801
|
Garg M. MicroRNAs, stem cells and cancer stem cells. World J Stem Cells 2012; 4:62-70. [PMID: 22993663 PMCID: PMC3443713 DOI: 10.4252/wjsc.v4.i7.62] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/18/2012] [Accepted: 04/25/2012] [Indexed: 02/06/2023] Open
Abstract
This review discusses the various regulatory characteristics of microRNAs that are capable of generating widespread changes in gene expression via post translational repression of many mRNA targets and control self-renewal, differentiation and division of cells. It controls the stem cell functions by controlling a wide range of pathological and physiological processes, including development, differentiation, cellular proliferation, programmed cell death, oncogenesis and metastasis. Through either mRNA cleavage or translational repression, miRNAs alter the expression of their cognate target genes; thereby modulating cellular pathways that affect the normal functions of stem cells, turning them into cancer stem cells, a likely cause of relapse in cancer patients. This present review further emphasizes the recent discoveries on the functional analysis of miRNAs in cancer metastasis and implications on miRNA based therapy using miRNA replacement or anti-miRNA technologies in specific cancer stem cells that are required to establish their efficacy in controlling tumorigenic potential and safe therapeutics.
Collapse
|
802
|
Thomas X. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy. World J Stem Cells 2012; 4:44-52. [PMID: 22993661 PMCID: PMC3443711 DOI: 10.4252/wjsc.v4.i6.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/08/2012] [Accepted: 03/15/2012] [Indexed: 02/06/2023] Open
Abstract
Leukemia stem cells (LSCs), which constitute a minority of the tumor bulk, are functionally defined on the basis of their ability to transfer leukemia into an immunodeficient recipient animal. The presence of LSCs has been demonstrated in acute lymphoblastic leukemia (ALL), of which ALL with Philadelphia chromosome-positive (Ph(+)). The use of imatinib, a tyrosine kinase inhibitor (TKI), as part of front-line treatment and in combination with cytotoxic agents, has greatly improved the proportions of complete response and molecular remission and the overall outcome in adults with newly diagnosed Ph(+) ALL. New challenges have emerged with respect to induction of resistance to imatinib via Abelson tyrosine kinase mutations. An important recent addition to the arsenal against Ph(+) leukemias in general was the development of novel TKIs, such as nilotinib and dasatinib. However, in vitro experiments have suggested that TKIs have an antiproliferative but not an antiapoptotic or cytotoxic effect on the most primitive ALL stem cells. None of the TKIs in clinical use target the LSC. Second generation TKI dasatinib has been shown to have a more profound effect on the stem cell compartment but the drug was still unable to kill the most primitive LSCs. Allogeneic stem cell transplantation (SCT) remains the only curative treatment available for these patients. Several mechanisms were proposed to explain the resistance of LSCs to TKIs in addition to mutations. Hence, TKIs may be used as a bridge to SCT rather than monotherapy or combination with standard chemotherapy. Better understanding the biology of Ph(+) ALL will open new avenues for effective management. In this review, we highlight recent findings relating to the question of LSCs in Ph(+) ALL.
Collapse
|
803
|
Vellasamy S, Sandrasaigaran P, Vidyadaran S, George E, Ramasamy R. Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World J Stem Cells 2012; 4:53-61. [PMID: 22993662 PMCID: PMC3443712 DOI: 10.4252/wjsc.v4.i6.53] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 03/06/2012] [Accepted: 03/15/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the feasibility of placenta tissue as a reliable and efficient source for generating mesenchymal stem cells (MSC). METHODS MSC were generated from human placenta tissue by enzymatic digestion and mechanical dissociation. The placenta MSC (PLC-MSC) were characterized for expression of cell surface markers, embryonic stem cell (ECS) gene expression and their differentiation ability into adipocytes and osteocytes. The immunosuppressive properties of PLC-MSC on resting and phytohemagglutinin (PHA) stimulated allogenic T cells were assessed by means of cell proliferation via incorporation of tritium thymidine ((3)H-TdR). RESULTS The generated PLC-MSC appeared as spindle-shaped cells, expressed common MSC surface markers and ESC transcriptional factors. They also differentiated into adipogenic and osteogenic lineages when induced. However, continuous cultivation up to passage 15 caused changes in morphological appearance and cellular senescence, although the stem cell nature of their protein expression was unchanged. In terms of their immunosuppressive properties, PLC-MSC were unable to stimulate resting T cell proliferation; they inhibited the PHA stimulated T cells in a dose dependent manner through cell to cell contact. In our study, MSC generated from human placenta exhibited similar mesenchymal cell surface markers; MSC-like gene expression pattern and MSC-like differentiation potential were comparable to other sources of MSC. CONCLUSION We suggest that placenta tissues can serve as an alternative source of MSC for future experimental and clinical studies.
