1
|
Golik P. RNA processing and degradation mechanisms shaping the mitochondrial transcriptome of budding yeasts. IUBMB Life 2024; 76:38-52. [PMID: 37596708 DOI: 10.1002/iub.2779] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Yeast mitochondrial genes are expressed as polycistronic transcription units that contain RNAs from different classes and show great evolutionary variability. The promoters are simple, and transcriptional control is rudimentary. Posttranscriptional mechanisms involving RNA maturation, stability, and degradation are thus the main force shaping the transcriptome and determining the expression levels of individual genes. Primary transcripts are fragmented by tRNA excision by RNase P and tRNase Z, additional processing events occur at the dodecamer site at the 3' end of protein-coding sequences. groups I and II introns are excised in a self-splicing reaction that is supported by protein splicing factors encoded by the nuclear genes, or by the introns themselves. The 3'-to-5' exoribonucleolytic complex called mtEXO is the main RNA degradation activity involved in RNA turnover and processing, supported by an auxiliary 5'-to-3' exoribonuclease Pet127p. tRNAs and, to a lesser extent, rRNAs undergo several different base modifications. This complex gene expression system relies on the coordinated action of mitochondrial and nuclear genes and undergoes rapid evolution, contributing to speciation events. Moving beyond the classical model yeast Saccharomyces cerevisiae to other budding yeasts should provide important insights into the coevolution of both genomes that constitute the eukaryotic genetic system.
Collapse
Affiliation(s)
- Pawel Golik
- Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Piątkowski J, Golik P. Yeast pentatricopeptide protein Dmr1 (Ccm1) binds a repetitive AU-rich motif in the small subunit mitochondrial ribosomal RNA. RNA (NEW YORK, N.Y.) 2020; 26:1268-1282. [PMID: 32467310 PMCID: PMC7430664 DOI: 10.1261/rna.074880.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
PPR proteins are a diverse family of RNA binding factors found in all Eukaryotic lineages. They perform multiple functions in the expression of organellar genes, mostly on the post-transcriptional level. PPR proteins are also significant determinants of evolutionary nucleo-organellar compatibility. Plant PPR proteins recognize their RNA substrates using a simple modular code. No target sequences recognized by animal or yeast PPR proteins were identified prior to the present study, making it impossible to assess whether this plant PPR code is conserved in other organisms. Dmr1p (Ccm1p, Ygr150cp) is a S. cerevisiae PPR protein essential for mitochondrial gene expression and involved in the stability of 15S ribosomal RNA. We demonstrate that in vitro Dmr1p specifically binds a motif composed of multiple AUA repeats occurring twice in the 15S rRNA sequence as the minimal 14 nt (AUA)4AU or longer (AUA)7 variant. Short RNA fragments containing this motif are protected by Dmr1p from exoribonucleolytic activity in vitro. Presence of the identified motif in mtDNA of different yeast species correlates with the compatibility between their Dmr1p orthologs and S. cerevisiae mtDNA. RNA recognition by Dmr1p is likely based on a rudimentary form of a PPR code specifying U at every third position, and depends on other factors, like RNA structure.
