gut microbiota was also found to be associated with surgical outcomes and seems to play a significant role in anastomotic leak (ATL) after surgery mainly by collagen breakdown. However, this research field is just at the beginning and the current findings are not yet ready to change clinical practice.
Collapse
Affiliation(s)
- Khalid El Bairi
- Cancer Biomarkers Working Group, Mohamed Ist University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
| | - Rachid Jabi
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
- Department of Visceral Surgery, Mohamed VI University Hospital , Oujda, Morocco
| | - Dario Trapani
- Department of Haematology and Oncology, European Institute of Oncology, IEO, IRCCS, University of Milano , Milan, Italy
| | - Hanae Boutallaka
- Department of Gastroenterology and Digestive Endoscopy, Mohamed V Military Teaching Hospital of Rabat, Mohamed V University , Rabat, Morocco
| | | | - Mohammed Bouziane
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
- Department of Visceral Surgery, Mohamed VI University Hospital , Oujda, Morocco
| | - Mariam Amrani
- Department of Pathology, National Institute of Oncology, Faculty of Medicine and Pharmacy, Mohamed V University , Rabat, Morocco
| | - Said Afqir
- Cancer Biomarkers Working Group, Mohamed Ist University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
- Department of Medical Oncology, Mohamed VI University Hospital , Oujda, Morocco
| | - Adil Maleb
- Faculty of Medicine and Pharmacy, Mohamed Ist University , Oujda, Morocco
- Department of Microbiology, Mohamed VI University Hospital , Oujda, Morocco
| |
Collapse
|
777
|
Boem F, Nannini G, Amedei A. Not just 'immunity': how the microbiota can reshape our approach to cancer immunotherapy. Immunotherapy 2020; 12:407-416. [PMID: 32266849 DOI: 10.2217/imt-2019-0192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/23/2020] [Indexed: 11/21/2022] Open
Abstract
Cancer immunotherapy refers to a set of approaches aiming at enhancing the immune system to fight cancer growth and spread. This variety of therapeutic approaches, especially those inhibiting immune checkpoints, have shown very promising results. Nevertheless, patients may respond differently to treatments and the efficacy of immunotherapy seems to be dependent on several factors that go beyond the molecular targeting of immune cells modulation. Here, we review how the activity of gut microbiota appears to be crucial in determining the effectiveness of some immunotherapeutic treatments, fostering or impeding the conditions under which treatments can work or not. Moreover, we discuss how these findings suggest not only extending the range of immunotherapeutic approaches but also reshaping our understanding of immunotherapy itself.
Collapse
Affiliation(s)
- Federico Boem
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20122, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence 50134, Italy
| |
Collapse
|
778
|
Liu Q, Sun Z, Chen L. Memory T cells: strategies for optimizing tumor immunotherapy. Protein Cell 2020; 11:549-564. [PMID: 32221812 PMCID: PMC7381543 DOI: 10.1007/s13238-020-00707-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Several studies have demonstrated that memory T cells including stem cell memory (Tscm) T cells and central memory (Tcm) T cells show superior persistence and antitumor immunity compared with effector memory T (Tem) cells and effector T (Teff) cells. Furthermore, the Tcm/Teff ratio has been reported to be a predictive biomarker of immune responses against some tumors. Thus, a system-level understanding of the mechanisms underlying the differentiation of effector and memory T cells is of increasing importance for developing immunological strategies against various tumors. This review focuses on recent advances in efficacy against tumors, the origin, formation mechanisms of memory T cells, and the role of the gut microbiota in memory T cell formation. Furthermore, we summarize strategies to generate memory T cells in (ex) vivo that, might be applicable in clinical practice.
Collapse
Affiliation(s)
- Qingjun Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.,Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.,Moon (Guangzhou) Biotech Co., Ltd., Room 301, Building B5, Enterprise Accelerator, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, 510000, China
| | - Zhongjie Sun
- Newish Technology (Beijing) Co., Ltd., Xihuan South Road 18, Economic & Technical Development Zone, Beijing, 100176, China.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China. .,Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100088, China.
