1
|
Yang Y, Shi X. Big lessons from the little Akkermansia muciniphila in hepatocellular carcinoma. Front Immunol 2025; 16:1524563. [PMID: 40028328 PMCID: PMC11868108 DOI: 10.3389/fimmu.2025.1524563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently occurring type of liver tumor and is considered one of the most common primary malignant neoplasms. The prognosis for HCC is dismal because of its complicated etiology and high level of medication resistance. Immunotherapy is presently regarded as one of the most effective therapeutic options for HCC; nevertheless, because of the disturbance of intestinal flora, immunotherapy shows low antitumor efficacy. An increasing body of research indicates that intestinal flora, particularly Akkermansia muciniphila (A. muciniphila), is vital for the treatment of tumors. Studies have demonstrated that the diminished effectiveness of immunotherapy in cancer patients is associated with a reduction in A. muciniphila levels, suggesting that increasing A. muciniphila levels significantly enhance the efficacy of immunotherapy. A. muciniphila functions as a gut probiotic and can treat and prevent a wide range of illnesses, including cancer. Consequently, preserving A. muciniphila abundance is enough to prevent and lower the danger of developing cancer disorders. In this review, we critically evaluate the current body of research on A. muciniphila, with a primary focus on its biological properties and functions. The different illnesses that A. muciniphila treats were then discussed, particularly the way it works with liver cancer. This review aims to give a novel treatment plan for patients with HCC as well as a theoretical foundation for improving HCC immunotherapy.
Collapse
Affiliation(s)
- Yanguang Yang
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
- Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
2
|
Ravikumaran KS, Armiento S, De Castro C, Molinaro A, Wilson JC, Grice ID, Peak IR. Characterisation of a capsular polysaccharide from Moraxella nonliquefaciens CCUG 348T. Carbohydr Res 2024; 538:109095. [PMID: 38507941 DOI: 10.1016/j.carres.2024.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Moraxella nonliquefaciens is a commensal of the human upper respiratory tract (URT) but on rare occasions is recovered in cases of ocular, septic and pulmonary infections. Hence there is interest in the pathogenic determinants of M. nonliquefaciens, of which outer membrane (OM) structures such as fimbriae and two capsular polysaccharide (CPS) structures, →3)-β-D-GalpNAc-(1→5)-β-Kdop-(2→ and →8)-α-NeuAc-(2→, have been reported in the literature. To further characterise its surface virulence factors, we isolated a novel CPS from M. nonliquefaciens type strain CCUG 348T. This structure was elucidated using NMR data obtained from CPS samples that were subjected to various degrees of mild acid hydrolysis. Together with GLC-MS data, the structure was resolved as a linear polymer composed of two GalfNAc residues consecutively added to Kdo, →3)-β-D-GalfNAc-(1→3)-α-D-GalfNAc-(1→5)-α-(8-OAc)Kdop-(2→. Supporting evidence for this material being CPS was drawn from the proposed CPS biosynthetic locus which encoded a potential GalfNAc transferase, a UDP-GalpNAc mutase for UDP-GalfNAc production and a putative CPS polymerase with predicted GalfNAc and Kdo transferase domains. This study describes a unique CPS composition reported in Moraxella spp. and offers genetic insights into the synthesis and expression of GalfNAc residues, which are rare in bacterial OM glycans.
Collapse
Affiliation(s)
- Kosala S Ravikumaran
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Samantha Armiento
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Cristina De Castro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Jennifer C Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - I Darren Grice
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Ian R Peak
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| |
Collapse
|
3
|
Zhao S, Li H, Yang F, Yang Y, Zeng Y, An Z, Li J, Wu H, Song J, Wu W. Association of short-term PM 2.5 exposure with airway innate immune response, microbiota and metabolism alterations in human airways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123435. [PMID: 38295929 DOI: 10.1016/j.envpol.2024.123435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with impaired airway innate immunity, leading to diverse lung disorders. However, the mechanisms of the adverse effects of PM2.5 on the airway innate immune system has not been adequately elucidated. This study aimed to investigate the association between short-term exposure to ambient PM2.5 and airway innate immune responses. A panel study of 53 undergraduate students was conducted in November 2020 and April 2021. Levels of airway innate immune biomarkers including interleukin-1β (IL-1β), IL-4, IL-6, IL-8, IL-17, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), myeloperoxidase (MPO), and matrix metalloproteinase-9 (MMP-9) in induced sputum were measured, and airway microbiota and metabolites examined. Linear mixed-effect model was used to evaluate the effects of short-term exposure to PM2.5 on the above-listed airway immune biomarkers. The results indicated that for every 10 μg/m3 increase in PM2.5 concentration (at lag3), was associated with an increase of 21.3 % (5.4 %-37.1 %), 26.2 % (0.30 %-52.1 %), 22.4 % (0.70 %-44.2 %), 27.4 % (6.6 %-48.3 %), 18.3 % (4.6 %-31.9 %), 3.9 % (0.20 %-7.6 %) or 2.4 % (0.10 %-4.7 %) in IL-6, TNF-α, IL-17, IL-4, IFN-γ, MPO, or MMP-9 levels, respectively. Meanwhile, exposure to higher levels of ambient PM2.5 was found to significantly modulate airway microbiota and metabolite profile. Specifically, Prevotella and Fusobacterium, as well as 96 different metabolites were associated with PM2.5 levels. The metabolic pathways associated with these metabolites mainly included amino acid biosynthesis and metabolism. Notably, PM2.5 exposure-induced alterations of some airway microbiota were significantly correlated with specific airway metabolic change. Taken together, these results demonstrated that short-term exposure to PM2.5 was associated with alterations of airway immune response, microbial dysbiosis and changes of metabolites. This study provided insights into the mechanisms underlying PM2.5-induced airway innate immune responses.
Collapse
Affiliation(s)
- Shuaiqi Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Fuyun Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Yishu Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Yuling Zeng
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China.
| |
Collapse
|
4
|
Reuter S, Raspe J, Taube C. Microbes little helpers and suppliers for therapeutic asthma approaches. Respir Res 2024; 25:29. [PMID: 38218816 PMCID: PMC10787474 DOI: 10.1186/s12931-023-02660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Bronchial asthma is a prevalent and increasingly chronic inflammatory lung disease affecting over 300 million people globally. Initially considered an allergic disorder driven by mast cells and eosinophils, asthma is now recognized as a complex syndrome with various clinical phenotypes and immunological endotypes. These encompass type 2 inflammatory endotypes characterized by interleukin (IL)-4, IL-5, and IL-13 dominance, alongside others featuring mixed or non-eosinophilic inflammation. Therapeutic success varies significantly based on asthma phenotypes, with inhaled corticosteroids and beta-2 agonists effective for milder forms, but limited in severe cases. Novel antibody-based therapies have shown promise, primarily for severe allergic and type 2-high asthma. To address this gap, novel treatment strategies are essential for better control of asthma pathology, prevention, and exacerbation reduction. One promising approach involves stimulating endogenous anti-inflammatory responses through regulatory T cells (Tregs). Tregs play a vital role in maintaining immune homeostasis, preventing autoimmunity, and mitigating excessive inflammation after pathogenic encounters. Tregs have demonstrated their ability to control both type 2-high and type 2-low inflammation in murine models and dampen human cell-dependent allergic airway inflammation. Furthermore, microbes, typically associated with disease development, have shown immune-dampening properties that could be harnessed for therapeutic benefits. Both commensal microbiota and pathogenic microbes have demonstrated potential in bacterial-host interactions for therapeutic purposes. This review explores microbe-associated approaches as potential treatments for inflammatory diseases, shedding light on current and future therapeutics.
Collapse
Affiliation(s)
- Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany.
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Tüschener Weg 40, 45239, Essen, Germany
| |
Collapse
|
5
|
Sokolovs-Karijs O, Brīvība M, Saksis R, Rozenberga M, Girotto F, Osīte J, Reinis A, Sumeraga G, Krūmiņa A. Identifying the Microbiome of the Adenoid Surface of Children Suffering from Otitis Media with Effusion and Children without Middle Ear Effusion Using 16S rRNA Genetic Sequencing. Microorganisms 2023; 11:1955. [PMID: 37630514 PMCID: PMC10459895 DOI: 10.3390/microorganisms11081955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The upper respiratory tract harbors diverse communities of commensal, symbiotic, and pathogenic organisms, originating from both the oral and nasopharyngeal microbiota. Among the primary sites of microbial colonization in the upper airways are the adenoids. Alterations in the adenoid microbiota have been implicated in the development of various conditions, including secretory otitis media. AIM This study aims to employ 16S rRNA genetic sequencing to identify the most common bacteria present on the surface of adenoids in children with otitis media with effusion and compare them with children without pathologies in the tympanic cavity. Additionally, we seek to determine and compare the bacterial diversity in these two study groups. MATERIALS AND METHODS A total of nineteen samples from the adenoid surfaces were collected, comprising two groups: thirteen samples from children without middle ear effusion and six samples from children with secretory otitis media. The libraries of the V3-V4 hypervariable region of the bacterial 16S rRNA gene was made and sequenced using MiSeq platform. RESULTS The most prevalent phyla observed in both groups were Proteobacteria, Firmicutes, and Bacteroidetes. The most common bacterial genera identified in both groups were Haemophilus, Streptococcus, Moraxella, Fusobacterium, and Bordetella, with Fusobacterium and Moraxella being more prevalent in the groups that had no middle ear effusion, while Haemophulus and Streptococcus were more prevalent in the otitis media with effusion group, although not in a statistically significant way. Statistical analysis shows a trend towards bacterial composition and beta diversity being similar between the study groups; however, due to the limited sample size and unevenness between groups, we should approach this data with caution. CONCLUSION The lack of prolific difference in bacterial composition between the study groups suggests that the role of the adenoid microbiome in the development of otitis media with effusion may be less significant.
Collapse
Affiliation(s)
- Oļegs Sokolovs-Karijs
- Department of Otolaryngology, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
- AIWA Clinic, 241 Maskavas Str., LV-1019 Riga, Latvia
| | - Monta Brīvība
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Rihards Saksis
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Maija Rozenberga
- Latvian Biomedicine Research and Study Center, 1 Ratsupites Str., LV-1067 Riga, Latvia
| | - Francesca Girotto
- Faculty of Medicine, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
| | - Jana Osīte
- Centrālā Laboratorrija, 1b. Šarlotes Str., LV-1011 Riga, Latvia
| | - Aigars Reinis
- Department of Biology and Microbiology, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
| | - Gunta Sumeraga
- Department of Otolaryngology, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
| | - Angelika Krūmiņa
- Department of Infectology, Riga Stradiņš University, 16 Dzirciema Str., LV-1007 Riga, Latvia
| |
Collapse
|
6
|
Konecna E, Videnska P, Buresova L, Urik M, Smetanova S, Smatana S, Prokes R, Lanickova B, Budinska E, Klanova J, Borilova Linhartova P. Enrichment of human nasopharyngeal bacteriome with bacteria from dust after short-term exposure to indoor environment: a pilot study. BMC Microbiol 2023; 23:202. [PMID: 37525095 PMCID: PMC10391871 DOI: 10.1186/s12866-023-02951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Indoor dust particles are an everyday source of human exposure to microorganisms and their inhalation may directly affect the microbiota of the respiratory tract. We aimed to characterize the changes in human nasopharyngeal bacteriome after short-term exposure to indoor (workplace) environments. METHODS In this pilot study, nasopharyngeal swabs were taken from 22 participants in the morning and after 8 h of their presence at the workplace. At the same time points, indoor dust samples were collected from the participants' households (16 from flats and 6 from houses) and workplaces (8 from a maternity hospital - NEO, 6 from a pediatric hospital - ENT, and 8 from a research center - RCX). 16S rRNA sequencing analysis was performed on these human and environmental matrices. RESULTS Staphylococcus and Corynebacterium were the most abundant genera in both indoor dust and nasopharyngeal samples. The analysis indicated lower bacterial diversity in indoor dust samples from flats compared to houses, NEO, ENT, and RCX (p < 0.05). Participants working in the NEO had the highest nasopharyngeal bacterial diversity of all groups (p < 0.05). After 8 h of exposure to the workplace environment, enrichment of the nasopharynx with several new bacterial genera present in the indoor dust was observed in 76% of study participants; however, no significant changes were observed at the level of the nasopharyngeal bacterial diversity (p > 0.05, Shannon index). These "enriching" bacterial genera overlapped between the hospital workplaces - NEO and ENT but differed from those in the research center - RCX. CONCLUSIONS The results suggest that although the composition of nasopharyngeal bacteriome is relatively stable during the day. Short-term exposure to the indoor environment can result in the enrichment of the nasopharynx with bacterial DNA from indoor dust; the bacterial composition, however, varies by the indoor workplace environment.