Collapse
Affiliation(s)
- Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Paweł Golik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
3
|
Salvatori R, Kehrein K, Singh AP, Aftab W, Möller-Hergt BV, Forne I, Imhof A, Ott M. Molecular Wiring of a Mitochondrial Translational Feedback Loop. Mol Cell 2020; 77:887-900.e5. [DOI: 10.1016/j.molcel.2019.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/03/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022]
|
4
|
Barros MH, McStay GP. Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion 2019; 50:94-114. [PMID: 31669617 DOI: 10.1016/j.mito.2019.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products. Defects in the function or assembly of these complexes can lead to mitochondrial diseases due to deficits in energy production and mitochondrial functions. Appropriate biogenesis and function are mediated by a complex number of assembly factors that promote maturation of specific complex subunits to form the active oxidative phosphorylation complex. The understanding of the biogenesis of each complex has been informed by studies in both simple eukaryotes such as Saccharomyces cerevisiae and human patients with mitochondrial diseases. These studies reveal each complex assembles through a pathway using specific subunits and assembly factors to form kinetically distinct but related assembly modules. The current understanding of these complexes has embraced the revolutions in genomics and proteomics to further our knowledge on the impact of mitochondrial biology in genetics, medicine, and evolution.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
5
|
Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T, Hauryliuk V, Kamenski P. Mitochondrial translation initiation machinery: conservation and diversification. Biochimie 2013; 100:132-40. [PMID: 23954798 PMCID: PMC3978653 DOI: 10.1016/j.biochi.2013.07.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components – mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. Mitochondrially-encoded proteins are mostly respiratory chain components. The mitochondrial translation system is thus organized in a very specific way. Initiation involves mRNA-specific activators and bacteria-like initiation factors. We show that Saccharomyces cerevisiae Aim23p is a functional ortholog of bacterial IF3. We review the lineage specific features of mitochondrial translation initiation.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Sergey Levitskii
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, Tartu, Estonia; Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
6
|
Herbert CJ, Golik P, Bonnefoy N. Yeast PPR proteins, watchdogs of mitochondrial gene expression. RNA Biol 2013; 10:1477-94. [PMID: 24184848 DOI: 10.4161/rna.25392] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PPR proteins are a family of ubiquitous RNA-binding factors, found in all the Eukaryotic lineages, and are particularly numerous in higher plants. According to recent bioinformatic analyses, yeast genomes encode from 10 (in S. pombe) to 15 (in S. cerevisiae) PPR proteins. All of these proteins are mitochondrial and very often interact with the mitochondrial membrane. Apart from the general factors, RNA polymerase and RNase P, most yeast PPR proteins are involved in the stability and/or translation of mitochondrially encoded RNAs. At present, some information concerning the target RNA(s) of most of these proteins is available, the next challenge will be to refine our understanding of the function of the proteins and to resolve the yeast PPR-RNA-binding code, which might differ significantly from the plant PPR code.
Collapse
Affiliation(s)
- Christopher J Herbert
- Centre de Génétique Moléculaire du CNRS; UPR3404; FRC3115; Gif-sur-Yvette; Paris, France
| | - Pawel Golik
- Department of Genetics and Biotechnology; Faculty of Biology; University of Warsaw; Pawinskiego 5A; Warsaw, Poland
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire du CNRS; UPR3404; FRC3115; Gif-sur-Yvette; Paris, France
| |
Collapse
|
7
|
Xavier BB, Miao VPW, Jónsson ZO, Andrésson ÓS. Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: features and phylogeny. Fungal Biol 2012; 116:802-14. [PMID: 22749167 DOI: 10.1016/j.funbio.2012.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 12/15/2022]
Abstract
Mitochondrial genomes from the fungal partners of two terricolous foliose lichen symbioses, Peltigera membranacea and Peltigera malacea, have been determined using metagenomic approaches, including RNA-seq. The roughly 63 kb genomes show all the major features found in other Pezizomycotina, such as unidirectional transcription, 14 conserved protein genes, genes for the two subunit rRNAs and for a set of 26 tRNAs used in translating the 62 amino acid codons. In one of the tRNAs a CAU anticodon is proposed to be modified, via the action of the nuclear-encoded enzyme, tRNA Ile lysidine synthase, so that it recognizes the codon AUA (Ile) instead of AUG (Met). The overall arrangements and sequences of the two circular genomes are similar, the major difference being the inversion and deterioration of a gene encoding a type B DNA polymerase. Both genomes encode the RNA component of RNAse P, a feature seldom found in ascomycetes. The difference in genome size from the minimal ascomycete mitochondrial genomes is largely due to 17 and 20 group I introns, respectively, most associated with homing endonucleases and all found within protein-coding genes and the gene encoding the large subunit rRNA. One new intron insertion point was found, and an unusually small exon of seven nucleotides (nt) was identified and verified by RNA sequencing. Comparative analysis of mitochondrion-encoded proteins places the Peltigera spp., representatives of the class Lecanoromycetes, close to Leotiomycetes, Dothidiomycetes, and Sordariomycetes, in contrast to phylogenies found using nuclear genes.