| |
Collapse
|
779
|
Ruan H, Leibowitz BJ, Zhang L, Yu J. Immunogenic cell death in colon cancer prevention and therapy. Mol Carcinog 2020; 59:783-793. [PMID: 32215970 DOI: 10.1002/mc.23183] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. The colonic mucosa constitutes a critical barrier and a major site of immune regulation. The immune system plays important roles in cancer development and treatment, and immune activation caused by chronic infection or inflammation is well-known to increase cancer risk. During tumor development, neoplastic cells continuously interact with and shape the tumor microenvironment (TME), which becomes progressively immunosuppressive. The clinical success of immune checkpoint blockade therapies is limited to a small set of CRCs with high tumor mutational load and tumor-infiltrating T cells. Induction of immunogenic cell death (ICD), a type of cell death eliciting an immune response, can therefore help break the immunosuppressive TME, engage the innate components, and prime T cell-mediated adaptive immunity for long-term tumor control. In this review, we discuss the current understanding of ICD induced by antineoplastic agents, the influence of driver mutations, and recent developments to harness ICD in colon cancer. Mechanism-guided combinations of ICD-inducing agents with immunotherapy and actionable biomarkers will likely offer more tailored and durable benefits to patients with colon cancer.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Brian J Leibowitz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Lin Zhang
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.,Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
780
|
Pyo DH, Hong HK, Lee WY, Cho YB. Patient-derived cancer modeling for precision medicine in colorectal cancer: beyond the cancer cell line. Cancer Biol Ther 2020; 21:495-502. [PMID: 32208894 DOI: 10.1080/15384047.2020.1738907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since effective immunotherapeutic agents such as immune checkpoint blockade to treat cancer have emerged, the need for reliable preclinical cancer models that can evaluate and discover such drugs became stronger than ever before. The traditional preclinical cancer model using a cancer cell line has several limitations to recapitulate intra-tumor heterogeneity and in-vivo tumor activity including interactions between tumor-microenvironment. In this review, we will go over various preclinical cancer models recently discovered including patient-derived xenografts, humanized mice, organoids, organotypic-tumor spheroids, and organ-on-a-chip models. Moreover, we will discuss the future directions of preclinical cancer research.
Collapse
Affiliation(s)
- Dae Hee Pyo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
781
|
Shah RM, McKenzie EJ, Rosin MT, Jadhav SR, Gondalia SV, Rosendale D, Beale DJ. An Integrated Multi-Disciplinary Perspectivefor Addressing Challenges of the Human Gut Microbiome. Metabolites 2020; 10:E94. [PMID: 32155792 PMCID: PMC7143645 DOI: 10.3390/metabo10030094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the human gut microbiome has grown exponentially. Advances in genome sequencing technologies and metagenomics analysis have enabled researchers to study microbial communities and their potential function within the context of a range of human gut related diseases and disorders. However, up until recently, much of this research has focused on characterizing the gut microbiological community structure and understanding its potential through system wide (meta) genomic and transcriptomic-based studies. Thus far, the functional output of these microbiomes, in terms of protein and metabolite expression, and within the broader context of host-gut microbiome interactions, has been limited. Furthermore, these studies highlight our need to address the issues of individual variation, and of samples as proxies. Here we provide a perspective review of the recent literature that focuses on the challenges of exploring the human gut microbiome, with a strong focus on an integrated perspective applied to these themes. In doing so, we contextualize the experimental and technical challenges of undertaking such studies and provide a framework for capitalizing on the breadth of insight such approaches afford. An integrated perspective of the human gut microbiome and the linkages to human health will pave the way forward for delivering against the objectives of precision medicine, which is targeted to specific individuals and addresses the issues and mechanisms in situ.
Collapse
Affiliation(s)
- Rohan M. Shah
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| | - Elizabeth J. McKenzie
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Magda T. Rosin
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Snehal R. Jadhav
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Shakuntla V. Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | | | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| |
Collapse
|
782
|
Yi M, Jiao D, Qin S, Chu Q, Li A, Wu K. Manipulating Gut Microbiota Composition to Enhance the Therapeutic Effect of Cancer Immunotherapy. Integr Cancer Ther 2020; 18:1534735419876351. [PMID: 31517538 PMCID: PMC7242797 DOI: 10.1177/1534735419876351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the past decade, a growing set of immunotherapies including immune checkpoint
blockade, chimeric antigen receptor T cells, and bispecific antibodies propelled
the advancement of oncology therapeutics. Accumulating evidence demonstrates
that immunotherapy could eliminate tumors better than traditional chemotherapy
or radiotherapy with lower risk of adverse events in numerous cancer types.
Unfortunately, a substantial proportion of patients eventually acquire
resistance to immunotherapy. By analyzing the differences between
immunotherapy-sensitive and immunotherapy-resistant populations, it was noticed
that the composition of gut microbiota is closely related to treatment effect.
Moreover, in xenograft models, interventional regulation of gut microbiota could
effectively enhance efficacy and relieve resistance during immunotherapy. Thus,
we believe that gut microbiota composition might be helpful to explain the
heterogeneity of treatment effect, and manipulating gut microbiota could be a
promising adjuvant treatment for cancer immunotherapy. In this mini review, we
focus on the latest understanding of the cross-talk between gut microbiota and
host immunity. Moreover, we highlight the role of gut microbiota in cancer
immunotherapy including immune checkpoint inhibitor and adoptive cell
transfer.
