801
|
Inamura K. Roles of microbiota in response to cancer immunotherapy. Semin Cancer Biol 2020; 65:164-175. [PMID: 31911189 DOI: 10.1016/j.semcancer.2019.12.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
Immunotherapy, which shows great promise for treating patients with metastatic malignancies, has dramatically changed the therapeutic landscape of cancer, particularly subsequent to the discovery of immune checkpoint inhibitors. However, the responses to immunotherapy are heterogeneous and often transient. More problematic is that a high proportion of patients with cancer are resistant to such therapy. Much effort has been expended to identify reliable biomarkers that accurately predict clinical responses to immunotherapy. Unfortunately, such tools are lacking, and our knowledge of the mechanisms underlying its efficacy and safety is insufficient. The microbiota is increasingly recognized for its influence on human health and disease. Microbes create a pro- or an anti-inflammatory environment through complex interactions with host cells and cytokines. Emerging evidence indicates that microbes alter the efficacy and toxicity of immunotherapy by modulating the host's local and systemic immune responses. It is therefore critically important to exploit the microbiota to develop biomarkers as well as to identify therapeutic targets that can be applied to cancer immunotherapy. This review provides insights into the challenges that must be addressed to achieve these goals.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
802
|
Abstract
There is mounting evidence that members of the human microbiome are highly associated with a wide variety of cancer types. Among oral cancers, oral squamous cell carcinoma (OSCC) is the most prevalent and most commonly studied, and it is the most common malignancy of the head and neck worldwide. However, there is a void regarding the role that the oral microbiome may play in OSCC. Previous studies have not consistently found a characteristic oral microbiome composition associated with OSCC. Although a direct causality has not been proven, individual members of the oral microbiome are capable of promoting various tumorigenic functions related to cancer development. Two prominent oral pathogens, Porphyromonas gingivalis, and Fusobacterium nucleatum can promote tumor progression in mice. P. gingivalis infection has been associated with oro-digestive cancer, increased oral cancer invasion, and proliferation of oral cancer stem cells. The microbiome can influence the evolution of the disease by directly interacting with the human body and significantly altering the response and toxicity to various forms of cancer therapy. Recent studies have shown an association of certain phylogenetic groups with the immunotherapy treatment outcomes of certain tumors. On the other side of the coin, recently it has been a resurgence in interest on the potential use of bacteria to cure cancer. These kinds of treatments were used in the late nineteenth and early twentieth centuries as the first line of defense against cancer in some hospitals but later displaced by other types of treatments such as radiotherapy. Currently, organisms such as Salmonella typhimurium and Clostridium spp. have been used for targeted strategies as potential vectors to treat cancer. In this review, we briefly summarize our current knowledge of the role of the oral microbiome, focusing on its bacterial fraction, in cancer in general and in OSCC more precisely, and a brief description of the potential use of bacteria to target tumors.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | | | - Jorge Frias-Lopez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
803
|
DUPONT HERBERTL, JIANG ZHIDONG, DUPONT ANDREWW, UTAY NETANYAS. THE INTESTINAL MICROBIOME IN HUMAN HEALTH AND DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:178-197. [PMID: 32675857 PMCID: PMC7358474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Human Microbiome Initiative of NIH, begun in 2007, has opened the door to the power of the intestinal microbiome in health and disease. The 100 trillion gut microbes influence body function through three pathways: (1) via the neural route where 500 million neurons of the enteric nervous system (the body's second brain) connect to the brain and spinal cord, (2) via the immune route where the gut-immune capacity prevents infection and elicits immune response to vaccines, and (3) by the hormonal route wherein biologically active chemicals are released from enteroendocrine cells to control mood and body functions. Through research, the identification of diseases and disorders associated with abnormal microbiome ("dysbiosis") has increased in number with potential for reversibility. Our team has developed an orally administered fecal microbiota transplantation product that is effective in reversing dysbiosis in recurrent Clostridioides difficile (C. difficile) and is being used to reverse abnormal microbiomes in chronic dysbiotic disorders.
Collapse
Affiliation(s)
- HERBERT L. DUPONT
- Correspondence and reprint requests: Herbert L. DuPont, MD, MACP, 1200 Pressler Street, Houston, Texas 77030713-500-9366
| | | | | | | |
Collapse
|
804
|
Chen C, Lu Y, Cheng A, Huang C, Kuo W, Wang M, Chao M, Chen I, Kuo C, Lu T, Lin C. Disparity in Tumor Immune Microenvironment of Breast Cancer and Prognostic Impact: Asian Versus Western Populations. Oncologist 2020; 25:e16-e23. [PMID: 31371522 PMCID: PMC6964121 DOI: 10.1634/theoncologist.2019-0123] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The clinicopathological features and prognosis of breast cancer in Asia are different from those in the Western countries. Tumor-infiltrating immune cells can influence the outcome of patients with breast cancer, but they have not been systemically evaluated in Asian patients with breast cancer. METHODS We compared the immune score, composition, and prognostic impact of infiltrating immune cells between Asian and Western patients with breast cancer by analyzing gene expression profiles from eight Gene Expression Omnibus data sets and The Cancer Genome Atlas data set. The Estimation of Stromal and Immune Cells in Malignant Tumours Using Expression Data (ESTIMATE) and Cell Type Identification by Estimating Relative Subsets of Known RNA Transcripts (CIBERSORT) algorithms were used to determine the immune score and composition of tumor-infiltrating immune cells, respectively. FINDINGS This study included 462 Asian patients and 2,186 Western patients. Tumors of Asian patients had significantly higher immune score, particularly in the luminal B and HER2-enriched subtypes. High immune score was associated with favorable prognosis in both Asian and Western patients, and Asian race with a high ESTIMATE immune score provided additional power to predict longer disease-free survival. Activated CD4 T cells and M2 macrophages were the most strongly associated with survival in both Asian and Western patients. INTERPRETATION Our study highlights the difference in tumor immune microenvironments between Asian and Western patients. The higher ESTIMATE immune score, which represents more abundant tumor-infiltrating immune cells, in tumors of Asian patients partly explains their favorable prognosis. IMPLICATIONS FOR PRACTICE The tumor microenvironment serves as an interface that affects the human body's reaction to cancer cells. Evidence has revealed that tumor-infiltrating immune cells were associated with patient prognosis. This study demonstrated the disparity of tumor microenvironments and their prognostic impact between Asian and Western patients with breast cancer. The differences in immune score partially explained the racial survival differences noted in recent studies. Integrated analysis of tumor cells, tumor microenvironment, and racial effect may significantly improve recurrence risk prediction for patients with stage I-III breast cancer. Because the effect of tumor microenvironment varies across different populations, a model of interaction between immune score and race/ethnicity is recommended in accessing the risk of patients with cancer.
