1
|
Noeraparast M, Krajina K, Pichler R, Niedersüß‐Beke D, Shariat SF, Grünwald V, Ahyai S, Pichler M. FGFR3 alterations in bladder cancer: Sensitivity and resistance to targeted therapies. Cancer Commun (Lond) 2024; 44:1189-1208. [PMID: 39161208 PMCID: PMC11483561 DOI: 10.1002/cac2.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
In this review, we revisit the pivotal role of fibroblast growth factor receptor 3 (FGFR3) in bladder cancer (BLCA), underscoring its prevalence in both non-muscle-invasive and muscle-invasive forms of the disease. FGFR3 mutations in up to half of BLCAs play a well-established role in tumorigenesis, shaping distinct tumor initiation patterns and impacting the tumor microenvironment (TME). Emphasizing the importance of considering epithelial-mesenchymal transition profile and TME status, we revisit their relevance in predicting responses to immune checkpoint inhibitors in FGFR3-mutated BLCAs. This writing highlights the initially promising yet transient efficacy of the FGFR inhibitor Erdafitinib on FGFR3-mutated BLCA, stressing the pressing need to unravel resistance mechanisms and identify co-targets for future combinatorial studies. A thorough analysis of recent preclinical and clinical evidence reveals resistance mechanisms, including secondary mutations, epigenetic alterations in pathway effectors, phenotypic heterogeneity, and population-specific variations within FGFR3 mutational status. Lastly, we discuss the potential of combinatorial treatments and concepts like synthetic lethality for discovering more effective targeted therapies against FGFR3-mutated BLCA.
Collapse
Affiliation(s)
- Maxim Noeraparast
- Translational OncologyII. Med Clinics Hematology and OncologyAugsburgGermany
| | - Katarina Krajina
- Translational OncologyII. Med Clinics Hematology and OncologyAugsburgGermany
| | - Renate Pichler
- Department of UrologyMedical University of InnsbruckInnsbruckAustria
| | | | | | - Viktor Grünwald
- Interdisciplinary Genitourinary OncologyClinic for Urology, Clinic for Medical OncologyUniversity Hospital Essen, Hufelandstraße 55EssenGermany
| | - Sascha Ahyai
- Department of UrologyMedical University of GrazGrazAustria
| | - Martin Pichler
- Translational OncologyII. Med Clinics Hematology and OncologyAugsburgGermany
| |
Collapse
|
2
|
Mishra R, Kilroy MK, Feroz W, Patel H, Garrett JT. HER3 V104 mutations regulate cell signaling, growth, and drug sensitivity in cancer. Mol Carcinog 2024; 63:1528-1541. [PMID: 38751013 DOI: 10.1002/mc.23743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 07/10/2024]
Abstract
HER3 is mutated in ~2%-10% of cancers depending on the cancer type. We found the HER3-V104L mutation to be activating from patient-derived mutations introduced via lentiviral transduction in HER3KO HER2 + HCC1569 breast cancer cells in which endogenous HER3 was eliminated by CRISPR/Cas9. Cells expressing HER3-V104L showed higher p-HER3 and p-ERK1/2 expression versus cells expressing wild-type HER3 or HER3-V104M. Patients whose tumor expressed the HER3 V104L variant had a reduced probability of overall survival compared to patients lacking a HER3 mutation whereas we did not find a statistically significant difference in overall survival of various cancer patients with the HER3 V104M mutation. Our data showed that HER2 inhibitors suppressed cell growth of HCC1569HER3KO cells stably expressing the HER3-V104L mutation. Cancer cell lines (SNU407, UC15 and DV90) with endogenous HER3-V104M mutation showed reduced cell proliferation and p-HER2/p-ERK1/2 expression with HER2 inhibitor treatment. Knock down of HER3 abrogated cell proliferation in the above cell lines which were overall more sensitive to the ERK inhibitor SCH779284 versus PI3K inhibitors. HER3-V104L mutation stabilized HER3 protein expression in COS7 and SNUC5 cells. COS7 cells transiently transfected with the HER3-V104L mutation in the presence of HER binding partners showed higher expression of p-HER3, p-ERK1/2 versus HER3-WT in a NRG-independent manner without any change in AKT signaling. Overall, this study shows the clinical relevance of the HER3 V104L and the V104M mutations and its response to HER2, PI3K and ERK inhibitors.