Collapse
Affiliation(s)
- Ming Yi
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dechao Jiao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Qin
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anping Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kongming Wu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
783
|
Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiol Mol Biol Rev 2020; 84:84/2/e00064-19. [PMID: 32132244 DOI: 10.1128/mmbr.00064-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Technologies allowing genetic sequencing of the human microbiome are opening new realms to discovery. The host microbiota substantially impacts immune responses both in immune-mediated inflammatory diseases (IMIDs) and in tumors affecting tissues beyond skin and mucosae. However, a mechanistic link between host microbiota and cancer or IMIDs has not been well established. Here, we propose T helper 17 (TH17) lymphocytes as the connecting factor between host microbiota and rheumatoid or psoriatic arthritides, multiple sclerosis, breast or ovarian cancer, and multiple myeloma. We theorize that similar mechanisms favor the expansion of gut-borne TH17 cells and their deployment at the site of inflammation in extraborder IMIDs and tumors, where TH17 cells are driving forces. Thus, from a pathogenic standpoint, tumors may share mechanistic routes with IMIDs. A review of similarities and divergences in microbiota-TH17 cell interactions in IMIDs and cancer sheds light on previously ignored pathways in either one of the two groups of pathologies and identifies novel therapeutic avenues.
Collapse
|
784
|
Maturo MG, Soligo M, Gibson G, Manni L, Nardini C. The greater inflammatory pathway-high clinical potential by innovative predictive, preventive, and personalized medical approach. EPMA J 2020; 11:1-16. [PMID: 32140182 PMCID: PMC7028895 DOI: 10.1007/s13167-019-00195-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND LIMITATIONS Impaired wound healing (WH) and chronic inflammation are hallmarks of non-communicable diseases (NCDs). However, despite WH being a recognized player in NCDs, mainstream therapies focus on (un)targeted damping of the inflammatory response, leaving WH largely unaddressed, owing to three main factors. The first is the complexity of the pathway that links inflammation and wound healing; the second is the dual nature, local and systemic, of WH; and the third is the limited acknowledgement of genetic and contingent causes that disrupt physiologic progression of WH. PROPOSED APPROACH Here, in the frame of Predictive, Preventive, and Personalized Medicine (PPPM), we integrate and revisit current literature to offer a novel systemic view on the cues that can impact on the fate (acute or chronic inflammation) of WH, beyond the compartmentalization of medical disciplines and with the support of advanced computational biology. CONCLUSIONS This shall open to a broader understanding of the causes for WH going awry, offering new operational criteria for patients' stratification (prediction and personalization). While this may also offer improved options for targeted prevention, we will envisage new therapeutic strategies to reboot and/or boost WH, to enable its progression across its physiological phases, the first of which is a transient acute inflammatory response versus the chronic low-grade inflammation characteristic of NCDs.
Collapse
Affiliation(s)
- Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Greg Gibson
- Center for Integrative Genomics, School of Biological Sciences, Georgia Tech, Atlanta, GA USA
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Christine Nardini
- IAC Institute for Applied Computing, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
- Bio Unit, Scientific and Medical Direction, SOL Group, Monza, Italy
| |
Collapse
|
785
|
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, Draganov D, Edelson RL, Formenti SC, Fucikova J, Gabriele L, Gaipl US, Gameiro SR, Garg AD, Golden E, Han J, Harrington KJ, Hemminki A, Hodge JW, Hossain DMS, Illidge T, Karin M, Kaufman HL, Kepp O, Kroemer G, Lasarte JJ, Loi S, Lotze MT, Manic G, Merghoub T, Melcher AA, Mossman KL, Prosper F, Rekdal Ø, Rescigno M, Riganti C, Sistigu A, Smyth MJ, Spisek R, Stagg J, Strauss BE, Tang D, Tatsuno K, van Gool SW, Vandenabeele P, Yamazaki T, Zamarin D, Zitvogel L, Cesano A, Marincola FM. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer 2020; 8:e000337. [PMID: 32209603 PMCID: PMC7064135 DOI: 10.1136/jitc-2019-000337] [Citation(s) in RCA: 645] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York City, New York, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Université de Paris, Paris, France
| | - Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Sarah Warren
- NanoString Technologies, Seattle, Washington, USA
| | - Sandy Adjemian
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Cancer Biology, KU Leuevn, Leuven, Belgium
| | - Aitziber Buqué Martinez
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - George Coukos
- Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM "Molecular Radiotherapy and therapeutic innovation", U1030 Molecular Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France
- SIRIC SOCRATES, DHU Torino, Faculté de Medecine, Université Paris-Saclay, Kremlin-Bicêtre, France
| | | | - Richard L Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
| | - Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Udo S Gaipl
- Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, National Cancer Institute/Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
- Sandra and Edward Meyer Cancer Center, New York City, New York, USA
| | - Jian Han
- iRepertoire, Inc, Huntsville, Alabama, USA
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital/Institute of Cancer Research National Institute for Health Biomedical Research Centre, London, UK
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, National Cancer Institute/Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Tim Illidge
