1
|
Barta I, Paska C, Antus B. Sputum Cytokine Profiling in COPD: Comparison Between Stable Disease and Exacerbation. Int J Chron Obstruct Pulmon Dis 2022; 17:1897-1908. [PMID: 36017119 PMCID: PMC9397440 DOI: 10.2147/copd.s364982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Cytokines are extracellular signaling proteins that have been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, we investigated cytokine expression both at the mRNA and protein level in the sputum of healthy individuals, stable COPD patients, and those experiencing a severe acute exacerbation (AECOPD) requiring hospitalization. Patients and Methods Sputum was collected in 19 healthy controls, 25 clinically stable COPD patients, and 31 patients with AECOPD. In AECOPD patients sample collection was performed both at the time of hospital admission and at discharge following treatment. Sputum supernatant was analyzed by an antibody microarray detecting 120 cytokines simultaneously, while the mRNA expression of 14 selected cytokines in sputum cells was investigated by real-time PCR (qPCR). Results Proteomic analysis identified interleukin (IL)-6 and growth-regulated oncogene (GRO)α as the only sputum cytokines that were differentially expressed between stable COPD patients and healthy controls. At the onset of AECOPD, several cytokines exhibited altered sputum expression compared to stable COPD. Recovery from AECOPD induced significant changes in the sputum cytokine protein profile; however, the length of hospitalization was insufficient for most cytokines to return to stable levels. With regard to gene expression analysis by qPCR, we found that bone morphogenetic protein (BMP)-4 was up-regulated, while IL-1α, monokine-induced by interferon-γ (MIG), and BMP-6 were down-regulated at the mRNA level in patients with AECOPD compared to stable disease. Conclusion The sputum cytokine signature of AECOPD differs from that of stable COPD. Protein level changes are asynchronous with changes in gene expression at the mRNA level in AECOPD. The observation that the levels of most cytokines do not stabilize with acute treatment of AECOPD suggests a prolonged effect of exacerbation on the status of COPD patients.
Collapse
Affiliation(s)
- Imre Barta
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Csilla Paska
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Antus
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
2
|
Kho AT, McGeachie MJ, Li J, Chase RP, Amr SS, Hastie AT, Hawkins GA, Li X, Chupp GL, Meyers DA, Bleecker ER, Weiss ST, Tantisira KG. Lung function, airway and peripheral basophils and eosinophils are associated with molecular pharmacogenomic endotypes of steroid response in severe asthma. Thorax 2022; 77:452-460. [PMID: 34580195 PMCID: PMC9016241 DOI: 10.1136/thoraxjnl-2020-215523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Asthma is a complex disease with heterogeneous expression/severity. There is growing interest in defining asthma endotypes consistently associated with different responses to therapy, focusing on type 2 inflammation (Th2) as a key pathological mechanism. Current asthma endotypes are defined primarily by clinical/laboratory criteria. Each endotype is likely characterised by distinct molecular mechanisms that identify optimal therapies. METHODS We applied unsupervised (without a priori clinical criteria) principal component analysis on sputum airway cells RNA-sequencing transcriptomic data from 19 asthmatics from the Severe Asthma Research Program at baseline and 6-8 weeks follow-up after a 40 mg dose of intramuscular corticosteroids. We investigated principal components PC1, PC3 for association with 55 clinical variables. RESULTS PC3 was associated with baseline Th2 clinical features including blood (rank-sum p=0.0082) and airway (rank-sum p=0.0024) eosinophilia, FEV1 change (Kendall tau-b R=-0.333 (-0.592 to -0.012)) and follow-up FEV1 albuterol response (Kendall tau-b R=0.392 (0.079 to 0.634)). PC1 with blood basophlia (rank-sum p=0.0191). The top 5% genes contributing to PC1, PC3 were enriched for distinct immune system/inflammation ontologies suggesting distinct subject-specific clusters of transcriptomic response to corticosteroids. PC3 association with FEV1 change was reproduced in silico in a comparable independent 14-subject (baseline, 8 weeks after daily inhaled corticosteroids (ICS)) airway epithelial cells microRNAome dataset. CONCLUSIONS Transcriptomic PCs from this unsupervised methodology define molecular pharmacogenomic endotypes that may yield novel biology underlying different subject-specific responses to corticosteroid therapy in asthma, and optimal personalised asthma care. Top contributing genes to these PCs may suggest new therapeutic targets.
