201
|
Yang X, Wang C, Wang Q, Zhang Z, Nie W, Shang L. Armored probiotics for oral delivery. SMART MEDICINE 2023; 2:e20230019. [PMID: 39188298 PMCID: PMC11235677 DOI: 10.1002/smmd.20230019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 08/28/2024]
Abstract
As a kind of intestinal flora regulator, probiotics show great potential in the treatment of many diseases. However, orally delivered probiotics are often vulnerable to unfriendly gastrointestinal environments, resulting in a low survival rate and decreased therapeutic efficacy. Decorating or encapsulating probiotics with functional biomaterials has become a facile yet useful strategy, and probiotics can be given different functions by wearing different armors. This review systematically discusses the challenges faced by oral probiotics and the research progress of armored probiotics delivery systems. We focus on how various functional armors help probiotics overcome different obstacles and achieve efficient delivery. We also introduce the applications of armor probiotics in disease treatment and analyze the future trends of developing advanced probiotics-based therapies.
Collapse
Affiliation(s)
- Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qiao Wang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Weimin Nie
- Key Laboratory of Smart Drug DeliverySchool of PharmacyFudan UniversityShanghaiChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
202
|
Küçük AN, Çiftçi S. The role of intermittent fasting and the ketogenic diet in cancer disease: can they replace the Mediterranean diet? Eur J Cancer Prev 2023; 32:533-543. [PMID: 37401519 DOI: 10.1097/cej.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The prevalence of cancer is rising globally, and it is the second leading cause of death. Nutrition has an important influence on the risk of developing cancer. Moreover, changes in the gut microbiota are connected to the risk of developing cancer and are critical for sustaining immunity. Various studies have shown that intermittent fasting, ketogenic diet, and the Mediterranean diet are effective therapies in changing the intestinal microbiota, the prevention of cancer, and the improvement of tolerance to treatment in cancer patients. Although there is not enough evidence to show that the ketogenic diet is effective in changing the intestinal microbiota in a manner that could prevent cancer, intermittent fasting and the Mediterranean diet could positively affect composition of intestinal microbiota against cancer. In addition, the ketogenic diet, intermittent fasting, and the Mediterranean diet have the potential to stimulate anticarcinogenic pathways, and they might increase cancer patients' quality of life according to scientific evidence. In this review, we represent and argue recent scientific data on relationship between intermittent fasting, the ketogenic diet, and the Mediterranean diet, intestinal microbiota, cancer prevention and cancer treatment.
Collapse
Affiliation(s)
- Aleyna Nur Küçük
- Izmir Provincial Health Directorate Izmir University of Health Sciences Tepecik Training and Research Hospital and
| | - Seda Çiftçi
- Nutrition and Dietetics, Health Sciences Faculty, İzmir Democracy University, Izmir, Turkey
| |
Collapse
|
203
|
Chen L, Zhao R, Shen J, Liu N, Zheng Z, Miao Y, Zhu J, Zhang L, Wang Y, Fang H, Zhou J, Li M, Yang Y, Liu Z, Chen Q. Antibacterial Fusobacterium nucleatum-Mimicking Nanomedicine to Selectively Eliminate Tumor-Colonized Bacteria and Enhance Immunotherapy Against Colorectal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306281. [PMID: 37722134 DOI: 10.1002/adma.202306281] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Clinical evidence indicates that tumor-colonizing bacteria can be closely related to the tumor development and therapeutic responses. Selectively eliminating bacteria within tumors may be an attractive approach to enhance cancer treatment without additional side effects. Herein, it is found that, owing to the high affinity between the membrane protein Fap-2 on Fusobacterium nucleatum and d-galactose-β (1-3)-N-acetyl-d-galactosamine (Gal-GalNAc) overexpressed on colorectal tumor cells, F. nucleatum can colonize in colorectal tumors, as evidenced by both clinical samples and animal tumor models. Notably, F. nucleatum colonized in colorectal tumors can lead to an immunosuppressive tumor microenvironment, greatly reducing their responses to immune checkpoint blockade (ICB) therapy. Inspired by this finding, an F. nucleatum-mimetic nanomedicine is designed by fusing F. nucleatum cytoplasmic membrane (FM) with Colistin-loaded liposomes to achieve selective killing of tumor-colonizing F. nucleatum without affecting gut microbes. As a result, the therapeutic responses of F. nucleatum-colonized tumors to ICB therapies can be successfully restored, as demonstrated in an F. nucleatum-infected subcutaneous CT-26 tumor model, chemically induced spontaneous colorectal cancer models, and MC-38 tumor model. In summary, this work presents an F. nucleatum-mimicking nanomedicine that can selectively eliminate tumor-colonized bacteria, which is promising for enhancing the responses of cancer immunotherapy against F. nucleatum-colonized colorectal cancer.
Collapse
Affiliation(s)
- Linfu Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Rui Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Jingjing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Nanhui Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P.R. China
| | - Yu Miao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Lin Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
| | - Yingyao Wang
- Department of Gynecology, Kunshan Maternity and Children's Health Care Hospital, Suzhou, Jiangsu, 215300, P.R. China
| | - Huapan Fang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Jun Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Maoyi Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
204
|
Fan S, Jiang Z, Zhang Z, Xing J, Wang D, Tang D. Akkermansia muciniphila: a potential booster to improve the effectiveness of cancer immunotherapy. J Cancer Res Clin Oncol 2023; 149:13477-13494. [PMID: 37491636 DOI: 10.1007/s00432-023-05199-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Cancer immunotherapy has emerged as a groundbreaking method of treating malignancies. However, cancer immunotherapy can only benefit a small percentage of patients, and the numerous side effects that might develop during treatment reduce its effectiveness or even put patients' lives in jeopardy. Surprisingly, the gut microbiome Akkermansia muciniphila (A. muciniphila) can significantly inhibit carcinogenesis and improve anti-tumor effects, thus increasing the effectiveness of cancer immunotherapy and decreasing the likelihood of side effects. In this review, we focus on the effects of A. muciniphila on the human immune system and the positive impacts of A. muciniphila on cancer immunotherapy, which can build on strengths and improve weaknesses of cancer immunotherapy. The potential clinical applications of A. muciniphila on cancer immunotherapy are also proposed, which have great prospects for anti-tumor therapy.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
205
|
Zahavi L, Lavon A, Reicher L, Shoer S, Godneva A, Leviatan S, Rein M, Weissbrod O, Weinberger A, Segal E. Bacterial SNPs in the human gut microbiome associate with host BMI. Nat Med 2023; 29:2785-2792. [PMID: 37919437 PMCID: PMC10999242 DOI: 10.1038/s41591-023-02599-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
Genome-wide association studies (GWASs) have provided numerous associations between human single-nucleotide polymorphisms (SNPs) and health traits. Likewise, metagenome-wide association studies (MWASs) between bacterial SNPs and human traits can suggest mechanistic links, but very few such studies have been done thus far. In this study, we devised an MWAS framework to detect SNPs and associate them with host phenotypes systematically. We recruited and obtained gut metagenomic samples from a cohort of 7,190 healthy individuals and discovered 1,358 statistically significant associations between a bacterial SNP and host body mass index (BMI), from which we distilled 40 independent associations. Most of these associations were unexplained by diet, medications or physical exercise, and 17 replicated in a geographically independent cohort. We uncovered BMI-associated SNPs in 27 bacterial species, and 12 of them showed no association by standard relative abundance analysis. We revealed a BMI association of an SNP in a potentially inflammatory pathway of Bilophila wadsworthia as well as of a group of SNPs in a region coding for energy metabolism functions in a Faecalibacterium prausnitzii genome. Our results demonstrate the importance of considering nucleotide-level diversity in microbiome studies and pave the way toward improved understanding of interpersonal microbiome differences and their potential health implications.
Collapse
Affiliation(s)
- Liron Zahavi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Lavon
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lee Reicher
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Lis Maternity and Women's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv University (affiliated with Sackler Faculty of Medicine), Tel Aviv, Israel
| | - Saar Shoer
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Rein
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
206
|
Wang X, Wu S, Li L, Yan Z. Candida albicans overgrowth disrupts the gut microbiota in mice bearing oral cancer. Mycology 2023; 15:57-69. [PMID: 38558840 PMCID: PMC10977010 DOI: 10.1080/21501203.2023.2256761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/04/2023] [Indexed: 04/04/2024] Open
Abstract
Candida albicans is one of the most common opportunistic fungi in cancer patients. This study explored the influence of C. albicans on gut microbiota in oral tumour-bearing mice by means of 16S rRNA sequencing and ITS sequencing. It was found that C. albicans infection induced the decrease of alpha diversity of bacteria and fungi in the gut microbiome. For the bacteria, C. albicans caused the reduction of Ralstonia, Alistipes, Clostridia UCG-014, Ruminococcus, and Lachnospiraceae NK4A136 group. For the fungi, C. albicans inhibited the growth of other fungi including Aspergillus, Cladosporium, and Bipolaris. The neutralisation of γδT cells partly alleviated the out-of-balance of Firmicutes/Bacteroidota (F/B) ratio in the gut caused by C. albicans infection. However, γδT cell neutralisation boosted the overgrowth of C. albicans. Additionally, IL-17A neutralisation aggravated the microbial dysbiosis of bacteria and fungi caused by C. albicans infection. Further analysis indicated that C. albicans overgrowth might influence the correlations between fungal and bacterial kingdoms. In conclusion, C. albicans infection disturbed the gut microbiota of both bacteria and fungi in oral tumour-bearing mice, which may be associated with the intestinal immune components including γδT cells and IL-17A.
Collapse
Affiliation(s)
- Xu Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shuangshaung Wu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Linman Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Zhimin Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
207
|
Gorini F, Tonacci A. Tumor Microbial Communities and Thyroid Cancer Development-The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants (Basel) 2023; 12:1898. [PMID: 37891977 PMCID: PMC10604861 DOI: 10.3390/antiox12101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid cancer (TC), the most frequent malignancy of the endocrine system, has recorded an increasing incidence in the last decades. The etiology of TC remains at least partly unknown and, among modifiable risk factors, the gut microbiota and dietary nutrients (vitamins, essential microelements, polyphenols, probiotics) have been recognized to not only influence thyroid function, but exert critical effects on TC development and progression. Recent discoveries on the existence of tumor microbiota also in the TC microenvironment provide further evidence for the essential role of tumor microorganisms in TC etiology and severity, as well as acting as prognostic markers and as a potential target of adjuvant care in the treatment of TC patients. Therefore, in this review, we summarize current knowledge on the relationship of the tumor microbiome with the clinical tumor characteristics and TC progression, also illustrating the molecular mechanisms underlying this association, and how antioxidant nutrients may be used as a novel strategy to both control gut health and reduce the risk for TC. Furthermore, we discuss how new technologies might be exploited for the development of new foods with high nutritional values, antioxidant capability, and even attractiveness to the individual in terms of sensory and emotional features.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
208
|
Yao S, Han Y, Yang M, Jin K, Lan H. It's high-time to re-evaluate the value of induced-chemotherapy for reinforcing immunotherapy in colorectal cancer. Front Immunol 2023; 14:1241208. [PMID: 37920463 PMCID: PMC10619163 DOI: 10.3389/fimmu.2023.1241208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Immunotherapy has made significant advances in the treatment of colorectal cancer (CRC), revolutionizing the therapeutic landscape and highlighting the indispensable role of the tumor immune microenvironment. However, some CRCs have shown poor response to immunotherapy, prompting investigation into the underlying reasons. It has been discovered that certain chemotherapeutic agents possess immune-stimulatory properties, including the induction of immunogenic cell death (ICD), the generation and processing of non-mutated neoantigens (NM-neoAgs), and the B cell follicle-driven T cell response. Based on these findings, the concept of inducing chemotherapy has been introduced, and the combination of inducing chemotherapy and immunotherapy has become a standard treatment option for certain cancers. Clinical trials have confirmed the feasibility and safety of this approach in CRC, offering a promising method for improving the efficacy of immunotherapy. Nevertheless, there are still many challenges and difficulties ahead, and further research is required to optimize its use.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
209
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C, Wu J. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci 2023; 13:188. [PMID: 37828613 PMCID: PMC10571290 DOI: 10.1186/s13578-023-01135-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.