Collapse
Affiliation(s)
- Eva Konecna
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petra Videnska
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Lucie Buresova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Milan Urik
- Department of Pediatric Otorhinolaryngology, University Hospital Brno, Černopolní 9, 613 00 Brno, Czech Republic
- Department of Pediatric Otorhinolaryngology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Sona Smetanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Stanislav Smatana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Roman Prokes
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, Brno, Czech Republic
| | - Barbara Lanickova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Department of Gynaecology and Obstetrics, University Hospital Brno, Obilni Trh 526/11, 602 00 Brno, Czech Republic
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | | |
Collapse
|
7
|
Ding Y, Wang Q, Li D, Li Y, Yao K, Wang T. Differences in the effects of Bordetella pertussis and respiratory syncytial virus infection on the composition of nasopharyngeal flora in neonates. Front Pediatr 2023; 11:1034147. [PMID: 37351319 PMCID: PMC10282602 DOI: 10.3389/fped.2023.1034147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/25/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Bordetella pertussis and respiratory syncytial virus (RSV) are important pathogens causing cough in neonates. Few studies have investigated the differences in the effects of these two specific infections on respiratory flora. The aim of this study was to explore whether infections with Bordetella pertussis and RSV have different effects on respiratory floral composition in neonates. Methods Nasopharyngeal respiratory flora was assessed by 16S ribosomal RNA amplification and V3-V4 region sequencing. Shannon and Simpson indices were calculated to determine the α diversity and principal coordinate analysis was performed to determine the β diversity. Results In total, 111 hospitalized neonates were divided into the pertussis (n = 29), RSV (n = 57), and control groups (n = 25) according to the pathogens detected. The relative abundance of Bordetella was significantly higher in the pertussis group (median: 19.18%, interquartile range: 72.57%). In contrast, this species was not detected in the other two groups. In the RSV group, the relative abundance of Streptococcus (median: 77.15%, interquartile range: 45.84%) was significantly higher than those in the pertussis and control groups (both P < 0.001). The α diversity of the RSV group was significantly lower than that of the control group (P < 0.001). Moreover, no statistically significant differences in the Shannon and Simpson indices were observed between the pertussis and control groups (P = 0.101 and P = 0.202, respectively). Principal coordinate analysis revealed a large overlap between the pertussis and control groups and a significant distance between the RSV and control groups without any overlap. Discussion Thus, the effects of infections with the two species, B. pertussis and RSV, impacted the diversity of nasopharyngeal flora differently. The principles underlying the difference in the effects of different pathogens on microbial flora require further investigation.
Collapse
Affiliation(s)
- Yijun Ding
- Department of Neonatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qing Wang
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Dongfang Li
- R&D Department, BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China
| | - Yue Li
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Kaihu Yao
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Tianyou Wang
- Department of Hematology and Oncology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
8
|
Azevedo AC, Hilário S, Gonçalves MFM. Microbiome in Nasal Mucosa of Children and Adolescents with Allergic Rhinitis: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020226. [PMID: 36832355 PMCID: PMC9954962 DOI: 10.3390/children10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
The human upper respiratory tract comprises the nasal cavity, pharynx and larynx regions and offers distinct microbial communities. However, an imbalance and alterations in the nasal mucosa microbiome enhance the risk of chronic respiratory conditions in patients with allergic respiratory diseases. This is particularly important in children and adolescents once allergic rhinitis (AR) is an inflammatory disorder of the nasal mucosa, often associated with an increase in pulmonary allergic inflammation. Therefore, this systematic review aimed to collect scientific data published concerning the microbial community alterations in nasal mucosa of children and adolescents suffering from AR or in association with adenotonsillar hypertrophy (AH) and allergic rhinoconjunctivitis (ARC). The current study was performed using the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Publications related to microbiome alterations in the nasal mucosa in pediatric age, studies including next-generation sequencing platforms, and studies exclusively written in the English language were some of the inclusion criteria. In total, five articles were included. Despite the scarcity of the published data in this research field and the lack of prospective studies, the genera Acinetobacter, Corynebacterium, Dolosigranulum, Haemophilus, Moraxella, Staphylococcus and Streptococcus dominate the nares and nasopharyngeal microbiome of the pediatric population regardless of their age. However, an imbalance in the resident bacterial community in the nasal mucosa was observed. The genera Acinetobacter, and Pseudomonas were more abundant in the nasal cavity of AR and AH children, while Streptococcus and Moraxella were predominant in the hypopharyngeal region of AR infants. An abundance of Staphylococcus spp. was also reported in the anterior nares and hypopharyngeal region of children and adolescents suffering from AR passive smoke exposure and ARC. These records suggest that different nasal structures, ageing, smoke exposure and the presence of other chronic disorders shape the nasal mucosa microbiome. Therefore, the establishment of adequate criteria for sampling would be established for a deeper understanding and a trustworthy comparison of the microbiome alterations in pediatric age.
Collapse
Affiliation(s)
- André Costa Azevedo
- Department of Pediatrics, Unidade Local de Saúde do Alto Minho, 4904-858 Viana do Castelo, Portugal
| | - Sandra Hilário
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Micael F. M. Gonçalves
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: or
| |
Collapse
|
9
|
Lin Z, Chen P, Yuan Z, Yang L, Miao L, Wang H, Xu D. Fine particulate matter, airway inflammation, stress response, non-specific immune function and buccal microbial diversity in young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119692. [PMID: 35772617 DOI: 10.1016/j.envpol.2022.119692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) has been associated with risk of oral and respiratory diseases. However, the biological mechanisms of adverse oral and respiratory health response to PM2.5 fluctuation have not been well characterized. This study aims to explore the relationships of PM2.5 with airway inflammation, salivary biomarkers and buccal mucosa microbiota. We performed a panel study among 40 college students involving 4 follow-ups from August to October 2021 in Hefei, Anhui Province, China. Health outcomes included fractional exhaled nitric oxide (FeNO), salivary biomarkers [C-reactive protein (CRP), cortisol, lysozyme and alpha-amylase] and buccal mucosa microbial diversity. Linear mixed-effect models were applied to explore the cumulative impacts of PM2.5 on health indicators. PM2.5 was positively correlated with FeNO, CRP, cortisol and alpha-amylase, while negatively with lysozyme. Per 10-μg/m3 increase in PM2.5 was linked to maximum increments in FeNO of 10.71% (95%CI: 2.01%, 19.41%) at lag 0-24 h, in CRP of 7.10% (95%CI: 5.39%, 8.81%) at lag 0-24 h, in cortisol of 1.25% (95%CI: 0.44%, 2.07%) at lag 0-48 h, and in alpha-amylase of 2.12% (95%CI: 0.53%, 3.71%) at lag 0-24 h, while associated with maximum decrement in lysozyme of 0.53% (95%CI: 0.12%, 0.95%) at lag 0-72 h. Increased PM2.5 was linked to reduction in the richness and evenness of buccal microbe and o_Bacillales and o_Bacteroidales were identified as differential microbes after PM2.5 inhalation. Bio-information analysis indicated that immunity system pathway was the most important enriched abundant process altered by PM2.5 exposure. In summary, short-term PM2.5 exposure may impair oral and respiratory health by inducing inflammatory and stress responses, weakening immune function and altering buccal mucosa microbial diversity.
Collapse
Affiliation(s)
- Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - Ping Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
10
|
Recurrent Acute Otitis Media Environmental Risk Factors: A Literature Review from the Microbiota Point of View. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute otitis media (AOM) constitutes a multifactorial disease, as several host and environmental factors contribute to its occurrence. Prevention of AOM represents one of the most important goals in pediatrics, both in developing countries, in which complications, mortality, and deafness remain possible consequences of the disease, compared to in developed countries, in which this condition has an important burden in terms of medical, social, and economical implications. The strategies for AOM prevention are based on reducing the burden of risk factors, through the application of behavioral, environmental, and therapeutic interventions. The introduction of culture-independent techniques has allowed high-throughput investigation of entire bacterial communities, providing novel insights into the pathogenesis of middle ear diseases through the identification of potential protective bacteria. The upper respiratory tract (URT) is a pivotal region in AOM pathogenesis, as it could act as a source of pathogens than of protective microorganisms for the middle ear (ME). Due to its direct connection with the external ambient, the URT is particularly exposed to the influence of environmental agents. The aim of this review was to evaluate AOM environmental risk factors and their impact on URT microbial communities, and to investigate AOM pathogenesis from the microbiota perspective.
Collapse
|
11
|
Crovetto F, Selma-Royo M, Crispi F, Carbonetto B, Pascal R, Larroya M, Casas I, Tortajada M, Escudero N, Muñoz-Almagro C, Gomez-Roig MD, González-Torres P, Collado MC, Gratacos E. Nasopharyngeal microbiota profiling of pregnant women with SARS-CoV-2 infection. Sci Rep 2022; 12:13404. [PMID: 35927569 PMCID: PMC9352760 DOI: 10.1038/s41598-022-17542-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022] Open
Abstract
We aimed to analyze the nasopharyngeal microbiota profiles in pregnant women with and without SARS-CoV-2 infection, considered a vulnerable population during COVID-19 pandemic. Pregnant women were enrolled from a multicenter prospective population-based cohort during the first SARS-CoV-2 wave in Spain (March-June 2020 in Barcelona, Spain) in which the status of SARS-CoV-2 infection was determined by nasopharyngeal RT–PCR and antibodies in peripheral blood. Women were randomly selected for this cross-sectional study on microbiota. DNA was extracted from nasopharyngeal swab samples, and the V3-V4 region of the 16S rRNA of bacteria was amplified using region-specific primers. The differential abundance of taxa was tested, and alpha/beta diversity was evaluated. Among 76 women, 38 were classified as positive and 38 as negative for SARS-CoV-2 infection. All positive women were diagnosed by SARS-CoV-2 IgG and IgM/IgA antibodies, and 14 (37%) also had a positive RT–PCR. The overall composition of the nasopharyngeal microbiota differ in pregnant women with SARS-CoV-2 infection (positive SARS-CoV-2 antibodies), compared to those without the infection (negative SARS-CoV-2 antibodies) (p = 0.001), with a higher relative abundance of the Tenericutes and Bacteroidetes phyla and a higher abundance of the Prevotellaceae family. Infected women presented a different pattern of microbiota profiling due to beta diversity and higher richness (observed ASV < 0.001) and evenness (Shannon index < 0.001) at alpha diversity. These changes were also present in women after acute infection, as revealed by negative RT–PCR but positive SARS-CoV-2 antibodies, suggesting a potential association between SARS-CoV-2 infection and long-lasting shift in the nasopharyngeal microbiota. No significant differences were reported in mild vs. severe cases. This is the first study on nasopharyngeal microbiota during pregnancy. Pregnant women with SARS-CoV-2 infection had a different nasopharyngeal microbiota profile compared to negative cases.
