151
|
Yang Q, Zaongo SD, Zhu L, Yan J, Yang J, Ouyang J. The Potential of Clostridium butyricum to Preserve Gut Health, and to Mitigate Non-AIDS Comorbidities in People Living with HIV. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10227-1. [PMID: 38336953 DOI: 10.1007/s12602-024-10227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
A dramatic reduction in mortality among people living with HIV (PLWH) has been achieved during the modern antiretroviral therapy (ART) era. However, ART does not restore gut barrier function even after long-term viral suppression, allowing microbial products to enter the systemic blood circulation and induce chronic immune activation. In PLWH, a chronic state of systemic inflammation exists and persists, which increases the risk of development of inflammation-associated non-AIDS comorbidities such as metabolic disorders, cardiovascular diseases, and cancer. Clostridium butyricum is a human butyrate-producing symbiont present in the gut microbiome. Convergent evidence has demonstrated favorable effects of C. butyricum for gastrointestinal health, including maintenance of the structural and functional integrity of the gut barrier, inhibition of pathogenic bacteria within the intestine, and reduction of microbial translocation. Moreover, C. butyricum supplementation has been observed to have a positive effect on various inflammation-related diseases such as diabetes, ulcerative colitis, and cancer, which are also recognized as non-AIDS comorbidities associated with epithelial gut damage. There is currently scant published research in the literature, focusing on the influence of C. butyricum in the gut of PLWH. In this hypothesis review, we speculate the use of C. butyricum as a probiotic oral supplementation may well emerge as a potential future synergistic adjunctive strategy in PLWH, in tandem with ART, to restore and consolidate intestinal barrier integrity, repair the leaky gut, prevent microbial translocation from the gut, and reduce both gut and systemic inflammation, with the ultimate objective of decreasing the risk for development of non-AIDS comorbidities in PLWH.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Silvere D Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Lijiao Zhu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiangyu Yan
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
152
|
Garrone O, La Porta CAM. Artificial Intelligence for Precision Oncology of Triple-Negative Breast Cancer: Learning from Melanoma. Cancers (Basel) 2024; 16:692. [PMID: 38398083 PMCID: PMC10887240 DOI: 10.3390/cancers16040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Thanks to new technologies using artificial intelligence (AI) and machine learning, it is possible to use large amounts of data to try to extract information that can be used for personalized medicine. The great challenge of the future is, on the one hand, to acquire masses of biological data that nowadays are still limited and, on the other hand, to develop innovative strategies to extract information that can then be used for the development of predictive models. From this perspective, we discuss these aspects in the context of triple-negative breast cancer, a tumor where a specific treatment is still lacking and new therapies, such as immunotherapy, are under investigation. Since immunotherapy is already in use for other tumors such as melanoma, we discuss the strengths and weaknesses identified in the use of immunotherapy with melanoma to try to find more successful strategies. It is precisely in this context that AI and predictive tools can be extremely valuable. Therefore, the discoveries and advancements in immunotherapy for melanoma provide a foundation for developing effective immunotherapies for triple-negative breast cancer. Shared principles, such as immune system activation, checkpoint inhibitors, and personalized treatment, can be applied to TNBC to improve patient outcomes and offer new hope for those with aggressive, hard-to-treat breast cancer.
Collapse
Affiliation(s)
- Ornella Garrone
- Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Caterina A. M. La Porta
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
- Center for Complexity and Biosystems, University of Milan, 20133 Milan, Italy
| |
Collapse
|
153
|
Chen Z, Liu Y, Yu Y, Yang S, Feng J, Zhu Y, Huang W, Qin B, Guan X, He Z, Sun M, Sun J. Micro-to-Nano Oncolytic Microbial System Shifts from Tumor Killing to Tumor Draining Lymph Nodes Remolding for Enhanced Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306488. [PMID: 37844257 DOI: 10.1002/adma.202306488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Indexed: 10/18/2023]
Abstract
Because the tumor-draining lymph nodes (TDLNs) microenvironment is commonly immunosuppressive, oncolytic microbe-induced tumor antigens aren't sufficiently cross-primed tumor specific T cells through antigen-presenting cells (e.g., dendritic cells (DCs)) in TDLNs. Herein, this work develops the micro-to-nano oncolytic microbial therapeutics based on pyranose oxidase (P2 O) overexpressed Escherichia coli (EcP) which are simultaneously encapsulated by PEGylated mannose and low-concentrated photosensitizer nanoparticles (NPs). Following administration, P2 O from this system generates toxic hydrogen peroxide for tumor regression and leads to the release of tumor antigens. The "microscale" EcP is triggered, following exposure to the laser irradiation, to secrete the "nanoscale" bacterial outer membrane vesicles (OMVs). The enhanced TDLNs delivery via OMVs significantly regulates the TDLNs immunomicroenvironment, promoting the maturation of DCs to potentiate tumor antigen-specific T cells immune response. The micro-to-nano oncolytic microbe is leveraged to exert tumor killing and remold TDLNs for initiating potent activation of DCs, providing promising strategies to facilitate microbial cancer vaccination.
Collapse
Affiliation(s)
- Zhichao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yuhan Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yuxuan Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Shihua Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, Liaoning, 110001, China
| | - Jing Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yinmei Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Wanxu Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| |
Collapse
|
154
|
Miao S, Qiu H. The microbiome in the pathogenesis of lung cancer: The role of microbiome in lung cancer pathogenesis. APMIS 2024; 132:68-80. [PMID: 37974493 DOI: 10.1111/apm.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
As one of the malignant tumors with high incidence rate and high mortality, lung cancer seriously threatens the life safety of patients. Research shows that microorganisms are closely related to lung cancer. The microbiome is symbiotic with the host and plays a vital role in the functions of the human body. Microbiota dysbiosis is correlated with development of lung cancer. However, the underlying mechanisms are poorly understood. This paper summarizes the composition characteristics of the gut-lung axis microbiome and intratumoral microbiome in patients with lung cancer. We then expound five potential carcinogenic mechanisms based on microorganisms, such as genotoxicity, metabolism, inflammation, immune response, and angiogenesis. Next, we list three high-throughput sequencing methods, and finally looks forward to the prospect of microorganisms as novel targets for early diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Sainan Miao
- School of Nursing, Anhui Medical University, Hefei, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, Hefei, China
| |
Collapse
|
155
|
Aggarwal H, Gautam J, Kumari D, Gupta SK, Bajpai S, Chaturvedi K, Kumar Y, Dikshit M. Comparative profiling of gut microbiota and metabolome in diet-induced obese and insulin-resistant C57BL/6J mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119643. [PMID: 37996062 DOI: 10.1016/j.bbamcr.2023.119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Diet-based models are commonly used to investigate obesity and related disorders. We conducted a comparative profiling of three obesogenic diets HFD, high fat diet; HFHF, high fat high fructose diet; and HFCD, high fat choline deficient diet to assess their impact on the gut microbiome and metabolome. After 20 weeks, we analyzed the gut microbiota and metabolomes of liver, plasma, cecal, and fecal samples. Fecal and plasma bile acids (BAs) and fecal short-chain fatty acids (SCFAs) were also examined. Significant changes were observed in fecal and cecal metabolites, with increased Firmicutes and decreased Bacteroidetes in the HFD, HFHF, and HFCD-fed mice compared to chow and LFD (low fat diet)-fed mice. Most BAs were reduced in plasma and fecal samples of obese groups, except taurocholic acid, which increased in HFCD mice's plasma. SCFAs like acetate and butyrate significantly decreased in obesogenic diet groups, while propionic acid specifically decreased in the HFCD group. Pathway analysis revealed significant alterations in amino acid, carbohydrate metabolism, and nucleic acid biosynthesis pathways in obese mice. Surprisingly, even LFD-fed mice showed distinct changes in microbiome and metabolite profiles compared to the chow group. This study provides insights into gut microbiome dysbiosis and metabolite alterations induced by obesogenic and LFD diets in various tissues. These findings aid in selecting suitable diet models to study the role of the gut microbiome and metabolites in obesity and associated disorders, with potential implications for understanding similar pathologies in humans.
Collapse
Affiliation(s)
- Hobby Aggarwal
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Jyoti Gautam
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepika Kumari
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sonu Kumar Gupta
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Sneh Bajpai
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Kartikey Chaturvedi
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Yashwant Kumar
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
156
|
Xin Y, Liu CG, Zang D, Chen J. Gut microbiota and dietary intervention: affecting immunotherapy efficacy in non-small cell lung cancer. Front Immunol 2024; 15:1343450. [PMID: 38361936 PMCID: PMC10867196 DOI: 10.3389/fimmu.2024.1343450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. In recent years, treatment with immune checkpoint inhibitors (ICIs) has gradually improved the survival rate of patients with NSCLC, especially those in the advanced stages. ICIs can block the tolerance pathways that are overexpressed by tumor cells and maintain the protective activity of immune system components against cancer cells. Emerging clinical evidence suggests that gut microbiota may modulate responses to ICIs treatment, possibly holding a key role in tumor immune surveillance and the efficacy of ICIs. Studies have also shown that diet can influence the abundance of gut microbiota in humans, therefore, dietary interventions and the adjustment of the gut microbiota is a novel and promising treatment strategy for adjunctive cancer therapy. This review comprehensively summarizes the effects of gut microbiota, antibiotics (ATBs), and dietary intervention on the efficacy of immunotherapy in NSCLC, with the aim of informing the development of novel strategies in NSCLC immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Jun Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
157
|
Ricaurte D, Huang Y, Sheth RU, Gelsinger DR, Kaufman A, Wang HH. High-throughput transcriptomics of 409 bacteria-drug pairs reveals drivers of gut microbiota perturbation. Nat Microbiol 2024; 9:561-575. [PMID: 38233648 PMCID: PMC11287798 DOI: 10.1038/s41564-023-01581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Many drugs can perturb the gut microbiome, potentially leading to negative health consequences. However, mechanisms of most microorganism-drug responses have not been elucidated at the genetic level. Using high-throughput bacterial transcriptomics, we systematically characterized the gene expression profiles of prevalent human gut bacteria exposed to the most frequently prescribed orally administered pharmaceuticals. Across >400 drug-microorganism pairs, significant and reproducible transcriptional responses were observed, including pathways involved in multidrug resistance, metabolite transport, tartrate metabolism and riboflavin biosynthesis. Importantly, we discovered that statin-mediated upregulation of the AcrAB-TolC efflux pump in Bacteroidales species enhances microbial sensitivity to vitamin A and secondary bile acids. Moreover, gut bacteria carrying acrAB-tolC genes are depleted in patients taking simvastatin, suggesting that drug-efflux interactions generate collateral toxicity that depletes pump-containing microorganisms from patient microbiomes. This study provides a resource to further understand the drivers of drug-mediated microbiota shifts for better informed clinical interventions.