Collapse
Affiliation(s)
- Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| |
Collapse
|
210
|
Foote MB, Argilés G, Rousseau B, Segal NH. Facts and Hopes in Colorectal Cancer Immunotherapy. Clin Cancer Res 2023; 29:4032-4039. [PMID: 37326624 DOI: 10.1158/1078-0432.ccr-22-2176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Although a minority of colorectal cancers exhibit mismatch repair deficiency and associated sensitivity to immune checkpoint inhibitors (ICI), the vast majority of colorectal cancers arise in a tolerogenic microenvironment with mismatch repair proficiency, low tumor-intrinsic immunogenicity, and negligible immunotherapy responsiveness. Treatment strategies to augment tumor immunity with combination ICIs and chemotherapy have broadly failed in mismatch repair-proficient tumors. Similarly, although several small single-arm studies have shown that checkpoint blockade plus radiation or select tyrosine kinase inhibition may show improved outcomes compared with historical controls, this finding has not been clearly validated in randomized trials. An evolving next generation of intelligently engineered checkpoint inhibitors, bispecific T-cell engagers, and emerging CAR-T cell therapies may improve immunorecognition of colorectal tumors. Across these modalities, ongoing translational efforts to better define patient populations and biomarkers associated with immune response, as well as combine biologically sound and mutually amplifying therapies, show promise for a new era of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Guillem Argilés
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neil H Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
211
|
Roato I, Pavone L, Pedraza R, Bosso I, Baima G, Erovigni F, Mussano F. Denosumab and Zoledronic Acid Differently Affect Circulating Immune Subsets: A Possible Role in the Onset of MRONJ. Cells 2023; 12:2430. [PMID: 37887274 PMCID: PMC10605172 DOI: 10.3390/cells12202430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This work investigated whether the anti-resorptive drugs (ARDs) zoledronic acid (Zol) and denosumab (Dmab) affect differently the levels of circulating immune cell subsets, possibly predicting the risk of developing medication-related ONJ (MRONJ) during the first 18 months of treatment. Blood samples were collected from 10 bone metastatic breast cancer patients receiving cyclin inhibitors at 0, 6, 12, and 18 months from the beginning of Dmab or Zol treatment. Eight breast cancer patients already diagnosed with MRONJ and treated with cyclin inhibitors and ARDs were in the control group. PBMCs were isolated; the trend of circulating immune subsets during the ARD treatment was monitored, and 12 pro-inflammatory cytokines were analyzed in sera using flow cytometry. In Dmab-treated patients, activated T cells were stable or increased, as were the levels of IL-12, TNF-α, GM-CSF, IL-5, and IL-10, sustaining them. In Zol-treated patients, CD8+T cells decreased, and the level of IFN-γ was undetectable. γδT cells were not altered in Dmab-treated patients, while they dramatically decreased in Zol-treated patients. In the MRONJ control group, Zol-ONJ patients showed a reduction in activated T cells and γδT cells compared to Dmab-ONJ patients. Dmab was less immunosuppressive than Zol, not affecting γδT cells and increasing activated T cells.
Collapse
Affiliation(s)
- Ilaria Roato
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
| | - Lorenzo Pavone
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
| | - Riccardo Pedraza
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
- Institute of Sciences and Technologies for Sustainable Energy and Mobility, National Council of Research, 10135 Turin, Italy
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | - Ilaria Bosso
- CIR-Dental School, Città della Scienza e della Salute, 10126 Turin, Italy; (I.B.); (F.E.)
| | - Giacomo Baima
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
- DIMEAS, Politecnico di Torino, 10129 Turin, Italy
| | - Francesco Erovigni
- CIR-Dental School, Città della Scienza e della Salute, 10126 Turin, Italy; (I.B.); (F.E.)
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Turin, Italy; (L.P.); (R.P.); (G.B.); (F.M.)
| |
Collapse
|
212
|
Witt RG, Cass SH, Tran T, Damania A, Nelson EE, Sirmans E, Burton EM, Chelvanambi M, Johnson S, Tawbi HA, Gershenwald JE, Davies MA, Spencer C, Mishra A, Wong MC, Ajami NJ, Peterson CB, Daniel CR, Wargo JA, McQuade JL, Nelson KC. Gut Microbiome in Patients With Early-Stage and Late-Stage Melanoma. JAMA Dermatol 2023; 159:1076-1084. [PMID: 37647056 PMCID: PMC10469295 DOI: 10.1001/jamadermatol.2023.2955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/20/2023] [Indexed: 09/01/2023]
Abstract
Importance The gut microbiome modulates the immune system and responses to immunotherapy in patients with late-stage melanoma. It is unknown whether fecal microbiota profiles differ between healthy individuals and patients with melanoma or if microbiota profiles differ among patients with different stages of melanoma. Defining gut microbiota profiles in individuals without melanoma and those with early-stage and late-stage melanoma may reveal features associated with disease progression. Objective To characterize and compare gut microbiota profiles between healthy volunteers and patients with melanoma and between patients with early-stage and late-stage melanoma. Design, Setting, and Participants This single-site case-control study took place at an academic comprehensive cancer center. Fecal samples were collected from systemic treatment-naive patients with stage I to IV melanoma from June 1, 2015, to January 31, 2019, and from healthy volunteers from June 1, 2021, to January 31, 2022. Patients were followed up for disease recurrence until November 30, 2021. Main Outcomes and Measures Fecal microbiota was profiled by 16S ribosomal RNA sequencing. Clinical and pathologic characteristics, treatment, and disease recurrence were extracted from electronic medical records. Fecal microbiome diversity, taxonomic profiles and inferred functional profiles were compared between groups. Results A total of 228 participants were enrolled (126 men [55.3%]; median age, 59 [range, 21-90] years), including 49 volunteers without melanoma, 38 patients with early-stage melanoma (29 with stage I or melanoma in situ and 9 with stage II), and 141 with late-stage melanoma (66 with stage III and 75 with stage IV). Community differences were observed between patients with melanoma and volunteers. Patients with melanoma had a higher relative abundance of Fusobacterium compared with controls on univariate analysis (0.19% vs 0.003%; P < .001), but this association was attenuated when adjusted for covariates (log2 fold change of 5.18 vs controls; P = .09). Microbiomes were distinct between patients with early-stage and late-stage melanoma. Early-stage melanoma had a higher alpha diversity (Inverse Simpson Index 14.6 [IQR, 9.8-23.0] vs 10.8 [IQR, 7.2-16.8]; P = .003), and a higher abundance of the genus Roseburia on univariate analysis (2.4% vs 1.2%; P < .001) though statistical significance was lost with covariate adjustment (log2 fold change of 0.86 vs controls; P = .13). Multiple functional pathways were differentially enriched between groups. No associations were observed between the microbial taxa and disease recurrence in patients with stage III melanoma treated with adjuvant immunotherapy. Conclusions and Relevance The findings of this case-control study suggest that fecal microbiota profiles were significantly different among patients with melanoma and controls and between patients with early-stage and late-stage melanoma. Prospective investigations of the gut microbiome and changes that occur with disease progression may identify future microbial targets for intervention.
Collapse
Affiliation(s)
- Russell G. Witt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Samuel H. Cass
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Tiffaney Tran
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston
| | - Ashish Damania
- Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Emelie E. Nelson
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Elizabeth Sirmans
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Elizabeth M. Burton
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Manoj Chelvanambi
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Sarah Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jeffrey E. Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Christine Spencer
- Department of Informatics, Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Aditya Mishra
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Matthew C. Wong
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Nadim J. Ajami
- John P. and Kathrine G. McGovern Medical School at UTHealth Houston, Houston, Texas
| | - Christine B. Peterson
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston
| | - Carrie R. Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer A. Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Kelly C. Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
213
|
Jiang M, Yang Z, Dai J, Wu T, Jiao Z, Yu Y, Ning K, Chen W, Yang A. Intratumor microbiome: selective colonization in the tumor microenvironment and a vital regulator of tumor biology. MedComm (Beijing) 2023; 4:e376. [PMID: 37771912 PMCID: PMC10522974 DOI: 10.1002/mco2.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The polymorphic microbiome has been proposed as a new hallmark of cancer. Intratumor microbiome has been revealed to play vital roles in regulating tumor initiation and progression, but the regulatory mechanisms have not been fully uncovered. In this review, we illustrated that similar to other components in the tumor microenvironment, the reside and composition of intratumor microbiome are regulated by tumor cells and the surrounding microenvironment. The intratumor hypoxic, immune suppressive, and highly permeable microenvironment may select certain microbiomes, and tumor cells may directly interact with microbiome via molecular binding or secretions. Conversely, the intratumor microbiomes plays vital roles in regulating tumor initiation and progression via regulating the mutational landscape, the function of genes in tumor cells and modulating the tumor microenvironment, including immunity, inflammation, angiogenesis, stem cell niche, etc. Moreover, intratumor microbiome is regulated by anti-cancer therapies and actively influences therapy response, which could be a therapeutic target or engineered to be a therapy weapon in the clinic. This review highlights the intratumor microbiome as a vital component in the tumor microenvironment, uncovers potential mutual regulatory mechanisms between the tumor microenvironment and intratumor microbiome, and points out the ongoing research directions and drawbacks of the research area, which should broaden our view of microbiome and enlighten further investigation directions.
Collapse
Affiliation(s)
- Mingjie Jiang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zhongyuan Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Juanjuan Dai
- Department of Intensive Care UnitSun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Tong Wu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zan Jiao
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Yongchao Yu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Kang Ning
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Weichao Chen
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Ankui Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| |
Collapse
|
214
|
Zhao X, Zhao J, Li D, Yang H, Chen C, Qin M, Wen Z, He Z, Xu L. Akkermansia muciniphila: A potential target and pending issues for oncotherapy. Pharmacol Res 2023; 196:106916. [PMID: 37690533 DOI: 10.1016/j.phrs.2023.106916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In the wake of the development of metagenomic, metabolomic, and metatranscriptomic approaches, the intricate interactions between the host and various microbes are now being progressively understood. Numerous studies have demonstrated evident changes in gut microbiota during the process of a variety of diseases, such as diabetes, obesity, aging, and cancers. Notably, gut microbiota is viewed as a potential source of novel therapeutics. Currently, Next-generation probiotics (NGPs) are gaining popularity as therapeutic agents that alter the gut microbiota and affect cancer development. Akkermansia muciniphila (A. muciniphila), a representative commensal bacterium, has received substantial attention over the past decade as a promising NGP. The components and metabolites of A. muciniphila can directly or indirectly affect tumorigenesis, in particular through its effects on antitumor immunosurveillance, including the stimulation of pattern recognition receptors (PRRs), which also leads to better outcomes in a variety of situations, including the prevention and curation of cancers. In this article, we systematically summarize the role of A. muciniphila in tumorigenesis (involving gastrointestinal and non-gastrointestinal cancers) and in tumor therapy. In particular, we carefully discuss some critical scientific issues that need to be solved for the future using A. muciniphila as a representative beneficial bacterium in tumor treatment, which might provide bright clues and assistance for the application of drugs targeting A. muciniphila in clinical oncotherapy.