Collapse
|
804
|
Mishra PJ, Mishra PJ, Banerjee D. Cell-free derivatives from mesenchymal stem cells are effective in wound therapy. World J Stem Cells 2012; 4:35-43. [PMID: 22993660 PMCID: PMC3443710 DOI: 10.4252/wjsc.v4.i5.35] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To compare the efficacy of cell-free derivatives from Bone marrow derived human mesenchymal stem cells (hMSCs) in wound therapy. METHODS hMSCs have been shown to play an important role in wound therapy. The present study sought to compare efficacy of hMSCs and cell-free derivatives of hMSCs, which may be clinically more relevant as they are easier to prepare, formulate and transport. hMSCs were isolated from human bone marrow and cultured. Multi lineage differentiation of hMSCs was performed to confirm their identity. The ability of hMSCs to migrate was evaluated using in vitro and in vivo migration assays. Cell lysates and conditioned medium concentrate was prepared from hMSCs (see Methods for details). Wounds were induced in mice and wound areas were measure before and after cell and cell-free derivative treatment. RNA and proteins were extracted from the skin and cytokine levels were measured. RESULTS Co-culture of hMSCs with keratinocytes resulted in increased expression of CXCL-12 (SDF1) and ENA78 (CXCL-5) in the conditioned media indicating that the hMSCs can respond to signals from keratinocytes. Accelerated wound closure was observed when hMSCs were injected near the site of excisional wounds in athymic as well as NOD/SCID mice. Interestingly, cell-free lysates prepared from hMSCs were also effective in inducing accelerated wound closure and increased expression of SDF1 and CXCL-5 at the wound bed. Additionally, concentrated media from hMSCs as well as an emulsion containing lysates prepared from hMSCs was also found to be more effective in rapid re-epithelialization than fibroblasts or vehicle-alone control. Use of cell-free derivatives may help replace expensive wound care approaches including use of growth factors, epidermal/dermal substitutes, synthetic membranes, cytokines, and matrix components, and most importantly avoid transmission of pathogens from human and animal products. CONCLUSION These results encourage development of derivatives of hMSCs for wound care and re-epithelialization applications.
Collapse
|
805
|
Wang MK, Sun HQ, Xiang YC, Jiang F, Su YP, Zou ZM. Different roles of TGF-β in the multi-lineage differentiation of stem cells. World J Stem Cells 2012; 4:28-34. [PMID: 22993659 PMCID: PMC3443709 DOI: 10.4252/wjsc.v4.i5.28] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/10/2012] [Accepted: 03/25/2012] [Indexed: 02/06/2023] Open
Abstract
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells. Transforming growth factor β (TGF-β) family is a superfamily of growth factors, including TGF-β1, TGF-β2 and TGF-β3, bone morphogenetic proteins, activin/inhibin, and some other cytokines such as nodal, which plays very important roles in regulating a wide variety of biological processes, such as cell growth, differentiation, cell death. TGF-β, a pleiotropic cytokine, has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells, through the Smad pathway, non-Smad pathways including mitogen-activated protein kinase pathways, phosphatidylinositol-3-kinase/AKT pathways and Rho-like GTPase signaling pathways, and their cross-talks. For instance, it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells, immature cardiomyocytes, chondrocytes, neurocytes, hepatic stellate cells, Th17 cells, and dendritic cells. However, TGF-β inhibits the differentiation of stem cells into myotubes, adipocytes, endothelial cells, and natural killer cells. Additionally, TGF-β can provide competence for early stages of osteoblastic differentiation, but at late stages TGF-β acts as an inhibitor. The three mammalian isoforms (TGF-β1, 2 and 3) have distinct but overlapping effects on hematopoiesis. Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology, and will facilitate both basic research and clinical applications of stem cells. In this article, we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.