Collapse
Affiliation(s)
- Deirdre Ricaurte
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Ravi U Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | | | - Andrew Kaufman
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
158
|
Zhang H, Dong M, Zheng J, Yang Y, He J, Liu T, Wei H. Fecal bacteria-free filtrate transplantation is proved as an effective way for the recovery of radiation-induced individuals in mice. Front Cell Infect Microbiol 2024; 13:1343752. [PMID: 38357210 PMCID: PMC10864540 DOI: 10.3389/fcimb.2023.1343752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Background Ionizing radiation can cause intestinal microecological dysbiosis, resulting in changes in the composition and function of gut microbiota. Altered gut microbiota is closely related to the development and progression of radiation-induced intestinal damage. Although microbiota-oriented therapeutic options such as fecal microbiota transplantation (FMT) have shown some efficacy in treating radiation toxicity, safety concerns endure. Therefore, fecal bacteria-free filtrate transplantation (FFT), which has the potential to become a possible alternative therapy, is well worth investigating. Herein, we performed FFT in a mouse model of radiation exposure and monitored its effects on radiation damage phenotypes, gut microbiota, and metabolomic profiles to assess the effectiveness of FFT as an alternative therapy to FMT safety concerns. Results FFT treatment conferred radioprotection against radiation-induced toxicity, representing as better intestinal integrity, robust proinflammatory and anti-inflammatory cytokines homeostasis, and accompanied by significant shifts in gut microbiome. The bacterial compartment of recipients following FFT was characterized by an enrichment of radioprotective microorganisms (members of family Lachnospiraceae). Furthermore, metabolome data revealed increased levels of microbially generated short-chain fatty acids (SCFAs) in the feces of FFT mice. Conclusions FFT improves radiation-induced intestinal microecological dysbiosis by reshaping intestinal mucosal barrier function, gut microbiota configurations, and host metabolic profiles, highlighting FFT regimen as a promising safe alternative therapy for FMT is effective in the treatment of radiation intestinal injury.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yapeng Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tianhao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Wei
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
159
|
Yin Y, Li Z, Gao H, Zhou D, Zhu Z, Tao L, Guan W, Gao Y, Song Y, Wang M. Microfluidics-Derived Microparticles with Prebiotics and Probiotics for Enhanced In Situ Colonization and Immunoregulation of Colitis. NANO LETTERS 2024; 24:1081-1089. [PMID: 38227962 DOI: 10.1021/acs.nanolett.3c03580] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Oral administration of probiotics orchestrates the balance between intestinal microbes and the immune response. However, effective delivery and in situ colonization are limited by the harsh environment of the gastrointestinal tract. Herein, we provide a microfluidics-derived encapsulation strategy to address this problem. A novel synergistic delivery system composed of EcN Nissle 1917 and prebiotics, including alginate sodium and inulin gel, for treating inflammatory bowel disease and colitis-associated colorectal cancer is proposed. We demonstrated that EcN@AN microparticles yielded promising gastrointestinal resistance for on-demand probiotic delivery and colon-retentive capability. EcN@AN microparticles efficiently ameliorated intestinal inflammation and modulated the gut microbiome in experimental colitis. Moreover, the prebiotic composition of EcN@AN enhanced the fermentation of relative short-chain fatty acid metabolites, a kind of postbiotics, to exert anti-inflammatory and tumor-suppressive effects in murine models. This microfluidcis-based approach for the coordinated delivery of probiotics and prebiotics may have broad implications for gastrointestinal bacteriotherapy applications.
Collapse
Affiliation(s)
- Yi Yin
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhun Li
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Hengfei Gao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Zhenxing Zhu
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Liang Tao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Meng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
160
|
Cao L, Wei S, Yin Z, Chen F, Ba Y, Weng Q, Zhang J, Zhang H. Identifying important microbial biomarkers for the diagnosis of colon cancer using a random forest approach. Heliyon 2024; 10:e24713. [PMID: 38298638 PMCID: PMC10828680 DOI: 10.1016/j.heliyon.2024.e24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Colon cancer is one of the most common cancers, with 30-50 % of patients returning or metastasizing within 5 years of treatment. Increasingly, researchers have highlighted the influence of microbes on cancer malignant activity, while no studies have explored the relationship between colon cancer and the microbes in tumors. Here, we used tissue and blood samples from 67 colon cancer patients to identify pathogenic microorganisms associated with the diagnosis and prediction of colon cancer and evaluate the predictive performance of each pathogenic marker and its combination based on the next-generation sequencing data by using random forest algorithms. The results showed that we constructed a database of 13,187 pathogenic microorganisms associated with human disease and identified 2 pathogenic microorganisms (Synthetic.construct_32630 and Dicrocoelium.dendriticum_57078) associated with colon cancer diagnosis, and the constructed diagnostic prediction model performed well for tumor tissue samples and blood samples. In summary, for the first time, we provide new molecular markers for the diagnosis of colon cancer based on the expression of pathogenic microorganisms in order to provide a reference for improving the effective screening rate of colon cancer in clinical practice and ameliorating the personalized treatment of colon cancer patients.
Collapse
Affiliation(s)
- Lichao Cao
- School of Life Sciences, Northwest University, 710127, Xi'an, Shaanxi Province, China
| | - Shangqing Wei
- School of Life Sciences, Northwest University, 710127, Xi'an, Shaanxi Province, China
| | - Zongyi Yin
- Shenzhen University General Hospital, 518071, Shenzhen, Guangdong Province, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| | - Qi Weng
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| | - Jiahao Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., 518071, Shenzhen, Guangdong Province, China
| |
Collapse
|
161
|
Yang C, Ding Y, Mao Z, Wang W. Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors. Int J Nanomedicine 2024; 19:917-944. [PMID: 38293604 PMCID: PMC10826716 DOI: 10.2147/ijn.s445578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The overall cancer incidence and death toll have been increasing worldwide. However, the conventional therapies have some obvious limitations, such as non-specific targeting, systemic toxic effects, especially the multidrug resistance (MDR) of tumors, in which, autophagy plays a vital role. Therefore, there is an urgent need for new treatments to reduce adverse reactions, improve the treatment efficacy and expand their therapeutic indications more effectively and accurately. Combination therapy based on autophagy regulators is a very feasible and important method to overcome tumor resistance and sensitize anti-tumor drugs. However, the less improved efficacy, more systemic toxicity and other problems limit its clinical application. Nanotechnology provides a good way to overcome this limitation. Co-delivery of autophagy regulators combined with anti-tumor drugs through nanoplatforms provides a good therapeutic strategy for the treatment of tumors, especially drug-resistant tumors. Notably, the nanomaterials with autophagy regulatory properties have broad therapeutic prospects as carrier platforms, especially in adjuvant therapy. However, further research is still necessary to overcome the difficulties such as the safety, biocompatibility, and side effects of nanomedicine. In addition, clinical research is also indispensable to confirm its application in tumor treatment.
Collapse
Affiliation(s)
- Caixia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
162
|
Zhou Z, Feng Y, Xie L, Ma S, Cai Z, Ma Y. Alterations in gut and genital microbiota associated with gynecological diseases: a systematic review and meta-analysis. Reprod Biol Endocrinol 2024; 22:13. [PMID: 38238814 PMCID: PMC10795389 DOI: 10.1186/s12958-024-01184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Increasing number of studies have demonstrated certain patterns of microbial changes in gynecological diseases; however, the interaction between them remains unclear. To evaluate the consistency or specificity across multiple studies on different gynecological diseases and microbial alterations at different sites of the body (gut and genital tract), we conducted a systematic review and meta-analysis. METHODS We searched PubMed, Embase, Web of Science, and Cochrane Library up to December 5, 2022(PROSPERO: CRD42023400205). Eligible studies focused on gynecological diseases in adult women, applied next-generation sequencing on microbiome, and reported outcomes including alpha or beta diversity or relative abundance. The random-effects model on standardized mean difference (SMD) was conducted using the inverse-variance method for alpha diversity indices. RESULTS Of 3327 unique articles, 87 eligible studies were included. Significant decreases were found in gut microbiome of patients versus controls (observed species SMD=-0.35; 95%CI, -0.62 to -0.09; Shannon index SMD=-0.23; 95%CI, -0.40 to -0.06), whereas significant increases were observed in vaginal microbiome (Chao1 SMD = 1.15; 95%CI, 0.74 to 1.56; Shannon index SMD = 0.51; 95%CI, 0.16 to 0.86). Most studies of different diagnostic categories showed no significant differences in beta diversity. Disease specificity was observed, but almost all the changes were only replicated in three studies, except for the increased Aerococcus in bacterial vaginosis (BV). Patients with major gynecological diseases shared the enrichment of Prevotella and depletion of Lactobacillus, and an overlap in microbes was implied between BV, cervical intraepithelial neoplasia, and cervical cancer. CONCLUSIONS These findings demonstrated an association between alterations in gut and genital microbiota and gynecological diseases. The most observed results were shared alterations across diseases rather than disease-specific alterations. Therefore, further investigation is required to identify specific biomarkers for diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Ziwei Zhou
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yifei Feng
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Xie
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Song Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoxia Cai
- Guangzhou Liwan Maternal and Child Health Hospital, Guangzhou, China
| | - Ying Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
163
|
An HJ, Partha MA, Lee H, Lau BT, Pavlichin DS, Almeda A, Hooker AC, Shin G, Ji HP. Tumor-associated microbiome features of metastatic colorectal cancer and clinical implications. Front Oncol 2024; 13:1310054. [PMID: 38304032 PMCID: PMC10833227 DOI: 10.3389/fonc.2023.1310054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
Background Colon microbiome composition contributes to the pathogenesis of colorectal cancer (CRC) and prognosis. We analyzed 16S rRNA sequencing data from tumor samples of patients with metastatic CRC and determined the clinical implications. Materials and methods We enrolled 133 patients with metastatic CRC at St. Vincent Hospital in Korea. The V3-V4 regions of the 16S rRNA gene from the tumor DNA were amplified, sequenced on an Illumina MiSeq, and analyzed using the DADA2 package. Results After excluding samples that retained <5% of the total reads after merging, 120 samples were analyzed. The median age of patients was 63 years (range, 34-82 years), and 76 patients (63.3%) were male. The primary cancer sites were the right colon (27.5%), left colon (30.8%), and rectum (41.7%). All subjects received 5-fluouracil-based systemic chemotherapy. After removing genera with <1% of the total reads in each patient, 523 genera were identified. Rectal origin, high CEA level (≥10 ng/mL), and presence of lung metastasis showed higher richness. Survival analysis revealed that the presence of Prevotella (p = 0.052), Fusobacterium (p = 0.002), Selenomonas (p<0.001), Fretibacterium (p = 0.001), Porphyromonas (p = 0.007), Peptostreptococcus (p = 0.002), and Leptotrichia (p = 0.003) were associated with short overall survival (OS, <24 months), while the presence of Sphingomonas was associated with long OS (p = 0.070). From the multivariate analysis, the presence of Selenomonas (hazard ratio [HR], 6.35; 95% confidence interval [CI], 2.38-16.97; p<0.001) was associated with poor prognosis along with high CEA level. Conclusion Tumor microbiome features may be useful prognostic biomarkers for metastatic CRC.