Collapse
Affiliation(s)
- Ching‐Hsuan Chen
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan UniversityTaipeiTaiwan
- Department of Obstetrics and Gynecology, Taipei City Hospital Heping Fuyou BranchTaipeiTaiwan
| | - Yen‐Shen Lu
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Department of Internal Medicine, National Taiwan University HospitalTaipeiTaiwan
| | - Ann‐Lii Cheng
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Department of Internal Medicine, National Taiwan University HospitalTaipeiTaiwan
- National Taiwan University Cancer CenterTaipeiTaiwan
| | - Chiun‐Sheng Huang
- Department of Surgery, National Taiwan University HospitalTaipeiTaiwan
| | - Wen‐Hung Kuo
- Department of Surgery, National Taiwan University HospitalTaipeiTaiwan
| | - Ming‐Yang Wang
- Department of Surgery, National Taiwan University HospitalTaipeiTaiwan
| | - Ming Chao
- Department of Surgery, National Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | - I‐Chun Chen
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Department of Internal Medicine, National Taiwan University HospitalTaipeiTaiwan
- National Taiwan University Cancer CenterTaipeiTaiwan
| | - Chun‐Wei Kuo
- Department of Pathology, National Taiwan University Hospital Hsin‐Chu BranchHsin‐ChuTaiwan
| | - Tzu‐Pin Lu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan UniversityTaipeiTaiwan
| | - Ching‐Hung Lin
- Department of Oncology, National Taiwan University HospitalTaipeiTaiwan
- Department of Internal Medicine, National Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
805
|
Baffy G. Gut Microbiota and Cancer of the Host: Colliding Interests. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:93-107. [PMID: 32130695 DOI: 10.1007/978-3-030-34025-4_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer develops in multicellular organisms from cells that ignore the rules of cooperation and escape the mechanisms of anti-cancer surveillance. Tumorigenesis is jointly encountered by the host and microbiota, a vast collection of microorganisms that live on the external and internal epithelial surfaces of the body. The largest community of human microbiota resides in the gastrointestinal tract where commensal, symbiotic and pathogenic microorganisms interact with the intestinal barrier and gut mucosal lymphoid tissue, creating a tumor microenvironment in which cancer cells thrive or perish. Aberrant composition and function of the gut microbiota (dysbiosis) has been associated with tumorigenesis by inducing inflammation, promoting cell growth and proliferation, weakening immunosurveillance, and altering food and drug metabolism or other biochemical functions of the host. However, recent research has also identified several mechanisms through which gut microbiota support the host in the fight against cancer. These mechanisms include the use of antigenic mimicry, biotransformation of chemotherapeutic agents, and other mechanisms to boost anti-cancer immune responses and improve the efficacy of cancer immunotherapy. Further research in this rapidly advancing field is expected to identify additional microbial metabolites with tumor suppressing properties, map the complex interactions of host-microbe 'transkingdom network' with cancer cells, and elucidate cellular and molecular pathways underlying the impact of specific intestinal microbial configurations on immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
806
|
Zhang X, Browman G, Siu W, Basen-Engquist KM, Hanash SM, Hoffman KL, Okhuysen PC, Scheet P, Petrosino JF, Kopetz S, Daniel CR. The BE GONE trial study protocol: a randomized crossover dietary intervention of dry beans targeting the gut microbiome of overweight and obese patients with a history of colorectal polyps or cancer. BMC Cancer 2019; 19:1233. [PMID: 31852462 PMCID: PMC6921460 DOI: 10.1186/s12885-019-6400-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mouse and human studies support the promise of dry beans to improve metabolic health and to lower cancer risk. In overweight/obese patients with a history of colorectal polyps or cancer, the Beans to Enrich the Gut microbiome vs. Obesity's Negative Effects (BE GONE) trial will test whether and how an increase in the consumption of pre-cooked, canned dry beans within the context of usual diet and lifestyle can enhance the gut landscape to improve metabolic health and reduce cancer risk. METHODS/DESIGN This randomized crossover trial is designed to characterize changes in (1) host markers spanning lipid metabolism, inflammation, and obesity-related cancer risk; (2) compositional and functional profiles of the fecal microbiome; and (3) host and microbial metabolites. With each subject serving as their own control, the trial will compare the participant's usual diet with (intervention) and without (control) dry beans. Canned, pre-cooked dry beans are provided to participants and the usual diet continually assessed and monitored. Following a 4-week run-in and equilibration period, each participant provides a total of 5 fasting blood and 6 stool samples over a total period of 16 weeks. The intervention consists of a 2-week ramp-up of dry bean intake to 1 cup/d, which is then continued for an additional 6 weeks. Intra- and inter-individual outcomes are assessed across each crossover period with consideration of the joint or modifying effects of the usual diet and baseline microbiome. DISCUSSION The BE GONE trial is evaluating a scalable dietary prevention strategy targeting the gut microbiome of high-risk patients to mitigate the metabolic and inflammatory effects of adiposity that influence colorectal cancer risk, recurrence, and survival. The overarching scientific goal is to further elucidate interactions between diet, the gut microbiome, and host metabolism. Improved understanding of the diet-microbiota interplay and effective means to target these relationships will be key to the future of clinical and public health approaches to cancer and other major diet- and obesity-related diseases. TRIAL REGISTRATION This protocol is registered with the U.S. National Institutes of Health trial registry, ClinicalTrials.gov, under the identifier NCT02843425. First posted July 25, 2016; last verified January 25, 2019.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Department of Medicine, Epidemiology and Population Science, Baylor College of Medicine, Houston, TX, USA
| | - Gladys Browman
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Wesley Siu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen M Basen-Engquist
- Department of Behavioral Science, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control, and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1340, Houston, TX, TX 77030, USA.
| |
Collapse
|
807
|
Dobosz P, Dzieciątkowski T. The Intriguing History of Cancer Immunotherapy. Front Immunol 2019; 10:2965. [PMID: 31921205 PMCID: PMC6928196 DOI: 10.3389/fimmu.2019.02965] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is often perceived as a relatively recent advance. In reality, however, one should be looking for the beginnings of cancer immunotherapy under different names as far as in the Antiquity. The first scientific attempts to modulate patients' immune systems to cure cancer can be attributed to two German physicians, Fehleisen and Busch, who independently noticed significant tumor regression after erysipelas infection. The next significant advances came from William Bradley Coley who is known today as the Father of Immunotherapy. It was Coley who first attempted to harness the immune system for treating bone cancer in 1891. His achievements were largely unnoticed for over fifty years, and several seminal discoveries in the field of Immunology, such as the existence of T cells and their crucial role in immunity in 1967, stepped up the research toward cancer immunotherapy known today. The following paper tracks cancer immunotherapy from its known beginnings up until recent events, including the 2018 Nobel Prize award to James Allison and Tasuku Honjo for their meticulous work on checkpoint molecules as potential therapeutic targets. That work has led to the successful development of new checkpoint inhibitors, CAR T-cells and oncolytic viruses and the pace of such advances brings the highest hope for the future of cancer treatment.
Collapse
Affiliation(s)
- Paula Dobosz
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Dzieciątkowski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
808
|
|
809
|
Song W, Anselmo AC, Huang L. Nanotechnology intervention of the microbiome for cancer therapy. NATURE NANOTECHNOLOGY 2019; 14:1093-1103. [PMID: 31802032 DOI: 10.1038/s41565-019-0589-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/06/2019] [Indexed: 05/19/2023]
Abstract
The microbiome is emerging as a key player and driver of cancer. Traditional modalities to manipulate the microbiome (for example, antibiotics, probiotics and microbiota transplants) have been shown to improve efficacy of cancer therapies in some cases, but issues such as collateral damage to the commensal microbiota and consistency of these approaches motivates efforts towards developing new technologies specifically designed for the microbiome-cancer interface. Considering the success of nanotechnology in transforming cancer diagnostics and treatment, nanotechnologies capable of manipulating interactions that occur across microscopic and molecular length scales in the microbiome and the tumour microenvironment have the potential to provide innovative strategies for cancer treatment. As such, opportunities at the intersection of nanotechnology, the microbiome and cancer are massive. In this Review, we highlight key opportunistic areas for applying nanotechnologies towards manipulating the microbiome for the treatment of cancer, give an overview of seminal work and discuss future challenges and our perspective on this emerging area.
Collapse
Affiliation(s)
- Wantong Song
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
810
|
Abstract
Resistance to cancer therapy remains a major challenge in clinical oncology. Although the initial treatment phase is often successful, eventual resistance, characterized by tumour relapse or spread, is discouraging. The majority of studies devoted to investigating the basis of resistance have focused on tumour-related changes that contribute to therapy resistance and tumour aggressiveness. However, over the last decade, the diverse roles of various host cells in promoting therapy resistance have become more appreciated. A growing body of evidence demonstrates that cancer therapy can induce host-mediated local and systemic responses, many of which shift the delicate balance within the tumour microenvironment, ultimately facilitating or supporting tumour progression. In this Review, recent advances in understanding how the host response to different cancer therapies may promote therapy resistance are discussed, with a focus on therapy-induced immunological, angiogenic and metastatic effects. Also summarized is the potential of evaluating the host response to cancer therapy in an era of precision medicine in oncology.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
811
|
Cabrera-Mulero A, Tinahones A, Bandera B, Moreno-Indias I, Macías-González M, Tinahones FJ. Keto microbiota: A powerful contributor to host disease recovery. Rev Endocr Metab Disord 2019; 20:415-425. [PMID: 31720986 PMCID: PMC6938789 DOI: 10.1007/s11154-019-09518-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gut microbiota (GM) is a key contributor to host metabolism and physiology. Data generated on comparing diseased and healthy subjects have reported changes in the GM profile between both health states, suggesting certain bacterial composition could be involved in pathogenesis. Moreover, studies reported that reshaping of GM could contribute actively to disease recovery. Interestingly, ketogenic diets (KD) have emerged recently as new economic dietotherapeutic strategy to combat a myriad of diseases (refractory epilepsy, obesity, cancer, neurodegenerative diseases…). KD, understood in a broad sense, refers to whatever dietetic approximation, which causes physiological ketosis. Therefore, high fat-low carbs diets, fasting periods or caloric restriction constitute different strategies to produce an increase of main ketones bodies, acetoacetate and β-hydroxybutyrate, in blood. Involved biological mechanisms in ketotherapeutic effects are still to be unravelled. However, it has been pointed out that GM remodelling by KD, from now on "keto microbiota", may play a crucial role in patient response to KD treatment. In fact, germ-free animals were resistant to ketotherapeutic effects; reinforcing keto microbiota may be a powerful contributor to host disease recovery. In this review, we will comment the influence of gut microbiota on host, as well as, therapeutic potential of ketogenic diets and keto microbiota to restore health status. Current progress and limitations will be argued too. In spite of few studies have defined applicability and mechanisms of KD, in the light of results, keto microbiota might be a new useful therapeutic agent.