Collapse
Affiliation(s)
- Rosalin Mishra
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary Kate Kilroy
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Wasim Feroz
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Hima Patel
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Joan T Garrett
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Kilroy MK, Park S, Feroz W, Patel H, Mishra R, Alanazi S, Garrett JT. HER3 Alterations in Cancer and Potential Clinical Implications. Cancers (Basel) 2022; 14:cancers14246174. [PMID: 36551663 PMCID: PMC9776947 DOI: 10.3390/cancers14246174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, the third member of the HER family, kinase impaired HER3, has become a target of interest in cancer as there is accumulating evidence that HER3 plays a role in tumor growth and progression. This review focuses on HER3 activation in bladder, breast, colorectal, and lung cancer disease progression. HER3 mutations occur at a rate up to ~10% of tumors dependent on the tumor type. With patient tumors routinely sequenced for gene alterations in recent years, we have focused on HER3 mutations in bladder, breast, colon, and lung cancers particularly in response to targeted therapies and the potential to become a resistance mechanism. There are currently several HER3 targeting drugs in the pipeline, possibly improving outcomes for cancer patients with tumors containing HER3 activation and/or alterations.
Collapse
Affiliation(s)
- Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hima Patel
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Samar Alanazi
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
4
|
Boch T, Köhler J, Janning M, Loges S. Targeting the EGF receptor family in non-small cell lung cancer-increased complexity and future perspectives. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0540. [PMID: 36476337 PMCID: PMC9724226 DOI: 10.20892/j.issn.2095-3941.2022.0540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-associated mortality worldwide, but with the emergence of oncogene targeted therapies, treatment options have tremendously improved. Owing to their biological relevance, members of the ERBB receptor family, including the EGF receptor (EGFR), HER2, HER3 and HER4, are among the best studied oncogenic drivers. Activating EGFR mutations are frequently observed in non-small cell lung cancer (NSCLC), and small molecule tyrosine kinase inhibitors (TKIs) are the established first line treatment option for patients whose tumors bear "typical/classical" EGFR mutations (exon 19 deletions, L858R point mutations). Additionally, new TKIs are rapidly evolving with better efficacy to overcome primary and secondary treatment resistance (e.g., that due to T790M or C797S resistance mutations). Some atypical EGFR mutations, such as the most frequent exon 20 insertions, exhibit relative resistance to earlier generation TKIs through steric hindrance. In this subgroup, newer TKIs, such as mobocertinib and the bi-specific antibody amivantamab have recently been approved, whereas less frequent atypical EGFR mutations remain understudied. In contrast to EGFR, HER2 has long remained a challenging target, but better structural understanding has led to the development of newer generations of TKIs. The recent FDA approval of the antibody-drug conjugate trastuzumab-deruxtecan for pretreated patients with HER2 mutant NSCLC has been an important therapeutic breakthrough. HER3 and HER4 also exert oncogenic potential, and targeted treatment approaches are being developed, particularly for HER3. Overall, strategies to inhibit the oncogenic function of ERBB receptors in NSCLC are currently evolving at an unprecedented pace; therefore, this review summarizes current treatment standards and discusses the outlook for future developments.
Collapse
Affiliation(s)
- Tobias Boch
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68135, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim 68135, Germany
| | - Jens Köhler
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68135, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim 68135, Germany
| | - Melanie Janning
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68135, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim 68135, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68135, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim 68135, Germany,Correspondence to: Sonja Loges, E-mail:
| |
Collapse
|
5
|
Singh SS, Dahal A, Shrestha L, Jois SD. Genotype Driven Therapy for Non-Small Cell Lung Cancer: Resistance, Pan Inhibitors and Immunotherapy. Curr Med Chem 2020; 27:5274-5316. [PMID: 30854949 DOI: 10.2174/0929867326666190222183219] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Eighty-five percent of patients with lung cancer present with Non-small Cell Lung Cancer (NSCLC). Targeted therapy approaches are promising treatments for lung cancer. However, despite the development of targeted therapies using Tyrosine Kinase Inhibitors (TKI) as well as monoclonal antibodies, the five-year relative survival rate for lung cancer patients is still only 18%, and patients inevitably become resistant to therapy. Mutations in Kirsten Ras Sarcoma viral homolog (KRAS) and epidermal growth factor receptor (EGFR) are the two most common genetic events in lung adenocarcinoma; they account for 25% and 20% of cases, respectively. Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor tyrosine kinase, and ALK rearrangements are responsible for 3-7% of NSCLC, predominantly of the adenocarcinoma subtype, and occur in a mutually exclusive manner with KRAS and EGFR mutations. Among drug-resistant NSCLC patients, nearly half exhibit the T790M mutation in exon 20 of EGFR. This review focuses on some basic aspects of molecules involved in NSCLC, the development of resistance to treatments in NSCLC, and advances in lung cancer therapy in the past ten years. Some recent developments such as PD-1-PD-L1 checkpoint-based immunotherapy for NSCLC are also covered.