- University of Manchester, NIHR Manchester Biomedical Research Centre, Christie Hospital, Manchester, UK
| | - Michael Karin
- Department of Pharmacology and Pathology, University of California at San Diego (UCSD) School of Medicine, La Jolla, California, USA
| | - Howard L Kaufman
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Replimune, Inc, Woburn, Massachusetts, USA
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Guido Kroemer
- Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1138, Paris, France
- Sorbonne Université, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Juan Jose Lasarte
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Sherene Loi
- Division of Research and Clinical Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS, Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, MSKCC, New York City, New York, USA
- Weill Cornell Medical College, New York City, New York, USA
- Parker Institute for Cancer Immunotherapy, MSKCC, New York City, New York, USA
| | | | | | - Felipe Prosper
- Hematology and Cell Therapy, Clinica Universidad de Navarra, Pamplona, Spain
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Maria Rescigno
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
- Interdepartmental Research Center of Molecular Biotechnology, University of Torino, Torino, Italy
| | - Antonella Sistigu
- UOSD Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec City, Canada
- Institut du Cancer de Montréal, Montréal, Quebec City, Canada
- Faculté de Pharmacie de l'Université de Montréal, Montréal, Quebec City, Canada
| | - Bryan E Strauss
- Centro de Investigação Translacional em Oncologia/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kazuki Tatsuno
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Methusalem program, Ghent University, Ghent, Belgium
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York, USA
| | - Dmitriy Zamarin
- Department of Medicine, Weill Cornell Medical College, New York City, New York, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Equipe labellisée par la Ligue contre le cancer, Gustave Roussy, Villejuif, France
- Faculty of Medicine, University of Paris Sud/Paris Saclay, Le Kremlin-Bicêtre, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | | | | |
Collapse
|
786
|
Abstract
With the advent of next-generation sequencing approaches, there has been a renaissance in the microbiome field. Microbial taxonomy and function can now be characterized relatively easily and rapidly-no longer mandating complex culturing approaches. With this renaissance, there is now a strong and growing appreciation for the role of the microbiome (referring to microbes and their genomes) in modulating many facets of physiology-including overall immunity. This is particularly true of the gut microbiome, and there is now an evolving body of the literature demonstrating a role for gut microbes in modulating responses to cancer treatment-particularly immunotherapy. Gut microbes can modulate immunity and anti-tumor responses via a number of different interactions, and these will be discussed herein. Additionally, data regarding the impact of gut microbes on cancer immunotherapy response will be discussed, as will strategies to manipulate the microbiome to enhance therapeutic responses. These efforts to date are not completely optimized; however, there is evidence of efficacy though much additional work is needed in this space. Nonetheless, it is clear that the microbiome plays a central role in health and disease, and strategies to manipulate it in cancer and overall precision health are being explored.
Collapse
Affiliation(s)
- Md. Abdul Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Ologun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
787
|
Abstract
Over the past decade, it has become exceedingly clear that the microbiome is a critical factor in human health and disease and thus should be investigated to develop innovative treatment strategies. The field of metagenomics has come a long way in leveraging the advances of next-generation sequencing technologies resulting in the capability to identify and quantify all microorganisms present in human specimens. However, the field of metagenomics is still in its infancy, specifically in regard to the limitations in computational analysis, statistical assessments, standardization, and validation due to vast variability in the cohorts themselves, experimental design, and bioinformatic workflows. This review summarizes the methods, technologies, computational tools, and model systems for characterizing and studying the microbiome. We also discuss important considerations investigators must make when interrogating the involvement of the microbiome in health and disease in order to establish robust results and mechanistic insights before moving into therapeutic design and intervention.
Collapse
|
788
|
Guven DC, Aktas BY, Simsek C, Aksoy S. Gut microbiota and cancer immunotherapy: prognostic and therapeutic implications. Future Oncol 2020; 16:497-506. [PMID: 32100550 DOI: 10.2217/fon-2019-0783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The immune checkpoint inhibitors have opened new horizons in oncology. Although the indications for the use of Immune checkpoint inhibitors in cancer patients are expanding, there is still a need for markers that can aid in patient selection. Gastrointestinal microbiota can be among these markers. Recently, gastrointestinal microbiota stated to have a bidirectional relation with cancer immunotherapy with roles in both prognostic and therapeutic sides. Preclinical data suggest that modulation of the microbiota could become a novel strategy for improving the efficacy of immunotherapy. However, its labile structure prone to be affected by many factors. Further research can delineate the mechanisms of the relationship between microbiota and immunotherapy can have clinical implications.