Collapse
Affiliation(s)
- Alvin T Kho
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jiang Li
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Scientific Research Centre, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sami S Amr
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Partners Personalized Medicine, Partners Healthcare, Boston, Massachusetts, USA
| | - Annette T Hastie
- Center for Genomics and Personalized Medicine Research, Wake Forest Health Sciences, Winston Salem, North Carolina, USA
| | - Gregory A Hawkins
- Center for Genomics and Personalized Medicine Research, Wake Forest Health Sciences, Winston Salem, North Carolina, USA
| | - Xingnan Li
- Division of Genetics, Genomics and Precision Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Geoffrey L Chupp
- Pulmonary & Critical Care Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Partners Personalized Medicine, Partners Healthcare, Boston, Massachusetts, USA
| | - Kelan G Tantisira
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Frøssing L, Silberbrandt A, Von Bülow A, Kjaersgaard Klein D, Ross Christensen M, Backer V, Baines KJ, Porsbjerg C. Airway gene expression identifies subtypes of type 2 inflammation in severe asthma. Clin Exp Allergy 2021; 52:59-69. [PMID: 34142396 DOI: 10.1111/cea.13966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Type 2 inflammation is characterized by enhanced activity of interleukin (IL)-4, -5 and -13, and treatments targeting these pathways are available for treatment of severe asthma. At present, the pattern of pathway activity and the implications overlapping of pathway activity are unknown. OBJECTIVE We hypothesized that clustering of airway mRNA expression would identify distinct molecular subtypes of severe asthma and thereby uncover the prevalence and overlap of pathway activity. METHODS Sputum mRNA expression of genes related to expression of IL-5(CLC, CPA3 and DNASE1L3), IL-13(IL13Ra1, TNFSF14 and SERPINB2), T1/Th17 activity(IL1B, ALPL and CXCR2) and in vitro response to corticosteroids (FKBP512) and mepolizumab (ARAP3) was analysed in patients (n = 109) with severe asthma and healthy controls (n = 22). A cluster analysis of gene expression was performed. The response to a short course of OCS was assessed in a subset of patients (n = 29). RESULTS Five molecular clusters were identified. Three had abundant T2 gene expression of which two (n = 39 and n = 9) were characterized by abundant expression of both IL-13- and IL-5-related genes. The last (n = 6) had only abundant IL-5-related gene expression. These T2-high molecular clusters could not be distinguished using T2 biomarkers. T2- and Th1/Th17-related mRNA expression were co-expressed across all clusters. OCS significantly reduced T2 gene expression (CLC, IL13Ra1, SERPINB2 and ARAP3) and significantly increase expression of Th1/Th17-related genes (ALPL and CXCR2). CONCLUSIONS AND CLINICAL RELEVANCE Clustering of airway mRNA expression identified five molecular clusters of severe asthma of which three were considered T2 high. Co-expression of IL-5- and IL-13-related genes at moderate levels was present in almost half of patients, while marked elevated expression of both was rare. In contrast to IL-5, clusters with isolated IL-13- and Th1/Th17-related gene expression were not identified.