Collapse
Affiliation(s)
- Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| |
Collapse
|
6
|
Hafeez U, Parslow AC, Gan HK, Scott AM. New insights into ErbB3 function and therapeutic targeting in cancer. Expert Rev Anticancer Ther 2020; 20:1057-1074. [PMID: 32981377 DOI: 10.1080/14737140.2020.1829485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The importance of ErbB3 receptor tyrosine kinase in cancer progression, primary and acquired drug resistance, has become steadily evident since its discovery in 1989. ErbB3 overexpression in various solid organ malignancies is associated with shorter survival of patients. However, initial strategies to therapeutically target ErbB3 have not been rewarding. AREAS COVERED Here, we provide an overview of ErbB3 biology in carcinogenesis. We outline the role of ErbB3 as a critical pathway for resistance to other anti-cancer drugs. We focus on emerging clinical data, which will steer the potential future development of ErbB3 directed therapies. EXPERT OPINION Initial approaches to ErbB3 targeting have been challenging. However, the lack of success of anti-ErbB3 therapies in ongoing clinical trials may relate more to the complex biology of the receptor and challenges with the biomarkers used to date. Furthermore, it seems certain that the expression of the receptor per se is necessary but not sufficient for the response to ErbB3 therapies. Emerging data suggest that more sophisticated biomarkers are needed. Nonetheless, it is also likely that ErbB3 therapies may have the most efficacy in combination therapy, and their favorable toxicity profile makes this feasible.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Adam C Parslow
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute , Melbourne, Australia.,School of Cancer Medicine, La Trobe University , Melbourne, Australia.,Department of Medicine, University of Melbourne , Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health , Melbourne, Australia
| |
Collapse
|
7
|
Li B, Chen M, Pan MX. Sex determining region Y-box 2 is a prognostic factor for head and neck squamous cell carcinoma: Evidence from 11 published investigations. J Cancer Res Ther 2020; 16:434-439. [PMID: 32719247 DOI: 10.4103/0973-1482.189238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective The aim of this study was to review the published literature and investigate whether sex determining region Y-box 2 (SOX2) is a prognostic factor in head and neck squamous cell carcinoma (HNSCC) by conduct a meta-analysis. Materials and Methods Trials were identified from the major electronic databases (MEDLINE, EMBASE, and Cochrane Library) using the key words "HNSCC" and "SOX2." The overall survival (OS), disease-specific survival (DPS), and disease-free survival (DFS) were the primary outcome measures. Results We identified 371 articles, 9 articles 11 studies with a total number of 1334 cases were eligible for inclusion of this meta-analysis. The results showed that OS (DPS) in low-expression group was higher than that in high-expression group. However, the difference between the two groups was not significant (hazard ratio [HR] = 1.30, 95% confidence interval [95% CI] = [0.88, 1.91]; P = 0.18), and there was great statistical heterogeneity (I2 = 66%, P = 0.002). After subgroup analysis, the HR for OS of the patients with reduced expression of SOX2 was 1.34 (95% CI = [1.04, 1.74], P = 0.03), and the heterogeneity became acceptable (I2 = 32%, P = 0.16). The HR for DFS of the patients with reduced expression of SOX2 was 1.39 (95% CI = [1.00, 1.93]; P = 0.05). Conclusion The findings of this meta-analysis are indicative of that high SOX2 expression is a negative prognostic factor of HNSCC and exhibit both worse OS and DFS. However, the small sample size available for this systematic review limited the power of this quantitative meta-analysis. It may therefore be too early to place complete confidence in these results.