Collapse
Affiliation(s)
- Francesca Crovetto
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain. .,Institut de Recerca Sant Joan de Deu, Barcelona, Spain. .,Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Fàtima Crispi
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca August Pi Sunyer, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases, Barcelona, Spain
| | | | - Rosalia Pascal
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Larroya
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Irene Casas
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Marta Tortajada
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain
| | | | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Ciber of Epidemiology and Public Health (CIBERESP), Madrid, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maria Dolores Gomez-Roig
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Eduard Gratacos
- Department of Maternal-Fetal Medicine, BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, Passeig de Sant Joan de Déu 2, 08950, Esplugues de Llobregat, Barcelona, Spain.,Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Institut de Recerca August Pi Sunyer, Barcelona, Spain.,Center for Biomedical Network Research on Rare Diseases, Barcelona, Spain
| |
Collapse
|
12
|
McCauley KE, Flynn K, Calatroni A, DiMassa V, LaMere B, Fadrosh DW, Lynch KV, Gill MA, Pongracic JA, Khurana Hershey GK, Kercsmar CM, Liu AH, Johnson CC, Kim H, Kattan M, O'Connor GT, Bacharier LB, Teach SJ, Gergen PJ, Wheatley LM, Togias A, LeBeau P, Presnell S, Boushey HA, Busse WW, Gern JE, Jackson DJ, Altman MC, Lynch SV. Seasonal airway microbiome and transcriptome interactions promote childhood asthma exacerbations. J Allergy Clin Immunol 2022; 150:204-213. [PMID: 35149044 DOI: 10.1016/j.jaci.2022.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Seasonal variation in respiratory illnesses and exacerbations in pediatric populations with asthma is well described, though whether upper airway microbes play season-specific roles in these events is unknown. OBJECTIVE We hypothesized that nasal microbiota composition is seasonally dynamic and that discrete microbe-host interactions modify risk of asthma exacerbation in a season-specific manner. METHODS Repeated nasal samples from children with exacerbation-prone asthma collected during periods of respiratory health (baseline; n = 181 samples) or first captured respiratory illness (n = 97) across all seasons, underwent bacterial (16S ribosomal RNA gene) and fungal (internal transcribed spacer region 2) biomarker sequencing. Virus detection was performed by multiplex PCR. Paired nasal transcriptome data were examined for seasonal dynamics and integrative analyses. RESULTS Upper airway bacterial and fungal microbiota and rhinovirus detection exhibited significant seasonal dynamics. In seasonally adjusted analysis, variation in both baseline and respiratory illness microbiota related to subsequent exacerbation. Specifically, in the fall, when respiratory illness and exacerbation events were most frequent, several Moraxella and Haemophilus members were enriched both in virus-positive respiratory illnesses and those that progressed to exacerbations. The abundance of 2 discrete bacterial networks, characteristically comprising either Streptococcus or Staphylococcus, exhibited opposing interactions with an exacerbation-associated SMAD3 nasal epithelial transcriptional module to significantly increase the odds of subsequent exacerbation (odds ratio = 14.7, 95% confidence interval = 1.50-144, P = .02; odds ratio = 39.17, 95% confidence interval = 2.44-626, P = .008, respectively). CONCLUSIONS Upper airway microbiomes covary with season and with seasonal trends in respiratory illnesses and asthma exacerbations. Seasonally adjusted analyses reveal specific bacteria-host interactions that significantly increase risk of asthma exacerbation in these children.
Collapse
Affiliation(s)
| | - Kaitlin Flynn
- Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | | | - Vincent DiMassa
- Department of Medicine, University of California, San Francisco, Calif
| | - Brandon LaMere
- Department of Medicine, University of California, San Francisco, Calif
| | - Douglas W Fadrosh
- Department of Medicine, University of California, San Francisco, Calif
| | - Kole V Lynch
- Department of Medicine, University of California, San Francisco, Calif
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | | | | | | | - Andrew H Liu
- Department of Allergy and Immunology, Children's Hospital Colorado, Unversity of Colorado School of Medicine, Aurora, Colo
| | | | | | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, NY
| | - George T O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Leonard B Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University, St Louis, Mo
| | | | - Peter J Gergen
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Lisa M Wheatley
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Alkis Togias
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | - Scott Presnell
- Systems Immunology Program, Benaroya Research Institute, Seattle, Wash
| | - Homer A Boushey
- Department of Medicine, University of California, San Francisco, Calif
| | - William W Busse
- University of Wisconsin School of Medicine and Public Health, Madison, Wisc
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, Wisc
| | - Daniel J Jackson
- University of Wisconsin School of Medicine and Public Health, Madison, Wisc
| | - Matthew C Altman
- Systems Immunology Program, Benaroya Research Institute, Seattle, Wash; Department of Allergy and Infectious Diseases, University of Washington, Seattle, Wash.
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco, Calif.
| | | |
Collapse
|
13
|
Wu H, Dong C, Xiao W, Wei H, Shao Y, Chen T, Xia Y. Associations between PM 2.5 exposure and infant growth: A mediation analysis of oral microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153688. [PMID: 35131243 DOI: 10.1016/j.scitotenv.2022.153688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previous studies have linked growth retardation with ambient fine particulate matter (PM2.5) exposure. However, few studies explored such association from the perspective of microbiota, such as oral microbiota. We aimed to identify the potential role of oral microbiota in the links between PM2.5 exposure and infant growth. METHODS Baseline information of 335 recruited mother-child pairs was collected by structured questionnaires. Growth indicators (weight, length) of one-year-old infants were abstracted from medical records when they had physical examination and corresponding z scores were calculated. 16S rRNA gene amplicon sequencing was performed to assess oral microbiota of infants and co-abundance groups (CAGs) were further calculated. We assessed PM2.5 levels by inverse distance weighting (IDW). Generalized linear regression and mediation analysis were performed to determine associations between PM2.5 exposure, oral microbiota and growth indicators. RESULTS Per 10 μg m-3 increment of PM2.5 in the period of 10th month-examination was associated with decreased length z score (β = -1.97, 95%CI: -3.83, -0.11). Oral microbiota correlated with weight z score and body mass index (BMI) z score was identified by Spearman correlation analysis. CAG4 was statistically associated with increased weight z score (β = 3.40, 95%CI: 0.29, 6.51) and BMI z score (β = 5.44, 95%CI: 1.00, 9.87). Several bacteria in the level of genus and CAG associated with PM2.5 exposure were additionally identified (P < 0.05). Mediation analysis revealed that PM2.5 in the period of birth-3rd month impacted the z scores of weight and BMI by altering relative abundance of Megasphaera (P < 0.05). CONCLUSION PM2.5 exposure from 10th to 12th month after birth could retard infant linear growth. PM2.5 might impact oral microbiota of one-year-old infants. Growth-related bacteria and CAGs were identified. Megasphaera might function as mediator between PM2.5 exposure during birth-3rd month and infant z scores of weight and BMI.
Collapse
Affiliation(s)
- Huaying Wu
- Department of Stomatology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Chao Dong
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenwen Xiao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yunmin Shao
- Department of Stomatology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Ting Chen
- Department of Science and Technology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
14
|
Zhao H, Chen S, Yang F, Wu H, Ba Y, Cui L, Chen R, Zhu J. Alternation of nasopharyngeal microbiota in healthy youth is associated with environmental factors: implication for respiratory diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:952-962. [PMID: 32866029 DOI: 10.1080/09603123.2020.1810209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The nasopharynx is a key niche of the upper respiratory tract which contains many commensal bacteria and potential pathogens. Dysbiosis of the nasopharyngeal (NP) microbiota is associated with a variety of respiratory diseases. Little is known about NP flora in healthy youth, nor about its relationship with environmental factors. We characterized NP microbiota using the 16S rRNA gene sequencing method, and compared microbial composition from subjects sampled in Spring and Fall when exposed to different environmental factors. Results showed that beta diversity was significantly different. Phyla Acidobacteria, Gemmatimonadetes, and genus Symbiobacterium were positively associated with PM2.5. Genera Streptococcus, Prevotella, and [Prevotella] were positively correlated with temperature (T). Ozone (O3) was associated with these floras for exposure that occurred 30 days prior to collection. These preliminary data suggest that the change in environmental factors between spring and fall can influence the composition of the NP microbiota, characterized by a significant correlation to specific taxa. These changes in NP microbiota might be a potential risk factor for respiratory disease.
Collapse
Affiliation(s)
- Hongcheng Zhao
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fan Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huiying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liuxin Cui
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ruiying Chen
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyuan Zhu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
McCauley KE, DeMuri G, Lynch K, Fadrosh DW, Santee C, Nagalingam NN, Wald ER, Lynch SV. Moraxella-dominated pediatric nasopharyngeal microbiota associate with upper respiratory infection and sinusitis. PLoS One 2021; 16:e0261179. [PMID: 34962959 PMCID: PMC8714118 DOI: 10.1371/journal.pone.0261179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/27/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Distinct bacterial upper airway microbiota structures have been described in pediatric populations, and relate to risk of respiratory viral infection and, exacerbations of asthma. We hypothesized that distinct nasopharyngeal (NP) microbiota structures exist in pediatric populations, relate to environmental exposures and modify risk of acute sinusitis or upper respiratory infection (URI) in children. METHODS Bacterial 16S rRNA profiles from nasopharyngeal swabs (n = 354) collected longitudinally over a one-year period from 58 children, aged four to seven years, were analyzed and correlated with environmental variables, URI, and sinusitis outcomes. RESULTS Variance in nasopharyngeal microbiota composition significantly related to clinical outcomes, participant characteristics and environmental exposures including dominant bacterial genus, season, daycare attendance and tobacco exposure. Four distinct nasopharyngeal microbiota structures (Cluster I-IV) were evident and differed with respect to URI and sinusitis outcomes. These clusters were characteristically either dominated by Moraxella with sparse underlying taxa (Cluster I), comprised of a non-dominated, diverse microbiota (Cluster II), dominated by Alloiococcus/Corynebacterium (Cluster III), or by Haemophilus (Cluster IV). Cluster I was associated with increased risk of URI and sinusitis (RR = 1.18, p = 0.046; RR = 1.25, p = 0.009, respectively) in the population studied. CONCLUSION In a pediatric population, URI and sinusitis associate with the presence of Moraxella-dominated NP microbiota.
Collapse
Affiliation(s)
- Kathryn E. McCauley
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Gregory DeMuri
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Kole Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Douglas W. Fadrosh
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Clark Santee
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Nabeetha N. Nagalingam
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Ellen R. Wald
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Susan V. Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
16
|
Binia A, Siegwald L, Sultana S, Shevlyakova M, Lefebvre G, Foata F, Combremont S, Charpagne A, Vidal K, Sprenger N, Rahman M, Palleja A, Eklund AC, Nielsen HB, Brüssow H, Sarker SA, Sakwinska O. The Influence of FUT2 and FUT3 Polymorphisms and Nasopharyngeal Microbiome on Respiratory Infections in Breastfed Bangladeshi Infants from the Microbiota and Health Study. mSphere 2021; 6:e0068621. [PMID: 34756056 PMCID: PMC8579893 DOI: 10.1128/msphere.00686-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Acute respiratory infections (ARIs) are one of the most common causes of morbidity and mortality in young children. The aim of our study was to examine whether variation in maternal FUT2 (α1,2-fucosyltransferase 2) and FUT3 (α1,3/4-fucosyltransferase 3) genes, which shape fucosylated human milk oligosaccharides (HMOs) in breast milk, are associated with the occurrence of ARIs in breastfed infants as well as the influence of the nasopharyngeal microbiome on ARI risk. Occurrences of ARIs were prospectively recorded in a cohort of 240 breastfed Bangladeshi infants from birth to 2 years. Secretor and Lewis status was established by sequencing of FUT2/3 genes. The nasopharyngeal microbiome was characterized by shotgun metagenomics, complemented by specific detection of respiratory pathogens; 88.6% of mothers and 91% of infants were identified as secretors. Maternal secretor status was associated with reduced ARI incidence among these infants in the period from birth to 6 months (incidence rate ratio [IRR], 0.66; 95% confidence interval [CI], 0.47 to 0.94; P = 0.020), but not at later time periods. The nasopharyngeal microbiome, despite precise characterization to the species level, was not predictive of subsequent ARIs. The observed risk reduction of ARIs among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. However, we found no evidence that modulation of the nasopharyngeal microbiome influenced ARI risk. IMPORTANCE The observed risk reduction of acute respiratory infections (ARIs) among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. Respiratory pathogens were only weak modulators of risk, and the nasopharyngeal microbiome did not influence ARI risk, suggesting that the associated protective effects of human milk oligosaccharides (HMOs) are not conveyed via changes in the nasopharyngeal microbiome. Our observations add to the evidence for a role of fucosylated HMOs in protection against respiratory infections in exclusively or predominantly breastfed infants in low-resource settings. There is no indication that the nasopharyngeal microbiome substantially modulates the risk of subsequent mild ARIs. Larger studies are needed to provide mechanistic insights on links between secretor status, HMOs, and risk of respiratory infections.