Collapse
Affiliation(s)
- Amanda Cabrera-Mulero
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Alberto Tinahones
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
| | - Borja Bandera
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Macías-González
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
| | - Francisco J Tinahones
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
812
|
Lim HH, Hopkins AM, Rowland A, Yuen HY, Karapetis CS, Sorich MJ. Effect of Early Adverse Events on Survival Outcomes of Patients with Metastatic Colorectal Cancer Treated with Ramucirumab. Target Oncol 2019; 14:743-748. [PMID: 31676953 DOI: 10.1007/s11523-019-00683-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies of patients treated with bevacizumab and other vascular epithelial growth factor (VEGF) inhibitors have reported that hypertension adverse events (AEs) are associated with improved overall survival (OS) or progression-free survival (PFS). OBJECTIVE Our objective was to evaluate the association between early AEs and survival outcomes for patients treated with ramucirumab, an antibody targeting the VEGF receptor-2 (VEGFR-2), plus FOLFIRI for metastatic colorectal cancer (mCRC). METHODS Data from 529 patients treated with ramucirumab plus FOLFIRI for mCRC in the RAISE clinical trial (NCT01183780) were evaluated to see whether early (first 6 weeks of therapy) AEs predicted subsequent OS and PFS. A Cox proportional hazard approach was used to evaluate associations between early AEs and survival outcomes. A secondary analysis between FOLFIRI and placebo was conducted as a sensitivity analysis. RESULTS Of 529 patients treated with ramucirumab plus FOLFIRI, 479 were alive and progression free at 6 weeks after commencing therapy. No significant association was identified between hypertension occurring within the first 42 days of ramucirumab plus FOLFIRI therapy and OS (grade 1-2, hazard ratio [HR] 0.90 [95% confidence interval (CI) 0.66-1.24]; grade 3+, HR 1.02 [95% CI 0.67-1.55]; P = 0.803) or PFS (grade 1-2, HR 0.98 [95% CI 0.74-1.28]; grade 3+, HR 0.93 [95% CI 0.64-1.37]; P = 0.93). However, there was a significant association between diarrhea occurring within the first 42 days of ramucirumab plus FOLFIRI therapy and worse OS (grade 1-2, HR 0.96 [95% CI 0.76-1.20]; grade 3+, HR 2.72 [95% CI 1.67-4.44]; P = 0.001) and PFS (grade 1-2, HR 1.01 [95% CI 0.83-1.23]; grade 3+, HR 2.22 [95% CI 1.43-3.45]; P = 0.005). No other AEs were significantly associated with OS or PFS. CONCLUSIONS Ramucirumab-induced hypertension was not associated with improved OS and PFS in patients with mCRC treated with ramucirumab and FOLFIRI, but severe diarrhea was associated with poorer OS and PFS. CLINICAL TRIAL REGISTRATION No. NCT01183780.
Collapse
Affiliation(s)
- Huezin H Lim
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Hoi Y Yuen
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Christos S Karapetis
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
813
|
Tulkens J, De Wever O, Hendrix A. Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization. Nat Protoc 2019; 15:40-67. [PMID: 31776460 DOI: 10.1038/s41596-019-0236-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023]
Abstract
Gram-negative and Gram-positive bacteria release a variety of membrane vesicles through different formation routes. Knowledge of the structure, molecular cargo and function of bacterial extracellular vesicles (BEVs) is primarily obtained from bacteria cultured in laboratory conditions. BEVs in human body fluids have been less thoroughly investigated most probably due to the methodological challenges in separating BEVs from their matrix and host-derived eukaryotic extracellular vesicles (EEVs) such as exosomes and microvesicles. Here, we present a step-by-step procedure to separate and characterize BEVs from human body fluids. BEVs are separated through the orthogonal implementation of ultrafiltration, size-exclusion chromatography (SEC) and density-gradient centrifugation. Size separates BEVs from bacteria, flagella and cell debris in stool; and blood cells, high density lipoproteins (HDLs) and soluble proteins in blood. Density separates BEVs from fibers, protein aggregates and EEVs in stool; and low-density lipoproteins (LDLs), very-low-density lipoproteins (VLDLs), chylomicrons, protein aggregates and EEVs in blood. The procedure is label free, maintains the integrity of BEVs and ensures reproducibility through the use of automated liquid handlers. Post-separation BEVs are characterized using orthogonal biochemical endotoxin and Toll-like receptor-based reporter assays in combination with proteomics, electron microscopy and nanoparticle tracking analysis (NTA) to evaluate BEV quality, abundance, structure and molecular cargo. Separation and characterization of BEVs from body fluids can be done within 72 h, is compatible with EEV analysis and can be readily adopted by researchers experienced in basic molecular biology and extracellular vesicle analysis. We anticipate that this protocol will expand our knowledge on the biological heterogeneity, molecular cargo and function of BEVs in human body fluids and steer the development of laboratory research tools and clinical diagnostic kits.
Collapse
Affiliation(s)
- Joeri Tulkens
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
814
|
The impact of body mass index on the efficacy of anti-PD-1/PD-L1 antibodies in patients with non-small cell lung cancer. Lung Cancer 2019; 139:140-145. [PMID: 31786476 DOI: 10.1016/j.lungcan.2019.11.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/29/2019] [Accepted: 11/16/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Body mass index (BMI) is reported to be associated with the efficacy of immune checkpoint inhibitors (ICIs) in solid tumors such as melanomas. However, it remains unclear whether such a relationship exists in non-small cell lung cancer (NSCLC) treated with programmed cell death protein 1 (PD-1)/ programmed death-ligand 1(PD-L1) inhibitors. The purpose of this study was to investigate the relationship between BMI and the efficacy of ICI treatment in patients with advanced NSCLC. MATERIALS AND METHODS The medical records of NSCLC patients who received PD-1/PD-L1 antibody monotherapy at nine institutions between December 2015 and May 2018 were reviewed retrospectively. The effect of BMI was investigated in two cohorts. Cohort 1 included patients with NSCLCs with high PD-L1 expression (≥ 50 %) treated with pembrolizumab as first-line therapy, and cohort 2 included patients with NSCLCs treated with nivolumab/pembrolizumab/atezolizumab as second- or later-line treatment. RESULTS A total of 513 from nine institutions were analyzed (84 in cohort 1, 429 in cohort 2). Using a BMI cut-off value of 22 kg/m2, which is an ideal BMI in our country (high BMI:22.0 and low BMI:22.0), there was no significant difference in the PFS or OS between the high and low BMI patients in cohort 1. However, in cohort 2, survival was significantly longer in patients with a high versus low BMI (PFS: 3.7 vs. 2.8 months, p = 0.036; OS: 15.4 vs. 13.5 months, p = 0.021). CONCLUSION BMI was significantly associated with the efficacy of ICIs in patients with NSCLC treated with second- or later-line PD-1/PD-L1 inhibitors in our cohort.
Collapse
|
815
|
Kauter A, Epping L, Semmler T, Antao EM, Kannapin D, Stoeckle SD, Gehlen H, Lübke-Becker A, Günther S, Wieler LH, Walther B. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Anim Microbiome 2019; 1:14. [PMID: 33499951 PMCID: PMC7807895 DOI: 10.1186/s42523-019-0013-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the complex interactions of microbial communities including bacteria, archaea, parasites, viruses and fungi of the gastrointestinal tract (GIT) associated with states of either health or disease is still an expanding research field in both, human and veterinary medicine. GIT disorders and their consequences are among the most important diseases of domesticated Equidae, but current gaps of knowledge hinder adequate progress with respect to disease prevention and microbiome-based interventions. Current literature on enteral microbiomes mirrors a vast data and knowledge imbalance, with only few studies tackling archaea, viruses and eukaryotes compared with those addressing the bacterial components.Until recently, culture-dependent methods were used for the identification and description of compositional changes of enteral microorganisms, limiting the outcome to cultivatable bacteria only. Today, next generation sequencing technologies provide access to the entirety of genes (microbiome) associated with the microorganisms of the equine GIT including the mass of uncultured microbiota, or "microbial dark matter".This review illustrates methods commonly used for enteral microbiome analysis in horses and summarizes key findings reached for bacteria, viruses and fungi so far. Moreover, reasonable possibilities to combine different explorative techniques are described. As a future perspective, knowledge expansion concerning beneficial compositions of microorganisms within the equine GIT creates novel possibilities for early disorder diagnostics as well as innovative therapeutic approaches. In addition, analysis of shotgun metagenomic data enables tracking of certain microorganisms beyond species barriers: transmission events of bacteria including pathogens and opportunists harboring antibiotic resistance factors between different horses but also between humans and horses will reach new levels of depth concerning strain-level distinctions.