Collapse
Affiliation(s)
- Bo Li
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541001, China
| | - Mei Chen
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541001, China
| | - Meng-Xiong Pan
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541001, China
| |
Collapse
|
8
|
Del Re M, Cucchiara F, Petrini I, Fogli S, Passaro A, Crucitta S, Attili I, De Marinis F, Chella A, Danesi R. erbB in NSCLC as a molecular target: current evidences and future directions. ESMO Open 2020; 5:e000724. [PMID: 32820012 PMCID: PMC7443272 DOI: 10.1136/esmoopen-2020-000724] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
A number of treatments have been developed for HER1, 2 and 3-driven non-small cell lung cancer (NSCLC), of which the most successful have been the epidermal growth factor receptor-tyrosine kinase inhibitors in HER1-mutant tumours resulting in highly improved progression-free survival. Human epidermal growth factor (HER)2 and 3-driven tumours represent the minority of NSCLC, and effective therapies in these patients still represent an unmet medical need. The encouraging results seen with anti-HER2 and anti-HER3 monoclonal antibodies need to be validated in larger studies, even if the greatest obstacle is represented by the exiguous number of patients bearing deregulated HER2/3 system and abnormalities of signal transduction pathway. Considering NSCLC tumour heterogeneity, which affects response and resistance to treatment, combined multiparametric approaches, such as liquid biopsy together with radiomics, may provide a better understanding of the tumour dynamics and clonal selection during the treatments.
Collapse
Affiliation(s)
- Marzia Del Re
- Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Federico Cucchiara
- Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Stefano Fogli
- Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology - IRCCS, Milan, Italy
| | - Stefania Crucitta
- Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ilaria Attili
- Division of Thoracic Oncology, European Institute of Oncology - IRCCS, Milan, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, European Institute of Oncology - IRCCS, Milan, Italy
| | - Antonio Chella
- Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
9
|
ERBB3 mutations in cancer: biological aspects, prevalence and therapeutics. Oncogene 2019; 39:487-502. [DOI: 10.1038/s41388-019-1001-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/12/2019] [Accepted: 08/09/2019] [Indexed: 01/02/2023]
|
10
|
Santoni-Rugiu E, Melchior LC, Urbanska EM, Jakobsen JN, Stricker KD, Grauslund M, Sørensen JB. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance. Cancers (Basel) 2019; 11:E923. [PMID: 31266248 PMCID: PMC6678669 DOI: 10.3390/cancers11070923] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Activating mutations in the epidermal growth factor receptor gene occur as early cancer-driving clonal events in a subset of patients with non-small cell lung cancer (NSCLC) and result in increased sensitivity to EGFR-tyrosine-kinase-inhibitors (EGFR-TKIs). Despite very frequent and often prolonged clinical response to EGFR-TKIs, virtually all advanced EGFR-mutated (EGFRM+) NSCLCs inevitably acquire resistance mechanisms and progress at some point during treatment. Additionally, 20-30% of patients do not respond or respond for a very short time (<3 months) because of intrinsic resistance. While several mechanisms of acquired EGFR-TKI-resistance have been determined by analyzing tumor specimens obtained at disease progression, the factors causing intrinsic TKI-resistance are less understood. However, recent comprehensive molecular-pathological profiling of advanced EGFRM+ NSCLC at baseline has illustrated the co-existence of multiple genetic, phenotypic, and functional mechanisms that may contribute to tumor progression and cause intrinsic TKI-resistance. Several of these mechanisms have been further corroborated by preclinical experiments. Intrinsic resistance can be caused by mechanisms inherent in EGFR or by EGFR-independent processes, including genetic, phenotypic or functional tumor changes. This comprehensive review describes the identified mechanisms connected with intrinsic EGFR-TKI-resistance and differences and similarities with acquired resistance and among clinically implemented EGFR-TKIs of different generations. Additionally, the review highlights the need for extensive pre-treatment molecular profiling of advanced NSCLC for identifying inherently TKI-resistant cases and designing potential combinatorial targeted strategies to treat them.