Collapse
Affiliation(s)
- Laurits Frøssing
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Alexander Silberbrandt
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anna Von Bülow
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Ditte Kjaersgaard Klein
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Marcus Ross Christensen
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Katherine J Baines
- The Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Celeste Porsbjerg
- Respiratory Research Unit, Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
4
|
Novosad J, Krčmová I, Bartoš V, Drahošová M, Vaník P, Růžičková-Kirchnerová O, Teřl M, Krejsek J. Serum periostin levels in asthma patients in relation to omalizumab therapy and presence of chronic rhinosinusitis with nasal polyps. Postepy Dermatol Alergol 2020; 37:240-249. [PMID: 32489361 PMCID: PMC7262810 DOI: 10.5114/ada.2020.94842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/19/2018] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The serum periostin level is a promising biomarker of type 2- high inflammation pattern of bronchial asthma. It has been proven that serum periostin levels decrease in response to systemic and inhaled corticosteroid (ICS) therapy. However, we have only limited knowledge about changes in serum periostin levels reflecting omalizumab (OMA) treatment and other variables, such as chronic rhinosinusitis with nasal polyps (CRSwNP). AIM To critically appraise clinically relevant parameters influencing periostin levels in asthma patients. MATERIAL AND METHODS A pilot, cross-sectional, observational study to assess serum periostin levels of 48 asthma patients (38 treated by conventional therapy comprising ICS and 10 treated by ICS and OMA as an add-on therapy) with respect to asthma clinical traits, comorbidities and to other biomarkers of type 2-high asthma phenotype (total IgE, absolute and relative eosinophil count, eosinophilic cationic protein (ECP) and a fraction of exhaled NO (FeNO)). RESULTS Serum periostin correlates with total IgE levels (Spearman rho = 0.364, p = 0.025) in a subgroup of conventionally treated patients, and with eosinophil count (Spearman rho = 0.401, p = 0.021) in a subgroup of patients with concurrent CRSwNP. Serum periostin levels were decreased in omalizumab-treated patients in comparison to conventionally treated patients (p = 0.025). This effect was remarkably apparent only if CRSwNP was not present (p = 0.005). Conversely, we measured elevated periostin levels in OMA-treated patients with concurrent CRSwNP (p = 0.017). CONCLUSIONS Serum periostin production is significantly associated with treatment modality (omalizumab vs. conventional) and presence of CRSwNP. These variables need to be taken into account to interpret periostin levels accurately.
Collapse
Affiliation(s)
- Jakub Novosad
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Irena Krčmová
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Vladimír Bartoš
- Department of Pulmonary Medicine, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Marcela Drahošová
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Petr Vaník
- Department of Respiratory Diseases, Hospital in České Budějovice, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic
| | - Olga Růžičková-Kirchnerová
- Department of Pulmonary Medicine, University Hospital in Pilsen, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Milan Teřl
- Department of Pulmonary Medicine, University Hospital in Pilsen, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The long-term management goals of the inflammatory airway diseases asthma and chronic obstructive pulmonary disease (COPD) are similar and focus on symptom control and reduction of exacerbation frequency and severity. Treatable traits have recently been postulated as a management concept which complements the traditional diagnostic labels 'asthma' and 'COPD', thereby focusing on therapy targeted to a patients' individual disease-associated characteristics. Exhaled volatile organic compounds (VOCs) may be utilized as noninvasive biomarker for disease activity or manifestation in asthma and COPD. In this review, we provide an overview of the current achievements concerning exhaled breath analysis in the field of uncontrolled chronic airways diseases. RECENT FINDINGS Monitoring of (airway) inflammation and identification of (molecular) phenotypic characteristics in asthma and COPD through exhaled VOC analysis by either mass spectrometry (MS) based or sensor-driven electronic nose technology (eNose) seems to be feasible, however pending confirmation could hamper the valorization of breathomics into clinical tests. SUMMARY Exhaled VOC analysis and the management of asthma and COPD through the concept of pulmonary treatable traits are an interesting match. To develop exhaled breath analysis into an added value for pulmonary treatable traits, multicentre studies are required following international standards for study populations, sampling methods and analytical strategies enabling external validation.
Collapse
|
6
|
Gómez-Carballa A, Cebey-López M, Pardo-Seco J, Barral-Arca R, Rivero-Calle I, Pischedda S, Currás-Tuala MJ, Gómez-Rial J, Barros F, Martinón-Torres F, Salas A. A qPCR expression assay of IFI44L gene differentiates viral from bacterial infections in febrile children. Sci Rep 2019; 9:11780. [PMID: 31409879 PMCID: PMC6692396 DOI: 10.1038/s41598-019-48162-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022] Open
Abstract
The diagnosis of bacterial infections in hospital settings is currently performed using bacterial culture from sterile site, but they are lengthy and limited. Transcriptomic biomarkers are becoming promising tools for diagnosis with potential applicability in clinical settings. We evaluated a RT-qPCR assay for a 2-transcript host expression signature (FAM89A and IFI44L genes) inferred from microarray data that allow to differentiate between viral and bacterial infection in febrile children. This assay was able to discriminate viral from bacterial infections (P-value = 1.04 × 10-4; AUC = 92.2%; sensitivity = 90.9%; specificity = 85.7%) and showed very high reproducibility regardless of the reference gene(s) used to normalize the data. Unexpectedly, the monogenic IFI44L expression signature yielded better results than those obtained from the 2-transcript test (P-value = 3.59 × 10-5; AUC = 94.1%; sensitivity = 90.9%; specificity = 92.8%). We validated this IFI44L signature in previously published microarray and whole-transcriptome data from patients affected by different types of viral and bacterial infections, confirming that this gene alone differentiates between both groups, thus saving time, effort, and costs. Herein, we demonstrate that host expression microarray data can be successfully translated into a fast, highly accurate and relatively inexpensive in vitro assay that could be implemented in the clinical routine.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain.