Collapse
Affiliation(s)
- Ho Jung An
- Department of Medical Oncology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Mira A. Partha
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
| | - HoJoon Lee
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Billy T. Lau
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Dmitri S. Pavlichin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Alison Almeda
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Anna C. Hooker
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Giwon Shin
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
164
|
Cheng S, Han Z, Dai D, Li F, Zhang X, Lu M, Lu Z, Wang X, Zhou J, Li J, Guo X, Song P, Qiu C, Shen W, Zhang Q, Zhu N, Wang X, Tan Y, Kou Y, Yin X, Shen L, Peng Z. Multi-omics of the gut microbial ecosystem in patients with microsatellite-instability-high gastrointestinal cancer resistant to immunotherapy. Cell Rep Med 2024; 5:101355. [PMID: 38194971 PMCID: PMC10829783 DOI: 10.1016/j.xcrm.2023.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/17/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Despite the encouraging efficacy of anti-PD-1/PD-L1 immunotherapy in microsatellite-instability-high/deficient mismatch repair (MSI-H/dMMR) advanced gastrointestinal cancer, many patients exhibit primary or acquired resistance. Using multi-omics approaches, we interrogate gut microbiome, blood metabolome, and cytokines/chemokines of patients with MSI-H/dMMR gastrointestinal cancer (N = 77) at baseline and during the treatment. We identify a number of microbes (e.g., Porphyromonadaceae) and metabolites (e.g., arginine) highly associated with primary resistance to immunotherapy. An independent validation cohort (N = 39) and mouse model are used to further confirm our findings. A predictive machine learning model for primary resistance is also built and achieves an accuracy of 0.79 on the external validation set. Furthermore, several microbes are pinpointed that gradually changed during the process of acquired resistance. In summary, our study demonstrates the essential role of gut microbiome in drug resistance, and this can be utilized as a preventative diagnosis tool and therapeutic target in the future.
Collapse
Affiliation(s)
- Siyuan Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Zihan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Department of Colorectal Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Die Dai
- Xbiome, Shenzhen 518055, China
| | - Fang Li
- Xbiome, Shenzhen 518055, China
| | - Xiaotian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ming Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihao Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xicheng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jun Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaohuan Guo
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Panwei Song
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | - Xi Wang
- Xbiome, Shenzhen 518055, China
| | - Yan Tan
- Xbiome, Shenzhen 518055, China
| | - Yan Kou
- Xbiome, Shenzhen 518055, China
| | | | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
165
|
Zhou Y, Liu X, Gao W, Luo X, Lv J, Wang Y, Liu D. The role of intestinal flora on tumor immunotherapy: recent progress and treatment implications. Heliyon 2024; 10:e23919. [PMID: 38223735 PMCID: PMC10784319 DOI: 10.1016/j.heliyon.2023.e23919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy, specifically immune checkpoint inhibitors, has emerged as a promising approach for treating malignant tumors. The gut, housing approximately 70 % of the body's immune cells, is abundantly populated with gut bacteria that actively interact with the host's immune system. Different bacterial species within the intestinal flora are in a delicate equilibrium and mutually regulate each other. However, when this balance is disrupted, pathogenic microorganisms can dominate, adversely affecting the host's metabolism and immunity, ultimately promoting the development of disease. Emerging researches highlight the potential of interventions such as fecal microflora transplantation (FMT) to improve antitumor immune response and reduce the toxicity of immunotherapy. These remarkable findings suggest the major role of intestinal flora in the development of cancer immunotherapy and led us to the hypothesis that intestinal flora transplantation may be a new breakthrough in modifying immunotherapy side effects.
Collapse
Affiliation(s)
- Yimin Zhou
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xiangdong Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xin Luo
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Junying Lv
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
166
|
Rojas-Velazquez D, Kidwai S, Kraneveld AD, Tonda A, Oberski D, Garssen J, Lopez-Rincon A. Methodology for biomarker discovery with reproducibility in microbiome data using machine learning. BMC Bioinformatics 2024; 25:26. [PMID: 38225565 PMCID: PMC10789030 DOI: 10.1186/s12859-024-05639-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND In recent years, human microbiome studies have received increasing attention as this field is considered a potential source for clinical applications. With the advancements in omics technologies and AI, research focused on the discovery for potential biomarkers in the human microbiome using machine learning tools has produced positive outcomes. Despite the promising results, several issues can still be found in these studies such as datasets with small number of samples, inconsistent results, lack of uniform processing and methodologies, and other additional factors lead to lack of reproducibility in biomedical research. In this work, we propose a methodology that combines the DADA2 pipeline for 16s rRNA sequences processing and the Recursive Ensemble Feature Selection (REFS) in multiple datasets to increase reproducibility and obtain robust and reliable results in biomedical research. RESULTS Three experiments were performed analyzing microbiome data from patients/cases in Inflammatory Bowel Disease (IBD), Autism Spectrum Disorder (ASD), and Type 2 Diabetes (T2D). In each experiment, we found a biomarker signature in one dataset and applied to 2 other as further validation. The effectiveness of the proposed methodology was compared with other feature selection methods such as K-Best with F-score and random selection as a base line. The Area Under the Curve (AUC) was employed as a measure of diagnostic accuracy and used as a metric for comparing the results of the proposed methodology with other feature selection methods. Additionally, we use the Matthews Correlation Coefficient (MCC) as a metric to evaluate the performance of the methodology as well as for comparison with other feature selection methods. CONCLUSIONS We developed a methodology for reproducible biomarker discovery for 16s rRNA microbiome sequence analysis, addressing the issues related with data dimensionality, inconsistent results and validation across independent datasets. The findings from the three experiments, across 9 different datasets, show that the proposed methodology achieved higher accuracy compared to other feature selection methods. This methodology is a first approach to increase reproducibility, to provide robust and reliable results.
Collapse
Affiliation(s)
- David Rojas-Velazquez
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands.
- Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Sarah Kidwai
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands
- Department of Neuroscience, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alberto Tonda
- UMR 518 MIA - PS, INRAE, Institut des Systèmes Complexes de Paris, Île - de - France (ISC-PIF) - UAR 3611 CNRS, Université Paris-Saclay, Paris, France
| | - Daniel Oberski
- Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands
- Global Centre of Excellence Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Utrecht, The Netherlands
- Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
167
|
Zhang Q, Wang H, Tian Y, Li J, Xin Y, Jiang X. Mendelian randomization analysis to investigate the gut microbiome in oral and oropharyngeal cancer. Front Cell Infect Microbiol 2024; 13:1210807. [PMID: 38239501 PMCID: PMC10794669 DOI: 10.3389/fcimb.2023.1210807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Background Evidence supports an observational association between the gut microbiome and susceptibility to extraintestinal cancers, but the causal relationship of this association remains unclear. Methods To identify the specific causal gut microbiota of oral and oropharyngeal cancer, we performed two-sample Mendelian randomization (MR) analysis of gut microbiota on oral and oropharyngeal cancer using a fixed-effects inverse-variance-weighted model. Gut microbiota across five different taxonomical levels from the MiBioGen genome-wide association study (GWAS) were used as exposures. Oral cancer, oropharyngeal cancer and a combination of the two cancers defined from three separate data sources were used as the outcomes. Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher abundance of microbiome. Results & Conclusions There was little evidence for a causal effect of gut microbiota on oral and oropharyngeal cancer when using a genome-wide p-value threshold for selecting instruments. Secondary analyses using a more lenient p-value threshold indicated that there were 90 causal relationships between 58 different microbial features but that sensitivity analyses suggested that these were possibly affected by violations of MR assumptions and were not consistent across MR methodologies or data sources and therefore are also to unlikely reflect causation. These findings provide new insights into gut microbiota-mediated oral and oropharyngeal cancers and warrant further investigation.
Collapse
Affiliation(s)
- Qihe Zhang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, and Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
168
|
David A, Lev-Ari S. Targeting the Gut Microbiome to Improve Immunotherapy Outcomes: A Review. Integr Cancer Ther 2024; 23:15347354241269870. [PMID: 39223798 PMCID: PMC11369881 DOI: 10.1177/15347354241269870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The following narrative review embarks on a comprehensive exploration of the role played by the gut microbiome within the Diet-Microbiota-Immunity (DMI) tripartite, aiming to enhance anti-cancer immunotherapy efficacy. While revolutionizing cancer treatment, resistance to immunotherapy and immune-related adverse events (irAEs) remain challenges. The tumor microenvironment (TME), shaped by cancer cells, influences immunotherapy resistance. The gut microbiome, influenced by genetics, environment, diet, and interventions, emerges as a critical player in TME reshaping, thereby modulating immune responses and treatment outcomes. Dietary patterns like the Mediterranean diet, caloric restriction modifications, and specific nutritional components show promise in influencing the tumor microenvironment and gut microbiome for better treatment outcomes. Antibiotics, disrupting gut microbiota diversity, may compromise immunotherapy efficacy. This review emphasizes the need for tailored nutritional strategies to manipulate microbial communities, enhance immune regulation, and improve immunotherapy accessibility while minimizing side effects. Ongoing studies investigate the impact of dietary interventions on cancer immunotherapy, pointing toward promising developments in personalized cancer care. This narrative review synthesizes existing knowledge and charts a course for future investigations, presenting a holistic perspective on the dynamic interplay between dietary interventions, the gut microbiome, and cancer immunotherapy within the DMI tripartite.