Collapse
Affiliation(s)
| | | | - Shamima Sultana
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | | | | | | | | | - Mahbubar Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | | | - Shafiqul Alam Sarker
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | |
Collapse
|
17
|
Karamzin AM, Ropot AV, Sergeyev OV, Khalturina EO. Akkermansia muciniphila and host interaction within the intestinal tract. Anaerobe 2021; 72:102472. [PMID: 34743983 DOI: 10.1016/j.anaerobe.2021.102472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
In the modern world, metabolic syndrome is one of the major health problems. Heredity, overeating, and a sedentary lifestyle are believed to be the main predisposing factors for its development. However, recent data indicate that gut microbiota plays a significant role in metabolic profile formation. In 2004, Derrien et al. isolated and characterized the bacterium Akkermansia muciniphila, which lives mainly in the human intestine and has the ability to utilize intestinal mucin. It proved to be a good candidate for the role of a new-generation probiotic due to its ability to improve the laboratory and physical indicators associated with metabolic syndrome and type 2 diabetes in mice and humans. In this review, we describe the basic microbiological characteristics of this bacterium, its main habitats, clinical effects after oral administration, and different ways of influencing the digestive tract. All these data allow us to understand the mechanism of its beneficial effects, which is important for its future introduction into the treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Andrei M Karamzin
- Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street, 8, Moscow, Russian Federation.
| | - Anastasiia V Ropot
- Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street, 8, Moscow, Russian Federation.
| | - Oleg V Sergeyev
- Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street, 8, Moscow, Russian Federation.
| | - Evgenia O Khalturina
- Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street, 8, Moscow, Russian Federation.
| |
Collapse
|
18
|
Xu L, Earl J, Pichichero ME. Nasopharyngeal microbiome composition associated with Streptococcus pneumoniae colonization suggests a protective role of Corynebacterium in young children. PLoS One 2021; 16:e0257207. [PMID: 34529731 PMCID: PMC8445455 DOI: 10.1371/journal.pone.0257207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is a leading respiratory tract pathogen that colonizes the nasopharynx (NP) through adhesion to epithelial cells and immune evasion. Spn actively interacts with other microbiota in NP but the nature of these interactions are incompletely understood. Using 16S rRNA gene sequencing, we analyzed the microbiota composition in the NP of children with or without Spn colonization. 96 children were included in the study cohort. 74 NP samples were analyzed when children were 6 months old and 85 NP samples were analyzed when children were 12 months old. We found several genera that correlated negatively or positively with Spn colonization, and some of these correlations appeared to be influenced by daycare attendance or other confounding factors such as upper respiratory infection (URI) or Moraxella colonization. Among these genera, Corynebacterium showed a consistent inverse relationship with Spn colonization with little influence by daycare attendance or other factors. We isolated Corynebacterium propinquum and C. pseudodiphtheriticum and found that both inhibited the growth of Spn serotype 22F strain in vitro.
Collapse
Affiliation(s)
- Lei Xu
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, New York, United States of America
| | - Joshua Earl
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Wang Q, Lin X, Xiang X, Liu W, Fang Y, Chen H, Tang F, Guo H, Chen D, Hu X, Wu Q, Zhu B, Xia J. Oropharyngeal Probiotic ENT-K12 Prevents Respiratory Tract Infections Among Frontline Medical Staff Fighting Against COVID-19: A Pilot Study. Front Bioeng Biotechnol 2021; 9:646184. [PMID: 34249878 PMCID: PMC8264449 DOI: 10.3389/fbioe.2021.646184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Healthcare workers at the frontline are facing a substantial risk of respiratory tract infection during the COVID-19 outbreak due to an extremely stressful work schedule and public health event. A well-established first-line defense on oropharyngeal microbiome could be a promising strategy to protect individuals from respiratory tract infections including COVID-19. The most thoroughly studied oropharyngeal probiotic product which creates a stable upper respiratory tract microbiota capable of preventing upper respiratory tract infections was chosen to evaluate the safety and efficacy on reducing episodes of upper respiratory tract infections for COVID-19 healthcare workers. To our knowledge to date, this is the very first study describing the beneficial effects of oropharyngeal probiotic been administered by healthcare workers during the COVID-19 pandemic. In this randomized controlled trial, we provided the probiotics to frontline medical staff who work in the hospitals in Wuhan and had been in close contact with hospitalized COVID-19 patients for prophylactic use on a daily basis. Our finding suggests that oropharyngeal probiotic administration significantly reduced the incidence of respiratory tract infections by 64.8%, reduced the time experiencing respiratory tract infections and oral ulcer symptoms by 78%, shortened the days absent from work by 95.5%, and reduced the time under medication where there is no record of antibiotic and anti-viral drug intake in the probiotic group. Furthermore, medical staff treated with Bactoblis experienced sustained protection from respiratory tract infections since the 10th day of oropharyngeal probiotic administration resulting in an extremely low incidence rate of respiratory tract infections.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xuan Lin
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Wanxin Liu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Fang
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Haiping Chen
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Fang Tang
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hongyan Guo
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Di Chen
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiafen Hu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Junbo Xia
- Department of Pulmonary Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Wu Y, Li H, Xu D, Li H, Chen Z, Cheng Y, Yin G, Niu Y, Liu C, Kan H, Yu D, Chen R. Associations of fine particulate matter and its constituents with airway inflammation, lung function, and buccal mucosa microbiota in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145619. [PMID: 33926694 DOI: 10.1016/j.scitotenv.2021.145619] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Previous studies have suggested acute effects of ambient fine particulate matter (PM2.5) air pollution on respiratory health among children, but evidence for PM2.5 constituents and respiratory health were still limited. OBJECTIVES To investigate associations of short-term exposure to PM2.5 and its constituents with airway inflammation, lung function, and airway microbiota in children. METHODS We conducted a longitudinal panel study with 3 repeated health measurements among 62 children in Shanghai, China from November 2018 to June 2019. Respiratory health was measured by fractional exhaled nitric oxide (FeNO), saliva tumor necrosis factor-α (TNF-α), lung function (forced vital capacity and forced exhaled volume in 1 s), and microbiota diversity in buccal mucosa samples. Based on the linear mixed-effect models, we applied the single-constituent models and the constituent-PM2.5 adjustment models to examine the associations between PM2.5 constituents and health outcomes. RESULT Short-term exposure to PM2.5 was associated with higher TNF-α, FeNO levels and reduced lung function. Among all constituents, organic carbon, elemental carbon, NO3- and NH4+ had the consistent and strongest associations with airway inflammation biomarkers and lung function parameters, followed by metallic elements. We also found short-term PM2.5 exposure was associated with decreased diversity in buccal mucosa bacterial community and two bacterial phyla, Fusobacteria and Proteobacteria, were identified as differential microbes with PM2.5 exposure. CONCLUSION Short-term exposure to PM2.5 may impair children's respiratory health represented by higher airway inflammation, lower lung function and altered buccal mucosa microbial colonization. Organic carbon, elemental carbon, NO3- and NH4+ may dominate these effects.
Collapse
Affiliation(s)
- Yihan Wu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Hongjin Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Dong Xu
- Xuhui District Center for Disease Prevention and Control, Shanghai 200237, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H.Chan School of Public Health, Boston, MA 02115, USA
| | - Zhe Chen
- Xuhui District Center for Disease Prevention and Control, Shanghai 200237, China
| | - Yu Cheng
- Xuhui District Center for Disease Prevention and Control, Shanghai 200237, China
| | - Guanjin Yin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Dedong Yu
- Department of 2nd Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai, Key Laboratory of Meteorology and Health, Shanghai, 200030, China.
| |
Collapse
|
21
|
Abstract
The nasopharyngeal microbiome is a dynamic microbial interface of the aerodigestive tract, and a diagnostic window in the fight against respiratory infections and antimicrobial resistance. As its constituent bacteria, viruses and mycobacteria become better understood and sampling accuracy improves, diagnostics of the nasopharynx could guide more personalized care of infections of surrounding areas including the lungs, ears and sinuses. This review will summarize the current literature from a clinical perspective and highlight its growing importance in diagnostics and infectious disease management.
Collapse
Affiliation(s)
- Matthew Flynn
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
- Otolaryngology Department, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - James Dooley
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
22
|
Xu R, Liu P, Zhang T, Wu Q, Zeng M, Ma Y, Jin X, Xu J, Zhang Z, Zhang C. Progressive deterioration of the upper respiratory tract and the gut microbiomes in children during the early infection stages of COVID-19. J Genet Genomics 2021; 48:803-814. [PMID: 34238684 PMCID: PMC8163695 DOI: 10.1016/j.jgg.2021.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
Children are less susceptible to coronavirus disease 2019 (COVID-19), and they have manifested lower morbidity and mortality after infection, for which a multitude of mechanisms may be considered. Whether the normal development of the gut-airway microbiome in children is affected by COVID-19 has not been evaluated. Here, we demonstrate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alters the upper respiratory tract and the gut microbiomes in nine children. The alteration of the microbiome is dominated by the genus Pseudomonas, and it sustains for up to 25–58 days in different individuals. Moreover, the patterns of alternation are different between the upper respiratory tract and the gut. Longitudinal investigation shows that the upper respiratory tract and the gut microbiomes are extremely variable among children during the course of COVID-19. The dysbiosis of microbiome persists in 7 of 8 children for at least 19–24 days after discharge from the hospital. Disturbed development of both the gut and the upper respiratory microbiomes and prolonged dysbiosis in these nine children imply possible long-term complications after clinical recovery from COVID-19, such as predisposition to the increased health risk in the post-COVID-19 era.
Collapse
Affiliation(s)
- Rong Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Pathogen Discovery and Evolution Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengcheng Liu
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Mei Zeng
- Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jin Xu
- Children's Hospital of Fudan University, Shanghai 201102, China.
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China.
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| |
Collapse
|
23
|
Xu L, Earl J, Bajorski P, Gonzalez E, Pichichero ME. Nasopharyngeal microbiome analyses in otitis-prone and otitis-free children. Int J Pediatr Otorhinolaryngol 2021; 143:110629. [PMID: 33516061 DOI: 10.1016/j.ijporl.2021.110629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES About 10-15% children develop frequent acute otitis media (AOM) confirmed by tympanocentesis. These children are designated sOP (stringently defined otitis-prone) because all AOM episodes have been microbiologically confirmed. The cause of otitis-proneness in sOP children is multi-factorial, including frequent otopathogen nasopharyngeal (NP) colonization and deficiency in innate and adaptive immune responses. A largely unexplored contributor to otitis proneness is NP microbiome composition. Since the microbiome modulates otopathogen NP colonization and immune responses, we hypothesized that the NP microbiome composition in sOP children might be dysregulated. METHODS We performed 16S rRNA sequencing to analyze microbiome composition in 157 NP samples from 28 sOP and 68 AOM-free children when they were 6 months or 12 months old and healthy. Bioinformatic approaches were employed to examine the composition difference between the two populations and its correlation with changes in levels of inflammatory cytokines. RESULTS A different global microbiome profile and reduced alpha diversity was observed in the NP microbiome of sOP children when 6 months old, compared with that from AOM-free children of the same age. This difference was resolved when groups were compared at 12 months old. We found 4 bacterial genera-Bacillus, Veillonella, Gemella, and Prevotella-correlated with higher levels of pro-inflammatory cytokines in the NP. Those 4 bacterial genera were in lower abundance in sOP compared to AOM-free children. CONCLUSION Dysbiosis occurs in the NP microbiome of sOP children at an early age even when they were healthy. This dysbiosis correlates with a lower inflammatory state in the NP of these children.