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain.
| | - Miriam Cebey-López
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| | - Ruth Barral-Arca
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sara Pischedda
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Currás-Tuala
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Gómez-Rial
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Barros
- Unidad de Medicina Molecular, Fundación Pública Galega de Medicina Xenómica, CIBERER, Santiago de Compostela, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
| |
Collapse
|
7
|
Baos S, Calzada D, Cremades-Jimeno L, de Pedro M, Sastre J, Picado C, Quiralte J, Florido F, Lahoz C, Cárdaba B. Discriminatory Molecular Biomarkers of Allergic and Nonallergic Asthma and Its Severity. Front Immunol 2019; 10:1051. [PMID: 31143187 PMCID: PMC6521078 DOI: 10.3389/fimmu.2019.01051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Asthma is a complex disease comprising various phenotypes and endotypes, all of which still need solid biomarkers for accurate classification. In a previous study, we defined specific genes related to asthma and respiratory allergy by studying the expression of 94 genes in a population composed of 4 groups of subjects: healthy control, nonallergic asthmatic, asthmatic allergic, and nonasthmatic allergic patients. An analysis of differential gene expression between controls and patients revealed a set of statistically relevant genes mainly associated with disease severity, i.e., CHI3L1, IL-8, IL-10, MSR1, PHLDA1, PI3, and SERPINB2. Here, we analyzed whether these genes and their proteins could be potential asthma biomarkers to distinguish between nonallergic asthmatic and asthmatic allergic subjects. Protein quantification was determined by ELISA (in serum) or Western blot (in protein extracted from peripheral blood mononuclear cells or PBMCs). Statistical analyses were performed by unpaired t-test using the Graph-Pad program. The sensitivity and specificity of the gene and protein expression of several candidate biomarkers in differentiating the two groups (and the severity subgroups) was performed by receiver operating characteristic (ROC) curve analysis using the R program. The ROC curve analysis determined single genes with good sensitivity and specificity for discriminating some of the phenotypes. However, interesting combinations of two or three protein biomarkers were found to distinguish the asthma disease and disease severity between the different phenotypes of this pathology using reproducible techniques in easy-to-obtain samples. Gene and protein panels formed by single biomarkers and biomarker combinations have been defined in easily obtainable samples and by standardized techniques. These panels could be useful for characterizing phenotypes of asthma, specifically when differentiating asthma severity.
Collapse
Affiliation(s)
- Selene Baos
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - David Calzada
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | | | | | - Joaquín Sastre
- CIBERES, CIBER of Respiratory Diseases, Madrid, Spain.,Allergy Department, Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - César Picado
- CIBERES, CIBER of Respiratory Diseases, Madrid, Spain.,Pulmonology Department, Clinic de Barcelona Hospital, Institut d'Investigacions Biomèdiques August Pi iSunyer, Barcelona, Spain
| | - Joaquín Quiralte
- Allergy Department, Vírgen del Rocío University Hospital, Seville, Spain
| | - Fernando Florido
- Allergy Department, San Cecilio University Hospital, Granada, Spain
| | - Carlos Lahoz
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain
| | - Blanca Cárdaba
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.,CIBERES, CIBER of Respiratory Diseases, Madrid, Spain
| |
Collapse
|
8
|
Paska C, Barta I, Drozdovszky O, Antus B. Elimination of bacterial DNA during RNA isolation from sputum: Bashing bead vortexing is preferable over prolonged DNase treatment. PLoS One 2019; 14:e0214609. [PMID: 30921416 PMCID: PMC6438495 DOI: 10.1371/journal.pone.0214609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/17/2019] [Indexed: 11/18/2022] Open