Collapse
Affiliation(s)
- Adi David
- Tal Center for Integrative Medicine, Institute of Oncology, Sheba Medical Center, Ramat-Gan, Israel
| | - Shaked Lev-Ari
- Ella Lemelbaum Institute For Immuno-Oncology, Sheba Medical Center, Ramat-Gan, Israel
- Education Authority, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
169
|
Zeng Z, Quan C, Zhou S, Gong S, Iqbal M, Kulyar MFEA, Nawaz S, Li K, Li J. Gut microbiota and metabolic modulation by supplementation of polysaccharide-producing Bacillus licheniformis from Tibetan Yaks: A comprehensive multi-omics analysis. Int J Biol Macromol 2024; 254:127808. [PMID: 37926310 DOI: 10.1016/j.ijbiomac.2023.127808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Gut microbiota and their metabolic processes depend on the intricate interplay of gut microbiota and their metabolic processes. Bacillus licheniformis, a beneficial food supplement, has shown promising effects on stabilizing gut microbiota and metabolites. However, the precise mechanisms underlying these effects remain elusive. In this study, we investigated the impact of polysaccharide-producing B. licheniformis as a dietary supplement on the gut microbiome and metabolites through a combination of scanning electron microscopy (SEM), histological analysis, high-throughput sequencing (HTS), and metabolomics. Our findings revealed that the B. licheniformis-treated group exhibited significantly increased jejunal goblet cells. Moreover, gut microbial diversity was lower in the treatment group as compared to the control, accompanied by noteworthy shifts in the abundance of specific bacterial taxa. Enrichment of Firmicutes, Lachnospiraceae, and Clostridiales_bacterium contrasted with reduced levels of Campylobacterota, Proteobacteria, Parasutterella, and Helicobacter. Notably, the treatment group showed significant weight gain after 33 days, emphasizing the polysaccharide's impact on host metabolism. Delving into gut metabolomics, we discovered significant alterations in metabolites. Nine metabolites, including olprinone, pyruvic acid, and 2-methyl-3-oxopropanoate, were upregulated, while eleven, including defoslimod and voclosporin were down-regulated, shedding light on phenylpropanoid biosynthesis, tricarboxylic acid cycle (TCA cycle), and the glucagon signaling pathway. This comprehensive multi-omics analysis offers compelling insights into the potential of B. licheniformis as a dietary polysaccharide supplement for gut health and host metabolism, promising significant implications for gut-related issues.
Collapse
Affiliation(s)
- Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shimeng Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, PR China.
| |
Collapse
|
170
|
Jiang S, Ma W, Ma C, Zhang Z, Zhang W, Zhang J. An emerging strategy: probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024; 16:2341717. [PMID: 38717360 PMCID: PMC11085971 DOI: 10.1080/19490976.2024.2341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.
Collapse
Affiliation(s)
- Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenyao Ma
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Chenchen Ma
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, Shenzhen, PR China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
171
|
Chorawala MR, Postwala H, Prajapati BG, Shah Y, Shah A, Pandya A, Kothari N. Impact of the microbiome on colorectal cancer development. COLORECTAL CANCER 2024:29-72. [DOI: 10.1016/b978-0-443-13870-6.00021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
172
|
Balasubramanian S, Haneen MA, Sharma G, Perumal E. Acute copper oxide nanoparticles exposure alters zebrafish larval microbiome. Life Sci 2024; 336:122313. [PMID: 38035991 DOI: 10.1016/j.lfs.2023.122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are being used in healthcare industries due to its antimicrobial properties. The increased consumption of NPs could lead to the rise of these NPs in the environment affecting the biological systems. Altered microbiome has been correlated to disease pathology in humans as well as xenobiotic toxicity in experimental animal models. However, CuO NPs-induced microbiome alterations in vertebrates have not been reported so far. In this study, for the first time, zebrafish larvae at 96 hpf (hours post fertilization) were exposed to CuO NPs for 24 h at 10, 20, and 40 ppm. After exposure, the control and treated larvae were subjected to 16S rRNA amplicon sequencing followed by relative taxa abundance, alpha and beta diversity analysis, single factor analysis, LEfSe, Deseq2, and functional profiling. No significant alteration was detected in the microbial richness and diversity, however, specific taxa constituting the core microbiome such as phylum Proteobacteria were significantly increased and Bacterioidetes and Firmicutes were decreased in the treated groups, indicating a core microbiota dysbiosis. Further, the family Lachnospiraceae, and genus Syntrophomonas involved in butyrate production and the metabolism of lipids and glucose were significantly altered. In addition, the opportunistic pathogens belonging to order Flavobacteriales were increased in CuO NPs treated groups. Moreover, the taxa involved in host immune response (Shewanella, Delftia, and Bosea) were found to be enriched in CuO NPs exposed larvae. These results indicate that CuO NPs exposure causes alteration in the core microbiota, which could cause colitis or inflammatory bowel disease.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Mariam Azeezuddin Haneen
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Gaurav Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana 502285, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
173
|
Sangermani M, Desiati I, Jørgensen SM, Li JV, Andreassen T, Bathen TF, Giskeødegård GF. Stability in fecal metabolites amid a diverse gut microbiome composition: a one-month longitudinal study of variability in healthy individuals. Gut Microbes 2024; 16:2427878. [PMID: 39533520 PMCID: PMC11562901 DOI: 10.1080/19490976.2024.2427878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of microbial-host interactions exists in the gut, making the gut microbiome a complex ecosystem to untangle. The microbial composition and the fecal metabolites are important readouts to investigate intricate microbiota-diet-host interplay. However, this ecosystem is dynamic, and it is of interest to understand the degree and timescale of changes occurring in the gut microbiota, during disease as well as in healthy individuals. Cross-sectional study design is often used to investigate the microbiome, but this design provides a static snapshot and cannot provide evidence on the dynamic nature of the gut microbiome. Longitudinal studies are better suited to extrapolate causation in a study or assess changes over time. This study investigates longitudinal change in the gut microbiome and fecal metabolites in 14 healthy individuals with weekly sampling over a period of one-month (four time points), to elucidate the temporal changes occurring in the gut microbiome composition and fecal metabolites. Utilizing 16S rRNA amplicon sequencing for microbiome analysis and NMR spectroscopy for fecal metabolite characterization, we assessed the stability of these two types of measurable parameters in fecal samples during the period of one month. Our results show that the gut microbiome display large variations between healthy individuals, but relatively lower within-individual variations, which makes it possible to uniquely identify individuals. The fecal metabolites showed higher stability over time compared to the microbiome and exhibited consistently smaller variations both within and between individuals. This relative higher stability of the fecal metabolites suggests a balanced, consistent output even amid individual's differences in microbial composition and they can provide a viable complementary readout to better understand the microbiome activity.
Collapse
Affiliation(s)
- Matteo Sangermani
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Indri Desiati
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | | | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
- Central Staff, St. Olavs Hospital HF, Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Guro F. Giskeødegård
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
174
|
Bernard L, How JA, Patel S, Yates MS, Jazaeri A. Obesity is associated with improved progression-free survival in Microsatellite-Instability-High endometrial cancer treated with pembrolizumab. Gynecol Oncol 2024; 180:139-145. [PMID: 38091773 DOI: 10.1016/j.ygyno.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVES To determine the clinical predictors of response rate, progression-free survival (PFS), and overall survival (OS) to pembrolizumab in advanced or recurrent, mismatch repair deficient (MMRd) or Microsatellite Instability-High (MSI-H) endometrial adenocarcinomas. METHODS A retrospective, single institution study was conducted among women with recurrent or advanced MMRd or MSI-H endometrial adenocarcinomas treated with single-agent pembrolizumab at our institution from 2017 to 2021. Logistic regression was used for univariable and multivariable analyses. PFS and OS were estimated using the methods of Kaplan and Meier and modeled via Cox proportional hazards regression. Log-rank test was used for intergroup comparisons based on body mass index (BMI). RESULTS Among the 44 patients included in the analysis, the median BMI was 32.9 (range 18.5-51.8). Median cycles of pembrolizumab given was 11.5 (range 2-37). Median follow-up was 33 months (range 5-61) with a response rate of 63.6% and stable disease rate of 75%. When stratified by obesity status (BMI≥30), disease control rate was 59.8% in patients with a BMI < 30 and 85.2% in patients with a BMI≥30 patients (p = 0.05). On multivariable analysis, obesity was associated with increased rate of disease control (OR 4.03, 95%CI 1.09, 28) while prior smoking was associated with decreased rate of disease control (OR 0.18, 95%CI 0.03, 0.85). PFS was significantly increased among patients with a BMI≥30 (p = 0.03) but OS was similar (p = 0.5). CONCLUSION In this retrospective study, obesity is associated with increased rates of disease control and improved PFS in patients treated with pembrolizumab for recurrent or advanced MMRd/MSI-H endometrial adenocarcinomas.