Collapse
Affiliation(s)
- Xu Zhao
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Han Yang
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chao Chen
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhenke Wen
- Institutes of Biology and Medical Sciences, Soochow Univeristy, Jiangsu 215000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Lin Xu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Special Key Laboratory of Gene Detection &Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
215
|
Sun J, Chen F, Wu G. Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. THE ISME JOURNAL 2023; 17:1535-1551. [PMID: 37553473 PMCID: PMC10504269 DOI: 10.1038/s41396-023-01483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
The symbiotic bacteria that live in the human gut and the metabolites they produce have long influenced local and systemic physiological and pathological processes of the host. The gut microbiota are increasingly being recognized for its impact on a range of human diseases, including cancer, it may play a key role in the occurrence, progression, treatment, and prognosis of many types of cancer. Understanding the functional role of the gut microbiota in cancer is crucial for the development of the era of personalized medicine. Here, we review recent advances in research and summarize the important associations and clear experimental evidence for the role of the gut microbiota in a variety of human cancers, focus on the application and possible challenges associated with the gut microbiota in antitumor therapy. In conclusion, our research demonstrated the multifaceted mechanisms of gut microbiota affecting human cancer and provides directions and ideas for future clinical research.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
216
|
Algrafi AS, Jamal AA, Ismaeel DM. Microbiota as a New Target in Cancer Pathogenesis and Treatment. Cureus 2023; 15:e47072. [PMID: 38021696 PMCID: PMC10645418 DOI: 10.7759/cureus.47072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
The microbial ecosystem of humans is an integral part of human health and disease. A significant percentage of tumors worldwide are thought to be microbially induced. The relationship between cancer and microbes is complex. In this article review, we aim to give an overview of human microbiota and its role in carcinogenesis, emphasize the relation between microbiota and cancer immunity, and highlight its role in the future of cancer therapy. The term microbiota refers to the collection of microorganisms that are located in an individual, whereas the total genome of these microorganisms is referred to as the microbiome. The microbiota in humans has many physiological functions. The microbiota within the gut lumen has a profound effect on the local and systemic immune system. The immune system can change the gut microbiota. Microbiota may induce carcinogenesis by several mechanisms. It also affects tumor progression. Thus, microbiota modulation may aid in the prevention and treatment of cancer. Intentionally introducing microorganisms into the oncological patient is assumed to mobilize the immune system to become able to, at least, limit the development of cancer. Microbes are used as vectors which are carriers of particular antineoplastic agents that reduce the side effects of chemotherapy. Inflammation and tumor microenvironment play an essential role in promoting chemo-resistance. There is now considerable evidence, both in humans as well as in laboratory animals, that the commensal microbiota has important effects on carcinogenesis, tumor growth, and therapy response.
Collapse
Affiliation(s)
- Abeer S Algrafi
- Internal Medicine, College of Medicine, Taibah University, Madinah, SAU
| | - Aisha A Jamal
- General Practice, College of Medicine, Taibah University, Madinah, SAU
| | - Dana M Ismaeel
- General Practice, College of Medicine, Taibah University, Madinah, SAU
| |
Collapse
|
217
|
Xu S, Zhu Q, Wu L, Wang Y, Wang J, Zhu L, Zheng S, Hang J. Association of the CD4 +/CD8 + ratio with response to PD-1 inhibitor-based combination therapy and dermatological toxicities in patients with advanced gastric and esophageal cancer. Int Immunopharmacol 2023; 123:110642. [PMID: 37499395 DOI: 10.1016/j.intimp.2023.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The host immune system affects the treatment response to immune checkpoint inhibitors and can be reflected by circulating immune cells. This study aimed to evaluate whether circulating T cell subtypes are correlated with clinical response and dermatological toxicities in patients with advanced gastric and esophageal cancer receiving PD-1 inhibitor-based combination therapy (n = 203). In the training cohort, Eastern Cooperative Oncology Group performance status (ECOG PS), PD-L1 expression, antibiotic use, and CD4+/CD8+ ratio were identified as independent prognostic factors in these patients, using a Cox regression model. A nomogram to predict the overall survival (OS) and survival probabilities was constructed using these factors. The nomogram showed good discrimination ability (C-index, 0.767) and was externally confirmed in the validation and test cohorts. Kaplan-Meier analysis showed that median OS in patients with a CD4+/CD8+ ratio ≥1.10 was 6.2 months, which was significantly shorter than that in patients with a CD4+/CD8+ ratio <1.10 (P < 0.001). Patients with a CD4+/CD8+ ratio <1.10 had a superior objective response (43.8% vs. 23.1%) and disease control (72.9% vs. 59.0%) rate, relative to those with ratio ≥ 1.10. In addition, PD-L1 expression, corticosteroid use, and CD4+/CD8+ ratio can independently predict dermatological toxicities. In conclusion, baseline CD4+/CD8+ ratio is a potential prognostic factor for patients with advanced gastric and esophageal cancer treated with PD-1 inhibitor-based combination therapy, and can independently predict dermatological toxicities. In addition, a nomogram incorporating CD4+/CD8+ ratio, ECOG PS, PD-L1 expression, and antibiotic use can predict OS with considerable accuracy.
Collapse
Affiliation(s)
- Shuangwei Xu
- The First Clinical Medical College of Nanchang University, Nanchang 116000, China
| | - Qiuwei Zhu
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Lixia Wu
- Shanghai JingAn District ZhaBei Central Hospital, Shanghai 200070, China
| | - Yaoyao Wang
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jingmiao Wang
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Lina Zhu
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Shanshan Zheng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Junjie Hang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China.
| |
Collapse
|
218
|
Liu D, Che X, Wang X, Ma C, Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals (Basel) 2023; 16:1384. [PMID: 37895855 PMCID: PMC10610367 DOI: 10.3390/ph16101384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| |
Collapse
|
219
|
Zhang M, Liu J, Xia Q. Role of gut microbiome in cancer immunotherapy: from predictive biomarker to therapeutic target. Exp Hematol Oncol 2023; 12:84. [PMID: 37770953 PMCID: PMC10537950 DOI: 10.1186/s40164-023-00442-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Immunotherapy has emerged as an effective treatment for various types of cancers. Recent studies have highlighted a significant correlation between the gut microbiome and patients' response to immunotherapy. Several characteristics of the gut microbiome, such as community structures, taxonomic compositions, and molecular functions, have been identified as crucial biomarkers for predicting immunotherapy response and immune-related adverse events (irAEs). Unlike other -omics, the gut microbiome can serve as not only biomarkers but also potential targets for enhancing the efficacy of immunotherapy. Approaches for modulating the gut microbiome include probiotics/prebiotics supplementation, dietary interventions, fecal microbiota transplantation (FMT), and antibiotic administration. This review primarily focuses on elucidating the potential role of the gut microbiome in predicting the response to cancer immunotherapy and improving its efficacy. Notably, we explore reasons behind inconsistent findings observed in different studies, and highlight the underlying benefits of antibiotics in liver cancer immunotherapy.
Collapse
Affiliation(s)
- Mengwei Zhang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Jinkai Liu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
220
|
Shao X, Liu L, Zhou Y, Zhong K, Gu J, Hu T, Yao Y, Zhou C, Chen W. High-fat diet promotes colitis-associated tumorigenesis by altering gut microbial butyrate metabolism. Int J Biol Sci 2023; 19:5004-5019. [PMID: 37781523 PMCID: PMC10539701 DOI: 10.7150/ijbs.86717] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Dietary fat intake is associated with an increased risk of colitis associated cancer (CAC). A high-fat diet (HFD) leads to systemic low-grade inflammation. The colon is believed to be the first organ suffering from inflammation caused by the infiltration of pro-inflammatory macrophages, and promotes CAC progression. We explored the role of HFD in driving CAC by altering gut microbial butyrate metabolism. Methods: Changes in the gut microbiota caused by HFD were investigated via HFD treatment or fecal microbiota transplantation (FMT). The underlying mechanisms were further explored by analyzing the role of gut microbiota, microbial butyrate metabolism, and NLRP3 inflammasome in colon tissues in a CAC mouse model. Results: HFD accelerated CAC progression in mice, and it could be reversed by broad-spectrum antibiotics (ABX). 16S-rRNA sequencing revealed that HFD inhibited the abundance of butyrate-producing bacteria in the gut. The level of short-chain fatty acids (SCFAs), especially butyrate, in the gut of mice treated with HFD was significantly reduced. In addition, treatment with exogenous butyrate reversed the M1 polarization of proinflammatory macrophages, aggravation of intestinal inflammation, and accelerated tumor growth induced by HFD; the NLRP3/Caspase-1 pathway activated by HFD in the colon was also significantly inhibited. In vitro, macrophages were treated with lipopolysaccharide combined with butyrate to detect the M1 polarization level and NLRP3/Caspase-1 pathway expression, and the results were consistent with those of the in vivo experiments. Conclusion: HFD drives colitis-associated tumorigenesis by inducing gut microbial dysbiosis and inhibiting butyrate metabolism to skew macrophage polarization. Exogenous butyrate is a feasible new treatment strategy for CAC, and has good prospect for clinical application.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Luojie Liu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Suzhou 215000, Jiangsu, China
| | - Yuqing Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Kaiqiang Zhong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jinrong Gu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Tong Hu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
221
|
Diop K, Pidgeon R, Diop A, Benlaïfaoui M, Belkaid W, Malo J, Bernet E, Veyrier F, Jacq M, Brun Y, Elkrief A, Castagner B, Routy B, Richard C. Characterization and description of Gabonibacter chumensis sp. nov., isolated from feces of a patient with non-small cell lung cancer treated with immunotherapy. Arch Microbiol 2023; 205:338. [PMID: 37742282 PMCID: PMC10518271 DOI: 10.1007/s00203-023-03671-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
A polyphasic taxonomic approach, incorporating analysis of phenotypic features, cellular fatty acid profiles, 16S rRNA gene sequences, and determination of average nucleotide identity (ANI) plus digital DNA-DNA hybridization (dDDH), was applied to characterize an anaerobic bacterial strain designated KD22T isolated from human feces. 16S rRNA gene-based phylogenetic analysis showed that strain KD22T was found to be most closely related to species of the genus Gabonibacter. At the 16S rRNA gene level, the closest species from the strain KD22T corresponded with Gabonibacter massiliensis GM7T, with a similarity of 97.58%. Cells of strain KD22T were Gram-negative coccobacillus, positive for indole and negative for catalase, nitrate reduction, oxidase, and urease activities. The fatty acid analysis demonstrated the presence of a high concentration of iso-C15: 0 (51.65%). Next, the complete whole-genome sequence of strain KD22T was 3,368,578 bp long with 42 mol% of DNA G + C contents. The DDH and ANI values between KD22T and type strains of phylogenetically related species were 67.40% and 95.43%, respectively. These phylogenetic, phenotypic, and genomic results supported the affiliation of strain KD22T as a novel bacterial species within the genus Gabonibacter. The proposed name is Gabonibacter chumensis and the type strain is KD22T (= CSUR Q8104T = DSM 115208 T).