Collapse
|
806
|
Xu ZF, Pan AZ, Yong F, Shen CY, Chen YW, Wu RH. Human umbilical mesenchymal stem cell and its adipogenic differentiation: Profiling by nuclear magnetic resonance spectroscopy. World J Stem Cells 2012; 4:21-7. [PMID: 22577495 PMCID: PMC3348957 DOI: 10.4252/wjsc.v4.i4.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 02/21/2012] [Accepted: 03/03/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To study the metabolic profile of human umbilical mesenchymal stem cells (HUMSC) and adipogenic differentiation by nuclear magnetic resonance (NMR) spectroscopy. METHODS HUMSC isolated from human umbilical cord stroma were induced to adipocytes over 2 wk by adding dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin to the culture medium. Adipogenic differentiation was confirmed by Red O staining and transcription-polymerase chain reaction. Perchloric acid extracts of the HUMSCs and adipocytes (about 7 × 10(6)) were characterized for metabolites by using in vitro high resolution 9.4T NMR spectroscopy. RESULTS Several major metabolites, such as: choline, creatine, glutamate and myo-inositol, acetate, and some fatty acids/triglycerides, were observed in the MR spectroscopic pattern of HUMSCs and their adipogenic differentiation. HUMSCs are characterized by an unusually low number of NMR-detectable metabolites, high choline, acetate, glutamate and creatine content. However, the metabolic profiles of adipogenic differentiation demonstrated considerably higher methionine and fatty acids, and non-detectable creatine. CONCLUSION The biomarkers of HUMSCS and adipocytes were obtained and assigned. NMR spectroscopy will be a promising tool for monitoring stem cell differentiation.
Collapse
|
807
|
La Porta CA. Thoughts about cancer stem cells in solid tumors. World J Stem Cells 2012; 4:17-20. [PMID: 22577494 PMCID: PMC3348958 DOI: 10.4252/wjsc.v4.i3.17] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 02/28/2012] [Accepted: 03/10/2012] [Indexed: 02/06/2023] Open
Abstract
Cancer chemotherapy efficacy is frequently impaired by either intrinsic or acquired tumor resistance. A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. In recent years, the cancer stem cell (CSC) theory has changed the classical view of tumor growth and therefore the therapeutic perspective. Overcoming intrinsic and acquired resistance of cancer stem/progenitor cells to current clinical treatments represents a major challenge in treating and curing the most aggressive and metastatic cancers. On the other hand, the identification of CSCs in vivo and in vitro relies on specific surface markers that should allow the sorting cancer cells into phenotypically distinct subpopulations. In the present review, recent papers published on CSCs in solid tumors (breast, prostate, brain and melanoma) are discussed, highlighting critical points such as the choice of markers to sort CSCs and mouse models to demonstrate that CSCs are able to replicate the original tumor. A discussion of the possible role of aldehyde dehydrogenase and CXCR6 biomarkers as signaling molecules in CSCs and normal stem cells is also discussed. The author believes that efforts have to be made to investigate the functional and biological properties of putative CSCs in cancer. Developing diagnostic/prognostic tools to follow cancer development is also a challenge. In this connection it would be useful to develop a multidisciplinary approach combining mathematics, physics and biology which merges experimental approaches and theory. Biological models alone are probably unable to resolve the problem completely.