Collapse
Affiliation(s)
- Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| | - Burak Yasin Aktas
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| | - Cem Simsek
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| |
Collapse
|
789
|
Sun R, Xu K, Ji S, Pu Y, Man Z, Ji J, Chen M, Yin L, Zhang J, Pu Y. Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135879. [PMID: 31972927 DOI: 10.1016/j.scitotenv.2019.135879] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/17/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The gut microbiota comprises a multispecies microbial community and is essential for maintaining health. Benzene is a widespread environmental and occupational pollutant that mainly causes blood and bone marrow abnormalities. However, the effects of benzene on gut microbiota and metabolism have not yet been investigated. In this study, C57BL/6 mice were exposed to 0, 6, 30 and 150 mg/kg benzene by subcutaneous injection for 30 days. We observed that white blood cell levels significantly decreased in the three benzene exposure groups, while red blood cell and hemoglobin levels were only changed remarkably in 30 and 150 mg/kg benzene-treated mice. The results of 16S rRNA sequencing showed that benzene exposure altered the overall structure of the gut microbial communities. In addition, significant enrichments of Actinobacteria (p < .05) at the phylum level and Helicobacter at the genus level were observed in the cecal contents and feces of mice exposed to 150 mg/kg benzene. Moreover, there was a significant negative correlation between Actinobacteria abundance and basic blood indicators, including white blood cell, red blood cell, and hemoglobin levels. Furthermore, according to LC-MS analysis, a total of 42 cecal metabolites were significantly altered by 150 mg/kg benzene. Several metabolic pathways were significantly influenced by benzene exposure, including cysteine and methionine metabolism, porphyrin and chlorophyll metabolism, steroid biosynthesis, aminoacyl-tRNA biosynthesis, and arginine and proline metabolism. In summary, this study demonstrated that benzene exposure causes dysbiosis of the gut microbiota and metabolic disorder in mice.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Shuangbin Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Zhaodi Man
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jiahui Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
790
|
Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol 2020; 80:73-86. [PMID: 32088363 PMCID: PMC7438305 DOI: 10.1016/j.semcancer.2020.02.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of most common malignancies worldwide and its incidence is still growing. In spite of recent advances in targeted therapies, their clinical efficacy has been limited, non-curative and unaffordable. A growing body of literature indicates that CRC is a multi-modal disease, where a variety of factors within the tumor microenvironment play a significant role in its pathogenesis. For instance, imbalance in gut microbial profiles and impaired intestinal barrier function contribute to the overall intestinal inflammation and initiation of CRC. Moreover, persistent chronic inflammation favors a tumor microenvironment for the growth of cancer. In addition, autophagy or 'self-eating' is a surveillance mechanism involved in the degradation of cellular constituents that are generated under stressful conditions. Cancer stem cells (CSCs), on the other hand, engage in the onset of CRC and are able to endow cancer cells with chemo-resistance. Furthermore, the aberrant epigenetic alterations promote CRC. These evidences highlight the need for multi-targeted approaches that are not only safe and inexpensive but offer a more effective alternative to current generation of targeted drugs. Curcumin, derived from the plant Curcuma longa, represents one such option that has a long history of its use for a variety of chronic disease including cancer, in Indian ayurvedic and traditional Chinese medicine. Scientific evidence over the past few decades have overwhelmingly shown that curcumin exhibits a multitude of anti-cancer activities orchestrated through key signaling pathways associated with cancer. In this article, we will present a current update and perspective on this natural medicine - incorporating the basic cellular mechanisms it effects and the current state of clinical evidence, challenges and promise for its use as a cancer preventative and potential adjunct together with modern therapies for CRC patients.
Collapse
|
791
|
Microbiome within Primary Tumor Tissue from Renal Cell Carcinoma May Be Associated with PD-L1 Expression of the Venous Tumor Thrombus. Adv Urol 2020; 2020:9068068. [PMID: 32148479 PMCID: PMC7049446 DOI: 10.1155/2020/9068068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Objective To perform a proof of concept microbiome evaluation and PD-L1 expression profiling in clear-cell renal cell carcinoma (cc-RCC) with associated tumor thrombus (TT). Methods After IRB approval, six patients underwent radical nephrectomy (RN) with venous tumor thrombectomy (VTT). We collected fresh tissue specimens from normal adjacent, tumor, and thrombus tissues. We utilized RNA sequencing to obtain PD-L1 expression profiles and perform microbiome analysis. Statistical assessment was performed using Student's t-test, chi-square, and spearman rank correlations using SPSS v25. Results We noted the tumor thrombus to be mostly devoid of diverse microbiota. A large proportion of Staphylococcus epidermidus was detected and unknown if this is a surgical or postsurgical contaminant; however, it was noted more in the thrombus than other tissues. Microbiome diversity profiles were most abundant in the primary tumor compared to the thrombus or normal adjacent tissue. Differential expression of PD-L1 was examined in the tumor thrombus to the normal background tissue and noted three of the six subjects had a threshold above 2-fold. These three similar subjects had foreign microbiota that are typical residents of the oral microbiome. Conclusion Renal tumors have more diverse microbiomes than normal adjacent tissue. Identification of resident oral microbiome profiles in clear-cell renal cancer with tumor thrombus provides a potential biomarker for thrombus response to PD-L1 inhibition.