Collapse
Affiliation(s)
- Laurence Bernard
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, Unit 1362, PO Box 301439, Houston, TX 77230-1439, USA.
| | - Jeffrey A How
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, Unit 1362, PO Box 301439, Houston, TX 77230-1439, USA
| | - Shrina Patel
- Clinical Pharmacy Programs, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 90, Houston, TX 77030-4009, USA
| | - Melinda S Yates
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, Unit 1362, PO Box 301439, Houston, TX 77230-1439, USA
| | - Amir Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, Unit 1362, PO Box 301439, Houston, TX 77230-1439, USA
| |
Collapse
|
175
|
de Castilhos J, Tillmanns K, Blessing J, Laraño A, Borisov V, Stein-Thoeringer CK. Microbiome and pancreatic cancer: time to think about chemotherapy. Gut Microbes 2024; 16:2374596. [PMID: 39024520 PMCID: PMC11259062 DOI: 10.1080/19490976.2024.2374596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by late diagnosis, rapid progression, and a high mortality rate. Its complex biology, characterized by a dense, stromal tumor environment with an immunosuppressive milieu, contributes to resistance against standard treatments like chemotherapy and radiation. This comprehensive review explores the dynamic role of the microbiome in modulating chemotherapy efficacy and outcomes in PDAC. It delves into the microbiome's impact on drug metabolism and resistance, and the interaction between microbial elements, drugs, and human biology. We also highlight the significance of specific bacterial species and microbial enzymes in influencing drug action and the immune response in the tumor microenvironment. Cutting-edge methodologies, including artificial intelligence, low-biomass microbiome analysis and patient-derived organoid models, are discussed, offering insights into the nuanced interactions between microbes and cancer cells. The potential of microbiome-based interventions as adjuncts to conventional PDAC treatments are discussed, paving the way for personalized therapy approaches. This review synthesizes recent research to provide an in-depth understanding of how the microbiome affects chemotherapy efficacy. It focuses on elucidating key mechanisms and identifying existing knowledge gaps. Addressing these gaps is crucial for enhancing personalized medicine and refining cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Katharina Tillmanns
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Jana Blessing
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Arnelyn Laraño
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Vadim Borisov
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| | - Christoph K. Stein-Thoeringer
- Translational Microbiome Research, Internal Medicine I and M3 Research Center, University Hospital Tuebingen, Tübingen, Germany
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
176
|
Arjmand B, Alavi-Moghadam S, Faraji Z, Aghajanpoor-Pasha M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezazadeh-Mafi A, Rezaei-Tavirani M, Irompour A. The Potential Role of Intestinal Stem Cells and Microbiota for the Treatment of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:115-128. [PMID: 38811486 DOI: 10.1007/5584_2024_803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Colorectal cancer is a global health concern with high incidence and mortality rates. Conventional treatments like surgery, chemotherapy, and radiation therapy have limitations in improving patient survival rates. Recent research highlights the role of gut microbiota and intestinal stem cells in maintaining intestinal health and their potential therapeutic applications in colorectal cancer treatment. The interaction between gut microbiota and stem cells influences epithelial self-renewal and overall intestinal homeostasis. Novel therapeutic approaches, including immunotherapy, targeted therapy, regenerative medicine using stem cells, and modulation of gut microbiota, are being explored to improve treatment outcomes. Accordingly, this chapter provides an overview of the potential therapeutic applications of gut microbiota and intestinal stem cells in treating colorectal cancer.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Faraji
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh-Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | | | - Arsalan Irompour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
177
|
Chen M, Wang Z, Tan DS, Wang X, Ye Z, Xie Z, Zhang D, Wu D, Zhao Y, Qu Y, Jiang Y. The Causal Relationship between the Morning Chronotype and the Gut Microbiota: A Bidirectional Two-Sample Mendelian Randomization Study. Nutrients 2023; 16:46. [PMID: 38201876 PMCID: PMC10780629 DOI: 10.3390/nu16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Numerous observational studies have documented an association between the circadian rhythm and the composition of the gut microbiota. However, the bidirectional causal effect of the morning chronotype on the gut microbiota is unknown. METHODS A two-sample Mendelian randomization study was performed, using the summary statistics of the morning chronotype from the European Consortium and those of the gut microbiota from the largest available genome-wide association study meta-analysis, conducted by the MiBioGen consortium. The inverse variance-weighted (IVW), weighted mode, weighted median, MR-Egger regression, and simple mode methods were used to examine the causal association between the morning chronotype and the gut microbiota. A reverse Mendelian randomization analysis was conducted on the gut microbiota, which was identified as causally linked to the morning chronotype in the initial Mendelian randomization analysis. Cochran's Q statistics were employed to assess the heterogeneity of the instrumental variables. RESULTS Inverse variance-weighted estimates suggested that the morning chronotype had a protective effect on Family Bacteroidaceae (β = -0.072; 95% CI: -0.143, -0.001; p = 0.047), Genus Parabacteroides (β = -0.112; 95% CI: -0.184, -0.039; p = 0.002), and Genus Bacteroides (β = -0.072; 95% CI: -0.143, -0.001; p = 0.047). In addition, the gut microbiota (Family Bacteroidaceae (OR = 0.925; 95% CI: 0.857, 0.999; p = 0.047), Genus Parabacteroides (OR = 0.915; 95% CI: 0.858, 0.975; p = 0.007), and Genus Bacteroides (OR = 0.925; 95% CI: 0.857, 0.999; p = 0.047)) demonstrated positive effects on the morning chronotype. No significant heterogeneity in the instrumental variables, or in horizontal pleiotropy, was found. CONCLUSION This two-sample Mendelian randomization study found that Family Bacteroidaceae, Genus Parabacteroides, and Genus Bacteroides were causally associated with the morning chronotype. Further randomized controlled trials are needed to clarify the effects of the gut microbiota on the morning chronotype, as well as their specific protective mechanisms.
Collapse
Affiliation(s)
- Manman Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhenghe Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Din Son Tan
- Vanke School of Public Health and Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Xijie Wang
- Vanke School of Public Health and Institute for Healthy China, Tsinghua University, Beijing 100084, China
| | - Zichen Ye
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhilan Xie
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daqian Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dandan Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuankai Zhao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
178
|
Spiliopoulou P, Holanda Lopes CD, Spreafico A. Promising and Minimally Invasive Biomarkers: Targeting Melanoma. Cells 2023; 13:19. [PMID: 38201222 PMCID: PMC10777980 DOI: 10.3390/cells13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
The therapeutic landscape of malignant melanoma has been radically reformed in recent years, with novel treatments emerging in both the field of cancer immunotherapy and signalling pathway inhibition. Large-scale tumour genomic characterization has accurately classified malignant melanoma into four different genomic subtypes so far. Despite this, only somatic mutations in BRAF oncogene, as assessed in tumour biopsies, has so far become a validated predictive biomarker of treatment with small molecule inhibitors. The biology of tumour evolution and heterogeneity has uncovered the current limitations associated with decoding genomic drivers based only on a single-site tumour biopsy. There is an urgent need to develop minimally invasive biomarkers that accurately reflect the real-time evolution of melanoma and that allow for streamlined collection, analysis, and interpretation. These will enable us to face challenges with tumour tissue attainment and process and will fulfil the vision of utilizing "liquid biopsy" to guide clinical decisions, in a manner akin to how it is used in the management of haematological malignancies. In this review, we will summarize the most recent published evidence on the role of minimally invasive biomarkers in melanoma, commenting on their future potential to lead to practice-changing discoveries.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | | | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| |
Collapse
|
179
|
Zeng C, Zhang C, He C, Song H. Investigating the causal impact of gut microbiota on glioblastoma: a bidirectional Mendelian randomization study. BMC Genomics 2023; 24:784. [PMID: 38110895 PMCID: PMC10726622 DOI: 10.1186/s12864-023-09885-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Currently, the influence of microbiota on the occurrence, progression, and treatment of cancer is a topic of considerable research interest. Therefore, based on the theory of the gut-brain axis proved by previous studies, our objective was to uncover the causal relationship between glioblastoma and the gut microbiome using Mendelian randomization analysis. METHODS We conducted a bidirectional Mendelian randomization study using summary statistics of gut microbiota derived from the MiBioGen consortium, the largest database of gut microbiota. Summary statistics for glioblastoma were obtained from IEU OpenGWAS project, which included 91 cases and 218,701 controls. We assessed the presence of heterogeneity and horizontal pleiotropy in the analyzed data. We primarily employed the inverse variance weighting method to investigate the causal relationship between gut microbiota and glioblastoma after excluding cases of horizontal pleiotropy. Four other analysis methods were employed as supplementary. Excluding abnormal results based on leave-one-out sensitivity analysis. Finally, reverse Mendelian randomization analysis was performed. RESULTS Four genus-level taxa and one family-level taxa exhibited causal associations with glioblastoma. And these results of reverse Mendelian randomization analysis shown glioblastoma exhibited causal associations with three genus-level taxa and one family-level taxa. However, the Prevotella7(Forward, P=0.006, OR=0.34, 95%CI:0.158-0.732; Reverse, P=0.004, OR=0.972, 95%CI:0.953-0.991) shown the causal associations with glioblastoma in the bidirectional Mendelian randomization. CONCLUSIONS In this bidirectional Mendelian randomization study, we identified five gut microbiota species with causal associations to glioblastoma. However, additional randomized controlled trials are required to clarify the impact of gut microbiota on glioblastoma and to reveal its precise mechanisms.
Collapse
Affiliation(s)
- Chuan Zeng
- The First Clinical Medical College of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Chaolong Zhang
- The First Clinical Medical College of Gannan Medical University, Ganzhou City, 341000, Jiangxi Province, China
| | - Chunming He
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Qingnian Road, Ganzhou City, 341000, Jiangxi Province, China.
| | - Haimin Song
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, Qingnian Road, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
180
|
Feng K, Ren F, Xing Z, Zhao Y, Yang C, Liu J, Shang Q, Wang X, Wang X. Microbiome and its implications in oncogenesis: a Mendelian randomization perspective. Am J Cancer Res 2023; 13:5785-5804. [PMID: 38187050 PMCID: PMC10767327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
The human microbiome, an intricate ecological network, has garnered significant attention due to its potential implications in oncogenesis. This paper delves into the multifaceted relationships between the microbiome, its metabolites, and cancer development, emphasizing the human intestinal tract as the primary microbial habitat. Highlighting the potential causative associations between microbial disturbances and cancer progression, we underscore the role of specific bacterial strains in various cancers, such as stomach and colorectal cancer. Traditional causality assessment methods, like randomized controlled trials (RCTs), have limitations. Therefore, we advocate using Mendelian Randomization (MR) as a powerful alternative to study causal relationships, leveraging genetic variants as instrumental variables. With the proliferation of genome-wide association studies, MR harnesses genetic variations to infer causality, which is especially beneficial when addressing confounders like diet and lifestyle that can skew microbial research. We systematically review MR's application in understanding the microbiome-cancer nexus, emphasizing its strengths and challenges. While MR offers a unique perspective on causality, it faces hurdles like horizontal pleiotropy and weak instrumental variable bias. Integrating MR with multi-omics data, encompassing genomics, transcriptomics, proteomics, and metabolomics, holds promise for future research, potentially heralding groundbreaking discoveries in microbiology and genetics. This comprehensive review underscores the critical role of the human microbiome in oncogenesis and champions MR as an indispensable tool for advancing our understanding in this domain.