Collapse
Affiliation(s)
- Lei Xu
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Josh Earl
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA, 19102, USA
| | - Peter Bajorski
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Eduardo Gonzalez
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Michael E Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, Rochester, NY, 14621, USA.
| |
Collapse
|
24
|
Park IH, Lee JS, Park JH, Kang SH, Hong SM, Park IS, Yoon JH, Hong SJ. Comparison of the human microbiome in adults and children with chronic rhinosinusitis. PLoS One 2020; 15:e0242770. [PMID: 33264344 PMCID: PMC7710060 DOI: 10.1371/journal.pone.0242770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
We hypothesized that differences in the microbiome could be a cause of the substantial differences in the symptoms of and treatment options for adult and pediatric patients with chronic rhinosinusitis (CRS). First, we characterized the differences in the nasal microbiomes of pediatric and adult CRS patients. Swabs were obtained from 19 patients with chronic rhinosinusitis (9 children and 10 adults). The bacterial 16S rRNA gene was pyrosequenced to compare the microbiota of the middle meatus. No significant differences were found in species richness and alpha-diversity indices between the two groups. However, in the comparison of diversity between groups using the unweighted pair group method with arithmetic mean (UPGMA) clustering of microbiome taxonomic profiles, we observed a relatively clear separation between the adult and pediatric groups. Actinobacteria had a significantly higher relative abundance in the adult group than in the pediatric group at the phylum level. At the genus level, Corynebacterium showed significantly higher relative abundance in the adult group than in the pediatric group. This is a comparative study between the microbiomes of adult and pediatric CRS patients. We expect this study to be the first step in understanding the pathogenesis of CRS in adults and children using microbiome analysis.
Collapse
Affiliation(s)
- Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Disease Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Joong Seob Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang-Si, Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Disease Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Sung Hun Kang
- Department of Biomedical Sciences, Hallym University College of Medicine, Chuncheon, Korea
| | - Seok Min Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-Si, Korea
| | - Il Seok Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-Si, Korea
| | - Joo Heung Yoon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Seok Jin Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-Si, Korea
| |
Collapse
|
25
|
Jokicevic K, Kiekens S, Byl E, De Boeck I, Cauwenberghs E, Lebeer S, Kiekens F. Probiotic nasal spray development by spray drying. Eur J Pharm Biopharm 2020; 159:211-220. [PMID: 33238191 DOI: 10.1016/j.ejpb.2020.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
The upper respiratory tract (URT) is the main entrance point for many viral and bacterial pathogens, and URT infections are among the most common infections in the world. Recent evidences by our own group and others imply the importance of lactobacilli as gatekeepers of a healthy URT. However, the benefits of putting health-promoting microbes or potential probiotics, such as these URT lactobacilli, in function of URT disease control and prevention is underestimated, among others because of the absence of adequate formulation modalities. Therefore, this study entails important aspects in probiotic nasal spray development with a novel URT-derived probiotic strain by spray drying. We report quantitative and qualitative analysis of several spray-dried formulations, i.e. powders for reconstitution, based on disaccharide or sugar alcohol combinations with a polymer, including their long-term stability. Four formulations with the highest survival of >109 (Colony Forming Units) CFU/g after 28 weeks were further examined upon reconstitution which confirmed sufficiency of one bottle/dosage form during 7 days and rheological properties of shear-thinning. Tests also demonstrated maintained viability and cell morphology overall upon spraying through a nasal spray bottle in all 4 formulations. Lastly, application suitability in terms of high adherence to Calu-3 cells and antimicrobial activity against common URT pathogens was demonstrated and was not impacted neither by powder production process nor by spraying of reconstituted powder through a nasal spray device.
Collapse
Affiliation(s)
- Katarina Jokicevic
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Shari Kiekens
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Eline Byl
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ilke De Boeck
- University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Eline Cauwenberghs
- University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Sarah Lebeer
- University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Filip Kiekens
- University of Antwerp, Department of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
26
|
Clark SE. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr Opin Immunol 2020; 66:42-49. [PMID: 32416468 PMCID: PMC7665980 DOI: 10.1016/j.coi.2020.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
The human body is host to several distinct microbial communities. Disruption of these communities increases susceptibility to a wide range of diseases, including respiratory tract infections. While commensal bacteria in the gut contribute to this effect, recent studies point to a role for commensals occupying the upper respiratory tract through direct pathogen killing and by modifying nasal and lung immune homeostasis. Clinical trials exploring 'probiotic' respiratory tract commensals are an exciting development in this area. Upper respiratory tract microbiome sequencing has revealed that destabilization of this community precedes infection, indicating that microbiome profiling of individuals has predictive value. Further investigation of respiratory tract commensal-host interactions will be critical to translate bacterial-mediated protection toward new therapeutic approaches for respiratory tract disease.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
27
|
DeMuri GP, Eickhoff JC, Gern JC, Wald ER. Clinical and Virological Characteristics of Acute Sinusitis in Children. Clin Infect Dis 2020; 69:1764-1770. [PMID: 30649261 PMCID: PMC7108184 DOI: 10.1093/cid/ciz023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/11/2019] [Indexed: 11/14/2022] Open
Abstract
Background Acute bacterial sinusitis is a frequent complication of viral upper respiratory infection (URI). We describe the clinical and virologic features of URIs that remain uncomplicated and those that precede an episode of sinusitis. We hypothesize that certain viruses are more likely to lead to acute sinusitis, and we compare viruses identified at the time of diagnosis of sinusitis with those identified early in the URI. Methods Children aged 48–96 months were followed longitudinally for 1 year. Nasal samples were obtained at surveillance visits, on Day 3–4 of the URI, and on Day 10, when sinusitis was diagnosed. Molecular diagnostic testing was performed on nasal washes for common respiratory viruses and pathogenic bacteria. A standardized score was used to quantify symptom severity. Results We evaluated 519 URIs, and 37 illnesses in 31 patients met the criteria for sinusitis. Respiratory syncytial virus was detected more frequently in URI visits that led to sinusitis, compared to in uncomplicated URIs (10.8% vs 3.4%; P = .05). New viruses were detected in 29% of sinusitis episodes, and their pattern was different than those patterns observed at surveillance. The median number of URIs per subject per year was 1 (range 0–9) in uncomplicated URI subjects and 3 (range 1–9) in sinusitis subjects (P < .001). Conclusions Children who developed sinusitis experienced more frequent URIs, compared to children whose URIs remained uncomplicated. When nasal samples were obtained on the day of diagnosis of acute sinusitis, nearly 30% of children had a new virus identified, suggesting that some children deemed to have sinusitis were experiencing sequential viral infections.
Collapse
Affiliation(s)
- Gregory P DeMuri
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison
| | - James C Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Ellen R Wald
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
28
|
Zhao F, Jiang G, Ji C, Zhang Z, Gao W, Feng P, Li H, Li M, Liu H, Liu G, Magalhaes HB, Li J. Effects of long-distance transportation on blood constituents and composition of the nasal microbiota in healthy donkeys. BMC Vet Res 2020; 16:338. [PMID: 32933535 PMCID: PMC7493398 DOI: 10.1186/s12917-020-02563-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND This study aims to determine the effects of transportation on the nasal microbiota of healthy donkeys using 16S rRNA sequencing. RESULTS Deep nasal swabs and blood were sampled from 14 donkeys before and after 21 hours' long-distance transportation. The values of the plasma hormone (cortisol (Cor), adrenocorticotrophic hormone (ACTH)), biochemical indicators (total protein (TP), albumin (ALB), creatinine (CREA), lactic dehydrogenase (LDH), aspartate transaminase (AST), creatine kinase (CK), blood urea (UREA), plasma glucose (GLU)) and blood routine indices (white blood cell (WBC), lymphocyte (LYM), neutrophil (NEU), red blood cell (RBC), hemoglobin (HGB)) were measured. 16S rRNA sequencing was used to assess the nasal microbiota, including alpha diversity, beta diversity, and phylogenetic structures. Results showed that levels of Cor, ACTH, and heat-shock protein 90 (HSP90) were significantly increased (p < 0.05) after long-distance transportation. Several biochemical indicators (AST, CK) and blood routine indices (Neu, RBC, and HGB) increased markedly (p < 0.05), but the LYM decreased significantly (p < 0.05). Nine families and eight genera had a mean relative abundance over 1%. The predominant phyla in nasal microbiota after and before transportation were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Transportation stress induced significant changes in terms of nasal microbiota structure compared with those before transportation based on principal coordinate analysis (PCoA) coupled with analysis of similarities (ANOSIM) (p < 0.05). Among these changes, a notably gain in Proteobacteria and loss in Firmicutes at the phylum level was observed. CONCLUSIONS These results suggest transportation can cause stress to donkeys and change the richness and diversity of nasal microbiota. Further studies are required to understand the potential effect of these microbiota changes on the development of donkey respiratory diseases.
Collapse
Affiliation(s)
- Fuwei Zhao
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, P.R. China. .,National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China.
| | - Guimiao Jiang
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China.,Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Chuanliang Ji
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Zhiping Zhang
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450002, Zhengzhou, China
| | - Weiping Gao
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Peixiang Feng
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Haijing Li
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Min Li
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Haibing Liu
- National Engineering Research Center for Gelatin-based TCM, Dong-E E-Jiao Co., Ltd, 78 E-Jiao Street Donge County, Liaocheng, 252201, Shandong Province, China
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng, China
| | - Humberto B Magalhaes
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Sp, 18618-681, Botucatu, Brazil
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, P.R. China.
| |
Collapse
|
29
|
Marazzato M, Zicari AM, Aleandri M, Conte AL, Longhi C, Vitanza L, Bolognino V, Zagaglia C, De Castro G, Brindisi G, Schiavi L, De Vittori V, Reddel S, Quagliariello A, Del Chierico F, Putignani L, Duse M, Palamara AT, Conte MP. 16S Metagenomics Reveals Dysbiosis of Nasal Core Microbiota in Children With Chronic Nasal Inflammation: Role of Adenoid Hypertrophy and Allergic Rhinitis. Front Cell Infect Microbiol 2020; 10:458. [PMID: 32984078 PMCID: PMC7492700 DOI: 10.3389/fcimb.2020.00458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Allergic rhinitis (AR) and adenoid hypertrophy (AH) are, in children, the main cause of partial or complete upper airway obstruction and reduction in airflow. However, limited data exist about the impact of the increased resistance to airflow, on the nasal microbial composition of children with AR end AH. Allergic rhinitis (AR) as well as adenoid hypertrophy (AH), represent extremely common pathologies in this population. Their known inflammatory obstruction is amplified when both pathologies coexist. In our study, the microbiota of anterior nares of 75 pediatric subjects with AR, AH or both conditions, was explored by 16S rRNA-based metagenomic approach. Our data show for the first time, that in children, the inflammatory state is associated to similar changes in the microbiota composition of AR and AH subjects respect to the healthy condition. Together with such alterations, we observed a reduced variability in the between-subject biodiversity on the other hand, these same alterations resulted amplified by the nasal obstruction that could constitute a secondary risk factor for dysbiosis. Significant differences in the relative abundance of specific microbial groups were found between diseased phenotypes and the controls. Most of these taxa belonged to a stable and quantitatively dominating component of the nasal microbiota and showed marked potentials in discriminating the controls from diseased subjects. A pauperization of the nasal microbial network was observed in diseased status in respect to the number of involved taxa and connectivity. Finally, while stable co-occurrence relationships were observed within both control- and diseases-associated microbial groups, only negative correlations were present between them, suggesting that microbial subgroups potentially act as maintainer of the eubiosis state in the nasal ecosystem. In the nasal ecosystem, inflammation-associated shifts seem to impact the more intimate component of the microbiota rather than representing the mere loss of microbial diversity. The discriminatory potential showed by differentially abundant taxa provide a starting point for future research with the potential to improve patient outcomes. Overall, our results underline the association of AH and AR with the impairment of the microbial interplay leading to unbalanced ecosystems.