Collapse
Affiliation(s)
- Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Linea C Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Edyta M Urbanska
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Jan N Jakobsen
- Department of Oncology and Palliative Units, Zealand University Hospital, DK-4700 Næstved, Denmark
| | - Karin de Stricker
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Morten Grauslund
- Department of Clinical Genetics and Pathology, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Jens B Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Floss DM, Scheller J. Naturally occurring and synthetic constitutive-active cytokine receptors in disease and therapy. Cytokine Growth Factor Rev 2019; 47:1-20. [PMID: 31147158 DOI: 10.1016/j.cytogfr.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. Mutations which cause ligand-independent, constitutive activation of cytokine receptors are quite frequently found in diseases. Many constitutive-active cytokine receptor variants have been directly connected to disease development and mechanistically analyzed. Nature's solutions to generate constitutive cytokine receptors has been recently adopted by synthetic cytokine receptor biology, with the goal to optimize immune therapeutics. Here, CAR T cell immmunotherapy represents the first example to combine synthetic biology with genetic engineering during therapy. Hence, constitutive-active cytokine receptors are therapeutic targets, but also emerging tools to improve or modulate immunotherapeutic strategies. This review gives a comprehensive insight into the field of naturally occurring and synthetic constitutive-active cytokine receptors.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
12
|
Jacob W, James I, Hasmann M, Weisser M. Clinical development of HER3-targeting monoclonal antibodies: Perils and progress. Cancer Treat Rev 2018; 68:111-123. [PMID: 29944978 DOI: 10.1016/j.ctrv.2018.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022]
Abstract
The human epidermal growth factor receptor (HER) family consists of four transmembrane receptor tyrosine kinases: epidermal growth factor receptor (EGFR), HER2, HER3, and HER4. They are part of a complex signalling network and stimulate intracellular pathways regulating cell growth and differentiation. So far, monoclonal antibodies (mAbs) and small molecule tyrosine kinase inhibitors targeting EGFR and HER2 have been developed and approved. Recently, focus has turned to HER3 as it may play an important role in resistance to EGFR- and HER2-targeting therapies. HER3-targeting agents have been undergoing clinical evaluation for the last 10 years and currently thirteen mAbs are in phase 1 or 2 clinical studies. Single agent activity has proven to be limited, however, the tolerability was favourable. Thus, combinations of HER3-binding mAbs with other HER-targeting therapies or chemotherapies have been pursued in various solid tumor entities. Data indicate that the HER3-binding ligand heregulin may serve as a response prediction marker for HER3-targeting therapy. Within this review the current status of clinical development of HER3-targeting compounds is described.
Collapse
Affiliation(s)
- Wolfgang Jacob
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany.
| | - Ian James
- A4P Consulting Ltd, Discovery Park, Sandwich, UK
| | - Max Hasmann
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Martin Weisser
- Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
13
|
Zhang S, Mukherjee S, Fan X, Salameh A, Mujoo K, Huang Z, Li L, To'a Salazar G, Zhang N, An Z. Novel association of DJ-1 with HER3 potentiates HER3 activation and signaling in cancer. Oncotarget 2018; 7:65758-65769. [PMID: 27582551 PMCID: PMC5323190 DOI: 10.18632/oncotarget.11613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023] Open
Abstract
HER3/ErbB3 has emerged as a new therapeutic target for cancer. Currently, more than a dozen anti-HER3 antibodies are in clinical trials for treatment of various cancers. However, limited understanding of the complex HER3 signaling in cancer and lack of established biomarkers have made it challenging to stratify cancer patients who can benefit from HER3 targeted therapies. In this study, we identified DJ-1/PARK7 (Parkinson Protein 7) as a novel interaction partner of HER3 and demonstrated the potential of DJ-1 as a biomarker for anti-HER3 cancer therapy. DJ-1 association with HER3 protects HER3 from ubiquitination and degradation through the proteasomal pathway in breast cancer cells. However, neuregulin 1 (NRG-1) mediated HER3 activation results in a reduced association of DJ-1 with HER3. DJ-1 shRNA knockdown in cancer cells resulted in decreased levels of HER3 and its downstream signaling through the PI3K/AKT and Ras/Raf/ERK pathways. DJ-1 shRNA knockdown cancer cells significantly reduced cell proliferation and migration in vitro and tumor growth in vivo. Conversely, overexpression of DJ-1 increased HER3 levels and promoted cancer cell proliferation in vitro and tumor growth in vivo. Notably, cancer cells with high DJ-1 expression showed more sensitivity than DJ-1 knockdown cells to anti-HER3 antibody inhibition. In addition, there was a significant co-expression of HER3 and DJ-1 in tumor tissues of breast cancer patients. Taken together, these results suggest that high DJ-1 expression in breast cancer cells predicts elevated HER3 signaling and may therefore serve as a biomarker for HER3 targeted antibody cancer therapies.