Collapse
Affiliation(s)
- Khoudia Diop
- Laboratory of Immunotherapy and Onco-Microbiome, University of Montreal Healthcare Research Center (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada.
| | - Reilly Pidgeon
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada
| | - Awa Diop
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, PO Box 26170, Greensboro, NC, 27402, USA
| | - Myriam Benlaïfaoui
- Laboratory of Immunotherapy and Onco-Microbiome, University of Montreal Healthcare Research Center (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Wiam Belkaid
- Laboratory of Immunotherapy and Onco-Microbiome, University of Montreal Healthcare Research Center (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Julie Malo
- Laboratory of Immunotherapy and Onco-Microbiome, University of Montreal Healthcare Research Center (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Eve Bernet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Frederic Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Maxime Jacq
- Faculty of Medicine, Department of Microbiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Yves Brun
- Faculty of Medicine, Department of Microbiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Arielle Elkrief
- Laboratory of Immunotherapy and Onco-Microbiome, University of Montreal Healthcare Research Center (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| | - Bastien Castagner
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC, H3G 1Y6, Canada
| | - Bertrand Routy
- Laboratory of Immunotherapy and Onco-Microbiome, University of Montreal Healthcare Research Center (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada.
- Hematology-Oncology Service, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, QC, H2X 0A9, Canada.
| | - Corentin Richard
- Laboratory of Immunotherapy and Onco-Microbiome, University of Montreal Healthcare Research Center (CRCHUM), 900 Rue Saint-Denis, Montreal, QC, H2X 0A9, Canada
| |
Collapse
|
222
|
Yi J, Lin P, Li Q, Zhang A, Kong X. A new strategy for treating colorectal cancer: Regulating the influence of intestinal flora and oncolytic virus on interferon. Mol Ther Oncolytics 2023; 30:254-274. [PMID: 37701850 PMCID: PMC10493895 DOI: 10.1016/j.omto.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Colorectal cancer (CRC) has the third highest incidence and the second highest mortality in the world, which seriously affects human health, while current treatments methods for CRC, including systemic therapy, preoperative radiotherapy, and surgical local excision, still have poor survival rates for patients with metastatic disease, making it critical to develop new strategies for treating CRC. In this article, we found that the gut microbiota can modulate the signaling pathways of cancer cells through direct contact with tumor cells, generate inflammatory responses and oxidative stress through interactions between the innate and adaptive immune systems, and produce diverse metabolic combinations to trigger specific immune responses and promote the initiation of systemic type I interferon (IFN-I) and anti-viral immunity. In addition, oncolytic virus-mediated immunotherapy for regulating oncolytic virus can directly lyse tumor cells, induce the immune activity of the body, interact with interferon, inhibit the anti-viral effect of IFN-I, and enhance the anti-tumor effect of IFN-II. Interferon plays an important role in the anti-tumor process. We put forward that exploring the effects of intestinal flora and oncolytic virus on interferon to treat CRC is a promising therapeutic option.
Collapse
Affiliation(s)
- Jia Yi
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
223
|
Cho H, Qu Y, Liu C, Tang B, Lyu R, Lin BM, Roach J, Azcarate-Peril MA, Aguiar Ribeiro A, Love MI, Divaris K, Wu D. Comprehensive evaluation of methods for differential expression analysis of metatranscriptomics data. Brief Bioinform 2023; 24:bbad279. [PMID: 37738402 PMCID: PMC10516371 DOI: 10.1093/bib/bbad279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/24/2023] Open
Abstract
Understanding the function of the human microbiome is important but the development of statistical methods specifically for the microbial gene expression (i.e. metatranscriptomics) is in its infancy. Many currently employed differential expression analysis methods have been designed for different data types and have not been evaluated in metatranscriptomics settings. To address this gap, we undertook a comprehensive evaluation and benchmarking of 10 differential analysis methods for metatranscriptomics data. We used a combination of real and simulated data to evaluate performance (i.e. type I error, false discovery rate and sensitivity) of the following methods: log-normal (LN), logistic-beta (LB), MAST, DESeq2, metagenomeSeq, ANCOM-BC, LEfSe, ALDEx2, Kruskal-Wallis and two-part Kruskal-Wallis. The simulation was informed by supragingival biofilm microbiome data from 300 preschool-age children enrolled in a study of childhood dental disease (early childhood caries, ECC), whereas validations were sought in two additional datasets from the ECC study and an inflammatory bowel disease study. The LB test showed the highest sensitivity in both small and large samples and reasonably controlled type I error. Contrarily, MAST was hampered by inflated type I error. Upon application of the LN and LB tests in the ECC study, we found that genes C8PHV7 and C8PEV7, harbored by the lactate-producing Campylobacter gracilis, had the strongest association with childhood dental disease. This comprehensive model evaluation offers practical guidance for selection of appropriate methods for rigorous analyses of differential expression in metatranscriptomics. Selection of an optimal method increases the possibility of detecting true signals while minimizing the chance of claiming false ones.
Collapse
Affiliation(s)
- Hunyong Cho
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Yixiang Qu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Chuwen Liu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Boyang Tang
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Ruiqi Lyu
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey Roach
- Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - M Andrea Azcarate-Peril
- Department of Medicine and Nutrition, University of North Carolina, Chapel Hill, NC, United States
| | - Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Michael I Love
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Kimon Divaris
- Division of Pediatric and Public Health, University of North Carolina, Chapel Hill, NC, United States
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Di Wu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States
- Division of Oral and Craniofacial Health Sciences, Adam School of Dentistry, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
224
|
Mathlouthi NEH, Oumarou Hama H, Belguith I, Charfi S, Boudawara T, Lagier JC, Ammar Keskes L, Grine G, Gdoura R. Colorectal Cancer Archaeome: A Metagenomic Exploration, Tunisia. Curr Issues Mol Biol 2023; 45:7572-7581. [PMID: 37754261 PMCID: PMC10527824 DOI: 10.3390/cimb45090477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 09/28/2023] Open
Abstract
Colorectal cancer (CRC) is a serious public health problem known to have a multifactorial etiology. The association between gut microbiota and CRC has been widely studied; however, the link between archaea and CRC has not been sufficiently studied. To investigate the involvement of archaea in colorectal carcinogenesis, we performed a metagenomic analysis of 68 formalin-embedded paraffin fixed tissues from tumoral (n = 33) and healthy mucosa (n = 35) collected from 35 CRC Tunisian patients. We used two DNA extraction methods: Generead DNA FFPE kit (Qiagen, Germantown, MD, USA) and Chelex. We then sequenced the samples using Illumina Miseq. Interestingly, DNA extraction exclusively using Chelex generated enough DNA for sequencing of all samples. After data filtering and processing, we reported the presence of archaeal sequences, which represented 0.33% of all the reads generated. In terms of abundance, we highlighted a depletion in methanogens and an enrichment in Halobacteria in the tumor tissues, while the correlation analysis revealed a significant association between the Halobacteria and the tumor mucosa (p < 0.05). We reported a strong correlation between Natrialba magadii, Sulfolobus acidocaldarius, and tumor tissues, and a weak correlation between Methanococcus voltae and healthy adjacent mucosa. Here, we demonstrated the feasibility of archaeome analysis from formol fixed paraffin-embedded (FFPE) tissues using simple protocols ranging from sampling to data analysis, and reported a significant association between Halobacteria and tumor tissues in Tunisian patients with CRC. The importance of our study is that it represents the first metagenomic analysis of Tunisian CRC patients' gut microbiome, which consists of sequencing DNA extracted from paired tumor-adjacent FFPE tissues collected from CRC patients. The detection of archaeal sequences in our samples confirms the feasibility of carrying out an archaeome analysis from FFPE tissues using a simple DNA extraction protocol. Our analysis revealed the enrichment of Halobacteria, especially Natrialba magadii, in tumor mucosa compared to the normal mucosa in CRC Tunisian patients. Other species were also associated with CRC, including Sulfolobus acidocaldarius and Methanococcus voltae, which is a methanogenic archaea; both species were found to be correlated with adjacent healthy tissues.
Collapse
Affiliation(s)
- Nour El Houda Mathlouthi
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia
| | - Hamadou Oumarou Hama
- IHU Méditerranée Infection, UMR MEPHI, 19-21, Bd. Jean Moulin, 13005 Marseille, France
| | - Imen Belguith
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia
| | - Slim Charfi
- Department of Pathology, CHU Habib Bourguiba, Sfax 3029, Tunisia
| | - Tahya Boudawara
- Department of Pathology, CHU Habib Bourguiba, Sfax 3029, Tunisia
| | | | - Leila Ammar Keskes
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia
| | - Ghiles Grine
- IHU Méditerranée Infection, UMR MEPHI, 19-21, Bd. Jean Moulin, 13005 Marseille, France
- Institut de Recherche pour le Développement (IRD), Aix-Marseille University, Microbes Evolution Phylogeny and Infections (MEPHI), 13005 Marseille, France
| | - Radhouane Gdoura
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia
| |
Collapse
|
225
|
Ren P, Yu X, Yue H, Tang Q, Wang Y, Xue C. Dietary supplementation with astaxanthin enhances anti-tumor immune response and aids the enhancement of molecularly targeted therapy for hepatocellular carcinoma. Food Funct 2023; 14:8309-8320. [PMID: 37602817 DOI: 10.1039/d3fo02986g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Astaxanthin is a naturally occurring compound that possesses immunomodulatory properties. The results of our previous investigation indicated that astaxanthin has the potential to augment the anticancer effectiveness of the targeted medication sorafenib. However, the precise molecular mechanism underlying this phenomenon remains unclear. H22 tumor-bearing mice were treated with sorafenib at 30 mg kg-1 per day and their diet was supplemented with 60 mg kg-1 day-1 astaxanthin orally for a period of 18 days. The study revealed that the addition of astaxanthin to the diet facilitated the transition of tumor-associated macrophages from the M2 phenotype to the M1 phenotype. The application of astaxanthin resulted in an augmentation of CD8+ T cell infiltration within the tumor microenvironment through the activation of the CXCL9/CXCR3 signaling axis. Astaxanthin was found to enhance the production of cytokines that possess antitumor properties, including Granzyme B. Furthermore, the administration of astaxanthin resulted in alterations to the intestinal microbiota in H22-bearing mice, leading to the growth of bacteria that possess anti-tumor immune properties, such as Akkermansia. The findings of these studies indicate that astaxanthin has the potential to augment the immune response against tumors when used in conjunction with sorafenib. These studies offer a novel framework for the advancement of astaxanthin as an immunomodulatory agent and a dietary supplement for individuals with tumors.
Collapse
Affiliation(s)
- Pengfei Ren
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Xinyue Yu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Han Yue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Yuming Wang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| |
Collapse
|
226
|
Staudt S, Ziegler-Martin K, Visekruna A, Slingerland J, Shouval R, Hudecek M, van den Brink M, Luu M. Learning from the microbes: exploiting the microbiome to enforce T cell immunotherapy. Front Immunol 2023; 14:1269015. [PMID: 37799719 PMCID: PMC10548881 DOI: 10.3389/fimmu.2023.1269015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
The opportunities genetic engineering has created in the field of adoptive cellular therapy for cancer are accelerating the development of novel treatment strategies using chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. The great success in the context of hematologic malignancies has made especially CAR T cell therapy a promising approach capable of achieving long-lasting remission. However, the causalities involved in mediating resistance to treatment or relapse are still barely investigated. Research on T cell exhaustion and dysfunction has drawn attention to host-derived factors that define both the immune and tumor microenvironment (TME) crucially influencing efficacy and toxicity of cellular immunotherapy. The microbiome, as one of the most complex host factors, has become a central topic of investigations due to its ability to impact on health and disease. Recent findings support the hypothesis that commensal bacteria and particularly microbiota-derived metabolites educate and modulate host immunity and TME, thereby contributing to the response to cancer immunotherapy. Hence, the composition of microbial strains as well as their soluble messengers are considered to have predictive value regarding CAR T cell efficacy and toxicity. The diversity of mechanisms underlying both beneficial and detrimental effects of microbiota comprise various epigenetic, metabolic and signaling-related pathways that have the potential to be exploited for the improvement of CAR T cell function. In this review, we will discuss the recent findings in the field of microbiome-cancer interaction, especially with respect to new trajectories that commensal factors can offer to advance cellular immunotherapy.