Collapse
Affiliation(s)
- Anne Kauter
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | | | - Dania Kannapin
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Sabita D Stoeckle
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Günther
- Pharmaceutical Biology Institute of Pharmacy, Universität Greifswald, Greifswald, Germany
| | | | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| |
Collapse
|
816
|
Abstract
The engineering of living cells and microbes is ushering in a new era of cancer therapy. Due to recent microbiome studies indicating the prevalence of bacteria within the human body and specifically in tumor tissue, bacteria have generated significant interest as potential targets for cancer therapy. Notably, a multitude of empirical studies over the past decades have demonstrated that administered bacteria home and grow in tumors due to reduced immune surveillance of tumor necrotic cores. Given their specificity for tumors, bacteria present a unique opportunity to be engineered as intelligent delivery vehicles for cancer therapy with synthetic biology techniques. In this review, we discuss the history, current state, and future challenges associated with using bacteria as a cancer therapy.
Collapse
|
817
|
Abstract
Stress has long been suspected to negatively influence cancer mortality, yet the molecular mechanisms responsible for this effect have only recently been identified. A new study identifies a stress-induced response in dendritic cells-the activation of the glucocorticoid-inducible transcriptional regulator TSC22D3-as a potent, immunosuppressive effect of stress on cancer.
Collapse
Affiliation(s)
- Xue-Yan He
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
818
|
Chen J, Vitetta L. Signalling molecules and epigenetic targeting in cancer immunotherapy - Comments on "Epigenetic modulation enhances immunotherapy for hepatocellular carcinoma". Cell Immunol 2019; 346:103957. [PMID: 31668739 DOI: 10.1016/j.cellimm.2019.103957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 11/28/2022]
Affiliation(s)
| | - Luis Vitetta
- Medlab Clinical Ltd, Sydney 2015, Australia; The University of Sydney, Faculty of Medicine and Health, Sydney 2006, Australia.
| |
Collapse
|
819
|
Vitiello GA, Cohen DJ, Miller G. Harnessing the Microbiome for Pancreatic Cancer Immunotherapy. Trends Cancer 2019; 5:670-676. [DOI: 10.1016/j.trecan.2019.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
|
820
|
A systems approach to clinical oncology uses deep phenotyping to deliver personalized care. Nat Rev Clin Oncol 2019; 17:183-194. [DOI: 10.1038/s41571-019-0273-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2019] [Indexed: 02/06/2023]
|
821
|
Royston KJ, Adedokun B, Olopade OI. Race, the microbiome and colorectal cancer. World J Gastrointest Oncol 2019; 11:773-787. [PMID: 31662819 PMCID: PMC6815924 DOI: 10.4251/wjgo.v11.i10.773] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023] Open
Abstract
In the past decade, more cancer researchers have begun to understand the significance of cancer prevention, which has prompted a shift in the increasing body of scientific literature. An area of fascination and great potential is the human microbiome. Recent studies suggest that the gut microbiota has significant roles in an individual's ability to avoid cancer, with considerable focus on the gut microbiome and colorectal cancer. That in mind, racial disparities with regard to colorectal cancer treatment and prevention are generally understudied despite higher incidence and mortality rates among Non-Hispanic Blacks compared to other racial and ethnic groups in the United States. A comprehension of ethnic differences with relation to colorectal cancer, dietary habits and the microbiome is a meritorious area of investigation. This review highlights literature that identifies and bridges the gap in understanding the role of the human microbiome in racial disparities across colorectal cancer. Herein, we explore the differences in the gut microbiota, common short chain fatty acids produced in abundance by microbes, and their association with racial differences in cancer acquisition.
Collapse
Affiliation(s)
- Kendra J Royston
- Division of Hematology Oncology, University of Chicago, Chicago, IL 60637, United States
| | - Babatunde Adedokun
- Center for Clinical Cancer Genetics and Global Health Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Olufunmilayo I Olopade
- Division of Hematology Oncology, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
822
|
Wongsurawat T, Nakagawa M, Atiq O, Coleman HN, Jenjaroenpun P, Allred JI, Trammel A, Puengrang P, Ussery DW, Nookaew I. An assessment of Oxford Nanopore sequencing for human gut metagenome profiling: A pilot study of head and neck cancer patients. J Microbiol Methods 2019; 166:105739. [PMID: 31626891 DOI: 10.1016/j.mimet.2019.105739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/21/2022]
Abstract
Gut metagenome profiling using the Oxford Nanopore Technologies (ONT) sequencer was assessed in a pilot-sized study of 10 subjects. The taxonomic abundance of gut microbiota derived from ONT was comparable with Illumina Technology (IT) for the high-abundance species. IT better detected low-abundance species through amplification, when material was limited.
Collapse
Affiliation(s)
- Thidathip Wongsurawat
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mayumi Nakagawa
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Omar Atiq
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hannah N Coleman
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - James I Allred
- Cancer Clinical Trials and Regulatory Affairs Office, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angela Trammel
- Cancer Clinical Trials and Regulatory Affairs Office, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Pantakan Puengrang
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - David W Ussery
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
823
|
Li L, Li X, Zhong W, Yang M, Xu M, Sun Y, Ma J, Liu T, Song X, Dong W, Liu X, Chen Y, Liu Y, Abla Z, Liu W, Wang B, Jiang K, Cao H. Gut microbiota from colorectal cancer patients enhances the progression of intestinal adenoma in Apc min/+ mice. EBioMedicine 2019; 48:301-315. [PMID: 31594750 PMCID: PMC6838415 DOI: 10.1016/j.ebiom.2019.09.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Accumulating evidence points to a close relationship between gut dysbiosis and colorectal cancer (CRC). As >90% of CRC develop from adenoma, we aimed to investigate the crucial role of imbalanced gut microbiota on the progression of intestinal adenoma. Methods The Apcmin/+ mice gavage with phosphate-buffered saline (PBS), feces from healthy controls or CRC patients after antibiotic cocktails. The intestinal tissues were isolated for histopathology, western blotting, and RNA-seq. The microbiota of feces and short-chain fatty acids (SCFAs) were analysed by 16S rDNA Amplicon Sequencing and gas chromatography. Findings The Apcmin/+mice gavaged by feces from CRC patients had more intestinal tumours compared with those fed with feces from healthy controls or PBS. Administration of feces from CRC patients increased tumour proliferation and decreased apoptosis in tumour cells, accompanied by impairment of gut barrier function and up-regulation the pro-inflammatory cytokines profile. The up-regulated the expression of β-catenin and cyclinD1 further indicating the activation of Wnt signalling pathway. The abundance of pathogenic bacteria was increased after FMT, while producing SCFAs bacteria and SCFAs production were decreased. Interpretation Gut microbiota of CRC patients disrupted intestinal barrier, induced low-grade inflammation and dysbiosis. The altered gut microbiota enhanced the progression of intestinal adenomas in Apcmin/+mice, suggesting that a new strategy to target gut microbiota against CRC could be noted. Fund The study was supported by the National Natural Science Foundation of China, Tianjin Research Programme of Application Foundation and Advanced Technology of China, and China Postdoctoral Science Foundation.