Collapse
Affiliation(s)
- Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Anna Maria Zicari
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Marta Aleandri
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Antonietta Lucia Conte
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Catia Longhi
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Luca Vitanza
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Vanessa Bolognino
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Giovanna De Castro
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Giulia Brindisi
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Laura Schiavi
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Valentina De Vittori
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Sofia Reddel
- Unit of Human Microbiome, Area of Genetics and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Quagliariello
- Unit of Human Microbiome, Area of Genetics and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Area of Genetics and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Parasitology and Area of Genetics and Rare Diseases, Unit of Human Microbiome, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marzia Duse
- Department of Pediatrics, Faculty of Medicine and Odontology, "Sapienza" University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, San Raffaele Pisana, IRCCS, Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Microbiology Section, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
30
|
Niu Y, Chen R, Wang C, Wang W, Jiang J, Wu W, Cai J, Zhao Z, Xu X, Kan H. Ozone exposure leads to changes in airway permeability, microbiota and metabolome: a randomised, double-blind, crossover trial. Eur Respir J 2020; 56:13993003.00165-2020. [DOI: 10.1183/13993003.00165-2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/05/2020] [Indexed: 11/05/2022]
|
31
|
Noland D, Drisko JA, Wagner L. Respiratory. INTEGRATIVE AND FUNCTIONAL MEDICAL NUTRITION THERAPY 2020. [PMCID: PMC7120155 DOI: 10.1007/978-3-030-30730-1_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lung disease rivals the position for the top cause of death worldwide. Causes and pathology of the myriad lung diseases are varied, yet nutrition can either affect the outcome or support treatment in the majority of cases. This chapter explores the modifiable risk factors, from lifestyle changes to dietary intake to specific nutrients, anti-nutrients, and toxins helpful for the nutritionist or dietitian working with lung disease patients. General lung health is discussed, and three major disease states are explored in detail, including alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Although all lung diseases have diverse causes, many integrative and functional medical nutrition therapies are available and are not being utilized in practice today. This chapter begins the path toward better nutrition education for the integrative and functional medicine professional.
Collapse
Affiliation(s)
| | - Jeanne A. Drisko
- Professor Emeritus, School of Medicine, University of Kansas Health System, Kansas City, KS USA
| | - Leigh Wagner
- Department of Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS USA
| |
Collapse
|
32
|
LeMessurier KS, Iverson AR, Chang TC, Palipane M, Vogel P, Rosch JW, Samarasinghe AE. Allergic inflammation alters the lung microbiome and hinders synergistic co-infection with H1N1 influenza virus and Streptococcus pneumoniae in C57BL/6 mice. Sci Rep 2019; 9:19360. [PMID: 31852944 PMCID: PMC6920369 DOI: 10.1038/s41598-019-55712-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic airways condition that can be exacerbated during respiratory infections. Our previous work, together with epidemiologic findings that asthmatics were less likely to suffer from severe influenza during the 2009 pandemic, suggest that additional complications of influenza such as increased susceptibility to bacterial superinfection, may be mitigated in allergic hosts. To test this hypothesis, we developed a murine model of 'triple-disease' in which mice rendered allergic to Aspergillus fumigatus were co-infected with influenza A virus and Streptococcus pneumoniae seven days apart. Significant alterations to known synergistic effects of co-infection were noted in the allergic mice including reduced morbidity and mortality, bacterial burden, maintenance of alveolar macrophages, and reduced lung inflammation and damage. The lung microbiome of allergic mice differed from that of non-allergic mice during co-infection and antibiotic-induced perturbation to the microbiome rendered allergic animals susceptible to severe morbidity. Our data suggest that responses to co-infection in allergic hosts likely depends on the immune and microbiome states and that antibiotics should be used with caution in individuals with underlying chronic lung disease.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Paediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
- Children's Foundation Research Institute, Memphis, TN, 38103, USA
| | - Amy R Iverson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Maneesha Palipane
- Department of Paediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
- Children's Foundation Research Institute, Memphis, TN, 38103, USA
| | - Peter Vogel
- Department of Veterinary Pathology at St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Amali E Samarasinghe
- Department of Paediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
- Children's Foundation Research Institute, Memphis, TN, 38103, USA.
| |
Collapse
|
33
|
Airway Mucus Restricts Neisseria meningitidis Away from Nasopharyngeal Epithelial Cells and Protects the Mucosa from Inflammation. mSphere 2019; 4:4/6/e00494-19. [PMID: 31801841 PMCID: PMC6893211 DOI: 10.1128/msphere.00494-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
N. meningitidis is transmitted from person to person by aerosol droplets produced by breathing, talking, or coughing or by direct contact with a contaminated fluid. The natural reservoir of N. meningitidis is the human nasopharynx mucosa, located at the back of the nose and above the oropharynx. The means by which meningococci cross the nasopharyngeal wall is still under debate, due to the lack of a convenient and relevant model mimicking the nasopharyngeal niche. Here, we took advantage of Calu-3 cells grown in air interface culture to study how meningococci colonize the nasopharyngeal niche. We report that the airway mucus is both a niche for meningococcal growth and a protective barrier against N. meningitidis infection. As such, N. meningitidis behaves like commensal bacteria and is unlikely to induce infection without an external trigger. Neisseria meningitidis is an inhabitant of the nasopharynx, from which it is transmitted from person to person or disseminates in blood and becomes a harmful pathogen. In this work, we addressed colonization of the nasopharyngeal niche by focusing on the interplay between meningococci and the airway mucus that lines the mucosa of the host. Using Calu-3 cells grown in air interface culture (cells grown with the apical domain facing air), we studied meningococcal colonization of the mucus and the host response. Our results suggested that N. meningitidis behaved like commensal bacteria in mucus, without interacting with human cells or actively transmigrating through the cell layer. As a result, type IV pili do not play a role in this model, and meningococci did not trigger a strong innate immune response from the Calu-3 cells. Finally, we have shown that this model is suitable for studying interaction of N. meningitidis with other bacteria living in the nasopharynx and that Streptococcus mitis, but not Moraxella catarrhalis, can promote meningococcal growth in this model. IMPORTANCEN. meningitidis is transmitted from person to person by aerosol droplets produced by breathing, talking, or coughing or by direct contact with a contaminated fluid. The natural reservoir of N. meningitidis is the human nasopharynx mucosa, located at the back of the nose and above the oropharynx. The means by which meningococci cross the nasopharyngeal wall is still under debate, due to the lack of a convenient and relevant model mimicking the nasopharyngeal niche. Here, we took advantage of Calu-3 cells grown in air interface culture to study how meningococci colonize the nasopharyngeal niche. We report that the airway mucus is both a niche for meningococcal growth and a protective barrier against N. meningitidis infection. As such, N. meningitidis behaves like commensal bacteria and is unlikely to induce infection without an external trigger.
Collapse
|
34
|
Yin Q, Hou S, Yin H, Mu D, Jiang D, Tian F, Li JJ, Huang F. The analgesic and anti-inflammatory effects of zukamu granules, a traditional Chinese medical formulation. PHARMACEUTICAL BIOLOGY 2019; 57:729-735. [PMID: 31794281 PMCID: PMC6913673 DOI: 10.1080/13880209.2019.1675716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 05/24/2023]
Abstract
Context: Zukamu granule, a traditional Chinese medicine, has shown clinical treatment efficacy. However, the pharmacodynamic effects and possible anti-inflammatory mechanisms of zukamu are still unclear.Objective: To investigate the analgesic and anti-inflammatory effects and possible mechanisms of zukamu granules on acute lung injury.Materials and methods: Kunming mice and Sprague Dawley rats were gavaged with zukamu (1.35, 2.7 and 5.4 g/kg, respectively) or ganmaoling (GMLG; 2.7 g/kg) once a day for 7 d. Dexamethasone treatment (5 mg/kg) were administered only on the last day. Analgesic effects were evaluated through the hot plate test and acetic acid writhing test. The expression of cytokines and proteins was measured in serum and lung tissues to elucidate the efficacy of zukamu against lung injury.Results: Significant analgesic effects were observed at 30 min after zukamu administration at medium and high doses (p < 0.05), but the effect was not obvious at low dose until 60 min post-administration (p > 0.05). Zukamu treatment at all doses notably reduced the lung wet-to-dry (W/D) ratios compared to that of model rats (p < 0.05) and the effect was more evident at high dose compared to those at medium and low doses. The levels of cytokines and proteins in the lung tissues were inhibited by zukamu.Conclusions: Zukamu exhibited analgesic and protective effects against lung injury via regulating NF-κB signalling and inflammatory cytokines. As zukamu granules contain multiple ingredients, further exploration of the mechanisms underlying its analgesic and anti-inflammatory functions were needed.
Collapse
Affiliation(s)
- Qiang Yin
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, PR China
- Xinjiang Uygur Pharmaceutical Co., Ltd, Wulumuqi, PR China
| | - Shuaihong Hou
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, PR China
| | - Hailong Yin
- Xinjiang Uygur Pharmaceutical Co., Ltd, Wulumuqi, PR China
| | - Dandan Mu
- Xinjiang Uygur Pharmaceutical Co., Ltd, Wulumuqi, PR China
| | - Dajun Jiang
- Xinjiang Uygur Pharmaceutical Co., Ltd, Wulumuqi, PR China
| | - Fang Tian
- Xinjiang Uygur Pharmaceutical Co., Ltd, Wulumuqi, PR China
| | - Jing Jing Li
- Ministry of Education, Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Wuhan, PR China
| | - Fang Huang
- Department of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, PR China
| |
Collapse
|
35
|
Xu Q, Gill S, Xu L, Gonzalez E, Pichichero ME. Comparative Analysis of Microbiome in Nasopharynx and Middle Ear in Young Children With Acute Otitis Media. Front Genet 2019; 10:1176. [PMID: 31803245 PMCID: PMC6877732 DOI: 10.3389/fgene.2019.01176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/24/2019] [Indexed: 01/05/2023] Open
Abstract
Acute otitis media (AOM) is the most common pediatric infection for which antibiotics are prescribed in the United States. The role of the respiratory tract microbiome in pathogenesis and immune modulation of AOM remains unexplored. We sought to compare the nasopharyngeal (NP) microbiome of children 1 to 3 weeks prior to onset of AOM vs. at onset of AOM, and the NP microbiome with the microbiome in middle ear (ME). Six children age 6 to 24 months old were studied. Nasal washes (NW) were collected at healthy visits 1 to 3 weeks prior to AOM and at onset of AOM. The middle ear fluids (MEF) were collected by tympanocentesis at onset of AOM. Samples were stored in Trizol reagents or phosphate-buffered saline (PBS) at -80°C until use. The microbiome was characterized by 16S rRNA gene sequencing. Taxonomic designations and relative abundance of bacteria were determined using the RDP classifier tool through QIIME. Cumulative sum scaling normalization was applied before determining bacterial diversity and abundance. Shannon diversity index was calculated in Microsoft excel. The relative abundance of each bacteria species was compared via Mann-Whitney U test. We found that the NW microbiome of children during healthy state or at baseline was more diverse than microbiome during AOM. At AOM, no significant difference in microbiome diversity was found between NW and MEF, although some bacteria species appear to differ in MEF than in NW. The microbiome of samples stored in PBS had significant greater diversity than samples stored in Trizol reagent.
Collapse
Affiliation(s)
- Qingfu Xu
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| | - Steve Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Lei Xu
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| | - Eduardo Gonzalez
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| | - Michael E Pichichero
- Center for Infectious Disease and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| |
Collapse
|
36
|
Lung Microbiome in Asthma: Current Perspectives. J Clin Med 2019; 8:jcm8111967. [PMID: 31739446 PMCID: PMC6912699 DOI: 10.3390/jcm8111967] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence implicates the human microbiome as a potentially influential player actively engaged in shaping the pathogenetic processes underlying the endotypes and phenotypes of chronic respiratory diseases, particularly of the airways. In this article, we specifically review current evidence on the characteristics of lung microbiome, and specifically the bacteriome, the modes of interaction between lung microbiota and host immune system, the role of the “lung–gut axis”, and the functional effects thereof on asthma pathogenesis. We also attempt to explore the possibilities of therapeutic manipulation of the microbiome, aiming at the establishment of asthma prevention strategies and the optimization of asthma treatment.