Collapse
Affiliation(s)
- Shu Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Current address: Clinical Research Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Seema Mukherjee
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xuejun Fan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ahmad Salameh
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kalpana Mujoo
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Current address: Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas, USA
| | - Zhao Huang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Current address: Stemcentrx, Inc., South San Francisco, California, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Georgina To'a Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
14
|
Mishra R, Hanker AB, Garrett JT. Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget 2017; 8:114371-114392. [PMID: 29371993 PMCID: PMC5768410 DOI: 10.18632/oncotarget.22825] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
The ERBB family of receptor tyrosine kinases has been implicated in carcinogenesis for over three decades with rigorous attention to EGFR and HER2. ERBB receptors, consisting of EGFR, HER2, HER3, and HER4 are part of a complicated signaling network that activates downstream signaling pathways including PI3K/AKT, Ras/Raf/MAPK, JAK/STAT and PKC. It is well established that EGFR is amplified and/or mutated in gliomas and non-small-cell lung carcinoma while HER2 is amplified and/or over-expressed in breast, gastric, ovarian, non-small cell lung carcinoma, and several other tumor types. With the advent of next generation sequencing and large scale efforts to explore the entire spectrum of genomic alterations involved in human cancer progression, it is now appreciated that somatic ERBB receptor mutations occur at relatively low frequencies across multiple tumor types. Some of these mutations may represent oncogenic driver events; clinical studies are underway to determine whether tumors harboring these alterations respond to small molecule EGFR/HER2 inhibitors. Recent evidence suggests that some somatic ERBB receptor mutations render resistance to FDA-approved EGFR and HER2 inhibitors. In this review, we focus on the landscape of genomic alterations of EGFR, HER2, HER3 and HER4 in cancer and the clinical implications for patients harboring these alterations.
Collapse
Affiliation(s)
- Rosalin Mishra
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Ariella B Hanker
- Department of Medicine, Breast Cancer Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, U.S.A
| | - Joan T Garrett
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, U.S.A
| |
Collapse
|
15
|
Collins D, Jacob W, Cejalvo JM, Ceppi M, James I, Hasmann M, Crown J, Cervantes A, Weisser M, Bossenmaier B. Direct estrogen receptor (ER) / HER family crosstalk mediating sensitivity to lumretuzumab and pertuzumab in ER+ breast cancer. PLoS One 2017; 12:e0177331. [PMID: 28493933 PMCID: PMC5426757 DOI: 10.1371/journal.pone.0177331] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022] Open
Abstract
Bidirectional cross talk between members of the human epidermal growth factor family of receptors (HER) and the estrogen receptor (ER) is believed to underlie resistance mechanisms that develop in response to treatment with anti-HER agents and endocrine therapy. We investigated the interaction between HER2, HER3 and the ER in vitro using human embryonic kidney cells transfected with human HER2, HER3, and ERα. We also investigated the additive efficacy of combination regimens consisting of anti-HER3 (lumretuzumab), anti-HER2 (pertuzumab), and endocrine (fulvestrant) therapy in vivo. Our data show that both HER2 and HER3 can directly complex with the ER and can mediate phosphorylation of the ER. Phosphorylation of the ER was only observed in cells that expressed both HER2 and ERα or in heregulin-stimulated cells that expressed both HER3 and ERα. Using a mouse xenograft model of ER+/HER2-low (HER2 immunohistochemistry 1+ or 2+ without gene amplification) human breast cancer we show that the combination of lumretuzumab and pertuzumab is highly efficacious and induces long-lasting tumor regression in vivo and adding endocrine therapy (fulvestrant) to this combination further improved efficacy. In addition, a prolonged clinical response was observed with the combination of lumretuzumab and pertuzumab in a patient with ER+/HER2-low breast cancer who had failed endocrine therapy. These preclinical data confirm that direct cross talk exists between HER2/HER3 and ER which may explain the resistance mechanisms to endocrine therapy and monoclonal antibodies that target HER2 and HER3. Our data also indicate that the triplet of anti-HER2, anti-HER3, and endocrine therapy might be an efficacious combination for treating patients with ER+/HER2-low breast cancer, which is an area of significant unmet medical need.