Collapse
|
792
|
Kwaifa IK, Bahari H, Yong YK, Noor SM. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules 2020; 10:biom10020291. [PMID: 32069832 PMCID: PMC7072669 DOI: 10.3390/biom10020291] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022] Open
Abstract
Obesity is characterized by the excessive deposition of fat that may interfere with the normal metabolic process of the body. It is a chronic condition associated with various metabolic syndromes, whose prevalence is grossly increasing, and affects both children and adults. Accumulation of excessive macronutrients on the adipose tissues promotes the secretion and release of inflammatory mediators, including interleukin-6 (IL-6), interleukin 1β, tumor necrotic factor-α (TNF-α), leptin, and stimulation of monocyte chemoattractant protein-1 (MCP-1), which subsequently reduce the production of adiponectin thereby initiating a proinflammatory state. During obesity, adipose tissue synthesizes and releases a large number of hormones and cytokines that alter the metabolic processes, with a profound influence on endothelial dysfunction, a situation associated with the formation of atherosclerotic plaque. Endothelial cells respond to inflammation and stimulation of MCP-1, which is described as the activation of adhesion molecules leading to proliferation and transmigration of leukocytes, which facilitates their increase in atherogenic and thromboembolic potentials. Endothelial dysfunction forms the cornerstone of this discussion, as it has been considered as the initiator in the progression of cardiovascular diseases in obesity. Overexpression of proinflammatory cytokines with subsequent reduction of anti-inflammatory markers in obesity, is considered to be the link between obesity-induced inflammation and endothelial dysfunction. Inhibition of inflammatory mechanisms and management and control of obesity can assist in reducing the risks associated with cardiovascular complications.
Collapse
Affiliation(s)
- Ibrahim Kalle Kwaifa
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia;
- Department of Haematology, School of Medical Laboratory Sciences, College of Health Sciences, Usmanu Danfodiyo University (UDU), Sokoto, North-Western 2346, Nigeria
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia; (H.B.); (Y.K.Y.)
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia; (H.B.); (Y.K.Y.)
| | - Sabariah Md Noor
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Selangor 43400, Malaysia;
- Correspondence: ; Tel.: +60-193220798
| |
Collapse
|
793
|
Abstract
PURPOSE OF REVIEW Recent developments in immunotherapy have transformed the landscape of melanoma therapy. Here, we review markers for response to immunotherapy. RECENT FINDINGS Current immunotherapies disable immune checkpoints on T cells and other immune cells and allow immune rejection of tumor. This process depends crucially on a preexisting response to the development of the melanoma. Here we describe the complexity of the anti-tumor immune response and the links to the development of markers that are currently used or under investigation in the clinic. We describe immune response biomarkers along with new developments that could translate into advances.
Collapse
Affiliation(s)
| | - Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, 1600 Divisadero Street, Rm A741, San Francisco, CA, 94143, USA
| | - Adil I Daud
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, 1600 Divisadero Street, Rm A741, San Francisco, CA, 94143, USA.
| |
Collapse
|
794
|
Galon J, Bruni D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity 2020; 52:55-81. [PMID: 31940273 DOI: 10.1016/j.immuni.2019.12.018] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/01/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Cancer is a complex disease whose outcome depends largely on the cross-talk between the tumor and its microenvironment. Here, we review the evolution of the field of tumor immunology and the advances, in lockstep, of our understanding of cancer as a disease. We discuss the involvement of different immune cells at distinct stages of tumor progression and how immune contexture determinants shaping tumor development are being exploited therapeutically. Current clinical stratification schemes focus on the tumor histopathology and the molecular characteristics of the tumor cell. We argue for the importance of revising these stratification systems to include immune parameters so as to address the immediate need for improved prognostic and/or predictive information to guide clinical decisions.