Collapse
Affiliation(s)
- Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - John Slingerland
- Department of Immunology, Sloan Kettering Institute, New York, NY, United States
| | - Roni Shouval
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Marcel van den Brink
- Department of Immunology, Sloan Kettering Institute, New York, NY, United States
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
227
|
Jiang H, Song T, Li Z, An L, He C, Zheng K. Dissecting the association between gut microbiota and liver cancer in European and East Asian populations using Mendelian randomization analysis. Front Microbiol 2023; 14:1255650. [PMID: 37789851 PMCID: PMC10544983 DOI: 10.3389/fmicb.2023.1255650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Background Ample evidence suggests an important role of the gut microbiome in liver cancer, but the causal relationship between gut microbiome and liver cancer is unclear. This study employed Mendelian randomization (MR) analysis to examine the causal relationship between the gut microbiome and liver cancer in European and East Asian populations. Methods We sourced genetic variants linked to gut microbiota from the MiBioGen consortium meta-analysis, and procured liver cancer genome-wide association study (GWAS) summary data from the FinnGen consortium and Biobank Japan. We employed the inverse variance weighted method for primary statistical analysis, fortified by several sensitivity analyses such as MR-PRESSO, MR-Egger regression, weighted median, weighted mode, and maximum likelihood methods for rigorous results. We also evaluated heterogeneity and horizontal pleiotropy. Results The study examined an extensive set of gut microbiota, including 131 genera, 35 families, 20 orders, 16 classes, and 9 phyla. In Europeans, ten gut microbiota types displayed a suggestive association with liver cancer (p < 0.05). Notably, Oscillospira and Mollicutes RF9 exhibited a statistically significant positive association with liver cancer risk, with odds ratios (OR) of 2.59 (95% CI 1.36-4.95) and 2.03 (95% CI 1.21-3.40), respectively, after adjusting for multiple testing. In East Asians, while six microbial types demonstrated suggestive associations with liver cancer, only Oscillibacter displayed a statistically significant positive association (OR = 1.56, 95% CI 1.11-2.19) with an FDR < 0.05. Sensitivity analyses reinforced these findings despite variations in p-values. Conclusion This study provides evidence for a causal relationship between specific gut microbiota and liver cancer, enhancing the understanding of the role of the gut microbiome in liver cancer and may offer new avenues for preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Tianjun Song
- Department of Medicine II, University Hospital, Munich, Germany
| | - Zhongyi Li
- Department of General, Visceral, Transplant, Vascular and Thoracic Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lingxuan An
- Department of General, Visceral, Transplant, Vascular and Thoracic Surgery, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Chiyi He
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Wuhu City, China
| | - Kai Zheng
- Department of Trauma Microsurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
228
|
Wu H, Leng X, Liu Q, Mao T, Jiang T, Liu Y, Li F, Cao C, Fan J, Chen L, Chen Y, Yao Q, Lu S, Liang R, Hu L, Liu M, Wan Y, Li Z, Peng J, Luo Q, Zhou H, Yin J, Xu K, Lan M, Peng X, Lan H, Li G, Han Y, Zhang X, Xiao ZXJ, Lang J, Wang G, Xu C. Intratumoral Microbiota Composition Regulates Chemoimmunotherapy Response in Esophageal Squamous Cell Carcinoma. Cancer Res 2023; 83:3131-3144. [PMID: 37433041 DOI: 10.1158/0008-5472.can-22-2593] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/29/2022] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Neoadjuvant chemoimmunotherapy (NACI) has shown promise in the treatment of resectable esophageal squamous cell carcinoma (ESCC). The microbiomes of patients can impact therapy response, and previous studies have demonstrated that intestinal microbiota influences cancer immunotherapy by activating gut immunity. Here, we investigated the effects of intratumoral microbiota on the response of patients with ESCC to NACI. Intratumoral microbiota signatures of β-diversity were disparate and predicted the treatment efficiency of NACI. The enrichment of Streptococcus positively correlated with GrzB+ and CD8+ T-cell infiltration in tumor tissues. The abundance of Streptococcus could predict prolonged disease-free survival in ESCC. Single-cell RNA sequencing demonstrated that responders displayed a higher proportion of CD8+ effector memory T cells but a lower proportion of CD4+ regulatory T cells. Mice that underwent fecal microbial transplantation or intestinal colonization with Streptococcus from responders showed enrichment of Streptococcus in tumor tissues, elevated tumor-infiltrating CD8+ T cells, and a favorable response to anti-PD-1 treatment. Collectively, this study suggests that intratumoral Streptococcus signatures could predict NACI response and sheds light on the potential clinical utility of intratumoral microbiota for cancer immunotherapy. SIGNIFICANCE Analysis of intratumoral microbiota in patients with esophageal cancer identifies a microbiota signature that is associated with chemoimmunotherapy response and reveals that Streptococcus induces a favorable response by stimulating CD8+ T-cell infiltration. See related commentary by Sfanos, p. 2985.
Collapse
Affiliation(s)
- Hong Wu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Xuefeng Leng
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Division of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Qianshi Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Tianqin Mao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Division of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yiqiang Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Feifei Li
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Chenhui Cao
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jun Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Liang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Yaqi Chen
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Quan Yao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Shun Lu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Renchuan Liang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Mingxin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- School of Medicine, University of Electronic Science and Technology of Chengdu, Sichuan, P.R. China
| | - Yejian Wan
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Zhaoshen Li
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jun Peng
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Qiyu Luo
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Hang Zhou
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Jun Yin
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of Chengdu, Sichuan, P.R. China
| | - Ke Xu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of Chengdu, Sichuan, P.R. China
| | - Mei Lan
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of Chengdu, Sichuan, P.R. China
| | - Xinhao Peng
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of Chengdu, Sichuan, P.R. China
| | - Haitao Lan
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Gang Li
- School of Medicine, University of Electronic Science and Technology of Chengdu, Sichuan, P.R. China
| | - Yongtao Han
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Division of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, P.R. China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism, and Aging, Key Laboratory of BioResource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jinyi Lang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of Chengdu, Sichuan, P.R. China
| | - Guihua Wang
- GI Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, P.R. China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, P.R. China
| |
Collapse
|
229
|
Tomisaki I, Harada M, Sakano S, Terado M, Hamasuna R, Harada S, Matsumoto H, Akasaka S, Nagata Y, Minato A, Harada KI, Fujimoto N. Differential impact of proton pump inhibitor on survival outcomes of patients with advanced urothelial carcinoma treated with chemotherapy versus pembrolizumab. Int J Urol 2023; 30:738-745. [PMID: 36693764 DOI: 10.1111/iju.15151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVES We clarified the effect of concomitant proton pump inhibitor use on oncological outcomes in patients with advanced urothelial carcinoma treated either with chemotherapy or immune checkpoint inhibitor. METHODS We retrospectively reviewed patients with advanced urothelial carcinoma who received paclitaxel-gemcitabine therapy or pembrolizumab after platinum-based chemotherapy. The patients were divided into four groups based on the treatment regimen and the concomitant use of proton pump inhibitor. We compared survival outcomes between the groups and determined which factors predicted overall survival. RESULTS Among the 60 and 75 patients treated with paclitaxel-gemcitabine and pembrolizumab, 15 and 29 used a concomitant proton pump inhibitor. Progression-free and overall survival was significantly shorter in patients who were administered pembrolizumab with concomitant proton pump inhibitor compared to those without. The use of a concomitant proton pump inhibitor had no effect on survival outcomes in patients who received paclitaxel-gemcitabine therapy. Furthermore, progression-free and overall survival were significantly shorter in patients treated with paclitaxel-gemcitabine therapy compared to those treated with pembrolizumab among patients without concomitant proton pump inhibitor. In contrast, there was no difference in survival outcomes between the two regimens among patients with concomitant proton pump inhibitor. Concomitant proton pump inhibitor use was associated with poor overall survival only in patients treated with pembrolizumab. CONCLUSION The use of a concomitant proton pump inhibitor use had no impact on oncological outcomes in patients with advanced urothelial carcinoma treated with paclitaxel-gemcitabine therapy, different from those treated with pembrolizumab.
Collapse
Affiliation(s)
- Ikko Tomisaki
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mirii Harada
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shigeru Sakano
- Department of Urology, Kokura Memorial Hospital, Kitakyushu, Japan
| | - Michikazu Terado
- Department of Urology, Munakata Suikokai General Hospital, Fukutsu, Japan
| | | | - Shuji Harada
- Department of Urology, Shin-yukuhashi Hospital, Yukuhashi, Japan
| | - Hiroomi Matsumoto
- Department of Urology, Kitakyushu City Yahata Hospital, Kitakyushu, Japan
| | | | - Yujiro Nagata
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Minato
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ken-Ichi Harada
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
230
|
Pandey P, Khan F. Gut microbiome in cancer immunotherapy: Current trends, translational challenges and future possibilities. Biochim Biophys Acta Gen Subj 2023; 1867:130401. [PMID: 37307905 DOI: 10.1016/j.bbagen.2023.130401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Gut microbiota is regarded as a crucial regulator of the immune system. Healthy gut microbiota plays a specialized role in host xenobiotics, nutrition, drug metabolism, regulation of the structural integrity of the gut mucosal barrier, defense against infections, and immunomodulation. It is now understood that any imbalance in gut microbiota composition from that present in a healthy state is linked to genetic susceptibility to a number of metabolic disorders, including diabetes, autoimmunity, and cancer. Recent research has suggested that immunotherapy can treat many different cancer types with fewer side effects and better ability to eradicate tumors than conventional chemotherapy or radiotherapy. However, a significant number of patients eventually develop immunotherapy resistance. A strong correlation was observed between the composition of the gut microbiome and the effectiveness of treatment by examining the variations between populations that responded to immunotherapy and those that did not. Therefore, we suggest that modulating the microbiome could be a potential adjuvant therapy for cancer immunotherapy and that the architecture of the gut microbiota may be helpful in explaining the variation in treatment response. Herein, we focus on recent research on the interactions among the gut microbiome, host immunity, and cancer immunotherapy. In addition, we highlighted the clinical manifestations, future opportunities, and limitations of microbiome manipulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India.
| |
Collapse
|
231
|
Aljama S, Lago EP, Zafra O, Sierra J, Simón D, Santos C, Pascual JR, Garcia-Romero N. Dichotomous colorectal cancer behaviour. Crit Rev Oncol Hematol 2023; 189:104067. [PMID: 37454703 DOI: 10.1016/j.critrevonc.2023.104067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and one of the deadliest cancers. At molecular level, CRC is a heterogeneous disease that could be divided in four Consensus Molecular Subtypes. Given the differences in the disease due to its anatomical location (proximal and distal colon), another classification should be considered. Here, we review the current knowledge on CRC dichotomic´s behaviour based on two different entities; right and left-sided tumors, their impact on clinical trial data, microbiota spatial composition and the interaction with the nervous system. We discuss recent advances in understanding how the spatial tumor heterogeneity influences the tumor growth, progression, and responses to current therapies.