Collapse
Affiliation(s)
- Kexin Feng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Fei Ren
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Zeyu Xing
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yifan Zhao
- School of Engineering, RMIT UniversityBundoora, VIC 3083, Australia
| | - Chenxuan Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Qingyao Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|
181
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
182
|
Garland-Kledzik M. Commentary: The Benefit of Positron Emission Tomography/Computed Tomography in Stage I and Stage II Melanomas with High-Risk DecisionDx-Melanoma Scores. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2023; 16:S4-S5. [PMID: 38124999 PMCID: PMC10729799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Mary Garland-Kledzik
- Dr. Garland-Kledzik is with the Department of Surgery, Division of Surgical Oncology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
183
|
Švecová P, Jakubec P, Škarda J, Glogarová V, Mitták M. The Effects of Antibiotics on the Development and Treatment of Non-Small Cell Lung Cancer. Pol J Microbiol 2023; 72:365-375. [PMID: 38103006 PMCID: PMC10725157 DOI: 10.33073/pjm-2023-047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
There have been studies on antibiotic use concerning lung cancer and its potential impact on carcinogenesis and microbiome. However, subsequent research has failed to support these associations consistently. In terms of the potential carcinogenic of antibiotics on lung cancer, the available evidence has not been sufficient to draw any definitive conclusions. Maintaining immune homeostasis and preventing pathogen invasion is critically dependent on the microbiome. The subtle balance of the body microbiota, including the lungs, is susceptible to disruption by antibiotic use. There is an association between disruptions of the lung microbiome and respiratory diseases, including lung cancer, and decreased efficacy of treatments. Patients with lung cancer are often indicated for antibiotic treatment due to respiratory infections or other comorbidities. Pulmonary infections in the area of undetected lung tumors are not uncommon. They can be an early sign of malignancy, which may explain the association between antibiotic use and lung cancer diagnosis. Antibiotic use can also affect the effectiveness of immune checkpoint inhibitor therapy. Studies suggest that antibiotic use can impair the efficacy of immune checkpoint inhibitor therapy in lung cancer patients, particularly around the time when treatment is initiated. These findings require further study, understanding underlying mechanisms, and identifying microbiota signatures associated with treatment response.
Collapse
Affiliation(s)
- Petra Švecová
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc and Faculty of Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Jakubec
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc and Faculty of Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Škarda
- Department of Clinical and Molecular Pathology and Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Veronika Glogarová
- Department of Foreign Languages, Faculty of Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marcel Mitták
- Department of Surgical Studies, University Hospital Ostrava and Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
184
|
Jiang Y, Jia D, Sun Y, Ding N, Wang L. Microbiota: A key factor affecting and regulating the efficacy of immunotherapy. Clin Transl Med 2023; 13:e1508. [PMID: 38082435 PMCID: PMC10713876 DOI: 10.1002/ctm2.1508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Immunotherapy has made significant progress in cancer treatment; however, the responsiveness to immunotherapy varies widely among patients. Growing evidence has demonstrated the role of the gut microbiota in the efficacy of immunotherapy. MAIN BODY Herein, we summarise the changes in the microbiota in different cancers under various immunotherapies. The microbial-host signal transmission on immunotherapeutic responses and mechanisms associated with microbial translocation to tumours in the context of immunotherapy are also discussed. In addition, we have highlighted the clinical application value of methods for regulating the microbiota. Finally, we elaborate on the relationship between the microbiota, host and immunotherapy, and provide potential directions for future research. CONCLUSION Different microbiota cause changes in the tumour microenvironment through microbial signals thereby affecting immunotherapy efficacy. Translocation of gut microbiota and the role of extraintestinal microbiota in immunotherapy deserve attention. Microbiota regulation is a novel strategy for combination therapy with immunotherapy. Although there are several aspects that deserve further refinement and exploration with regard to administration and clinical translation. Nevertheless, it is foreseeable that the microbiota will become an integral part of cancer treatment.
Collapse
Affiliation(s)
- Yao Jiang
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Dingjiacheng Jia
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Yong Sun
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Ning Ding
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
| | - Liangjing Wang
- Department of GastroenterologySecond Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
- Institution of GastroenterologyZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
185
|
Vryza P, Fischer T, Mistakidi E, Zaravinos A. Tumor mutation burden in the prognosis and response of lung cancer patients to immune-checkpoint inhibition therapies. Transl Oncol 2023; 38:101788. [PMID: 37776617 PMCID: PMC10542015 DOI: 10.1016/j.tranon.2023.101788] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/02/2023] Open
Abstract
Immune checkpoint inhibition (ICI) therapies have reshaped the therapeutic landscape in lung cancer management, providing first-time improvements in patient response, prognosis, and overall survival. Despite their clinical effectiveness, variability in treatment responsiveness, as well as drug resistance, have led to a compelling need for predictive biomarkers facilitating the individualized selection of the most efficient therapeutic approach. Significant progress has been made in the identification of such biomarkers, with tumor mutation burden (ΤΜΒ) appearing as the leading and most promising predictive biomarker for the efficacy of ICIs in non-small cell lung cancer (NSCLC) among other tumors. Anti-PD-1/PD-L1 and anti-CTLA-4 antibodies have been extensively studied and clinically utilized. However, the overall efficiency of these drugs remains unsatisfactory, urging for the investigation of novel inhibitors, such as those targeting LAG-3, TIM-3, TIGIT and VISTA, which could be used either as a monotherapy or synergistically with the PD-1/PD-L1 or CTLA-4 blockers. Here, we investigate the role of TMB and cancer neoantigens as predictive biomarkers in the response of lung cancer patients to different ICI therapies, specifically focusing on the most recent immune checkpoint inhibitors, against LAG-3, TIM-3, TIGIT and VISTA. We further discuss the new trends in immunotherapies, including CAR T-cell therapy and personalized tumor vaccines. We also review further potential biomarkers that could be used in lung cancer response to immunotherapy, such as PD-L1+ IHC, MSI/dMMR, tumor infiltrating lymphocytes (TILs), as well as the role of the microbiome and circulating tumor DNA (ctDNA). Finally, we discuss the limitations and challenges of each.
Collapse
Affiliation(s)
- Paraskevi Vryza
- School of Medicine, European University Cyprus, Nicosia 1516, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Timo Fischer
- School of Medicine, European University Cyprus, Nicosia 1516, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Elena Mistakidi
- School of Medicine, European University Cyprus, Nicosia 1516, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus; Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus.
| |
Collapse
|
186
|
Kou L, Xie X, Chen X, Li B, Li J, Li Y. The progress of research on immune checkpoint inhibitor resistance and reversal strategies for hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:3953-3969. [PMID: 37917364 PMCID: PMC10992589 DOI: 10.1007/s00262-023-03568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in humans, which is prone to recurrence and metastasis and has a poor prognosis. The occurrence and progression of HCC are closely related to immune elimination, immune homeostasis, and immune escape of the immune system. In recent years, immunotherapy, represented by immune checkpoint inhibitors (ICIs), has shown powerful anti-tumor capabilities in HCC patients. However, there are still some HCC patients who cannot benefit from ICIs treatment due to their innate or acquired drug resistance. Therefore, it is of great practical significance to explore the possible mechanisms of resistance to ICIs in HCC and to use them as a target to design strategies to reverse resistance, to overcome drug resistance in HCC and to improve the prognosis of patients. This article summarizes the possible primary (tumor microenvironment alteration, and signaling pathways, etc.) and acquired (immune checkpoint upregulation) resistance mechanisms in patients with HCC treated with ICIs, and based on this, discusses the status and effectiveness of combination drug strategy to reverse drug resistance, to provide a reference for subsequent related studies and decisions.
Collapse
Affiliation(s)
- Liqiu Kou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaolu Xie
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiu Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
187
|
Pernigoni N, Guo C, Gallagher L, Yuan W, Colucci M, Troiani M, Liu L, Maraccani L, Guccini I, Migliorini D, de Bono J, Alimonti A. The potential role of the microbiota in prostate cancer pathogenesis and treatment. Nat Rev Urol 2023; 20:706-718. [PMID: 37491512 DOI: 10.1038/s41585-023-00795-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
The human body hosts a complex and dynamic population of trillions of microorganisms - the microbiota - which influences the body in homeostasis and disease, including cancer. Several epidemiological studies have associated specific urinary and gut microbial species with increased risk of prostate cancer; however, causal mechanistic data remain elusive. Studies have associated bacterial generation of genotoxins with the occurrence of TMPRSS2-ERG gene fusions, a common, early oncogenic event during prostate carcinogenesis. A subsequent study demonstrated the role of the gut microbiota in prostate cancer endocrine resistance, which occurs, at least partially, through the generation of androgenic steroids fuelling oncogenic signalling via the androgen receptor. These studies present mechanistic evidence of how the host microbiota might be implicated in prostate carcinogenesis and tumour progression. Importantly, these findings also reveal potential avenues for the detection and treatment of prostate cancer through the profiling and modulation of the host microbiota. The latter could involve approaches such as the use of faecal microbiota transplantation, prebiotics, probiotics, postbiotics or antibiotics, which can be used independently or combined with existing treatments to reverse therapeutic resistance and improve clinical outcomes in patients with prostate cancer.
Collapse
Affiliation(s)
- Nicolò Pernigoni
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Christina Guo
- Institute of Cancer Research, London, UK
- Royal Marsden Hospital, London, UK
| | | | - Wei Yuan
- Institute of Cancer Research, London, UK
| | - Manuel Colucci
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martina Troiani
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Lei Liu
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Luisa Maraccani
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ilaria Guccini
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Denis Migliorini
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Lausanne and Geneva, Geneva, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Johann de Bono
- Institute of Cancer Research, London, UK
- Royal Marsden Hospital, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland.
- Department of Medicine, University of Padova, Padova, Italy.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
188
|
Kaźmierczak-Siedlecka K, Bulman N, Ulasiński P, Sobocki BK, Połom K, Marano L, Kalinowski L, Skonieczna-Żydecka K. Pharmacomicrobiomics of cell-cycle specific anti-cancer drugs - is it a new perspective for personalized treatment of cancer patients? Gut Microbes 2023; 15:2281017. [PMID: 37985748 PMCID: PMC10730203 DOI: 10.1080/19490976.2023.2281017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
Intestinal bacteria are equipped with an enzyme apparatus that is involved in the active biotransformation of xenobiotics, including drugs. Pharmacomicrobiomics, a new area of pharmacology, analyses interactions between bacteria and xenobiotics. However, there is another side to the coin. Pharmacotherapeutic agents can significantly modify the microbiota, which consequently affects their efficacy. In this review, we comprehensively gathered scientific evidence on the interplay between anticancer therapies and gut microbes. We also underlined how such interactions might impact the host response to a given therapy. We discuss the possibility of modulating the gut microbiota to increase the effectiveness/decrease the incidence of adverse events during tumor therapy. The anticipation of the future brings new evidence that gut microbiota is a target of interest to increase the efficacy of therapy.