Collapse
Affiliation(s)
- Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | - Daniela Bruni
- INSERM, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Université de Paris; Centre de Recherche des Cordeliers, F-75006 Paris, France
| |
Collapse
|
795
|
Albrich WC, Boggian K. Levofloxacin prophylaxis in patients with myeloma. Lancet Oncol 2020; 21:e68. [DOI: 10.1016/s1470-2045(20)30008-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/25/2022]
|
796
|
Schwabe RF, Greten TF. Gut microbiome in HCC - Mechanisms, diagnosis and therapy. J Hepatol 2020; 72:230-238. [PMID: 31954488 DOI: 10.1016/j.jhep.2019.08.016] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
The microbiome exerts essential functions in health and disease, modulating key processes in metabolism, inflammation and immunity. Recent evidence has revealed a key role of the microbiome in carcinogenesis as well as anti-cancer immune responses in mouse models and patients. Herein, we will review functions of the gut microbiome in hepatocellular carcinoma (HCC), the third leading cause of worldwide cancer mortality. The majority of HCC develops in patients with chronic liver disease, caused by viral hepatitis, non-alcoholic fatty liver disease (NAFLD) and alcohol-related fatty liver disease. In this review, we will discuss mechanisms by which the gut-liver axis promotes the development of HCC in mouse models and patients, including dysbiosis, the leaky gut and bacterial metabolites, with a particular focus on NAFLD as the fastest growing cause of HCC development. Moreover, we will review recent progress in harnessing the gut microbiome as a potential diagnostic tool and novel therapeutic target in patients with HCC, in particular in the setting of immunotherapy.
Collapse
Affiliation(s)
- Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA; Institute of Human Nutrition, Columbia University, New York, NY 10032, USA.
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; NCI-CCR Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
797
|
Amor DR, Ratzke C, Gore J. Transient invaders can induce shifts between alternative stable states of microbial communities. SCIENCE ADVANCES 2020; 6:eaay8676. [PMID: 32128414 PMCID: PMC7030923 DOI: 10.1126/sciadv.aay8676] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/04/2019] [Indexed: 05/02/2023]
Abstract
Microbial dispersal often leads to the arrival of outsider organisms into ecosystems. When their arrival gives rise to successful invasions, outsider species establish within the resident community, which can markedly alter the ecosystem. Seemingly less influential, the potential impact of unsuccessful invaders that interact only transiently with the community has remained largely ignored. Here, we experimentally demonstrate that these transient invasions can induce a lasting transition to an alternative stable state, even when the invader species itself does not survive the transition. First, we develop a mechanistic understanding of how environmental changes caused by these transient invaders can drive a community shift in a simple, bistable model system. Beyond this, we show that transient invaders can also induce switches between stable states in more complex communities isolated from natural soil samples. Our results demonstrate that short-term interactions with an invader species can induce lasting shifts in community composition and function.
Collapse
Affiliation(s)
| | | | - Jeff Gore
- Corresponding author. (J.G.); (D.A.)
| |
Collapse
|
798
|
Mitra A, Grossman Biegert GW, Delgado AY, Karpinets TV, Solley TN, Mezzari MP, Yoshida-Court K, Petrosino JF, Mikkelson MD, Lin L, Eifel P, Zhang J, Ramondetta LM, Jhingran A, Sims TT, Schmeler K, Okhuysen P, Colbert LE, Klopp AH. Microbial Diversity and Composition Is Associated with Patient-Reported Toxicity during Chemoradiation Therapy for Cervical Cancer. Int J Radiat Oncol Biol Phys 2020; 107:163-171. [PMID: 31987960 DOI: 10.1016/j.ijrobp.2019.12.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Patients receiving pelvic radiation for cervical cancer experience high rates of acute gastrointestinal (GI) toxicity. The association of changes in the gut microbiome with bowel toxicity from radiation is not well characterized. METHODS AND MATERIALS Thirty-five patients undergoing definitive chemoradiation therapy (CRT) underwent longitudinal sampling (baseline and weeks 1, 3, and 5) of the gut microbiome and prospective assessment of patient-reported GI toxicity. DNA was isolated from stool obtained at rectal examination and analyzed with 16S rRNA sequencing. GI toxicity was assessed with the Expanded Prostate Cancer Index Composite instrument to evaluate frequency, urgency, and discomfort associated with bowel function. Shannon diversity index was used to characterize alpha (within sample) diversity. Weighted UniFrac principle coordinates analysis was used to compare beta (between sample) diversity between samples using permutational multivariate analysis of variance. Linear discriminant analysis effect size highlighted microbial features that best distinguish categorized patient samples. RESULTS Gut microbiome diversity continuously decreased over the course of CRT, with the largest decrease at week 5. Expanded Prostate Cancer Index Composite bowel function scores also declined over the course of treatment, reflecting increased symptom burden. At all individual time points, higher diversity of the gut microbiome was linearly correlated with better patient-reported GI function, but baseline diversity was not predictive of eventual outcome. Patients with high toxicity demonstrated different compositional changes during CRT in addition to compositional differences in Clostridia species. CONCLUSIONS Over time, increased radiation toxicity is associated with decreased gut microbiome diversity. Baseline diversity is not predictive of end-of-treatment bowel toxicity, but composition may identify patients at risk for developing high toxicity.