Collapse
Affiliation(s)
- Sara Aljama
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Estela P Lago
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Olga Zafra
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Javier Sierra
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Diana Simón
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Cruz Santos
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | | | - Noemi Garcia-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain.
| |
Collapse
|
232
|
Bowen MB, Helmink BA, Wargo JA, Yates MS. TIME for Bugs: The Immune Microenvironment and Microbes in Precancer. Cancer Prev Res (Phila) 2023; 16:497-505. [PMID: 37428011 PMCID: PMC10542944 DOI: 10.1158/1940-6207.capr-23-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Major advances in our understanding of the tumor immune microenvironment (TIME) in established cancer have been made, including the influence of host-intrinsic (host genomics) and -extrinsic factors (such as diet and the microbiome) on treatment response. Nonetheless, the immune and microbiome milieu across the spectrum of precancerous tissue and early neoplasia is a growing area of interest. There are emerging data describing the contribution of the immune microenvironment and microbiota on benign and premalignant tissues, with opportunities to target these factors in cancer prevention and interception. Throughout this review, we provide rationale for not only the critical need to further elucidate the premalignant immune microenvironment, but also for the utility of pharmacologic and lifestyle interventions to alter the immune microenvironment of early lesions to reverse carcinogenesis. Novel research methodologies, such as implementing spatial transcriptomics and proteomics, in combination with innovative sampling methods will advance precision targeting of the premalignant immune microenvironment. Additional studies defining the continuum of immune and microbiome evolution, which emerges in parallel with tumor development, will provide novel opportunities for cancer interception at the earliest steps in carcinogenesis.
Collapse
Affiliation(s)
- Mikayla Borthwick Bowen
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Beth A Helmink
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Melinda S Yates
- Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
233
|
Uğraklı M, Koçak MZ, Dinç G, Genç TB, Çağlayan M, Uğraklı S, Hendem E, Er MM, Çağlayan D, Eryılmaz MK, Araz M, Geredeli Ç, Tatlı AM, Eren OÖ, Artaç M. The effect of concomitant proton pump inhibitor use on survival outcomes of Nivolumab-treated renal cell carcinoma patients: a multicenter study. J Cancer Res Clin Oncol 2023; 149:9183-9189. [PMID: 37184681 DOI: 10.1007/s00432-023-04844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
AIM We aimed to evaluate the effect of concomitant proton pump inhibitors (PPI) use with nivolumab on survival outcomes in metastatic renal cell carcinoma (mRCC) in second-line setting. METHODS The study was designed as a multicenter and retrospective involving patients with metastatic renal cell carcinoma receiving second-line nivolumab therapy. One hundred and nine patients with mRCC were divided into two groups based on whether they use PPI concomitantly with nivolumab: concomitant PPI users and non-users. Overall survival (OS) and progression-free survival (PFS) were compared between the groups with and without concurrent PPIs. RESULTS Of 109 patients in our study, 59 were not using PPI concomitantly with nivolumab and 50 were using PPI concomitantly. The median PFS was 6.37 (5.2-7.5) months in the concomitant PPI group and 9.7 (4.5-15) months in the non-users (p = 0.03). The median OS was 14.6 (7.1-22.1) months in patients on PPI concurrently with nivolumab and 29.9 (17.1-42.7) months in the non-users (p = 0.01). Accordingly, PPI use for PFS (Non-use vs. Use = HR: 0.44, 95%Cl 0.28-0.96, p = 0.014) and PPI use for OS (Non-use vs. Use = HR: 0.68, 95%Cl 0.22-0.88, p = 0.01) were found to be as independent risk factors. CONCLUSIONS Concomitant use of PPIs is associated with worse survival outcomes in patients with mRCC treated with nivolumab. Clinicians should carefully consider the concomitant use of PPIs in such patients.
Collapse
Affiliation(s)
- Muzaffer Uğraklı
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey.
| | - Mehmet Zahid Koçak
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Gülhan Dinç
- Department of Medical Oncology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | | | - Melek Çağlayan
- Department of Medical Oncology, Selçuk University, Konya, Turkey
| | - Selin Uğraklı
- Department of Medical Microbiology, Necmettin Erbakan University, Konya, Turkey
| | - Engin Hendem
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Muhammed Muhiddin Er
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Dilek Çağlayan
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Melek Karakurt Eryılmaz
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Murat Araz
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| | - Çağlayan Geredeli
- Department of Medical Oncology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Ali Murat Tatlı
- Department of Medical Oncology, Akdeniz University, Antalya, Turkey
| | - Orhan Önder Eren
- Department of Medical Oncology, Selçuk University, Konya, Turkey
| | - Mehmet Artaç
- Meram Faculty of Medicine Department of Medical Oncology, Necmettin Erbakan University, 14280, Konya, Turkey
| |
Collapse
|
234
|
Schettini F, Fontana A, Gattazzo F, Strina C, Milani M, Cappelletti MR, Cervoni V, Morelli L, Curigliano G, Iebba V, Generali D. Faecal microbiota composition is related to response to CDK4/6-inhibitors in metastatic breast cancer: A prospective cross-sectional exploratory study. Eur J Cancer 2023; 191:112948. [PMID: 37454444 DOI: 10.1016/j.ejca.2023.112948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Cyclin-dependent kinase (CDK)4/6-inhibitors with endocrine therapy represent the standard of treatment of hormone receptor-positive(HR+)/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (MBC). Gut microbiota seems to predict treatment response in several tumour types, being directly implied in chemotherapy resistance and development of adverse effects. No evidence is available on gut microbiota impact on efficacy of HR+ breast cancer treatment. PATIENTS AND METHODS We assessed the potential association among faecal microbiota and therapeutic efficacy of CDK4/6-inhibitors on 14 MBC patients classified as responders (R) and non-responders (NR) according to progression-free survival. A stool sample was collected at baseline and V3-V4 16S targeted sequencing was employed to assess its bacterial composition. Statistical associations with R and NR were studied. RESULTS No significant differences were observed between R and NR in terms of α-/β-diversity at the phylum and species level. Machine-learning (ML) algorithms evidenced four bacterial species as a discriminant for R (Bifidobacterium longum, Ruminococcus callidus) and NR (Clostridium innocuum, Schaalia odontolytica), and an area under curve (AUC) of 0.946 after Random Forest modelling. Network analysis evidenced two major clusters of bacterial species, named Species Interacting Groups (SIG)1-2, with SIG1 harbouring 75% of NR-related bacterial species, and SIG2 regrouping 76% of R-related species (p < 0.001). Cross-correlations among several patients' circulating immune cells or biomarkers and bacterial species' relative abundances showed associations with potential prognostic implications. CONCLUSIONS Our results provide initial insights into the gut microbiota involvement in sensitivity and/or resistance to CDK4/6-inhibitors + endocrine therapy in MBC. If confirmed in larger trials, several microbiota manipulation strategies might be hypothesised to improve response to CDK4/6-inhibitors.
Collapse
Affiliation(s)
- Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| | - Alessandra Fontana
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Federica Gattazzo
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Carla Strina
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Manuela Milani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Maria Rosa Cappelletti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Valeria Cervoni
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Valerio Iebba
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy.
| |
Collapse
|
235
|
Koyama K, Inamura K. Tumor-resident intracellular bacteria benefit metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:376. [PMID: 37675301 PMCID: PMC10477655 DOI: 10.21037/atm-22-6209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/04/2023] [Indexed: 09/08/2023]
Affiliation(s)
- Kei Koyama
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kentaro Inamura
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
236
|
Gorgulho J, Roderburg C, Beier F, Bokemeyer C, Brümmendorf TH, Luedde T, Loosen SH. Peripheral blood CD3+HLADR+ cells and associated gut microbiome species predict response and overall survival to immune checkpoint blockade. Front Immunol 2023; 14:1206953. [PMID: 37705980 PMCID: PMC10495594 DOI: 10.3389/fimmu.2023.1206953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 09/15/2023] Open
Abstract
Background The search for biomarkers to identify ideal candidates for immune checkpoint inhibitor (ICI) therapy is fundamental. In this study, we analyze peripheral blood CD3+HLADR+ cells (activated T-cells) as a novel biomarker for ICI therapy and how its association to certain gut microbiome species can indicate individual treatment outcomes. Methods Flow cytometry analysis of peripheral mononuclear blood cells (PBMCs) was performed on n=70 patients undergoing ICI therapy for solid malignancies to quantify HLA-DR on circulating CD3+ cells. 16s-rRNA sequencing of stool samples was performed on n=37 patients to assess relative abundance of gut microbiota. Results Patients with a higher frequency of CD3+HLADR+ cells before treatment initiation showed a significantly reduced tumor response and overall survival (OS), a worst response and experienced less toxicities to ICI therapy. As such, patients with a frequency of CD3+HLADR+ cells above an ideal cut-off value of 18.55% had a median OS of only 132 days compared to 569 days for patients below. Patients with increasing CD3+HLADR+ cell counts during therapy had a significantly improved OS. An immune signature score comprising CD3+HLADR+ cells and the neutrophil-lymphocyte ratio (NLR) was highly significant for predicting OS before and during therapy. When allied to the relative abundance of microbiota from the Burkholderiales order and the species Bacteroides vulgatus, two immune-microbial scores revealed a promising predictive and prognostic power. Conclusion We identify the frequencies and dynamics of CD3+HLADR+ cells as an easily accessible prognostic marker to predict outcome to ICIs, and how these could be associated with immune modulating microbiome species. Two unprecedented immune-microbial scores comprising CD3+HLADR+, NLR and relative abundance of gut bacteria from the Burkhorderiales order or Bacteroides vulgatus species could accurately predict OS to immune checkpoint blockade.
Collapse
Affiliation(s)
- Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | - Fabian Beier
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital Rheinisch Westfällisch Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tim H. Brümmendorf
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital Rheinisch Westfällisch Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | - Sven H. Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| |
Collapse
|
237
|
Xue X, Li R, Chen Z, Li G, Liu B, Guo S, Yue Q, Yang S, Xie L, Zhang Y, Zhao J, Tan R. The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. Front Immunol 2023; 14:1235827. [PMID: 37691931 PMCID: PMC10484231 DOI: 10.3389/fimmu.2023.1235827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
The gut microbiota is not just a simple nutritional symbiosis that parasitizes the host; it is a complex and dynamic ecosystem that coevolves actively with the host and is involved in a variety of biological activities such as circadian rhythm regulation, energy metabolism, and immune response. The development of the immune system and immunological functions are significantly influenced by the interaction between the host and the microbiota. The interactions between gut microbiota and cancer are of a complex nature. The critical role that the gut microbiota plays in tumor occurrence, progression, and treatment is not clear despite the already done research. The development of precision medicine and cancer immunotherapy further emphasizes the importance and significance of the question of how the microbiota takes part in cancer development, progression, and treatment. This review summarizes recent literature on the relationship between the gut microbiome and cancer immunology. The findings suggest the existence of a "symbiotic microecosystem" formed by gut microbiota, metabolome, and host immunome that is fundamental for the pathogenesis analysis and the development of therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Xiaoyu Xue
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Chen
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guiyu Li
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Bisheng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shanshan Guo
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Qianhua Yue
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Siye Yang
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Linlin Xie
- Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Classical Chinese Medicine Diagnosis and Treatment Center, Luzhou, China
| | - Yiguan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Ruirong Tan
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
238
|
Bai L, Yan X, Lv J, Qi P, Song X, Zhang L. Intestinal Flora in Chemotherapy Resistance of Biliary Pancreatic Cancer. BIOLOGY 2023; 12:1151. [PMID: 37627035 PMCID: PMC10452461 DOI: 10.3390/biology12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Biliary pancreatic malignancy has an occultic onset, a high degree of malignancy, and a poor prognosis. Most clinical patients miss the opportunity for surgical resection of the tumor. Systemic chemotherapy is still one of the important methods for the treatment of biliary pancreatic malignancies. Many chemotherapy regimens are available, but their efficacy is not satisfactory, and the occurrence of chemotherapy resistance is a major reason leading to poor prognosis. With the advancement of studies on intestinal flora, it has been found that intestinal flora is correlated with and plays an important role in chemotherapy resistance. The application of probiotics and other ways to regulate intestinal flora can improve this problem. This paper aims to review and analyze the research progress of intestinal flora in the chemotherapy resistance of biliary pancreatic malignancies to provide new ideas for treatment.