Collapse
Affiliation(s)
- Denis Collins
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- * E-mail: (DC); (MW)
| | | | - Juan Miguel Cejalvo
- Department of Medical Oncology, Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | | | - Ian James
- A4P Consulting Ltd, Sandwich, United Kingdom
| | - Max Hasmann
- Roche Innovation Center Munich, Penzberg, Germany
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
| | - Andrés Cervantes
- Department of Medical Oncology, Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Martin Weisser
- Roche Innovation Center Munich, Penzberg, Germany
- * E-mail: (DC); (MW)
| | | |
Collapse
|
16
|
Karachaliou N, Lazzari C, Verlicchi A, Sosa AE, Rosell R. HER3 as a Therapeutic Target in Cancer. BioDrugs 2017; 31:63-73. [PMID: 28000159 DOI: 10.1007/s40259-016-0205-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Targeting members of the human epidermal growth factor receptor family, especially EGFR and HER2, has been an established strategy for the treatment of tumors with abnormally activated receptors due to overexpression, mutation, ligand-dependent receptor dimerization and ligand-independent activation. Less attention has been paid to the oncogenic activity of HER3, although there is growing evidence that it mediates resistance to EGFR and HER2 pathway directed therapies. The main caveat for the development of effective HER3 targeted therapies is the absence of a strong enzymatic activity to target, as well as the limited potential for single-agent activity. In this review, we highlight the role of HER3 in cancer and, more specifically, in lung cancer. The basis for HER3 involvement in HER2 resistance and EGFR inhibition is discussed, as well as current pharmacologic strategies to combat HER3 inhibition.
Collapse
Affiliation(s)
- Niki Karachaliou
- Medical Oncology Department, Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, C/Viladomat 288, 08029, Barcelona, Spain.
| | - Chiara Lazzari
- Departmemt of Oncology, Division of Experimental Medicine, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Aaron E Sosa
- Medical Oncology Department, Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor, C/Viladomat 288, 08029, Barcelona, Spain
| | - Rafael Rosell
- Germans Trias i Pujol Research Institute, Badalona, Spain.,Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Spain
| |
Collapse
|
17
|
Abstract
The pseudokinase complement of the human kinase superfamily consists of approximately 60 signaling proteins, which lacks one or more of the amino acids typically required to correctly align ATP and metal ions, and phosphorylate protein substrates. Recent studies in the pseudokinase field have begun to expose the biological relevance of pseudokinases, which are now thought to perform a diverse range of physiological roles and are connected to a multitude of human diseases, including cancer. In this review, we discuss how and why members of the 'pseudokinome' represent important new targets for drug discovery, and describe how knowledge of protein structure and function provides informative clues to help guide the rational chemical design or repurposing of inhibitors to target pseudokinases.
Collapse
|
18
|
Kersh AE, Sasaki M, Cooper LA, Kissick HT, Pollack BP. Understanding the Impact of ErbB Activating Events and Signal Transduction on Antigen Processing and Presentation: MHC Expression as a Model. Front Pharmacol 2016; 7:327. [PMID: 27729860 PMCID: PMC5052536 DOI: 10.3389/fphar.2016.00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022] Open
Abstract
Advances in molecular pathology have changed the landscape of oncology. The ability to interrogate tissue samples for oncogene amplification, driver mutations, and other molecular alterations provides clinicians with an enormous level of detail about their patient's cancer. In some cases, this information informs treatment decisions, especially those related to targeted anti-cancer therapies. However, in terms of immune-based therapies, it is less clear how to use such information. Likewise, despite studies demonstrating the pivotal role of neoantigens in predicting responsiveness to immune checkpoint blockade, it is not known if the expression of neoantigens impacts the response to targeted therapies despite a growing recognition of their diverse effects on immunity. To realize the promise of 'personalized medicine', it will be important to develop a more integrated understanding of the relationships between oncogenic events and processes governing anti-tumor immunity. One area of investigation to explore such relationships centers on defining how ErbB/HER activation and signal transduction influences antigen processing and presentation.
Collapse
Affiliation(s)
- Anna E Kersh
- Medical Scientist Training Program, Emory University School of Medicine Atlanta, GA, USA
| | | | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of MedicineAtlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of TechnologyAtlanta, GA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine Atlanta, GA, USA
| | - Brian P Pollack
- Atlanta VA Medical CenterDecatur, GA, USA; Department of Dermatology, Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|