Abstract
Sputum often contains large amounts of contaminating bacterial DNA that, if not eliminated during RNA isolation, may interfere with gene expression studies. During RNA isolation only repeated DNase treatment can effectively remove contaminating bacterial DNA from samples, but this compromises RNA quality. In this study we tested alternative methods to facilitate the removal of DNA and improve the quality of RNA obtained. Sputum samples obtained from patients with chronic obstructive pulmonary disease were processed with dithiothreitol and subjected to various RNA isolation methods, yet with modified protocols. Modifications included prolonged DNase treatment or vortexing of sputum cells in the presence of beads prior to RNA isolation. Bacterial DNA contamination was tested by PCR using universal bacterial primers, while RNA quality was assessed by real-time PCR using GAPDH primers for amplicons of different length. We found that the RNeasy Plus Mini kit equipped with the gDNA eliminator spin column was able to completely eliminate bacterial DNA, if sputum cells were lysed in the presence of bashing beads. Notably, compared with the standard protocol, the modified procedure yielded better quality RNA as well, as indicated by improved threshold profiles of qPCR. Bead vortexing of cells was less effective when combined with other RNA isolation methods, and the repeated DNase treatment needed to completely remove contaminating DNA from the samples reduced the quality of RNA markedly. Bead vortexing in combination with certain RNA extraction methods greatly facilitates the isolation of sputum RNA that is free of contaminating bacterial DNA, and is suitable for downstream applications.
Collapse
Affiliation(s)
- Csilla Paska
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Imre Barta
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Orsolya Drozdovszky
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Antus
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
- * E-mail:
| |
Collapse
|
9
|
Farzan N, Vijverberg SJ, Kabesch M, Sterk PJ, Maitland-van der Zee AH. The use of pharmacogenomics, epigenomics, and transcriptomics to improve childhood asthma management: Where do we stand? Pediatr Pulmonol 2018; 53:836-845. [PMID: 29493882 DOI: 10.1002/ppul.23976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/01/2018] [Indexed: 01/11/2023]
Abstract
Asthma is a complex multifactorial disease and it is the most common chronic disease in children. There is a high variability in response to asthma treatment, even in patients with good adherence to maintenance treatment, and a correct inhalation technique. Distinct underlying disease mechanisms in childhood asthma might be the reason of this heterogeneity. A deeper knowledge of the underlying molecular mechanisms of asthma has led to the recent development of advanced and mechanism-based treatments such as biologicals. However, biologicals are recommended only for patients with specific asthma phenotypes who remain uncontrolled despite high dosages of conventional asthma treatment. One of the main unmet needs in their application is lack of clinically available biomarkers to individualize pediatric asthma management and guide treatment. Pharmacogenomics, epigenomics, and transcriptomics are three omics fields that are rapidly advancing and can provide tools to identify novel asthma mechanisms and biomarkers to guide treatment. Pharmacogenomics focuses on variants in the DNA, epigenomics studies heritable changes that do not involve changes in the DNA sequence but lead to alteration of gene expression, and transcriptomics investigates gene expression by studying the complete set of mRNA transcripts in a cell or a population of cells. Advances in high-throughput technologies and statistical tools together with well-phenotyped patient inclusion and collaborations between different centers will expand our knowledge of underlying molecular mechanisms involved in disease onset and progress. Furthermore, it could help to select and stratify appropriate therapeutic strategies for subgroups of patients and hopefully bring precision medicine to daily practice.