Collapse
Affiliation(s)
- Lu Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaofei Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Min Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Sun
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jiaheng Ma
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yange Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yi Liu
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, China; Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Zaripa Abla
- Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China; Department of Gastroenterology and Hepatology, Hotan District People's Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China.
| |
Collapse
|
824
|
Diaz-Garrido N, Fábrega MJ, Vera R, Giménez R, Badia J, Baldomà L. Membrane vesicles from the probiotic Nissle 1917 and gut resident Escherichia coli strains distinctly modulate human dendritic cells and subsequent T cell responses. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103495] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
825
|
Sims TT, Colbert LE, Zheng J, Delgado Medrano AY, Hoffman KL, Ramondetta L, Jazaeri A, Jhingran A, Schmeler KM, Daniel CR, Klopp A. Gut microbial diversity and genus-level differences identified in cervical cancer patients versus healthy controls. Gynecol Oncol 2019; 155:237-244. [PMID: 31500892 DOI: 10.1016/j.ygyno.2019.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The aim of this study was to characterize variation in the gut microbiome of women with locally advanced cervical cancer and compare it to healthy controls. METHODS We characterized the 16S rDNA fecal microbiome in 42 cervical cancer patients and 46 healthy female controls. Shannon diversity index (SDI) was used to evaluate alpha (within sample) diversity. Beta (between sample) diversity was examined using principle coordinate analysis (PCoA) of unweighted Unifrac distances. Relative abundance of microbial taxa was compared between samples using Linear Discriminant Analysis Effect Size (LEfSe). RESULTS Within cervical cancer patients, bacterial alpha diversity was positively correlated with age (p = 0.22) but exhibited an inverse relationship in control subjects (p < 0.01). Alpha diversity was significantly higher in cervical cancer patients as compared to controls (p < 0.05), though stratification by age suggested this relationship was restricted to older women (>50 years; p < 0.01). Beta diversity (unweighted Unifrac; p < 0.01) also significantly differed between cervical cancer patients and controls. Based on age- and race-adjusted LEfSe analysis, multiple taxa significantly differed between cervical cancer patients and controls. Prevotella, Porphyromonas, and Dialister were significantly enriched in cervical cancer patients, while Bacteroides, Alistipes and members of the Lachnospiracea family were significantly enriched in healthy subjects. CONCLUSION Our study suggests differences in gut microbiota diversity and composition between cervical cancer patients and controls. Associations within the gut microbiome by age may reflect etiologic/clinical differences. These findings provide rationale for further study of the gut microbiome in cervical cancer.
Collapse
Affiliation(s)
- Travis T Sims
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| | - Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Jiali Zheng
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrea Y Delgado Medrano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kristi L Hoffman
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Lois Ramondetta
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Ann Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
826
|
Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol 2019; 143:139-147. [PMID: 31634731 DOI: 10.1016/j.critrevonc.2019.09.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota is involved in gastrointestinal carcinogenesis. Also, it modulates the activity, efficacy and toxicity of several chemotherapy agents, such as gemcitabine, cyclophosphamide, irinotecan, cisplatin and 5-Fluorouracil, and target therapy, such as tyrosine kinase inhibitors. More recently, accumulating data suggest that the composition of gut microbiota may also affect efficacy and toxicity of cancer immunotherapy. Therefore, the manipulation of gut microbiota through antibiotics, probiotics, prebiotics or fecal transplantation has been investigating with the aim to improve efficacy and mitigate toxicity of anticancer drugs.
Collapse
|
827
|
Abstract
Great attention has been attached to explore the association between oral bacteria and oral cancer. Recently, four common inhabitants of oral cavity, Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Streptococcus anginosus, have been identified as potential etiologic bacterial agents for oral carcinogenesis. They might promote the oncogenesis and progression of oral cancer by induction of chronic inflammation, enhancement of migration and invasiveness, inhibition of cell apoptosis, augment of cell proliferation, suppression of immune system and production of carcinogenic substances. Thus, this review will focus on the possible mechanisms of these oral bacteria contributing to occurrence and development of oral cancer, and the potential clinical implications of utilizing oral bacteria on the diagnosis, prevention and treatment of oral cancer will be discussed.
Collapse
|
828
|
Schwartz DJ, Rebeck ON, Dantas G. Complex interactions between the microbiome and cancer immune therapy. Crit Rev Clin Lab Sci 2019; 56:567-585. [PMID: 31526274 DOI: 10.1080/10408363.2019.1660303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immuno-oncology has rapidly grown in the last thirty years, and immunotherapeutic agents are now approved to treat many disparate cancers. Immune checkpoint inhibitors (ICIs) are employed to augment cytotoxic anti-cancer activity by inhibiting negative regulatory elements of the immune system. Modulating the immune system to target neoplasms has improved survivability of numerous cancers in many individuals, but forecasting outcomes post therapy is difficult due to insufficient predictive biomarkers. Recently, the tumor and gastrointestinal microbiome and immune milieu have been investigated as predictors and influencers of cancer immune therapy. In this review, we discuss: (1) ways to measure the microbiome including relevant bioinformatic analyses, (2) recent developments in animal studies and human clinical trials utilizing gut microbial composition and function as biomarkers of cancer immune therapy response and toxicity, and (3) using prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplant (FMT) to modulate immune therapy. We discuss the respective benefits of 16S ribosomal RNA (rRNA) gene and shotgun metagenomic sequencing including important considerations in obtaining samples and in designing and interpreting human and animal microbiome studies. We then focus on studies discussing the differences in response to ICIs in relation to the microbiome and inflammatory mediators. ICIs cause colitis in up to 25% of individuals, and colitis is often refractory to common immunosuppressive medications. Researchers have measured microbiota composition prior to ICI therapy and correlated baseline microbiota composition with efficacy and colitis. Certain bacterial taxa that appear to enhance therapeutic benefit are also implicated in increased susceptibility to colitis, alluding to a delicate balance between pro-inflammatory tumor killing and anti-inflammatory protection from colitis. Pre-clinical and clinical models have trialed probiotic administration, e.g. Bifidobacterium spp. or FMT, to treat colitis when immune suppressive agents fail. We are excited about the future of modulating the microbiome to predict and influence cancer outcomes. Furthermore, novel therapies employed for other illnesses including bacteriophage and genetically-engineered microbes can be adapted in the future to promote increased advancements in cancer treatment and side effect management.
Collapse
Affiliation(s)
- Drew J Schwartz
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine , St. Louis , MO , USA.,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis , MO , USA
| | - Olivia N Rebeck
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis , MO , USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine , St. Louis , MO , USA.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis , MO , USA.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis , MO , USA.,Department of Biomedical Engineering, Washington University in St. Louis , St. Louis , MO , USA
| |
Collapse
|
829
|
Saini M, Szczerba BM, Aceto N. Circulating Tumor Cell-Neutrophil Tango along the Metastatic Process. Cancer Res 2019; 79:6067-6073. [DOI: 10.1158/0008-5472.can-19-1972] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
|
830
|
Liu F, Li J, Guan Y, Lou Y, Chen H, Xu M, Deng D, Chen J, Ni B, Zhao L, Li H, Sang H, Cai X. Dysbiosis of the Gut Microbiome is associated with Tumor Biomarkers in Lung Cancer. Int J Biol Sci 2019; 15:2381-2392. [PMID: 31595156 PMCID: PMC6775324 DOI: 10.7150/ijbs.35980] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is a malignancy with high morbidity and mortality worldwide. More evidences indicated that gut microbiome plays an important role in the carcinogenesis and progression of cancers by metabolism, inflammation and immune response. However, the study about the characterizations of gut microbiome in lung cancer is limited. In this study, the fecal samples were collected from 16 healthy individuals and 30 lung cancer patients who were divided into 3 groups based on different tumor biomarkers (cytokeratin 19 fragment, neuron specific enolase and carcinoembryonic antigen, respectively) and were analyzed using 16S rRNA gene amplicon sequencing. Each lung cancer group has characterized gut microbial community and presents an elimination, low-density, and loss of bacterial diversity microbial ecosystem compared to that of the healthy control. The microbiome structures in family and genera levels are more complex and significantly varied from each group presenting more different and special pathogen microbiome such as Enterobacteriaceae, Streptococcus, Prevotella, etc and fewer probiotic genera including Blautia, Coprococcus, Bifidobacterium and Lachnospiraceae. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and COG annotation demonstrated decreased abundance of some dominant metabolism-related pathways in the lung cancer. This study explores for the first time the features of gut microbiome in lung cancer patients and may provide new insight into the pathogenesis of lung cancer system, with the implication that gut microbiota may serve as a microbial marker and contribute to the derived metabolites, development and differentiation in lung cancer system.
Collapse
Affiliation(s)
- Fang Liu
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Jingjing Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yubin Guan
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Yanfeng Lou
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Huiying Chen
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Mingyu Xu
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Dequan Deng
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Jun Chen
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Beibei Ni
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Lan Zhao
- Technology center, Guangdong Vitalife Bio-tech Co.,Ltd., Foshan, 528200, People's Republic of China
| | - Hongwei Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hong Sang
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
| | - Xiangsheng Cai
- Nanjing School of Clinical Medicine, Southern Medical University, Jinling Hospital, Nanjing, 210002, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
831
|
D'Haens GR, Jobin C. Fecal Microbial Transplantation for Diseases Beyond Recurrent Clostridium Difficile Infection. Gastroenterology 2019; 157:624-636. [PMID: 31220424 PMCID: PMC7179251 DOI: 10.1053/j.gastro.2019.04.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 02/08/2023]
Abstract
As microbiome research has moved from associative to mechanistic studies, the activities of specific microbes and their products have been investigated in the development of inflammatory bowel diseases, cancer, metabolic syndrome, and neuropsychiatric disorders. Findings from microbiome research have already been applied to the clinic, such as in fecal microbiota transplantation for treatment of recurrent Clostridium difficile infection. We review the evidence for associations between alterations in the intestinal microbiome and gastrointestinal diseases and findings from clinical trials of fecal microbiota transplantation. We discuss opportunities for treatment of other diseases with fecal microbiota transplantation, based on findings from small clinical and preclinical studies.