Collapse
Affiliation(s)
- Basil Britto Xavier
- Department of Life and Environmental Sciences, University of Iceland, 101 Reykjavík, Iceland
| | | | | | | |
Collapse
|
8
|
Kühl I, Fox TD, Bonnefoy N. Schizosaccharomyces pombe homologs of the Saccharomyces cerevisiae mitochondrial proteins Cbp6 and Mss51 function at a post-translational step of respiratory complex biogenesis. Mitochondrion 2012; 12:381-90. [PMID: 22349564 DOI: 10.1016/j.mito.2012.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/31/2012] [Accepted: 02/03/2012] [Indexed: 11/18/2022]
Abstract
Complexes III and IV of the mitochondrial respiratory chain contain a few key subunits encoded by the mitochondrial genome. In Saccharomyces cerevisiae, fifteen mRNA-specific translational activators control mitochondrial translation, of which five are conserved in Schizosaccharomyces pombe. These include homologs of Cbp3, Cbp6 and Mss51 that participate in translation and the post-translational steps leading to the assembly of respiratory complexes III and IV. In this study we show that in contrast to budding yeast, Cbp3, Cbp6 and Mss51 from S. pombe are not required for the translation of mitochondrial mRNAs, but fulfill post-translational functions, thus probably accounting for their conservation.
Collapse
Affiliation(s)
- Inge Kühl
- Centre de Génétique Moléculaire du CNRS, UPR 3404, FRC3115, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
9
|
Fekete Z, Ellis TP, Schonauer MS, Dieckmann CL. Pet127 governs a 5' -> 3'-exonuclease important in maturation of apocytochrome b mRNA in Saccharomyces cerevisiae. J Biol Chem 2007; 283:3767-72. [PMID: 18086665 DOI: 10.1074/jbc.m709617200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The details of mRNA maturation in Saccharomyces mitochondria are not well understood. All seven mRNAs are transcribed as part of multigenic units. The mRNAs are processed at a common 3'-dodecamer sequence, but the 5'-ends have seven different sequences. To investigate whether apocytochrome b (COB) mRNA is processed at the 5'-end from a longer precursor by an endonuclease or an exonuclease, a 64-nucleotide sequence, which is required for the protection of COB mRNA by the Cbp1 protein and is found at the 5'-end of the processed COB mRNA, was duplicated in tandem. The wild-type 64-nucleotide element functioned in either the upstream or downstream position when paired with a mutant element. In the tandem wild-type strain, the 5'-end of the mRNA was at the 5'-end of the upstream unit, demonstrating that the mRNA is processed by an exonuclease. Accumulation of precursor COB RNA in single and double element strains with a deletion of PET127 demonstrated that the encoded protein governs the 5'-exonuclease responsible for processing the precursor to the mature form.
Collapse
Affiliation(s)
- Zsuzsanna Fekete
- Department of Medical Biology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | | | | | | |
Collapse
|
10
|
Ellis TP, Schonauer MS, Dieckmann CL. CBT1 interacts genetically with CBP1 and the mitochondrially encoded cytochrome b gene and is required to stabilize the mature cytochrome b mRNA of Saccharomyces cerevisiae. Genetics 2005; 171:949-57. [PMID: 16118200 PMCID: PMC1456833 DOI: 10.1534/genetics.104.036467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutation of a CCG sequence in the 5'-untranslated region of the mitochondrially encoded cytochrome b mRNA in Saccharomyces cerevisiae results in destabilization of the message and respiratory deficiency of the mutant strain. This phenotype mimics that of a mutation in the nuclear CBP1 gene. Here it is shown that overexpression of the nuclear CBT1 gene, due to a transposon insertion in the 5'-untranslated region, rescues the respiratory defects resulting from mutating the CCG sequence to ACG. Overexpressing alleles of CBT1 are allelic to soc1, a previously isolated suppressor of cbp1ts-induced temperature sensitivity of respiratory growth. Quantitative primer extension analysis indicated that cbt1 null strains have defects in 5'-end processing of precursor cytochrome b mRNA to the mature form. Cbt1p is also required for stabilizing the mature cytochrome b mRNA after 5' processing.