Collapse
Affiliation(s)
- Aparna Mitra
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Andrea Y Delgado
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tatiana V Karpinets
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Travis N Solley
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa P Mezzari
- Alkek Center for Metagenomics and Microbiome Research Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Kyoko Yoshida-Court
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe F Petrosino
- Alkek Center for Metagenomics and Microbiome Research Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Megan D Mikkelson
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lilie Lin
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Eifel
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lois M Ramondetta
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anuja Jhingran
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Travis T Sims
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathleen Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pablo Okhuysen
- Department of Infectious Diseases, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Colbert
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ann H Klopp
- Division of Radiation Oncology University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
799
|
Gavrielatou N, Doumas S, Economopoulou P, Foukas PG, Psyrri A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat Rev 2020; 84:101977. [PMID: 32018128 DOI: 10.1016/j.ctrv.2020.101977] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Preclinical data suggest that head and neck squamous cell carcinoma (HNSCC) is a profoundly immunosuppressive disease, characterized by abnormal secretion of proinflammatory cytokines and dysfunction of immune effector cells. Based on landmark phase III trials, two anti-Programmed Cell Death-1 (PD-1) antibodies, pembrolizumab and nivolumab have been approved for HNSCC by FDA and EMEA in the recurrent/metastatic setting; in addition, pembrolizumab has recently received FDA and EMEA approval as first line treatment. In clinical practice, only a minority of patients with HNSCC derive benefit from immunotherapy and the need for the discovery of novel biomarkers to optimize treatment strategies is becoming increasingly more relevant. Although currently only PD-L1 is widely used as a predictive biomarker for response to immune checkpoint inhibitors in HNSCC, there are many ongoing trials focusing on the identification of new biomarkers. This review will summarize current data on emerging biomarkers for response to immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Niki Gavrielatou
- Section of Medical Oncology, 2(nd) Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Stergios Doumas
- Maxillofacial Unit, Brighton and Sussex University Hospitals NHS, UK
| | - Panagiota Economopoulou
- Section of Medical Oncology, 2(nd) Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Periklis G Foukas
- 2nd Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece
| | - Amanda Psyrri
- Section of Medical Oncology, 2(nd) Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, 1(st) Rimini St, 12462 Haidari, Athens, Greece.
| |
Collapse
|
800
|
Carey RM, Rajasekaran K, Seckar T, Lin X, Wei Z, Tong CCL, Ranasinghe VJ, Newman JG, O'Malley BW, Weinstein GS, Feldman MD, Robertson ES. The virome of HPV-positive tonsil squamous cell carcinoma and neck metastasis. Oncotarget 2020; 11:282-293. [PMID: 32076488 PMCID: PMC6980631 DOI: 10.18632/oncotarget.27436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) represents the most common HPV-related malignancy in the United States with increasing incidence. There is heterogeneity between the behavior and response to treatment of HPV-positive oropharyngeal squamous cell carcinoma that may be linked to the tumor virome. In this prospective study, a pan-pathogen microarray (PathoChip) was used to determine the virome of early stage, p16-positive OPSCC and neck metastasis treated with transoral robotic surgery (TORS) and neck dissection. The virome findings of primary tumors and neck lymph nodes were correlated with clinical data to determine if specific organisms were associated with clinical outcomes. A total of 114 patients were enrolled in the study. Double-stranded DNA viruses, specifically Papillomaviridae, showed the highest hybridization signal (viral copies) across all viral families in the primary and positive lymph node samples. High hybridization signals were also detected for signatures of Baculoviridae, Reoviridae, Siphoviridae, Myoviridae, and Polydnaviridae in most of the cancer specimens, including the lymph nodes without cancer present. Across all HPV signatures, HPV16 and 18 had the highest average hybridization signal index and prevalence. To our knowledge, this is the first study that has identified the viral signatures of OPSCC tumors. This will serve as a foundation for future research investigating the role of the virome in OPSCC. Further investigation into the OPSCC microbiome and its variations may allow for improved appreciation of the impact of microbial dysbiosis on risk stratification, oncologic outcomes, and treatment response which has been shown in other cancer sites.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.,Co-first authors
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.,Co-first authors
| | - Tyler Seckar
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiang Lin
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Charles C L Tong
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Viran J Ranasinghe
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jason G Newman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory S Weinstein
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|