Collapse
Affiliation(s)
- Geert R D'Haens
- Department of Gastroenterology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Christian Jobin
- Departments of Medicine, Anatomy and Cell Biology, and Infectious Diseases and Immunology, University of Florida, Gainesville, Florida.
| |
Collapse
|
832
|
Salek Farrokhi A, Darabi N, Yousefi B, Askandar RH, Shariati M, Eslami M. Is it true that gut microbiota is considered as panacea in cancer therapy? J Cell Physiol 2019; 234:14941-14950. [PMID: 30786013 DOI: 10.1002/jcp.28333] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
Recent studies demonstrated that a combination of the gut microbiome has the vital effect on the efficacy of anticancer immune therapies. Regulatory effects of microbiota have been shown in different types of cancer therapies such as chemotherapy and immunotherapy. Immune-checkpoint-blocked therapies are the recent efficient cancer immunotherapy strategies. The target of immune-checkpoint blocking is cytotoxic T lymphocyte protein-4 (CTLA-4) or blockade of programmed death-1 (PD-1) protein and its ligand programmed death ligand 1 (PD-L1) that they have been considered as cancer immunotherapy in recent years. In the latest studies, it have been demonstrated that several gut bacteria such as Akkermansia muciniphila, Bifidobacterium spp., Faecalibacterium spp., and Bacteroides fragilis have the regulatory effects on PD-1, PD-L1, and CTLA-4 blocked anticancer therapy outcome.
Collapse
Affiliation(s)
- Amir Salek Farrokhi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Darabi
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Rafee Habib Askandar
- Nursing Department, Halabja Technical Institute, Sulaimani Polytechnic University, Sulaimani, Iraq
| | - Mansoreh Shariati
- Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
833
|
Jia B, Jeon CO. Promotion and induction of liver cancer by gut microbiome-mediated modulation of bile acids. PLoS Pathog 2019; 15:e1007954. [PMID: 31487329 PMCID: PMC6728016 DOI: 10.1371/journal.ppat.1007954] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Baolei Jia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
834
|
Agrawal B. New therapeutic targets for cancer: the interplay between immune and metabolic checkpoints and gut microbiota. Clin Transl Med 2019; 8:23. [PMID: 31468283 PMCID: PMC6715761 DOI: 10.1186/s40169-019-0241-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Transformation and growth of tumor cells are associated with profound alterations in neighbouring cells and their environment, together forming the tumor microenvironment (TME). The TME provides a conducive but complex milieu for the tumors to thrive while incapacitating the immune cells that home there as part of our natural immunosurveillance mechanism. The orchestration of this successful survival strategy by tumor cells is associated with exploitation of numerous metabolic and immune checkpoints, as well as metabolic reprogramming in the tumor cells. Together these form an intricate network of feedback mechanisms that favor the growing tumor. In addition, an ecosystem of microbiota, proximal or distal to tumors, influences the successful survival or elimination of tumor cells mediated by immune cells. Discovery and clinical application of immune checkpoint inhibitors (ICIs) i.e., monoclonal antibodies (mAbs) blocking specific immune checkpoints CTLA-4 and PD-1/PD-L1, have revolutionized therapy of various cancers. However, they are still associated with limited response rates, severe immune-related adverse events, development of resistance, and more serious exacerbation of cancer progression termed hyper-progressive disease. Checkpoint inhibitors only represent a milestone and not the finish-line in the quest for treating and curing cancer. Efforts are underway to investigate and develop inhibitors of other immune as well as metabolic checkpoint molecules. Future therapy for various cancers is projected to target immune and metabolic checkpoints and the microbiota together.
Collapse
Affiliation(s)
- Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
835
|
Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20174146. [PMID: 31450675 PMCID: PMC6747549 DOI: 10.3390/ijms20174146] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The human organism coexists with its microbiota in a symbiotic relationship. These polymicrobial communities are involved in many crucial functions, such as immunity, protection against pathogens, and metabolism of dietary compounds, thus maintaining homeostasis. The oral cavity and the colon, although distant anatomic regions, are both highly colonized by distinct microbiotas. However, studies indicate that oral bacteria are able to disseminate into the colon. This is mostly evident in conditions such as periodontitis, where specific bacteria, namely Fusobacterium nucrelatum and Porphyromonas gingivalis project a pathogenic profile. In the colon these bacteria can alter the composition of the residual microbiota, in the context of complex biofilms, resulting in intestinal dysbiosis. This orally-driven disruption promotes aberrant immune and inflammatory responses, eventually leading to colorectal cancer (CRC) tumorigenesis. Understanding the exact mechanisms of these interactions will yield future opportunities regarding prevention and treatment of CRC.
Collapse
|
836
|
Romero S, Nastasa A, Chapman A, Kwong WK, Foster LJ. The honey bee gut microbiota: strategies for study and characterization. INSECT MOLECULAR BIOLOGY 2019; 28:455-472. [PMID: 30652367 DOI: 10.1111/imb.12567] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut microbiota research is an emerging field that improves our understanding of the ecological and functional dynamics of gut environments. The honey bee gut microbiota is a highly rewarding community to study, as honey bees are critical pollinators of many crops for human consumption and produce valuable commodities such as honey and wax. Most significantly, unique characteristics of the Apis mellifera gut habitat make it a valuable model system. This review discusses methods and pipelines used in the study of the gut microbiota of Ap. mellifera and closely related species for four main purposes: identifying microbiota taxonomy, characterizing microbiota genomes (microbiome), characterizing microbiota-microbiota interactions and identifying functions of the microbial community in the gut. The purpose of this contribution is to increase understanding of honey bee gut microbiota, to facilitate bee microbiota and microbiome research in general and to aid design of future experiments in this growing field.
Collapse
Affiliation(s)
- S Romero
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Nastasa
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Chapman
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - W K Kwong
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - L J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
837
|
Yang W, Tu R, Hu Y, He T, Zhang W, Gu L, Liu H. Probiotics supplement for the prevention of eczema in children: Study protocol for a meta-analysis and systematic review. Medicine (Baltimore) 2019; 98:e16957. [PMID: 31441896 PMCID: PMC6716687 DOI: 10.1097/md.0000000000016957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD), also called eczema, is one of the most familiar chronic diseases in childhood. A possible pathological mechanism is immune dysfunction resulting in IgE sensitization to allergens. The recent studies demonstrated that the immune system can be affected by probiotics or prebiotics. However, the effectiveness and safety of probiotics or prebiotics on prevention of eczema are still unclear. To investigate this question, we conduct a systematic review and meta-analysis. METHODS The protocol followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols. Four main databases (PubMed, Embase, the Cochrane Library, and the web of science) will be searched dating until 15 July 2019 for randomized controlled trials investigating the effects and safety of probiotics or prebiotics on prevention of eczema in children with no language restrictions. In addition, a manual search of the references of relevant published studies will also be considered.Studies selection, data extraction, and risk of bias assessment will be conducted by two independent reviewers. The primary outcome is the incidence of eczema. The second outcome is adverse events. The duration of intervention, the timing of intervention and intervention organism will be taken into consideration. RESULTS The results will provide useful information about the effect and safety of probiotics or prebiotics on reducing the incidence of eczema in children. CONCLUSION The findings of this study will be published in a peer-reviewed journal.PROSPERO registration number: CRD42019136528.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu
| | - Renyuan Tu
- West China Hospital/West China School of Medicine
| | - Yanan Hu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tao He
- Department of Breast Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu
| | - Weijian Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu
| | - Li Gu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu
| |
Collapse
|
838
|
Affiliation(s)
- Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Centre, Albinusdreef, 2333 ZA, Leiden, The Netherlands.
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innrain, 6020, Innsbruck, Austria.
| |
Collapse
|
839
|
Contribution of Aging, Obesity, and Microbiota on Tumor Immunotherapy Efficacy and Toxicity. Int J Mol Sci 2019; 20:ijms20143586. [PMID: 31340438 PMCID: PMC6678743 DOI: 10.3390/ijms20143586] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapy has entered the forefront of cancer treatment, but major challenges still exist, such as the limited proportion of patients that respond to treatment and treatment-related toxicity. Therefore, biomarkers to predict which patients will benefit from therapy without major side effects are of the utmost importance. Moreover, novel therapeutic targets to increase the proportion of responding patients on a given immunotherapy or to alleviate immunotherapy-induced toxicity could be a valuable adjunct to immunotherapy treatment. Host factors such as age, obesity, and the composition of the gut microbiome have considerable effects on immune responses and, hence, could have a large impact on the outcome of immunotherapies. Moreover, since these host factors differ considerably between preclinical mouse models and human cancer patients, it might be possible that these host factors account, in part, for the observed discrepancies in outcomes between mice experiments and clinical trials. In this review, we discuss the latest data on the influence of aging, obesity, and the gut microbiome on the anti-tumor immune response and immunotherapy and propose avenues to increase our knowledge on this topic in order to improve patient selection for cancer immunotherapy treatment.