Collapse
Affiliation(s)
- Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
239
|
Frega G, Cossio FP, Banales JM, Cardinale V, Macias RIR, Braconi C, Lamarca A. Lacking Immunotherapy Biomarkers for Biliary Tract Cancer: A Comprehensive Systematic Literature Review and Meta-Analysis. Cells 2023; 12:2098. [PMID: 37626908 PMCID: PMC10453268 DOI: 10.3390/cells12162098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Immunotherapy has recently been incorporated into the spectrum of biliary tract cancer (BTC) treatment. The identification of predictive response biomarkers is essential in order to identify those patients who may benefit most from this novel treatment option. Here, we propose a systematic literature review and a meta-analysis of PD-1, PD-L1, and other immune-related biomarker expression levels in patients with BTC. METHODS Prisma guidelines were followed for this systematic review and meta-analysis. Eligible studies were searched on PubMed. Studies published between 2017 and 2022, reporting data on PD-1/PD-L1 expression and other immune-related biomarkers in patients with BTC, were considered eligible. RESULTS A total of 61 eligible studies were identified. Despite the great heterogeneity between 39 studies reporting data on PD-L1 expression, we found a mean PD-L1 expression percentage (by choosing the lowest cut-off per study) of 25.6% (95% CI 21.0 to 30.3) in BTCs. The mean expression percentages of PD-L1 were 27.3%, 21.3%, and 27.4% in intrahepatic cholangiocarcinomas (iCCAs-15 studies), perihilar-distal CCAs (p/dCCAs-7 studies), and gallbladder cancer (GBC-5 studies), respectively. Furthermore, 4.6% (95% CI 2.38 to 6.97) and 2.5% (95% CI 1.75 to 3.34) of BTCs could be classified as TMB-H and MSI/MMRd tumors, respectively. CONCLUSION From our analysis, PD-L1 expression was found to occur approximately in 26% of BTC patients, with minimal differences based on anatomical location. TMB-H and MSI molecular phenotypes occurred less frequently. We still lack a reliable biomarker, especially in patients with mismatch-proficient tumors, and we must need to make an effort to conceive new prospective biomarker discovery studies.
Collapse
Affiliation(s)
- Giorgio Frega
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Fernando P. Cossio
- Department of Organic Chemistry I, Center of Innovation in Advanced Chemistry (ORFEO-CINQA), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 48940 Donostia-San Sebastian, Spain;
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, 48940 San Sebastian, Spain;
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31009 Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy;
| | - Rocio I. R. Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, 37007 Salamanca, Spain
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
- Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
| | - Angela Lamarca
- Department of Oncology—OncoHealth Institute, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain
- Department of Medical Oncology, The Christie NHS Foundation, Manchester, Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
240
|
Zhao J, Liao Y, Wei C, Ma Y, Wang F, Chen Y, Zhao B, Ji H, Wang D, Tang D. Potential Ability of Probiotics in the Prevention and Treatment of Colorectal Cancer. Clin Med Insights Oncol 2023; 17:11795549231188225. [PMID: 37601319 PMCID: PMC10437046 DOI: 10.1177/11795549231188225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world, and its incidence rate and mortality are on the rise in many countries. In recent years, with the improvement of economic conditions, people's living habits have changed, including lack of physical activity, poor diet patterns and circadian rhythm disorder. These risk factors can change the colon environment and the composition of intestinal microbiota. This state is called intestinal imbalance, which increases the risk of cancer. Probiotics, a class of microorganisms that help maintain gut microbial homeostasis and alleviate dysbiosis, may help prevent inflammation and colorectal cancer. These probiotics inhibit or ameliorate the effects of dysbiosis through the production of short-chain fatty acids (SCFAs), modulation of immunity, maintenance of the intestinal epithelial barrier, pro-apoptotic mechanisms, and other mechanisms. This review aims to explain the interaction between probiotics, the gut microenvironment and the gut microbiota, and summarize reports on the possibility of probiotics in the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jiahao Zhao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Chen Wei
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yichao Ma
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Fei Wang
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Yuji Chen
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Bin Zhao
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Hao Ji
- Clinical Medical College, Dalian Medical University, Dalian, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
241
|
Choi E, Murray B, Choi S. Biofilm and Cancer: Interactions and Future Directions for Cancer Therapy. Int J Mol Sci 2023; 24:12836. [PMID: 37629016 PMCID: PMC10454087 DOI: 10.3390/ijms241612836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
There is a growing body of evidence supporting the significant role of bacterial biofilms in the pathogenesis of various human diseases, including cancer. Biofilms are polymicrobial communities enclosed within an extracellular matrix composed of polysaccharides, proteins, extracellular DNA, and lipids. This complex matrix provides protection against antibiotics and host immune responses, enabling the microorganisms to establish persistent infections. Moreover, biofilms induce anti-inflammatory responses and metabolic changes in the host, further facilitating their survival. Many of these changes are comparable to those observed in cancer cells. This review will cover recent research on the role of bacterial biofilms in carcinogenesis, especially in colorectal (CRC) and gastric cancers, emphasizing the shared physical and chemical characteristics of biofilms and cancer. This review will also discuss the interactions between bacteria and the tumor microenvironment, which can facilitate oncogene expression and cancer progression. This information will provide insight into developing new therapies to identify and treat biofilm-associated cancers, such as utilizing bacteria as delivery vectors, using bacteria to upregulate immune function, or more selectively targeting biofilms and cancer for their shared traits.
Collapse
Affiliation(s)
- Euna Choi
- Department of Biology, Union University, Jackson, TN 38305, USA; (E.C.); (B.M.)
| | - Ben Murray
- Department of Biology, Union University, Jackson, TN 38305, USA; (E.C.); (B.M.)
| | - Sunga Choi
- Department of Bioinformatics and Biosystems, Seongnam Campus of Korea Polytechnics, Seongnam-si 13122, Republic of Korea
| |
Collapse
|
242
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
243
|
Duan J, Liu C, Bai X, Zhao X, Jiang T. Global trends and hotspots of gastrointestinal microbiome and toxicity based on bibliometrics. Front Microbiol 2023; 14:1231372. [PMID: 37588886 PMCID: PMC10425535 DOI: 10.3389/fmicb.2023.1231372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Toxicity concerns persist in the fields of public health, environmental science, and pharmacology. The intricate and vital role of the gastrointestinal microbiome in influencing toxicity and overall human health has gained increasing recognition in recent years. This study presents a comprehensive bibliometric analysis to evaluate the global scientific output, emerging trends, and research focal points in the area of gastrointestinal microbiome and toxicity. METHODS The Web of Science Core Collection database was retrieved for publications on the gastrointestinal microbiome and toxicity from 1980 to 2022. Our analysis included scholarly research papers written in English and excluded duplicate publications. We used Biblioshiny and R to summarize the count and citation metrics of included articles, and visualized research trends and keywords. CiteSpace was used to identify reference literature, keywords, and citation bursts. VOSviewer was used to visualize the network of related countries, institutions, authors, co-cited authors, and keywords. RESULTS A total of 2,140 articles were included, allowing us to identify significant countries, institutions, authors, and research focal points. Our results indicate a growing trend in the field, with China and the United States leading the research. The most productive journal in this area is Science of the Total Environment. Key findings revealed that research hotspots have shifted from drugs to environmental pollutants, emphasizing microplastics. Important mechanisms studied include oxidative stress, metabolism, inflammation, and apoptosis, with target organs being the gastrointestinal tract, liver, and brain. Furthermore, we highlight the rising significance of the gut-brain axis and the usage of zebrafish as a model organism. CONCLUSION Despite certain limitations, such as focusing solely on English-language publications and excluding unpublished literature, our findings provide valuable insights into the current state of research on toxicity and the gastrointestinal microbiome. In the future, modifications to the gastrointestinal microbiome could offer new directions for treating and mitigating toxicity. These discoveries provide a comprehensive perspective on the broader scope of this research field.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Chuanxin Liu
- Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-Center of National Clinical Research Center for Metabolic Diseases, Endocrine and Metabolic Disease Center, Department of Metabolism and Endocrinology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaoyang Bai
- Department of Medical Equipment, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhao
- The Second Ward of Department of Digestive Oncology, The Sixth People’s Hospital of Luoyang, Luoyang, China
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
244
|
Mendes I, Vale N. How Can the Microbiome Induce Carcinogenesis and Modulate Drug Resistance in Cancer Therapy? Int J Mol Sci 2023; 24:11855. [PMID: 37511612 PMCID: PMC10380870 DOI: 10.3390/ijms241411855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Over the years, cancer has been affecting the lives of many people globally and it has become one of the most studied diseases. Despite the efforts to understand the cell mechanisms behind this complex disease, not every patient seems to respond to targeted therapies or immunotherapies. Drug resistance in cancer is one of the limiting factors contributing to unsuccessful therapies; therefore, understanding how cancer cells acquire this resistance is essential to help cure individuals affected by cancer. Recently, the altered microbiome was observed to be an important hallmark of cancer and therefore it represents a promising topic of cancer research. Our review aims to provide a global perspective of some cancer hallmarks, for instance how genetic and epigenetic modifications may be caused by an altered human microbiome. We also provide information on how an altered human microbiome can lead to cancer development as well as how the microbiome can influence drug resistance and ultimately targeted therapies. This may be useful to develop alternatives for cancer treatment, i.e., future personalized medicine that can help in cases where traditional cancer treatment is unsuccessful.