Collapse
Affiliation(s)
- Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Nikola Bulman
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
| | - Paweł Ulasiński
- Unit of Surgery with Unit of Oncological Surgery in Koscierzyna, Kościerzyna, Poland
| | - Bartosz Kamil Sobocki
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdańsk, Poland
| | - Karol Połom
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Luigi Marano
- Academy of Medical and Social Applied Sciences, Elbląg, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdańsk, Poland
- BioTechMed Centre/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | | |
Collapse
|
189
|
Zhao W, Lei J, Ke S, Chen Y, Xiao J, Tang Z, Wang L, Ren Y, Alnaggar M, Qiu H, Shi W, Yin L, Chen Y. Fecal microbiota transplantation plus tislelizumab and fruquintinib in refractory microsatellite stable metastatic colorectal cancer: an open-label, single-arm, phase II trial (RENMIN-215). EClinicalMedicine 2023; 66:102315. [PMID: 38024475 PMCID: PMC10679864 DOI: 10.1016/j.eclinm.2023.102315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Immunotherapy has revolutionized the treatment of cancer. However, microsatellite stable (MSS) metastatic colorectal cancer (mCRC) shows a low response to PD-1 inhibitors. Antiangiogenic therapy can enhance anti-PD-1 efficacy, but it still cannot meet clinical needs. Increasing evidence supported a close relationship between gut microbiome and anti-PD-1 efficacy. This study aimed to explore the efficacy and safety of the combination of fecal microbiota transplantation (FMT) and tislelizumab and fruquintinib in refractory MSS mCRC. Methods In the phase II trial, MSS mCRC patients were administered FMT plus tislelizumab and fruquintinib as a third-line or above treatment. The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), objective response rate (ORR), disease control rate (DCR), duration of response (DoR), clinical benefit rate (CBR), safety and quality of life. Feces and peripheral blood were collected for exploratory biomarker analysis. This study is registered with Chictr.org.cn, identifier ChiCTR2100046768. Findings From May 10, 2021 to January 17, 2022, 20 patients were enrolled. Median follow-up was 13.7 months. Median PFS was 9.6 months (95% CI 4.1-15.1). Median OS was 13.7 months (95% CI 9.3-17.7). Median DoR was 8.1 months (95% CI 1.7-10.6). ORR was 20% (95% CI 5.7-43.7). DCR was 95% (95% CI 75.1-99.9). CBR was 60% (95% CI 36.1-80.9). Nineteen patients (95%) experienced at least one treatment-related adverse event (TRAE). Six patients (30%) had grade 3-4 TRAEs, with the most common being albuminuria (10%), urine occult blood (10%), fecal occult blood (10%), hypertension (5%), hyperglycemia (5%), liver dysfunction (5%), hand-foot skin reaction (5%), and hypothyroidism (5%). No treatment-related deaths occurred. Responders had a high-abundance of Proteobacteria and Lachnospiraceae family and a low-abundance of Actinobacteriota and Bifidobacterium. The treatment did not change the structure of peripheral blood TCR repertoire. However, the expanded TCRs exhibited the characteristics of antigen-driven responses in responders. Interpretation FMT plus tislelizumab and fruquintinib as third-line or above treatment showed improved survival and manageable safety in refractory MSS mCRC, suggesting a valuable new treatment option for this patient population. Funding This study was supported by the National Natural Science Foundation of China (82102954 to Wensi Zhao) and the Special Project of Central Government for Local Science and Technology Development of Hubei Province (ZYYD2020000169 to Yongshun Chen).
Collapse
Affiliation(s)
- Wensi Zhao
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Lei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shaobo Ke
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Chen
- Department of Clinical Oncology, Qianjiang Central Hospital, Qianjiang, China
| | - Jiping Xiao
- Department of Abdominal Tumor Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Ze Tang
- Department of Abdominal & Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Li Wang
- Department of Oncology, Xiaochang First People's Hospital, China
| | - Yiping Ren
- Department of Clinical Oncology, Jingshan Union Hospital of Huazhong University of Science and Technology, Jingshan, China
| | - Mohammed Alnaggar
- Department of Internal Medicine, Clinic Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hu Qiu
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Shi
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
190
|
Medeiros MCD, The S, Bellile E, Russo N, Schmitd L, Danella E, Singh P, Banerjee R, Bassis C, Murphy GR, Sartor MA, Lombaert I, Schmidt TM, Eisbruch A, Murdoch-Kinch CA, Rozek L, Wolf GT, Li G, Chen GY, D'Silva NJ. Salivary microbiome changes distinguish response to chemoradiotherapy in patients with oral cancer. MICROBIOME 2023; 11:268. [PMID: 38037123 PMCID: PMC10687843 DOI: 10.1186/s40168-023-01677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/26/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (SCC) is associated with oral microbial dysbiosis. In this unique study, we compared pre- to post-treatment salivary microbiome in patients with SCC by 16S rRNA gene sequencing and examined how microbiome changes correlated with the expression of an anti-microbial protein. RESULTS Treatment of SCC was associated with a reduction in overall bacterial richness and diversity. There were significant changes in the microbial community structure, including a decrease in the abundance of Porphyromonaceae and Prevotellaceae and an increase in Lactobacillaceae. There were also significant changes in the microbial community structure before and after treatment with chemoradiotherapy, but not with surgery alone. In patients treated with chemoradiotherapy alone, several bacterial populations were differentially abundant between responders and non-responders before and after therapy. Microbiome changes were associated with a change in the expression of DMBT1, an anti-microbial protein in human saliva. Additionally, we found that salivary DMBT1, which increases after treatment, could serve as a post-treatment salivary biomarker that links to microbial changes. Specifically, post-treatment increases in human salivary DMBT1 correlated with increased abundance of Gemella spp., Pasteurellaceae spp., Lactobacillus spp., and Oribacterium spp. This is the first longitudinal study to investigate treatment-associated changes (chemoradiotherapy and surgery) in the oral microbiome in patients with SCC along with changes in expression of an anti-microbial protein in saliva. CONCLUSIONS The composition of the oral microbiota may predict treatment responses; salivary DMBT1 may have a role in modulating the oral microbiome in patients with SCC. After completion of treatment, 6 months after diagnosis, patients had a less diverse and less rich oral microbiome. Leptotrichia was a highly prevalent bacteria genus associated with disease. Expression of DMBT1 was higher after treatment and associated with microbiome changes, the most prominent genus being Gemella Video Abstract.
Collapse
Affiliation(s)
- Marcell Costa de Medeiros
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Stephanie The
- Cancer Data Science Shared Resource, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Emily Bellile
- Cancer Data Science Shared Resource, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Nickole Russo
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Ligia Schmitd
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Erika Danella
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Priyanka Singh
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Rajat Banerjee
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA
| | - Christine Bassis
- Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI, 331248109, USA
| | - George R Murphy
- Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
- Biointerfaces Institute, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Computational Medicine and Bioinformatics, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Isabelle Lombaert
- Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Ann Arbor, MI, USA
- Biointerfaces Institute, Ann Arbor, MI, USA
| | - Thomas M Schmidt
- Microbiology and Immunology, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Avi Eisbruch
- Radiation Oncology, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Carol Anne Murdoch-Kinch
- Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, 1011 North Michigan St, Indianapolis, IN, USA
| | - Laura Rozek
- Environmental Health Sciences, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Gregory T Wolf
- Otolaryngology, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Gen Li
- Biostatistics, University of Michigan School of Public Health, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA
| | - Grace Y Chen
- Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI, 331248109, USA.
| | - Nisha J D'Silva
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave, Room G018, Ann Arbor, MI, 48109-1078, USA.
- Pathology, University of Michigan Medical School, 1500 E. Medical Center Dr, Ann Arbor, MI, USA.
- Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
191
|
Ruiz-Saavedra S, Zapico A, González S, Salazar N, de los Reyes-Gavilán CG. Role of the intestinal microbiota and diet in the onset and progression of colorectal and breast cancers and the interconnection between both types of tumours. MICROBIOME RESEARCH REPORTS 2023; 3:6. [PMID: 38455079 PMCID: PMC10917624 DOI: 10.20517/mrr.2023.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 03/09/2024]
Abstract
Colorectal cancer (CRC) is among the leading causes of mortality in adults of both sexes worldwide, while breast cancer (BC) is among the leading causes of death in women. In addition to age, gender, and genetic predisposition, environmental and lifestyle factors exert a strong influence. Global diet, including alcohol consumption, is one of the most important modifiable factors affecting the risk of CRC and BC. Western dietary patterns promoting high intakes of xenobiotics from food processing and ethanol have been associated with increased cancer risk, whereas the Mediterranean diet, generally leading to a higher intake of polyphenols and fibre, has been associated with a protective effect. Gut dysbiosis is a common feature in CRC, where the usual microbiota is progressively replaced by opportunistic pathogens and the gut metabolome is altered. The relationship between microbiota and BC has been less studied. The estrobolome is the collection of genes from intestinal bacteria that can metabolize oestrogens. In a dysbiosis condition, microbial deconjugating enzymes can reactivate conjugated-deactivated oestrogens, increasing the risk of BC. In contrast, intestinal microorganisms can increase the biological activity and bioavailability of dietary phytochemicals through diverse microbial metabolic transformations, potentiating their anticancer activity. Members of the intestinal microbiota can increase the toxicity of xenobiotics through metabolic transformations. However, most of the microorganisms involved in diet-microbiota interactions remain poorly characterized. Here, we provide an overview of the associations between microbiota and diet in BC and CRC, considering the diverse types and heterogeneity of these cancers and their relationship between them and with gut microbiota.