Collapse
|
840
|
Zhou H, Suo J, Zhu J. [Therapeutic Relevance of Human Microbiota and Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:464-469. [PMID: 31315786 PMCID: PMC6712272 DOI: 10.3779/j.issn.1009-3419.2019.07.09] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
人体菌群与人类健康状态密切相关,如人体菌群的失调可能导致糖尿病、胃肠道疾病、肥胖等疾病的发生。人体内微生物与约20%的恶性肿瘤有关,肺癌(lung cancer, LC)是目前最为常见的恶性肿瘤之一,我国男性LC发病率及死亡率高居所有恶性肿瘤之首。近来研究表明,人体菌群可能通过代谢、炎症或免疫等途径影响着LC的发生,同时影响LC对放化疗、基因治疗、免疫治疗等治疗方法的疗效,如免疫治疗,是用于治疗LC的一种极有前景的手段,但不同患者从中获益不一,包含以肺癌细胞株的实验表明肠道微生物群可通过与宿主免疫系统的相互作用调节对免疫治疗的反应。但针对肺癌患者,肠道菌群是否仍能对免疫治疗进行调节仍存在争议。本文就人体菌群与LC的治疗相关性的近来研究进展进行综述。
Collapse
Affiliation(s)
- Huijie Zhou
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Suo
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Zhu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
841
|
Kareva I. Metabolism and Gut Microbiota in Cancer Immunoediting, CD8/Treg Ratios, Immune Cell Homeostasis, and Cancer (Immuno)Therapy: Concise Review. Stem Cells 2019; 37:1273-1280. [PMID: 31260163 DOI: 10.1002/stem.3051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
The concept of immunoediting, a process whereby the immune system eliminates immunogenic cancer cell clones, allowing the remaining cells to progress and form a tumor, has evolved with growing appreciation of the importance of cancer ecology on tumor progression. As cancer cells grow and modify their environment, they create spatial and nutrient constraints that may affect not only immune cell function but also differentiation, tipping the balance between cytotoxic and regulatory immunity to facilitate tumor growth. Here, we review how immunometabolism may contribute to cancer escape from the immune system, as well as highlight an emerging role of gut microbiota, its effects on the immune system and on response to immunotherapy. We conclude with a discussion of how these pieces can be integrated to devise better combination therapies and highlight the role of computational approaches as a potential tool to aid in combination therapy design. Stem Cells 2019;37:1273-1280.
Collapse
Affiliation(s)
- Irina Kareva
- Translational Medicine, EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| |
Collapse
|
842
|
Abstract
Anticancer immunotherapies involving the use of immune-checkpoint inhibitors or adoptive cellular transfer have emerged as new therapeutic pillars within oncology. These treatments function by overcoming or relieving tumour-induced immunosuppression, thereby enabling immune-mediated tumour clearance. While often more effective and better tolerated than traditional and targeted therapies, many patients have innate or acquired resistance to immunotherapies. Cancer immunoediting is the process whereby the immune system can both constrain and promote tumour development, which proceeds through three phases termed elimination, equilibrium and escape. Throughout these phases, tumour immunogenicity is edited, and immunosuppressive mechanisms that enable disease progression are acquired. The mechanisms of resistance to immunotherapy seem to broadly overlap with those used by cancers as they undergo immunoediting to evade detection by the immune system. In this Review, we discuss how a deeper understanding of the mechanisms underlying the cancer immunoediting process can provide insight into the development of resistance to immunotherapies and the strategies that can be used to overcome such resistance.
Collapse
|
843
|
Refae S, Gal J, Brest P, Milano G. Germinal immunogenetics as a predictive factor for immunotherapy. Crit Rev Oncol Hematol 2019; 141:146-152. [PMID: 31301542 DOI: 10.1016/j.critrevonc.2019.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 01/17/2023] Open
Abstract
Clinical response to checkpoint inhibitors-based (CPIs) therapies can vary among tumor types and between patients. This led to a significant amount of pre-clinical and clinical research into biomarker identification. Biomarkers have been found to cover both the tumor itself and the tumor microenvironment. Entering host-related parameters into the equation should provide a valuable strategy for identifying not only factors predictive of treatment efficacy but also of treatment-related toxicity. It is clear that germline variants can offer efficient and easily-assessable indicators (blood DNA) to enlarge the spectrum of predictive markers for CPI-based treatment. A major issue concerns the real functional significance of the reported single-nucleotide polymorphisms (SNPs) linked to CPI-treatment outcome. Powered calculations should lead to an optimal trade-off between sample size and allele frequency. New molecular technologies and new analytical methods should provide opportunities to bridge the knowledge gap between SNP-CPI treatment associations and the functional impact of these SNPs.
Collapse
Affiliation(s)
- Sadal Refae
- Centre Antoine Lacassagne, Medical Oncology Department, University Côte d'Azur, Nice, F-06189, France
| | - Jocelyn Gal
- Centre Antoine Lacassagne, Epidemiology and Biostatistics Department, University Côte d'Azur, Nice, F-06189, France
| | - Patrick Brest
- Centre Antoine Lacassagne, Cnrs, Inserm, Ircan, FHU-Oncoage, University Côte d'Azur, Nice, F-06189, France
| | - Gerard Milano
- Centre Antoine Lacassagne, Oncopharmacology Unit, University Côte d'Azur, Nice, F-06189, France.
| |
Collapse
|
844
|
Cogdill AP, Gaudreau PO, Arora R, Gopalakrishnan V, Wargo JA. The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends Immunol 2019; 39:900-920. [PMID: 30392721 DOI: 10.1016/j.it.2018.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The human microbiome is a complex aggregate of microorganisms, and their genomes exert a number of influences crucial to the metabolic, immunologic, hormonal, and homeostatic function of the host. Recent work, both in preclinical mouse models and human studies, has shed light on the impact of gut and tumor microbiota on responses to systemic anticancer therapeutics. In light of this, strategies to target the microbiome to improve therapeutic responses are underway, including efforts to target gut and intratumoral microbes. Here, we discuss mechanisms by which microbiota may impact systemic and antitumor immunity, in addition to outstanding questions in the field. A deeper understanding of these is critical as we devise putative strategies to target the microbiome.
Collapse
Affiliation(s)
- Alexandria P Cogdill
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pierre Olivier Gaudreau
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vancheswaran Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; These authors contributed equally to this work
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; These authors contributed equally to this work.