Collapse
Affiliation(s)
- Timothy P Ellis
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
11
|
Krause K, Lopes de Souza R, Roberts DGW, Dieckmann CL. The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex. Mol Biol Cell 2004; 15:2674-83. [PMID: 15047869 PMCID: PMC420092 DOI: 10.1091/mbc.e04-02-0126] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the nuclear-encoded protein Cbp1 promotes stability and translation of mitochondrial cytochrome b transcripts through interaction with the 5' untranslated region. Fusion of a biotin binding peptide tag to the C terminus of Cbp1 has now allowed detection in mitochondrial extracts by using peroxidase-coupled avidin. Cbp1 is associated with the mitochondrial membranes when high ionic strength extraction conditions are used. However, the protein is easily solubilized by omitting salt from the extraction buffer, which suggests Cbp1 is loosely associated with the membrane through weak hydrophobic interactions. Gel filtration analysis and blue native PAGE showed that Cbp1 is part of a single 900,000-Da complex. The complex was purified using the biotin tag and a sequence-specific protease cleavage site. In addition to Cbp1, the complex contains several polypeptides of molecular weights between 113 and 40 kDa. Among these, we identified another message-specific factor, Pet309, which promotes the stability and translation of mitochondrial cytochrome oxidase subunit I mRNA. A hypothesis is presented in which the Cbp1-Pet309 complex contains several message-specific RNA binding proteins and links transcription to translation of the mRNAs at the membrane.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
12
|
Islas-Osuna MA, Ellis TP, Mittelmeier TM, Dieckmann CL. Suppressor mutations define two regions in the Cbp1 protein important for mitochondrial cytochrome b mRNA stability in Saccharomyces cerevisiae. Curr Genet 2003; 43:327-36. [PMID: 12764667 DOI: 10.1007/s00294-003-0405-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 04/11/2003] [Accepted: 04/16/2003] [Indexed: 11/24/2022]
Abstract
Nuclear-encoded Cbp1 stabilizes and promotes translation of mitochondrial cytochrome b (COB) mRNA. A CCG triplet within the 5'UTR of COB mRNA is essential for Cbp1-dependent stability. Like cbp1 mutations, mutation of any nucleotide in CCG results in degradation of COB transcripts. In this study, CBP1-linked pseudorevertants of the temperature-sensitive CCU strain were isolated. The suppressors are missense mutations within a central cluster or a carboxyl cluster in the linear sequence of Cbp1. Strains with mutations in the carboxyl half of the central cluster or the carboxyl cluster respire better than those with mutations in the amino half of the central cluster. COB mRNA levels in the suppressor strains were increased compared with that in the CCU strain and were positively correlated with respiratory capability. This correlation supports a model in which the primary role of Cbp1 is to protect COB mRNAs and deliver them to the mitochondrial translational apparatus.
Collapse
Affiliation(s)
- Maria A Islas-Osuna
- Department of Molecular and Cellular Biology, Life Sciences South 454, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85721-0106, USA
| | | | | | | |
Collapse
|
13
|
Islas-Osuna MA, Ellis TP, Marnell LL, Mittelmeier TM, Dieckmann CL. Cbp1 is required for translation of the mitochondrial cytochrome b mRNA of Saccharomyces cerevisiae. J Biol Chem 2002; 277:37987-90. [PMID: 12149267 DOI: 10.1074/jbc.m206132200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the yeast mitochondrial cytochrome b gene (COB) is controlled by at least 15 nuclear-encoded proteins. One of these proteins, Cbp1, is required for COB mRNA stability. Delta cbp1 null strains fail to accumulate mature COB mRNA and cannot respire. Since Delta cbp1 null strains lack mature COB transcripts, the hypothesis that Cbp1 also plays a role in translation of these mRNAs could not be tested previously. 5'-End trimming of precursor COB RNA and other mitochondrial transcripts is dependent on Pet127. pet127 mutants accumulate high levels of precursor COB mRNA and have no mature mRNA. pet127 mutants respire well; this phenotype implies that COB precursor RNA is translated efficiently. With the expectation that a Delta cbp1 Delta pet127 strain might accumulate substantial levels of COB RNA, the double null strain was constructed and analyzed to test the hypothesis that Cbp1 is required for translation of COB RNA. The Delta cbp1 Delta pet127 strain does accumulate levels of COB precursor mRNA that are approximately 60% of the level of COB mRNA in the wild-type strain. However, cytochrome b protein is not synthesized, and thus the Delta cbp1 Delta pet127 strain does not respire. These results suggest that Cbp1 is required for translation of COB RNAs.