Collapse
|
37
|
McCauley K, Durack J, Valladares R, Fadrosh DW, Lin DL, Calatroni A, LeBeau PK, Tran HT, Fujimura KE, LaMere B, Merana G, Lynch K, Cohen RT, Pongracic J, Khurana Hershey GK, Kercsmar CM, Gill M, Liu AH, Kim H, Kattan M, Teach SJ, Togias A, Boushey HA, Gern JE, Jackson DJ, Lynch SV. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J Allergy Clin Immunol 2019; 144:1187-1197. [PMID: 31201890 PMCID: PMC6842413 DOI: 10.1016/j.jaci.2019.05.035] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND In infants, distinct nasopharyngeal bacterial microbiotas differentially associate with the incidence and severity of acute respiratory tract infection and childhood asthma development. OBJECTIVE We hypothesized that distinct nasal airway microbiota structures also exist in children with asthma and relate to clinical outcomes. METHODS Nasal secretion samples (n = 3122) collected after randomization during the fall season from children with asthma (6-17 years, n = 413) enrolled in a trial of omalizumab (anti-IgE) underwent 16S rRNA profiling. Statistical analyses with exacerbation as the primary outcome and rhinovirus infection and respiratory illnesses as secondary outcomes were performed. Using A549 epithelial cells, we assessed nasal isolates of Moraxella, Staphylococcus, and Corynebacterium species for their capacity to induce epithelial damage and inflammatory responses. RESULTS Six nasal airway microbiota assemblages, each dominated by Moraxella, Staphylococcus, Corynebacterium, Streptococcus, Alloiococcus, or Haemophilus species, were observed. Moraxella and Staphylococcus species-dominated microbiotas were most frequently detected and exhibited temporal stability. Nasal microbiotas dominated by Moraxella species were associated with increased exacerbation risk and eosinophil activation. Staphylococcus or Corynebacterium species-dominated microbiotas were associated with reduced respiratory illness and exacerbation events, whereas Streptococcus species-dominated assemblages increased the risk of rhinovirus infection. Nasal microbiota composition remained relatively stable despite viral infection or exacerbation; only a few taxa belonging to the dominant genera exhibited relative abundance fluctuations during these events. In vitro, Moraxella catarrhalis induced significantly greater epithelial damage and inflammatory cytokine expression (IL-33 and IL-8) compared with other dominant nasal bacterial isolates tested. CONCLUSION Distinct nasal airway microbiotas of children with asthma relate to the likelihood of exacerbation, rhinovirus infection, and respiratory illnesses during the fall season.
Collapse
Affiliation(s)
- Kathryn McCauley
- Department of Medicine, University of California, San Francisco, Calif
| | - Juliana Durack
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Douglas W Fadrosh
- Department of Medicine, University of California, San Francisco, Calif
| | - Din L Lin
- Department of Medicine, University of California, San Francisco, Calif
| | | | | | | | - Kei E Fujimura
- Department of Medicine, University of California, San Francisco, Calif
| | - Brandon LaMere
- Department of Medicine, University of California, San Francisco, Calif
| | - Geil Merana
- Department of Medicine, University of California, San Francisco, Calif
| | - Kole Lynch
- Department of Medicine, University of California, San Francisco, Calif
| | | | | | | | - Carolyn M Kercsmar
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Michelle Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Andrew H Liu
- Department of Pedatrics and Pulmonology Medicine, National Jewish Health, Denver, Colo; Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Haejin Kim
- Department of Internal Medicine, Division of Allergy and Immunology, Henry Ford Health System, Detroit, Mich
| | - Meyer Kattan
- College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Homer A Boushey
- Department of Medicine, University of California, San Francisco, Calif
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco, Calif.
| |
Collapse
|
38
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
39
|
Coureuil M, Jamet A, Bille E, Lécuyer H, Bourdoulous S, Nassif X. Molecular interactions between Neisseria meningitidis and its human host. Cell Microbiol 2019; 21:e13063. [PMID: 31167044 PMCID: PMC6899865 DOI: 10.1111/cmi.13063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Neisseria meningitidis is a Gram‐negative bacterium that asymptomatically colonises the nasopharynx of humans. For an unknown reason, N. meningitidis can cross the nasopharyngeal barrier and invade the bloodstream where it becomes one of the most harmful extracellular bacterial pathogen. This infectious cycle involves the colonisation of two different environments. (a) In the nasopharynx, N. meningitidis grow on the top of mucus‐producing epithelial cells surrounded by a complex microbiota. To survive and grow in this challenging environment, the meningococcus expresses specific virulence factors such as polymorphic toxins and MDAΦ. (b) Meningococci have the ability to survive in the extra cellular fluids including blood and cerebrospinal fluid. The interaction of N. meningitidis with human endothelial cells leads to the formation of typical microcolonies that extend overtime and promote vascular injury, disseminated intravascular coagulation, and acute inflammation. In this review, we will focus on the interplay between N. meningitidis and these two different niches at the cellular and molecular level and discuss the use of inhibitors of piliation as a potent therapeutic approach.
Collapse
Affiliation(s)
- Mathieu Coureuil
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France
| | - Anne Jamet
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Emmanuelle Bille
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Hervé Lécuyer
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Université de Paris, UMR_S 1151, Paris, France.,Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France
| | - Xavier Nassif
- Inserm, Institut Necker Enfants Malades, U1151, Paris, France.,Université de Paris, UMR_S 1151, Paris, France.,CNRS, UMR 8253, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
40
|
Bugova G, Janickova M, Uhliarova B, Babela R, Jesenak M. The effect of passive smoking on bacterial colonisation of the upper airways and selected laboratory parameters in children. ACTA ACUST UNITED AC 2019; 38:431-438. [PMID: 30498271 PMCID: PMC6265669 DOI: 10.14639/0392-100x-1573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022]
Abstract
Exposure to tobacco smoke is associated with a higher risk of respiratory tract diseases. The aim of this study was to determine the influence of passive smoking on selected characteristics of children with adenoid hypertrophy. Sixty-one children with adenoid hypertrophy were enrolled in the prospective study. Differences in bacterial colonisation of middle nasal meatus and nasopharynx and changes in selected laboratory immune and inflammatory markers according to the tobacco smoke exposure were analysed. Exposure to tobacco smoke was associated with significantly higher colonisation of pathogenic bacteria and polymicrobial growth of pathogenic bacteria (≥ 2 bacteria) in middle nasal meatus compared to non-exposed children (P = 0.045, P = 0.032, respectively). Identification of pathogenic bacteria in the middle nasal meatus did not correlate with isolation of pathogenic bacteria in the nasopharynx in either group of children. Parameters of humoral immunity in serum, IgA and IgG, were detected at higher concentrations in children exposed to tobacco smoke (P = 0.047, P = 0.031, respectively). Differences in selected parameters of cellular immunity in peripheral blood according to passive smoking were not observed. Tobacco smoke exposure is related to increased colonisation by pathogenic bacteria in middle nasal meatus and elevation of IgA and IgG in peripheral blood, but does not seem to influence markers of cellular immunity parameters in children with adenoid hypertrophy. Avoidance of passive smoking could be recommended as a universal preventive strategy against microbial colonisation of the upper airways and development of various inflammatory diseases in children, e.g. adenoid hypertrophy.
Collapse
Affiliation(s)
- G Bugova
- Department of Otorhinolaryngology, Head and Neck Surgery, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| | - M Janickova
- Department of Stomatology and Maxillofacial Surgery, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovakia
| | - B Uhliarova
- Department of Otorhinolaryngology, FD Roosevelt Faculty Hospital, Banska Bystrica, Slovakia
| | - R Babela
- Institute of Healthcare Disciplines, St. Elisabeth University, Bratislava, Slovakia
| | - M Jesenak
- Department of Paediatrics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, University Hospital, Martin, Slovakia
| |
Collapse
|
41
|
Dubourg G, Edouard S, Raoult D. Relationship between nasopharyngeal microbiota and patient's susceptibility to viral infection. Expert Rev Anti Infect Ther 2019; 17:437-447. [PMID: 31106653 DOI: 10.1080/14787210.2019.1621168] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: The burden of respiratory viral infections is a global public health concern with significant mortality, morbidity, and economic impact. While Koch's postulate led to considering only the etiological agent, numerous works have demonstrated that commensal microbes could contribute to both the susceptibility and the severity of these infections, in particular those of the nasopharynx. Areas covered: Herein, we first propose to briefly recall the historical background that led to considering microbes inhabiting the nasopharyngeal microbiota as a potential contributor to human viral infections. We describe the evolution of the normal nasopharyngeal microbiota composition over time, especially during the first year of life. We aimed to resume the changes of the nasopharyngeal microbiota during viral respiratory infections. We also develop how nasopharyngeal microbiota could contribute to the acquisition of respiratory viral infections. We finally provide the potential therapeutic perspectives deriving from these findings. Expert opinion: Prospective studies focusing on children have identified that nasopharyngeal microbiota composition is associated with predisposition to acute respiratory illness and bronchiolitis, while data are scarce regarding adults. For the latter, further works are needed, in particular as a part of the multi-OMICS approach that should probably be performed in conjunction with gut microbiota studies.
Collapse
Affiliation(s)
- Grégory Dubourg
- a IRD, Assistance Publique Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI) , Aix Marseille University , Marseille , France.,b IHU-Méditerranée Infection , Marseille , France
| | - Sophie Edouard
- a IRD, Assistance Publique Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI) , Aix Marseille University , Marseille , France.,b IHU-Méditerranée Infection , Marseille , France
| | - Didier Raoult
- a IRD, Assistance Publique Hôpitaux de Marseille (APHM), Microbes, Evolution, Phylogeny and Infection (MEPHI) , Aix Marseille University , Marseille , France.,b IHU-Méditerranée Infection , Marseille , France
| |
Collapse
|
42
|
Vaughn A, Shaver C, Clark D. Association Between Culture and Culture-Independent Microtyping in Recalcitrant Chronic Rhinosinusitis. EAR, NOSE & THROAT JOURNAL 2019; 98:94-97. [PMID: 30813804 DOI: 10.1177/0145561318823371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND: Many different etiologies have been proposed to be responsible for the pathogenesis of chronic rhinosinusitis, including dysbiosis of the sinus microbiome. Attempts have recently been made to identify a pathogenic organism via advanced culture mechanisms. The purpose of this study is to use culture-dependent and culture-independent means of microtyping to determine whether any association exists between the quantity and quality of bacteria identified in patients with recalcitrant chronic rhinosinusitis. METHODS: Medical records were retrospectively reviewed for patients with a history of revision sinus surgery and persistent symptoms who underwent endoscopically directed culture and underwent quantitative polymerase chain reaction analysis of the 16S ribosomal RNA of bacteria and fungi from February 1, 2014, to January 1, 2017. A total of 21 patients met the inclusion criteria. Medical records were reviewed to determine the number of bacterial isolates and relative abundance of bacteria and fungi on culture and polymerase chain reaction. RESULTS: Using culture-independent techniques of examining purulent secretions in patients with recalcitrant chronic rhinosinusitis, an average of 3.61 isolates were identified per specimen, compared with culture-dependent methods that revealed 2.10 isolates per specimen ( P < .05). The dominant species identified on each culture was rarely the most abundant species identified using polymerase chain reaction techniques. CONCLUSIONS: Traditional culture methodologies may fail to identify potential pathogens or the dominant pathogen in patients with recalcitrant chronic rhinosinusitis with acute exacerbations.
Collapse
Affiliation(s)
- Andrew Vaughn
- 1 Department of Surgery, Scott & White Medical Center-Temple, Division of Otolaryngology, Temple, TX, USA.,2 Texas A&M College of Medicine, TX, USA
| | | | - David Clark
- 1 Department of Surgery, Scott & White Medical Center-Temple, Division of Otolaryngology, Temple, TX, USA.,2 Texas A&M College of Medicine, TX, USA
| |
Collapse
|
43
|
Challenges of next-generation sequencing targeting anaerobes. Anaerobe 2019; 58:47-52. [PMID: 30769104 DOI: 10.1016/j.anaerobe.2019.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 12/15/2022]
Abstract
Next-generation sequencing allows for investigating the composition of microbiomes that are associated with infection (clinical microbiology) or dysbiosis (microbial ecology). The most commonly applied short-read sequencing technologies are Illumina MiSeq/HiSeq and Ion Torrent PGM, however, other platforms that generate long-reads are under way and optimized. A pre-condition for representative results is an appropriate method for contamination-free collection, homogenization, storage of specimens and a subsequent efficient DNA extraction protocol. As some of the anaerobes such as Clostridia or anaerobe Archaea are robust while others of the same environment, such as spirochetes, possess a very thin cell wall, a chemico-mechanical lysing strategy is recommended but with some precautions to avoid DNA-sheering and overheating. For amplicon sequencing, the Silva-TestPrime online tool helps to find the optimal 16S directed primers for individual studies. For metagenome profiling, the classifier tool has to be selected with helpful decision trees available but a combination based on different strategies seems to be indispensable. Further development of both hard- and software is needed before microbiome results become free of a substantial technology-dependent bias.