Collapse
Affiliation(s)
- Sergio Ruiz-Saavedra
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Aida Zapico
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
- Department of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Sonia González
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
- Department of Functional Biology, University of Oviedo, Oviedo 33006, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa 33300, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo 33011, Spain
| |
Collapse
|
192
|
Lu S, Xu J, Zhao Z, Guo Y, Zhang H, Jurutka PW, Huang D, Cao C, Cheng S. Dietary Lactobacillus rhamnosus GG extracellular vesicles enhance antiprogrammed cell death 1 (anti-PD-1) immunotherapy efficacy against colorectal cancer. Food Funct 2023; 14:10314-10328. [PMID: 37916395 DOI: 10.1039/d3fo02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Shun Lu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Jing Xu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Zihao Zhao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yuheng Guo
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hanwen Zhang
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, AZ 85306, USA
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Shujie Cheng
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
193
|
Naddaf R, Carasso S, Reznick-Levi G, Hasnis E, Qarawani A, Maza I, Gefen T, Half EE, Geva-Zatorsky N. Gut microbial signatures are associated with Lynch syndrome (LS) and cancer history in Druze communities in Israel. Sci Rep 2023; 13:20677. [PMID: 38001152 PMCID: PMC10673896 DOI: 10.1038/s41598-023-47723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Lynch syndrome (LS) is a hereditary cancer syndrome caused by autosomal dominant mutations, with high probability of early onset for several cancers, mainly colorectal cancer (CRC). The gut microbiome was shown to be influenced by host genetics and to be altered during cancer development. Therefore, we aimed to determine alterations in gut microbiome compositions of LS patients with and without cancer. We performed fecal microbiome analyses on samples of LS and non-LS members from the Druze ethnoreligious community in Israel, based on both their LS mutation and their cancer history. Our analysis revealed specific bacterial operational taxonomic units (OTUs) overrepresented in LS individuals as well as bacterial OTUs differentiating between the LS individuals with a history of cancer. The identified OTUs align with previous studies either correlating them to pro-inflammatory functions, which can predispose to cancer, or to the cancer itself, and as such, these bacteria can be considered as future therapeutic targets.
Collapse
Affiliation(s)
- Rawi Naddaf
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Shaqed Carasso
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | | | - Erez Hasnis
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Gastroenterology Institute Rambam Health Care Campus, Haifa, Israel
| | - Amalfi Qarawani
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Itay Maza
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Gastroenterology Institute Rambam Health Care Campus, Haifa, Israel
| | - Tal Gefen
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Elizabeth Emily Half
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.
- Gastroenterology Institute Rambam Health Care Campus, Haifa, Israel.
| | - Naama Geva-Zatorsky
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.
- Rappaport Technion Integrated Cancer Center, Haifa, Israel.
- Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
194
|
Kim CG, Koh JY, Shin SJ, Shin JH, Hong M, Chung HC, Rha SY, Kim HS, Lee CK, Lee JH, Han Y, Kim H, Che X, Yun UJ, Kim H, Kim JH, Lee SY, Park SK, Park S, Kim H, Ahn JY, Jeung HC, Lee JS, Nam YD, Jung M. Prior antibiotic administration disrupts anti-PD-1 responses in advanced gastric cancer by altering the gut microbiome and systemic immune response. Cell Rep Med 2023; 4:101251. [PMID: 37890486 PMCID: PMC10694627 DOI: 10.1016/j.xcrm.2023.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Evidence on whether prior antibiotic (pATB) administration modulates outcomes of programmed cell death protein-1 (PD-1) inhibitors in advanced gastric cancer (AGC) is scarce. In this study, we find that pATB administration is consistently associated with poor progression-free survival (PFS) and overall survival (OS) in multiple cohorts consisting of patients with AGC treated with PD-1 inhibitors. In contrast, pATB does not affect outcomes among patients treated with irinotecan. Multivariable analysis of the overall patients treated with PD-1 inhibitors confirms that pATB administration independently predicts worse PFS and OS. Administration of pATBs is associated with diminished gut microbiome diversity, reduced abundance of Lactobacillus gasseri, and disproportional enrichment of circulating exhaustive CD8+ T cells, all of which are associated with worse outcomes. Considering the inferior treatment response and poor survival outcomes by pATB administration followed by PD-1 blockade, ATBs should be prescribed with caution in patients with AGC who are planning to receive PD-1 inhibitors.
Collapse
Affiliation(s)
- Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Genome Insight, Inc., Daejeon, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hee Shin
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, Republic of Korea
| | - Moonki Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yejeong Han
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyoyong Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Xiumei Che
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Un-Jung Yun
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Young Lee
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Kyoung Park
- Deparment of Medical Records, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sejung Park
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunwook Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hei-Cheul Jeung
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Genome Insight, Inc., Daejeon, Republic of Korea.
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, Republic of Korea.
| | - Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
195
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
196
|
Meng R, Zeng M, Ji Y, Huang X, Xu M. The potential role of gut microbiota outer membrane vesicles in colorectal cancer. Front Microbiol 2023; 14:1270158. [PMID: 38029123 PMCID: PMC10661380 DOI: 10.3389/fmicb.2023.1270158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant digestive tract tumor in colorectal regions. Considerable evidence now shows that the gut microbiota have essential roles in CRC occurrence and development. Most Gram-negative bacteria release outer membrane vesicles (OMVs) via outer membrane blistering, which contain specific cargoes which interact with host cells via intercellular communications, host immune regulation, and gut microbiota homeostasis. Studies have also shown that OMVs selectively cluster near tumor cells, thus cancer treatment strategies based on OMVs have attracted considerable research attention. However, little is known about the possible impact of gut microbiota OMVs in CRC pathophysiology. Therefore, in this review, we summarize the research progress on molecular composition and function of OMV, and review the microbial dysbiosis in CRC. We then focus on the potential role of gut microbiota OMVs in CRC. Finally, we examine the clinical potential of OMVs in CRC treatment, and their main advantages and challenges in tumor therapy.
Collapse
Affiliation(s)
- Ran Meng
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Minmin Zeng
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
197
|
Meng W, Schreiber RD, Lichti CF. Recent advances in immunopeptidomic-based tumor neoantigen discovery. Adv Immunol 2023; 160:1-36. [PMID: 38042584 DOI: 10.1016/bs.ai.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The role of aberrantly expressed proteins in tumors in driving immune-mediated control of cancer has been well documented for more than five decades. Today, we know that both aberrantly expressed normal proteins as well as mutant proteins (neoantigens) can function as tumor antigens in both humans and mice. Next-generation sequencing (NGS) and high-resolution mass spectrometry (MS) technologies have made significant advances since the early 2010s, enabling detection of rare but clinically relevant neoantigens recognized by T cells. MS profiling of tumor-specific immunopeptidomes remains the most direct method to identify mutant peptides bound to cellular MHC. However, the need for use of large numbers of cells or significant amounts of tumor tissue to achieve neoantigen detection has historically limited the application of MS. Newer, more sensitive MS technologies have recently demonstrated the capacities to detect neoantigens from fewer cells. Here, we highlight recent advancements in immunopeptidomics-based characterization of tumor-specific neoantigens. Various tumor antigen categories and neoantigen identification approaches are also discussed. Furthermore, we summarize recent reports that achieved successful tumor neoantigen detection by MS using a variety of starting materials, MS acquisition modes, and novel ion mobility devices.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
198
|
Garg S, Sharma N, Bharmjeet, Das A. Unraveling the intricate relationship: Influence of microbiome on the host immune system in carcinogenesis. Cancer Rep (Hoboken) 2023; 6:e1892. [PMID: 37706437 PMCID: PMC10644337 DOI: 10.1002/cnr2.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Cancer is an outcome of various disrupted or dysregulated metabolic processes like apoptosis, growth, and self-cell transformation. Human anatomy harbors trillions of microbes, and these microbes actively influence all kinds of human metabolic activities, including the human immune response. The immune system which inherently acts as a sentinel against microbes, curiously tolerates and even maintains a distinct normal microflora in our body. This emphasizes the evolutionarily significant role of microbiota in shaping our adaptive immune system and even potentiating its function in chronic ailments like cancers. Microbes interact with the host immune cells and play a part in cancer progression or regression by modulating immune cells, producing immunosuppressants, virulence factors, and genotoxins. RECENT FINDINGS An expanding plethora of studies suggest and support the evidence of microbiome impacting cancer etiology. Several studies also indicate that the microbiome can supplement various cancer therapies, increasing their efficacy. The present review discusses the relationship between bacterial and viral microbiota with cancer, discussing different carcinogenic mechanisms influenced by prokaryotes with special emphasis on their immunomodulatory axis. It also elucidates the potential of the microbiome in transforming the efficacy of immunotherapeutic treatments. CONCLUSION This review offers a thorough overview of the complex interaction between the human immune system and the microbiome and its impact on the development of cancer. The microbiome affects the immune responses as well as progression of tumor transformation, hence microbiome-based therapies can vastly improve the effectiveness of cancer immunotherapies. Individual variations of the microbiome and its dynamic variability in every individual impacts the immune modulation and cancer progression. Therefore, further research is required to understand these underlying processes in detail, so as to design better microbiome-immune system axis in the treatment of cancer.
Collapse
Affiliation(s)
- Saksham Garg
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Nikita Sharma
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Bharmjeet
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| | - Asmita Das
- Department of BiotechnologyDelhi Technological UniversityDelhiIndia
| |
Collapse
|
199
|
Ross SM. Microbiota and the Immune System, Part 1. Holist Nurs Pract 2023; 37:363-365. [PMID: 37851352 DOI: 10.1097/hnp.0000000000000620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Affiliation(s)
- Stephanie Maxine Ross
- College of Nursing and Health Professions, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
200
|
Kumbhare SV, Pedroso I, Ugalde JA, Márquez-Miranda V, Sinha R, Almonacid DE. Drug and gut microbe relationships: Moving beyond antibiotics. Drug Discov Today 2023; 28:103797. [PMID: 37806386 DOI: 10.1016/j.drudis.2023.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Our understanding of drug-microbe relationships has evolved from viewing microbes as mere drug producers to a dynamic, modifiable system where they can serve as drugs or targets of precision pharmacology. This review highlights recent findings on the gut microbiome, particularly focusing on four aspects of research: (i) drugs for bugs, covering recent strategies for targeting gut pathogens; (ii) bugs as drugs, including probiotics; (iii) drugs from bugs, including postbiotics; and (iv) bugs and drugs, discussing additional types of drug-microbe interactions. This review provides a perspective on future translational research, including efficient companion diagnostics in pharmaceutical interventions.
Collapse
Affiliation(s)
| | | | - Juan A Ugalde
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | | |
Collapse
|