| |
Collapse
|
845
|
Song D, Powles T, Shi L, Zhang L, Ingersoll MA, Lu YJ. Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches. J Pathol 2019; 249:151-165. [PMID: 31102277 PMCID: PMC6790662 DOI: 10.1002/path.5306] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/02/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
With the mechanistic understanding of immune checkpoints and success in checkpoint blockade using antibodies for the treatment of certain cancers, immunotherapy has become one of the hottest areas in cancer research, with promise of long‐lasting therapeutic effect. Currently, however, only a proportion of cancers have a good response to checkpoint inhibition immunotherapy. Better understanding of the cancer response and resistance mechanisms is essential to fully explore the potential of immunotherapy to cure the majority of cancers. Bladder cancer, one of the most common and aggressive malignant diseases, has been successfully treated both at early and advanced stages by different immunotherapeutic approaches, bacillus Calmette–Guérin (BCG) intravesical instillation and anti‐PD‐1/PD‐L1 immune checkpoint blockade, respectively. Therefore, it provides a good model to investigate cancer immune response mechanisms and to improve the efficiency of immunotherapy. Here, we review bladder cancer immunotherapy with equal weight on BCG and anti‐PD‐1/PD‐L1 therapies and demonstrate why and how bladder cancer can be used as a model to study the predictors and mechanisms of cancer immune response and shine light on further development of immunotherapy approaches and response predictive biomarkers to improve immunotherapy of bladder cancer and other malignancies. We review the success of BCG and anti‐PD‐1/PD‐L1 treatment of bladder cancer, the underlying mechanisms and the therapeutic response predictors, including the limits to our knowledge. We then highlight briefly the adaptation of immunotherapy approaches and predictors developed in other cancers for bladder cancer therapy. Finally, we explore the potential of using bladder cancer as a model to investigate cancer immune response mechanisms and new therapeutic approaches, which may be translated into immunotherapy of other human cancers. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dongkui Song
- Department of Urology, The First Affiliated Hospital and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Thomas Powles
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, UK.,Department of Medical Oncology, Barts Health NHS, London, UK
| | - Lei Shi
- Department of Urology, The First Affiliated Hospital and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Molly A Ingersoll
- Department of Immunology, Institut Pasteur, Paris, France.,Inserm U1223, Paris, France
| | - Yong-Jie Lu
- Department of Urology, The First Affiliated Hospital and Academy of Medical Sciences, Zhengzhou University, Zhengzhou, PR China.,Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
846
|
Huang Y, Hang X, Jiang X, Zeng L, Jia J, Xie Y, Li F, Bi H. In Vitro and In Vivo Activities of Zinc Linolenate, a Selective Antibacterial Agent against Helicobacter pylori. Antimicrob Agents Chemother 2019; 63:e00004-19. [PMID: 30936098 PMCID: PMC6535540 DOI: 10.1128/aac.00004-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a major global pathogen, and its infection represents a key factor in the etiology of various gastric diseases, including gastritis, peptic ulcers, and gastric carcinoma. The efficacy of current standard treatment for H. pylori infection including two broad-spectrum antibiotics is compromised by toxicity toward the gut microbiota and the development of drug resistance, which will likely only be resolved through novel and selective antibacterial strategies. Here, we synthesized a small molecule, zinc linolenate (ZnLla), and investigated its therapeutic potential for the treatment of H. pylori infection. ZnLla showed effective antibacterial activity against standard strains and drug-resistant clinical isolates of H. pyloriin vitro with no development of resistance during continuous serial passaging. The mechanisms of ZnLla action against H. pylori involved the disruption of bacterial cell membranes and generation of reactive oxygen species. In mouse models of multidrug-resistant H. pylori infection, ZnLla showed in vivo killing efficacy comparable and superior to the triple therapy approach when use as a monotherapy and a combined therapy with omeprazole, respectively. Moreover, ZnLla treatment induces negligible toxicity against normal tissues and causes minimal effects on both the diversity and composition of the murine gut microbiota. Thus, the high degree of selectivity of ZnLla for H. pylori provides an attractive candidate for novel targeted anti-H. pylori treatment.
Collapse
Affiliation(s)
- Yanqiang Huang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xudong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueqing Jiang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liping Zeng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia Jia
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Xie
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
847
|
Microbiota: Overview and Implication in Immunotherapy-Based Cancer Treatments. Int J Mol Sci 2019; 20:ijms20112699. [PMID: 31159348 PMCID: PMC6600175 DOI: 10.3390/ijms20112699] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022] Open
Abstract
During the last few years, the gut microbiota has gained increasing attention as a consequence of its emerging role as a modulator of the immune system. With the advent of the era of checkpoint inhibitors immunotherapy and adoptive cell transfer (ACT) in oncology, these findings became of primary relevance in light of experimental data that suggested the microbiota involvement as a plausible predictor of a good or poor response. These remarks justify the efforts to pinpoint the specific actions of the microbiota and to identify new strategies to favorably edit its composition.
Collapse
|
848
|
Lai HH, Chiu CH, Kong MS, Chang CJ, Chen CC. Probiotic Lactobacillus casei: Effective for Managing Childhood Diarrhea by Altering Gut Microbiota and Attenuating Fecal Inflammatory Markers. Nutrients 2019; 11:nu11051150. [PMID: 31126062 PMCID: PMC6566348 DOI: 10.3390/nu11051150] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Acute diarrhea is a major cause of childhood morbidity and an economic burden for families. The aim of this study is to explore the effect of probiotics on clinical symptoms, intestinal microbiota, and inflammatory markers during childhood diarrhea. Methods: Children (n = 81) aged six months to six years (mean age 2.31 years) hospitalized for acute diarrhea were randomized to receive probiotics (Lactobacillus casei variety rhamnosus; n = 42) or no probiotics (n = 39) orally twice daily for seven days. Feces samples were also collected to evaluate microbial content using a traditional agar plate and next-generation sequencing. Immunoglobulin A (IgA), lactoferrin, and calprotectin were determined by enzyme-linked immunosorbent assay (ELISA) and compared in different groups. Other clinical symptoms or signs, including fever, vomiting, diarrhea, abdominal pain, bloated abdomen, daily intake, appetite, and body weight were also assessed. Results: Data were collected from 81 individuals across three different time points. Total fecal IgA levels in fecal extracts of the probiotics group were higher than those in the control group, reaching statistical significance (p < 0.05). Concentrations of fecal lactoferrin and calprotectin were significantly downregulated in patients with probiotic Lactobacillus casei variety rhamnosus (Lc) consumption compared to those of the control (p < 0.05). Probiotic Lc administration may be beneficial for gut-microbiota modulation, as shown by the data collected at one week after enrollment. Counts of Bifidobacteria and Lactobacillus species were elevated in stool culture of the probiotic group. Appetite and oral intake, body-weight gain, abdominal pain, bloating, as well as bowel habits (diarrhea) were much better in children receiving probiotics compared with those in the control group. Conclusion: Fecal IgA increased during acute diarrhea under Lc treatment; in contrast, fecal lactoferrin and calprotectin were downregulated during acute diarrhea under Lc treatment. Probiotic Lc may be a useful supplement for application in children during acute diarrhea to reduce clinical severity and intestinal inflammatory reaction.
Collapse
Affiliation(s)
- Hung-Hsiang Lai
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| | - Cheng-Hsun Chiu
- Division of Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| | - Man-Shan Kong
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| | - Chee-Jen Chang
- Graduate Institute of Clinical Medical Sciences, Clinical Informatics and Medical Statistics Research Center, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| | - Chien-Chang Chen
- Division of Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33303, Taiwan.
| |
Collapse
|
849
|
Effects of Intestinal Microbial⁻Elaborated Butyrate on Oncogenic Signaling Pathways. Nutrients 2019; 11:nu11051026. [PMID: 31067776 PMCID: PMC6566851 DOI: 10.3390/nu11051026] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is well known to have multiple benefits on human health, including cancer prevention and treatment. The effects are partially mediated by microbiota-produced short chain fatty acids (SCFAs) such as butyrate, propionate and acetate. The anti-cancer effect of butyrate has been demonstrated in cancer cell cultures and animal models of cancer. Butyrate, as a signaling molecule, has effects on multiple signaling pathways. The most studied effect is its inhibition on histone deacetylase (HDAC), which leads to alterations of several important oncogenic signaling pathways such as JAK2/STAT3, VEGF. Butyrate can interfere with both mitochondrial apoptotic and extrinsic apoptotic pathways. In addition, butyrate also reduces gut inflammation by promoting T-regulatory cell differentiation with decreased activities of the NF-κB and STAT3 pathways. Through PKC and Wnt pathways, butyrate increases cancer cell differentiation. Furthermore, butyrate regulates oncogenic signaling molecules through microRNAs and methylation. Therefore, butyrate has the potential to be incorporated into cancer prevention and treatment regimens. In this review we summarize recent progress in butyrate research and discuss the future development of butyrate as an anti-cancer agent with emphasis on its effects on oncogenic signaling pathways. The low bioavailability of butyrate is a problem, which precludes clinical application. The disadvantage of butyrate for medicinal applications may be overcome by several approaches including nano-delivery, analogue development and combination use with other anti-cancer agents or phytochemicals.
Collapse
|
850
|
Dovrolis N, Filidou E, Kolios G. Systems biology in inflammatory bowel diseases: on the way to precision medicine. Ann Gastroenterol 2019; 32:233-246. [PMID: 31040620 PMCID: PMC6479645 DOI: 10.20524/aog.2019.0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and recurrent inflammatory disorders of the gastrointestinal tract. The elucidation of their etiopathology requires complex and multiple approaches. Systems biology has come to fulfill this need in approaching the pathogenetic mechanisms of IBD and its etiopathology, in a comprehensive way, by combining data from different scientific sources. In combination with bioinformatics and network medicine, it uses principles from computer science, mathematics, physics, chemistry, biology, medicine and computational tools to achieve its purposes. Systems biology utilizes scientific sources that provide data from omics studies (e.g., genomics, transcriptomics, etc.) and clinical observations, whose combined analysis leads to network formation and ultimately to a more integrative image of disease etiopathogenesis. In this review, we analyze the current literature on the methods and the tools utilized by systems biology in order to cover an innovative and exciting field: IBD-omics.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Correspondence to: Prof. George Kolios, MD PhD, Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, 68100, Greece, e-mail:
| |
Collapse
|