Collapse
Affiliation(s)
- Niloufar Farzan
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J Vijverberg
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
The road to precision medicine in asthma: challenges and opportunities. Curr Opin Pulm Med 2018; 24:1-3. [PMID: 29045293 DOI: 10.1097/mcp.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Horváth I, Barnes PJ, Loukides S, Sterk PJ, Högman M, Olin AC, Amann A, Antus B, Baraldi E, Bikov A, Boots AW, Bos LD, Brinkman P, Bucca C, Carpagnano GE, Corradi M, Cristescu S, de Jongste JC, Dinh-Xuan AT, Dompeling E, Fens N, Fowler S, Hohlfeld JM, Holz O, Jöbsis Q, Van De Kant K, Knobel HH, Kostikas K, Lehtimäki L, Lundberg J, Montuschi P, Van Muylem A, Pennazza G, Reinhold P, Ricciardolo FLM, Rosias P, Santonico M, van der Schee MP, van Schooten FJ, Spanevello A, Tonia T, Vink TJ. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J 2017; 49:49/4/1600965. [PMID: 28446552 DOI: 10.1183/13993003.00965-2016] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Breath tests cover the fraction of nitric oxide in expired gas (FeNO), volatile organic compounds (VOCs), variables in exhaled breath condensate (EBC) and other measurements. For EBC and for FeNO, official recommendations for standardised procedures are more than 10 years old and there is none for exhaled VOCs and particles. The aim of this document is to provide technical standards and recommendations for sample collection and analytic approaches and to highlight future research priorities in the field. For EBC and FeNO, new developments and advances in technology have been evaluated in the current document. This report is not intended to provide clinical guidance on disease diagnosis and management.Clinicians and researchers with expertise in exhaled biomarkers were invited to participate. Published studies regarding methodology of breath tests were selected, discussed and evaluated in a consensus-based manner by the Task Force members.Recommendations for standardisation of sampling, analysing and reporting of data and suggestions for research to cover gaps in the evidence have been created and summarised.Application of breath biomarker measurement in a standardised manner will provide comparable results, thereby facilitating the potential use of these biomarkers in clinical practice.
Collapse
Affiliation(s)
- Ildiko Horváth
- Dept of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | | | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieann Högman
- Centre for Research & Development, Uppsala University/Gävleborg County Council, Gävle, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, Sahlgrenska Academy and University Hospital, Goteborg, Sweden
| | - Anton Amann
- Innsbruck Medical University, Innsbruck, Austria
| | - Balazs Antus
- Dept of Pathophysiology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Andras Bikov
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Agnes W Boots
- Dept of Pharmacology and Toxicology, University of Maastricht, Maastricht, The Netherlands
| | - Lieuwe D Bos
- Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Brinkman
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Caterina Bucca
- Biomedical Sciences and Human Oncology, Universita' di Torino, Turin, Italy
| | | | | | - Simona Cristescu
- Dept of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Johan C de Jongste
- Dept of Pediatrics/Respiratory Medicine, Erasmus MC-Sophia Childrens' Hospital, Rotterdam, The Netherlands
| | | | - Edward Dompeling
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Niki Fens
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen Fowler
- Respiratory Research Group, University of Manchester Wythenshawe Hospital, Manchester, UK
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany.,Medizinische Hochschule Hannover, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Quirijn Jöbsis
- Department of Paediatric Respiratory Medicine, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Kim Van De Kant
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hugo H Knobel
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| | | | | | - Jon Lundberg
- Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Montuschi
- Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | - Alain Van Muylem
- Hopital Erasme Cliniques Universitaires de Bruxelles, Bruxelles, Belgium
| | - Giorgio Pennazza
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich Loeffler Institut, Jena, Germany
| | - Fabio L M Ricciardolo
- Clinic of Respiratory Disease, Dept of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Philippe Rosias
- Dept of Paediatrics/Family Medicine Research School CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands.,Dept of Pediatrics, Maasland Hospital, Sittard, The Netherlands
| | - Marco Santonico
- Faculty of Engineering, University Campus Bio-Medico, Rome, Italy
| | - Marc P van der Schee
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Thomy Tonia
- European Respiratory Society, Lausanne, Switzerland
| | - Teunis J Vink
- Philips Research, High Tech Campus 11, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Yang K, Han X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem Sci 2016; 41:954-969. [PMID: 27663237 DOI: 10.1016/j.tibs.2016.08.010] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022]
Abstract
Lipidomics is a newly emerged discipline that studies cellular lipids on a large scale based on analytical chemistry principles and technological tools, particularly mass spectrometry. Recently, techniques have greatly advanced and novel applications of lipidomics in the biomedical sciences have emerged. This review provides a timely update on these aspects. After briefly introducing the lipidomics discipline, we compare mass spectrometry-based techniques for analysis of lipids and summarize very recent applications of lipidomics in health and disease. Finally, we discuss the status of the field, future directions, and advantages and limitations of the field.