Collapse
Affiliation(s)
- Maria A Islas-Osuna
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
14
|
Saracco SA, Fox TD. Cox18p is required for export of the mitochondrially encoded Saccharomyces cerevisiae Cox2p C-tail and interacts with Pnt1p and Mss2p in the inner membrane. Mol Biol Cell 2002; 13:1122-31. [PMID: 11950926 PMCID: PMC102256 DOI: 10.1091/mbc.01-12-0580] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Revised: 12/03/2001] [Accepted: 12/24/2001] [Indexed: 11/11/2022] Open
Abstract
The amino- and carboxy-terminal domains of mitochondrially encoded cytochrome c oxidase subunit II (Cox2p) are translocated out of the matrix to the intermembrane space. We have carried out a genetic screen to identify components required to export the biosynthetic enzyme Arg8p, tethered to the Cox2p C terminus by a translational gene fusion inserted into mtDNA. We obtained multiple alleles of COX18, PNT1, and MSS2, as well as mutations in CBP1 and PET309. Focusing on Cox18p, we found that its activity is required to export the C-tail of Cox2p bearing a short C-terminal epitope tag. This is not a consequence of reduced membrane potential due to loss of cytochrome oxidase activity because Cox2p C-tail export was not blocked in mitochondria lacking Cox4p. Cox18p is not required to export the Cox2p N-tail, indicating that these two domains of Cox2p are translocated by genetically distinct mechanisms. Cox18p is a mitochondrial integral inner membrane protein. The inner membrane proteins Mss2p and Pnt1p both coimmunoprecipitate with Cox18p, suggesting that they work together in translocation of Cox2p domains, an inference supported by functional interactions among the three genes.
Collapse
Affiliation(s)
- Scott A Saracco
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
15
|
Vaistij FE, Boudreau E, Lemaire SD, Goldschmidt-Clermont M, Rochaix JD. Characterization of Mbb1, a nucleus-encoded tetratricopeptide-like repeat protein required for expression of the chloroplast psbB/psbT/psbH gene cluster in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2000; 97:14813-8. [PMID: 11121080 PMCID: PMC19001 DOI: 10.1073/pnas.97.26.14813] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic analysis has revealed that the accumulation of several chloroplast mRNAs of the green alga Chlamydomonas reinhardtii requires specific nucleus-encoded functions. To gain insight into this process, we have cloned the nuclear gene encoding the Mbb1 factor by genomic rescue of a mutant specifically deficient in the accumulation of the mRNAs of the psbB/psbT/psbH chloroplast transcription unit. Mbb1 is a soluble protein in the stromal phase of the chloroplast. It consists of 662 amino acids with a putative chloroplast-transit peptide at its N-terminal end. A striking feature is the presence of 10 tandemly arranged tetratricopeptide-like repeats that account for half of the protein sequence and are thought to be involved in protein-protein interactions. The Mbb1 protein seems to have a homologue in higher plants and is part of a 300-kDa complex that is associated with RNA. This complex is most likely involved in psbB mRNA processing, stability, and/or translation.
Collapse
Affiliation(s)
- F E Vaistij
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30, quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Levenson CW, Song Y, Narayanan VS, Fitch CA, Yeiser EC. Regulation of mitochondrial cytochrome b mRNA by copper in cultured human hepatoma cells and rat liver. Biol Trace Elem Res 1999; 70:149-64. [PMID: 10535524 DOI: 10.1007/bf02783856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Copper overload and deficiency are known to cause morphological and functional mitochondrial abnormalities. The reverse transcriptase-polymerase chain reaction (RT-PCR)-based method of differential display of mRNA was used to identify genes with altered expression in cultured human hepatoma cells (Hep G2) exposed to increasing concentrations of copper (0-100 microM, 24 h). Copper regulation of a cloned PCR product, identified as the gene for the mitochondrially encoded cytochrome b, was confirmed by Northern analysis and in situ hybridization. Copper toxicity increased cytochrome b mRNA abundance up to 3.6-fold, and copper chelation reduced it by 50%. Hepatic cytochrome b mRNA was also increased in rats fed a high-copper diet. Thapsigargin treatment resulted in a significant increase in cytochrome b mRNA, suggesting that an increase in intracellular calcium may be involved in the mechanism of copper action. Furthermore, although cyclohexamide (CHX) alone did not increase cytochrome b mRNA, the addition of CHX and copper resulted in a sixfold increase. These data suggest a role for cytochrome b in the response to increases or decreases in hepatic copper.