Collapse
|
44
|
Qin T, Zhang F, Zhou H, Ren H, Du Y, Liang S, Wang F, Cheng L, Xie X, Jin A, Wu Y, Zhao J, Xu J. High-Level PM2.5/PM10 Exposure Is Associated With Alterations in the Human Pharyngeal Microbiota Composition. Front Microbiol 2019; 10:54. [PMID: 30804895 PMCID: PMC6379047 DOI: 10.3389/fmicb.2019.00054] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies showed that high concentration of particulate matter (PM) 2.5 and PM10 carried a large number of bacterial and archaeal species, including pathogens and opportunistic pathogens. In this study, pharyngeal swabs from 83 subjects working in an open air farmer's market were sampled before and after exposure to smog with PM2.5 and PM10 levels up to 200 and 300 μg/m3, respectively. Their microbiota were investigated using high-throughput sequencing targeting the V3-V4 regions of the 16S rRNA gene. The genus level phylotypes was increased from 649 to 767 in the post-smog pharyngeal microbiota, of which 142 were new and detected only in the post-smog microbiota. The 142 new genera were traced to sources such as soil, marine, feces, sewage sludge, freshwater, hot springs, and saline lakes. The abundance of the genera Streptococcus, Haemophilus, Moraxella, and Staphylococcus increased in the post-smog pharyngeal microbiota. All six alpha diversity indices and principal component analysis showed that the taxonomic composition of the post-smog pharyngeal microbiota was significantly different to that of the pre-smog pharyngeal microbiota. Redundancy analysis showed that the influences of PM2.5/PM10 exposure and smoking on the taxonomic composition of the pharyngeal microbiota were statistically significant (p < 0.001). Two days of exposure to high concentrations of PM2.5/PM10 changed the pharyngeal microbiota profiles, which may lead to an increase in respiratory diseases. Wearing masks could reduce the effect of high-level PM2.5/PM10 exposure on the pharyngeal microbiota.
Collapse
Affiliation(s)
- Tian Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai, China
| | - Furong Zhang
- Centre for Disease Control and Prevention of Liaocheng, Liaocheng, China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai, China
| | - Hongyu Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yinju Du
- Centre for Disease Control and Prevention of Liaocheng, Liaocheng, China
| | - Shengnan Liang
- Centre for Disease Control and Prevention of Liaocheng, Liaocheng, China
| | - Fei Wang
- Centre for Disease Control and Prevention of Liaocheng, Liaocheng, China
| | - Lihong Cheng
- Centre for Disease Control and Prevention of Liaocheng, Liaocheng, China
| | - Xuguang Xie
- Centre for Disease Control and Prevention of Liaocheng, Liaocheng, China
| | - Aoming Jin
- Peking University Clinical Research Institute, Beijing, China
| | - Yangfeng Wu
- Peking University Clinical Research Institute, Beijing, China
| | - Jinxing Zhao
- Centre for Disease Control and Prevention of Liaocheng, Liaocheng, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai, China
| |
Collapse
|
45
|
Abstract
A wide variety of microorganisms are potential respiratory pathogens, and the spectrum of known pathogens for each respiratory infection syndrome has not changed markers over recent years. Detection of likely etiologic agents of respiratory infections can help direct management and can also play an important role in disease surveillance. For this purpose, we are still reliant on many traditional diagnostic tools that have been used for decades in order to determine the microbial etiology of respiratory infections. However, these tools have been increasingly supplemented by newer methods, particular molecular diagnostic techniques, which have enabled the more rapid detection of many pathogens that were previously difficult to detect. These advances have particularly lead to improvements in the ability to detect respiratory viruses and also other microorganisms that do not normally colonize the respiratory tract. Recognition of the existence of the lung microbiome has challenged the traditional views of pneumonia pathogenesis and may provide the opportunity for new diagnostic tools that are focused on more than just detection of specific known pathogens. Continued liaison between clinicians and laboratory staff is vital in order to facilitate the most cost-effective use of laboratory diagnostics.
Collapse
|
46
|
Teo SM, Tang HHF, Mok D, Judd LM, Watts SC, Pham K, Holt BJ, Kusel M, Serralha M, Troy N, Bochkov YA, Grindle K, Lemanske RF, Johnston SL, Gern JE, Sly PD, Holt PG, Holt KE, Inouye M. Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host Microbe 2018; 24:341-352.e5. [PMID: 30212648 PMCID: PMC6291254 DOI: 10.1016/j.chom.2018.08.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/08/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
Repeated cycles of infection-associated lower airway inflammation drive the pathogenesis of persistent wheezing disease in children. In this study, the occurrence of acute respiratory tract illnesses (ARIs) and the nasopharyngeal microbiome (NPM) were characterized in 244 infants through their first five years of life. Through this analysis, we demonstrate that >80% of infectious events involve viral pathogens, but are accompanied by a shift in the NPM toward dominance by a small range of pathogenic bacterial genera. Unexpectedly, this change frequently precedes the detection of viral pathogens and acute symptoms. Colonization of illness-associated bacteria coupled with early allergic sensitization is associated with persistent wheeze in school-aged children, which is the hallmark of the asthma phenotype. In contrast, these bacterial genera are associated with “transient wheeze” that resolves after age 3 years in non-sensitized children. Thus, to complement early allergic sensitization, monitoring NPM composition may enable early detection and intervention in high-risk children. Six genera dominate airway microbiota from birth to 2 years, but diversifies thereafter Acute respiratory illness associates with pathogenic bacteria in the airway microbiota Pathogenic airway bacteria may precede viral incursions and acute respiratory illness Colonization with pathogens predicts chronic wheeze in allergic-sensitized children
Collapse
Affiliation(s)
- Shu Mei Teo
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Louise M Judd
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen C Watts
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kym Pham
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Barbara J Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Merci Kusel
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Niamh Troy
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Yury A Bochkov
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kristine Grindle
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Lemanske
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sebastian L Johnston
- Airway Disease Infection Section and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane 4101, Australia
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia; Child Health Research Centre, The University of Queensland, Brisbane 4101, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia; The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; The Alan Turing Institute, London, UK.
| |
Collapse
|
47
|
Frost HM, McLean HQ, Chow BDW. Variability in Antibiotic Prescribing for Upper Respiratory Illnesses by Provider Specialty. J Pediatr 2018; 203:76-85.e8. [PMID: 30195553 DOI: 10.1016/j.jpeds.2018.07.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/11/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate variation in antibiotic prescribing between pediatric and nonpediatric providers for common upper respiratory illnesses. STUDY DESIGN Patient encounters for children aged <18 years from a regional health care system were identified. Electronic medical records from 2011 to 2016 were extracted for diagnoses of upper respiratory infection, pharyngitis, acute otitis media, and sinusitis. Encounters with competing medical diagnoses, recent hospitalization, and antibiotic prescriptions within 30 days were excluded. Adherence to antibiotic guidelines was assessed by provider training (pediatric, nonpediatric physicians, and advance practice providers). Additional factors assessed were calendar year, and patient's age, sex, insurance status, and number of sick visits in the prior year. RESULTS Across 6 years, 141 361 visits were examined: 43 914 for upper respiratory infection, 43 701 for pharyngitis, 43 925 for acute otitis media, and 9821 for sinusitis. Pediatricians were more likely than Advanced practice providers (APP) and nonpediatric providers to have guideline-concordant prescribing for pharyngitis (pediatricians, 66.7% [95% CI, 54.5-77.0]; nonpediatricians, 49.1% [95% CI, 36.3-62.0], APPs, 52.2% [95% CI, 39.4-64.7]; P < .0001) and sinusitis (pediatricians, 70.8% [95% CI, 53.8-83.4], nonpediatricians, 63.3% [95% CI, 46.8-77.2], APPs, 62.1% [95% CI, 45.1-76.5]; P = .48) and to withhold antibiotics for upper respiratory infection than APPs and nonpediatric providers (pediatricians, 86.6% [95% CI, 81.2-90.6], nonpediatricians, 80.8% [95% CI, 73.0-86.8], APPs, 76.8% [95% CI, 68.4-83.5]; P < .0001). Pediatricians were less likely to prescribe antibiotics for pharyngitis without a positive test for group A Streptococcus than APPs and nonpediatric providers (pediatricians, 15.1% [95% CI, 10.4-21.6], nonpediatricians, 29.4% [95% CI, 20.8-39.6], APPs, 27.2% [95% CI, 19.3-36.9]; P < .0001). First-line antibiotic prescribing for acute otitis media did not differ between provider specialties. A trend toward more guideline-concordant prescribing was seen for pharyngitis and sinusitis over the study period. CONCLUSIONS Pediatricians were more likely to adhere to guidelines for management of pediatric acute respiratory infections. Pediatric antibiotic stewardship efforts should also target nonpediatricians.
Collapse
Affiliation(s)
- Holly M Frost
- University of Colorado, Department of Pediatrics, Aurora, CO; Denver Health and Hospital Authority, Department of Pediatrics, Denver, CO; Marshfield Clinic Research Institute, Marshfield, WI.
| | | | - Brian D W Chow
- Tufts Medical Center, Division of Geographic Medicine and Infectious Diseases, Boston, MA; Tufts University School of Medicine, Boston, MA
| |
Collapse
|
48
|
Cavuoto KM, Banerjee S, Miller D, Galor A. Composition and Comparison of the Ocular Surface Microbiome in Infants and Older Children. Transl Vis Sci Technol 2018; 7:16. [PMID: 30519501 PMCID: PMC6269136 DOI: 10.1167/tvst.7.6.16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose Unlike other microbiomes of the body, the composition of the ocular surface microbiome (OSM) in children has yet to be thoroughly explored. Our goal was to evaluate the OSM in young infants and compare its composition to older children using both culture dependent and independent methodologies to assess for differences with age. Methods Prospective, observational, cross-sectional study of children <18 years of age at a university-based institution. The mucosal surfaces of both eyes, nose and throat were swabbed with a forensic-quality swab. Half of the swab was plated for culture and the other half underwent 16S sequencing. Culture results and microbiome diversity were analyzed. Results Fifty patients (mean age 37 months, range 1-168 months) were enrolled. Forty-seven eyes of 30 patients had positive cultures; four eyes grew >1 species. Culture positive patients were older (43 vs. 29 months, P = 0.19). Additionally, older children had greater diversity than children under 6 months of age by 16S sequencing (P = 0.05). Staphylococcus species were predominant by culture (35/52 isolates) and by 16S sequencing. The OSM was fairly similar to the nose microbiome, whereas the throat microbiome differed significantly and had a higher abundance of Streptococcaceae (P = 0.001). Conclusions The OSM is predominantly composed of Staphylococcus species in children, as demonstrated by both culture dependent and culture independent methods. Older children were more likely to have growth on culture and have more a complex bacterial milieu with 16S sequencing. Translational Relevance 16S sequencing provides more robust information regarding the composition of the microbiomes than culture dependent methods.
Collapse
Affiliation(s)
- Kara M Cavuoto
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Santanu Banerjee
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Darlene Miller
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Miami Veterans Administration Medical Center, Miami, FL, USA
| |
Collapse
|
49
|
Abstract
Akkermansia muciniphila, a symbiotic bacterium of the mucus layer, can utilize mucin as its sole carbon, nitrogen, and energy source. As an abundant resident in the intestinal tract of humans and animals, the probiotic effects of A. muciniphila including metabolic modulation, immune regulation and gut health protection, have been widely investigated. Various diseases such as metabolic syndromes and auto-immnue diseases have been reported to be associated with the disturbance of the abundance of A. muciniphila. In this review, we describe the biological characterization of A. muciniphia, the factors that influence its colonization of the intestinal tract; and discuss the current state of our knowledge on its role in host health and disease.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Saisai Feng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Narbad Arjan
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China.,Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| |
Collapse
|
50
|
The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur J Clin Microbiol Infect Dis 2018; 37:1725-1733. [DOI: 10.1007/s10096-018-3305-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 01/05/2023]
|