Collapse
Affiliation(s)
- Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, USA; College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
13
|
Reber LL, Fahy JV. Mast cells in asthma: biomarker and therapeutic target. Eur Respir J 2016; 47:1040-2. [PMID: 27037311 DOI: 10.1183/13993003.00065-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Laurent L Reber
- Département d'Immunologie, Unité des Anticorps en Thérapie et Pathologie, Institut Pasteur, Paris, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1222, Paris, France
| | - John V Fahy
- The Airway Clinical Research Center, University of California, San Francisco, CA, USA Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA Cardiovascular Research Institute, University of California, San Francisco, CA, USA Sandler Center for Basic Asthma Research, University of California, San Francisco, CA, USA Dept of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Levy BD, Noel PJ, Freemer MM, Cloutier MM, Georas SN, Jarjour NN, Ober C, Woodruff PG, Barnes KC, Bender BG, Camargo CA, Chupp GL, Denlinger LC, Fahy JV, Fitzpatrick AM, Fuhlbrigge A, Gaston BM, Hartert TV, Kolls JK, Lynch SV, Moore WC, Morgan WJ, Nadeau KC, Ownby DR, Solway J, Szefler SJ, Wenzel SE, Wright RJ, Smith RA, Erzurum SC. Future Research Directions in Asthma. An NHLBI Working Group Report. Am J Respir Crit Care Med 2016; 192:1366-72. [PMID: 26305520 DOI: 10.1164/rccm.201505-0963ws] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Asthma is a common chronic disease without cure. Our understanding of asthma onset, pathobiology, classification, and management has evolved substantially over the past decade; however, significant asthma-related morbidity and excess healthcare use and costs persist. To address this important clinical condition, the NHLBI convened a group of extramural investigators for an Asthma Research Strategic Planning workshop on September 18-19, 2014, to accelerate discoveries and their translation to patients. The workshop focused on (1) in utero and early-life origins of asthma, (2) the use of phenotypes and endotypes to classify disease, (3) defining disease modification, (4) disease management, and (5) implementation research. This report summarizes the workshop and produces recommendations to guide future research in asthma.
Collapse
Affiliation(s)
- Bruce D Levy
- 1 Brigham and Women's Hospital, Boston, Massachusetts
| | - Patricia J Noel
- 2 National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | | | | | | | - Nizar N Jarjour
- 5 University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Carole Ober
- 6 The University of Chicago, Chicago, Illinois
| | | | | | | | | | - Geoff L Chupp
- 11 Yale University School of Medicine, New Haven, Connecticut
| | | | - John V Fahy
- 7 University of California at San Francisco, San Francisco, California
| | | | | | - Ben M Gaston
- 13 Case Western Reserve University, Cleveland, Ohio
| | - Tina V Hartert
- 14 Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jay K Kolls
- 15 University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Susan V Lynch
- 7 University of California at San Francisco, San Francisco, California
| | - Wendy C Moore
- 16 Wake Forest School of Medicine, Winston Salem, North Carolina
| | | | - Kari C Nadeau
- 18 Stanford School of Medicine, Stanford, California
| | | | | | - Stanley J Szefler
- 20 Children's Hospital Colorado and the University of Colorado School of Medicine, Denver, Colorado
| | - Sally E Wenzel
- 15 University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Robert A Smith
- 2 National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | | |
Collapse
|
15
|
Corradi M, Goldoni M, Mutti A. A review on airway biomarkers: exposure, effect and susceptibility. Expert Rev Respir Med 2015; 9:205-20. [PMID: 25561087 DOI: 10.1586/17476348.2015.1001373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Current research in pulmonology requires the use of biomarkers to investigate airway exposure and diseases, for both diagnostic and prognostic purposes. The traditional approach based on invasive approaches (lung lavages and biopsies) can now be replaced, at least in part, through the use of non invasively collected specimens (sputum and breath), in which biomarkers of exposure, effect and susceptibility can be searched. The discovery of specific lung-related proteins, which can spill over in blood or excreted in urine, further enhanced the spectrum of airway specific biomarkers to be studied. The recent introduction of high-performance 'omic' technologies - genomics, proteomics and metabolomics, and the rate at which biomarker candidates are being discovered, will permit the use of a combination of biomarkers for a more precise selection of patient with different outcomes and responses to therapies. The aim of this review is to critically evaluate the use of airway biomarkers in the context of research and clinical practice.
Collapse
Affiliation(s)
- Massimo Corradi
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43123 Parma, Italy
| | | | | |
Collapse
|