Collapse
Affiliation(s)
- Inês Mendes
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
245
|
Chen HH, Wu QJ, Zhang TN, Zhao YH. Gut microbiome and serum short-chain fatty acids are associated with responses to chemo- or targeted therapies in Chinese patients with lung cancer. Front Microbiol 2023; 14:1165360. [PMID: 37564290 PMCID: PMC10411610 DOI: 10.3389/fmicb.2023.1165360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Background The association between gut microbes and short-chain fatty acids (SCFAs) and therapeutic responses of patients with lung cancer (LC) receiving therapy remains unknown. Methods Fecal and serum samples were prospectively collected from patients with LC, classified as responders, if they presented durable clinical benefits, and non-responders, if not. The composition of gut microbes was analyzed using 16S ribosomal DNA sequencing. Serum SCFA concentrations were detected using gas chromatography. Cell proliferation, migration, invasion, cell cycle, and apoptosis assays were performed on isobutyric acid-treated A549 cells. Reverse transcription-quantitative PCR, Western blotting, immunocytochemistry, and immunofluorescence staining experiments have been performed to investigate the expression of associated genes or proteins. Results Non-responders harbored higher microbiome α-diversity but lower β-diversity compared with responders. Compared to the patients with low α-diversity, those with high α-diversity showed significantly shorter progression-free survival. Additionally, β-diversity has also been observed between these two groups. Specifically, Parasutterella, Clostridiaceae, and Prevotella_7 were more abundant among responders, whereas Bacteroides_stercoris and Christensenellaceae_R-7_group were more abundant in non-responders. The serum SCFA (especially acetate and isobutyrate) levels tended to be higher in responders. Isobutyric acid inhibited the proliferation, migration, and invasion of A549 cells by inducing apoptosis and G1/S arrest while upregulating the expression of GPR41, GPR43, and GPR5C and downregulating that of PAR1, and increasing the activity of histone acetyltransferases. Conclusion We revealed the influence of gut microbiota and SCFAs on the therapeutic responses in patients with LC and the anti-tumor effect of isobutyric acid, indicating their potential use as therapeutic targets.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
246
|
Vandoni G, D’Amico F, Fabbrini M, Mariani L, Sieri S, Casirati A, Di Guardo L, Del Vecchio M, Anichini A, Mortarini R, Sgambelluri F, Celano G, Serale N, De Angelis M, Brigidi P, Gavazzi C, Turroni S. Gut Microbiota, Metabolome, and Body Composition Signatures of Response to Therapy in Patients with Advanced Melanoma. Int J Mol Sci 2023; 24:11611. [PMID: 37511376 PMCID: PMC10380337 DOI: 10.3390/ijms241411611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the recent breakthroughs in targeted and immunotherapy for melanoma, the overall survival rate remains low. In recent years, considerable attention has been paid to the gut microbiota and other modifiable patient factors (e.g., diet and body composition), though their role in influencing therapeutic responses has yet to be defined. Here, we characterized a cohort of 31 patients with unresectable IIIC-IV-stage cutaneous melanoma prior to initiation of targeted or first-line immunotherapy via the following methods: (i) fecal microbiome and metabolome via 16S rRNA amplicon sequencing and gas chromatography/mass spectrometry, respectively, and (ii) anthropometry, body composition, nutritional status, physical activity, biochemical parameters, and immunoprofiling. According to our data, patients subsequently classified as responders were obese (i.e., with high body mass index and high levels of total, visceral, subcutaneous, and intramuscular adipose tissue), non-sarcopenic, and enriched in certain fecal taxa (e.g., Phascolarctobacterium) and metabolites (e.g., anethole), which were potentially endowed with immunostimulatory and oncoprotective activities. On the other hand, non-response was associated with increased proportions of Streptococcus, Actinomyces, Veillonella, Dorea, Fusobacterium, higher neutrophil levels (and a higher neutrophil-to-lymphocyte ratio), and higher fecal levels of butyric acid and its esters, which also correlated with decreased survival. This exploratory study provides an integrated list of potential early prognostic biomarkers that could improve the clinical management of patients with advanced melanoma, in particular by guiding the design of adjuvant therapeutic strategies to improve treatment response and support long-term health improvement.
Collapse
Affiliation(s)
- Giulia Vandoni
- Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Luigi Mariani
- Data Science Unit, Fondazione IRCCS Istituito Nazionale dei Tumori, 20133 Milan, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Amanda Casirati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lorenza Di Guardo
- Melanoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Michele Del Vecchio
- Melanoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy (R.M.)
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy (R.M.)
| | - Francesco Sgambelluri
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy (R.M.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Nadia Serale
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Cecilia Gavazzi
- Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
247
|
Steininger J, Gellrich FF, Engellandt K, Meinhardt M, Westphal D, Beissert S, Meier F, Glitza Oliva IC. Leptomeningeal Metastases in Melanoma Patients: An Update on and Future Perspectives for Diagnosis and Treatment. Int J Mol Sci 2023; 24:11443. [PMID: 37511202 PMCID: PMC10380419 DOI: 10.3390/ijms241411443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Leptomeningeal disease (LMD) is a devastating complication of cancer with a particularly poor prognosis. Among solid tumours, malignant melanoma (MM) has one of the highest rates of metastasis to the leptomeninges, with approximately 10-15% of patients with advanced disease developing LMD. Tumour cells that metastasise to the brain have unique properties that allow them to cross the blood-brain barrier, evade the immune system, and survive in the brain microenvironment. Metastatic colonisation is achieved through dynamic communication between metastatic cells and the tumour microenvironment, resulting in a tumour-permissive milieu. Despite advances in treatment options, the incidence of LMD appears to be increasing and current treatment modalities have a limited impact on survival. This review provides an overview of the biology of LMD, diagnosis and current treatment approaches for MM patients with LMD, and an overview of ongoing clinical trials. Despite the still limited efficacy of current therapies, there is hope that emerging treatments will improve the outcomes for patients with LMD.
Collapse
Affiliation(s)
- Julian Steininger
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Frank Friedrich Gellrich
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Kay Engellandt
- Department of Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, 01307 Dresden, Germany
- Skin Cancer Center at the University Cancer Center, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
248
|
Gu Y, Zhang Z, Camps MG, Ossendorp F, Wijdeven RH, ten Dijke P. Genome-wide CRISPR screens define determinants of epithelial-mesenchymal transition mediated immune evasion by pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadf9915. [PMID: 37450593 PMCID: PMC10348683 DOI: 10.1126/sciadv.adf9915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
The genetic circuits that allow cancer cells to evade immune killing via epithelial mesenchymal plasticity remain poorly understood. Here, we showed that mesenchymal-like (Mes) KPC3 pancreatic cancer cells were more resistant to cytotoxic T lymphocyte (CTL)-mediated killing than the parental epithelial-like (Epi) cells and used parallel genome-wide CRISPR screens to assess the molecular underpinnings of this difference. Core CTL-evasion genes (such as IFN-γ pathway components) were clearly evident in both types. Moreover, we identified and validated multiple Mes-specific regulators of cytotoxicity, such as Egfr and Mfge8. Both genes were significantly higher expressed in Mes cancer cells, and their depletion sensitized Mes cancer cells to CTL-mediated killing. Notably, Mes cancer cells secreted more Mfge8 to inhibit proliferation of CD8+ T cells and production of IFN-γ and TNFα. Clinically, increased Egfr and Mfge8 expression was correlated with a worse prognosis. Thus, Mes cancer cells use Egfr-mediated intrinsic and Mfge8-mediated extrinsic mechanisms to facilitate immune escape from CD8+ T cells.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Zhengkui Zhang
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, China
| | - Marcel G. M. Camps
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Ruud H. Wijdeven
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| |
Collapse
|
249
|
Shestakova KM, Moskaleva NE, Boldin AA, Rezvanov PM, Shestopalov AV, Rumyantsev SA, Zlatnik EY, Novikova IA, Sagakyants AB, Timofeeva SV, Simonov Y, Baskhanova SN, Tobolkina E, Rudaz S, Appolonova SA. Targeted metabolomic profiling as a tool for diagnostics of patients with non-small-cell lung cancer. Sci Rep 2023; 13:11072. [PMID: 37422585 PMCID: PMC10329697 DOI: 10.1038/s41598-023-38140-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023] Open
Abstract
Lung cancer is referred to as the second most common cancer worldwide and is mainly associated with complex diagnostics and the absence of personalized therapy. Metabolomics may provide significant insights into the improvement of lung cancer diagnostics through identification of the specific biomarkers or biomarker panels that characterize the pathological state of the patient. We performed targeted metabolomic profiling of plasma samples from individuals with non-small cell lung cancer (NSLC, n = 100) and individuals without any cancer or chronic pathologies (n = 100) to identify the relationship between plasma endogenous metabolites and NSLC by means of modern comprehensive bioinformatics tools, including univariate analysis, multivariate analysis, partial correlation network analysis and machine learning. Through the comparison of metabolomic profiles of patients with NSCLC and noncancer individuals, we identified significant alterations in the concentration levels of metabolites mainly related to tryptophan metabolism, the TCA cycle, the urea cycle and lipid metabolism. Additionally, partial correlation network analysis revealed new ratios of the metabolites that significantly distinguished the considered groups of participants. Using the identified significantly altered metabolites and their ratios, we developed a machine learning classification model with an ROC AUC value equal to 0.96. The developed machine learning lung cancer model may serve as a prototype of the approach for the in-time diagnostics of lung cancer that in the future may be introduced in routine clinical use. Overall, we have demonstrated that the combination of metabolomics and up-to-date bioinformatics can be used as a potential tool for proper diagnostics of patients with NSCLC.
Collapse
Affiliation(s)
- Ksenia M Shestakova
- World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435
| | - Natalia E Moskaleva
- World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435
| | - Andrey A Boldin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia, 119435
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435
| | - Pavel M Rezvanov
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia, 119435
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435
| | | | - Sergey A Rumyantsev
- Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Elena Yu Zlatnik
- National Medical Research Centre for Oncology (Rostov-On-Don, Russia), 14 Liniya, 63, Rostov-on-Don, Russia, 344019
| | - Inna A Novikova
- National Medical Research Centre for Oncology (Rostov-On-Don, Russia), 14 Liniya, 63, Rostov-on-Don, Russia, 344019
| | - Alexander B Sagakyants
- National Medical Research Centre for Oncology (Rostov-On-Don, Russia), 14 Liniya, 63, Rostov-on-Don, Russia, 344019
| | - Sofya V Timofeeva
- National Medical Research Centre for Oncology (Rostov-On-Don, Russia), 14 Liniya, 63, Rostov-on-Don, Russia, 344019
| | - Yuriy Simonov
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia, 119435
| | - Sabina N Baskhanova
- World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435
| | - Elena Tobolkina
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206, Geneva 4, Switzerland.
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206, Geneva 4, Switzerland
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia, 119435
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435
| |
Collapse
|
250
|
Yau JNN, Adriani G. Three-dimensional heterotypic colorectal cancer spheroid models for evaluation of drug response. Front Oncol 2023; 13:1148930. [PMID: 37469395 PMCID: PMC10352797 DOI: 10.3389/fonc.2023.1148930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 07/21/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide. Improved preclinical tumor models are needed to make treatment screening clinically relevant and address disease mortality. Advancements in 3D cell culture have enabled a greater recapitulation of the architecture and heterogeneity of the tumor microenvironment (TME). This has enhanced their pathophysiological relevance and enabled more accurate predictions of tumor progression and drug response in patients. An increasing number of 3D CRC spheroid models include cell populations such as cancer-associated fibroblasts (CAFs), endothelial cells (ECs), immune cells, and gut bacteria to better mimic the in vivo regulation of signaling pathways. Furthermore, cell heterogeneity within the 3D spheroid models enables the identification of new therapeutic targets to develop alternative treatments and test TME-target therapies. In this mini review, we present the advances in mimicking tumor heterogeneity in 3D CRC spheroid models by incorporating CAFs, ECs, immune cells, and gut bacteria. We introduce how, in these models, the diverse cells influence chemoresistance and tumor progression of the CRC spheroids. We also highlight important parameters evaluated during drug screening in the CRC heterocellular spheroids.
Collapse
Affiliation(s)
- Jia Ning Nicolette Yau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|