Collapse
Affiliation(s)
- C W Levenson
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee 32306-4340, USA
| | | | | | | | | |
Collapse
|
17
|
Ellis TP, Lukins HB, Nagley P, Corner BE. Suppression of a nuclear aep2 mutation in Saccharomyces cerevisiae by a base substitution in the 5'-untranslated region of the mitochondrial oli1 gene encoding subunit 9 of ATP synthase. Genetics 1999; 151:1353-63. [PMID: 10101162 PMCID: PMC1460560 DOI: 10.1093/genetics/151.4.1353] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the nuclear AEP2 gene of Saccharomyces generate greatly reduced levels of the mature form of mitochondrial oli1 mRNA, encoding subunit 9 of mitochondrial ATP synthase. A series of mutants was isolated in which the temperature-sensitive phenotype resulting from the aep2-ts1 mutation was suppressed. Three strains were classified as containing a mitochondrial suppressor: these lost the ability to suppress aep2-ts1 when their mitochondrial genome was replaced with wild-type mitochondrial DNA (mtDNA). Many other isolates were classified as containing dominant nuclear suppressors. The three mitochondrion-encoded suppressors were localized to the oli1 region of mtDNA using rho- genetic mapping techniques coupled with PCR analysis; DNA sequencing revealed, in each case, a T-to-C nucleotide transition in mtDNA 16 nucleotides upstream of the oli1 reading frame. It is inferred that the suppressing mutation in the 5' untranslated region of oli1 mRNA restores subunit 9 biosynthesis by accommodating the modified structure of Aep2p generated by the aep2-ts1 mutation (shown here to cause the substitution of proline for leucine at residue 413 of Aep2p). This mode of mitochondrial suppression is contrasted with that mediated by heteroplasmic rearranged rho- mtDNA genomes bypassing the participation of a nuclear gene product in expression of a particular mitochondrial gene. In the present study, direct RNA-protein interactions are likely to form the basis of suppression.
Collapse
Affiliation(s)
- T P Ellis
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
18
|
Chen W, Islas-Osuna MA, Dieckmann CL. Suppressor analysis of mutations in the 5'-untranslated region of COB mRNA identifies components of general pathways for mitochondrial mRNA processing and decay in Saccharomyces cerevisiae. Genetics 1999; 151:1315-25. [PMID: 10101159 PMCID: PMC1460556 DOI: 10.1093/genetics/151.4.1315] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytochrome b gene in Saccharomyces cerevisiae, COB, is encoded by the mitochondrial genome. Nuclear-encoded Cbp1 protein is required specifically for COB mRNA stabilization. Cbp1 interacts with a CCG element in a 64-nucleotide sequence in the 5'-untranslated region of COB mRNA. Mutation of any nucleotide in the CCG causes the same phenotype as cbp1 mutations, i.e., destabilization of both COB precursor and mature message. In this study, eleven nuclear suppressors of single-nucleotide mutations in CCG were isolated and characterized. One dominant suppressor is in CBP1, while the other 10 semidominant suppressors define five distinct linkage groups. One group of four mutations is in PET127, which is required for 5' end processing of several mitochondrial mRNAs. Another mutation is linked to DSS1, which is a subunit of mitochondrial 3' --> 5' exoribonuclease. A mutation linked to the SOC1 gene, previously defined by recessive mutations that suppress cbp1 ts alleles and stabilize many mitochondrial mRNAs, was also isolated. We hypothesize that the products of the two uncharacterized genes also affect mitochondrial RNA turnover.
Collapse
Affiliation(s)
- W Chen
- Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
19
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|