Collapse
|
808
|
Gonçalves FDC, Paz AHDR, Lora PS, Passos EP, Cirne-Lima EO. Dynamic culture improves MSC adhesion on freeze-dried bone as a scaffold for bone engineering. World J Stem Cells 2012; 4:9-16. [PMID: 22468180 PMCID: PMC3312925 DOI: 10.4252/wjsc.v4.i2.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the interaction between mesenchymal stem cells (MSCs) and bone grafts using two different cultivation methods: static and dynamic. METHODS MSCs were isolated from rat bone marrow. MSC culture was analyzed according to the morphology, cell differentiation potential, and surface molecular markers. Before cell culture, freeze-dried bone (FDB) was maintained in culture for 3 d in order to verify culture medium pH. MSCs were co-cultured with FDB using two different cultivation methods: static co-culture (two-dimensional) and dynamic co-culture (three-dimensional). After 24 h of cultivation by dynamic or static methods, histological analysis of Cell adhesion on FDB was performed. Cell viability was assessed by the Trypan Blue exclusion method on days 0, 3 and 6 after dynamic or static culture. Adherent cells were detached from FDB surface, stained with Trypan Blue, and quantified to determine whether the cells remained on the graft surface in prolonged non-dynamic culture. Statistical analyses were performed with SPSS and a P < 0.05 was considered significant. RESULTS The results showed a clear potential for adipogenic and osteogenic differentiation of MSC cultures. Rat MSCs were positive for CD44, CD90 and CD29 and negative for CD34, CD45 and CD11bc. FDBs were maintained in culture for 3 d and the results showed there was no significant variation in the culture medium pH with FDB compared to pure medium pH (P > 0.05). In histological analysis, there was a significant difference in the amount of adhered cells on FDB between the two cultivation methods (P < 0.05). The MSCs in the dynamic co-culture method demonstrated greater adhesion on the bone surface than in static co-culture method. On day 0, the cell viability in the dynamic system was significantly higher than in the static system (P < 0.05). There was a statistical difference in cell viability between days 0, 3 and 6 after dynamic culture (P < 0.05). In static culture, cell viability on day 6 was significantly lower than on day 3 and 0 (P < 0.05). CONCLUSION An alternative cultivation method was developed to improve the MSCs adhesion on FDB, demonstrating that dynamic co-culture provides a superior environment over static conditions.
Collapse
|
809
|
Ayatollahi M, Salmani MK, Geramizadeh B, Tabei SZ, Soleimani M, Sanati MH. Conditions to improve expansion of human mesenchymal stem cells based on rat samples. World J Stem Cells 2012; 4:1-8. [PMID: 22347527 PMCID: PMC3277873 DOI: 10.4252/wjsc.v4.i1.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/06/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To improve the isolation and expansion of human marrow-derived mesenchymal stem cells (MSCs) based on rat samples. METHODS Based on the fact that rat MSCs are relatively easy to obtain from a small aspirate, bone marrow-derived MSCs from rat were cultured and characterized to set up the different protocols used in this study. Then, accordingly, almost the same protocols were performed on human healthy bone marrow samples, after obtaining approval of the ethics committee and gaining informed consent. We used different protocols and culture conditions, including the type of basal media and the culture composition. The MSCs were characterized by immunophenotyping and differentiation. RESULTS There was no difference in morphology and proliferation capacity between different culture media at the first passage. During the 5-7th passages, the cells gradually lost their morphology and proliferation potential on Dulbecco's modified Eagle's medium (DMEM) high glucose and α modified Eagle's medium. Although the cells expanded rapidly for up to 10 passages on DMEM low glucose containing 10% to 15% fetal calf serum (FCS), their proliferation was arrested without change in morphology and differentiation capacity at the third passage on 5% FCS. Flow cytometric analysis and functional tests confirmed that more than 90% of marrow cells which were isolated and expanded by our selective protocols were MSCs. CONCLUSION We improved the isolation and expansion of human bone marrow derived MSCs, based on rat sample experiments, for further experimental and clinical use.
Collapse
|
810
|
Ayatollahi M, Soleimani M, Tabei SZ, Kabir Salmani M. Hepatogenic differentiation of mesenchymal stem cells induced by insulin like growth factor-I. World J Stem Cells 2011; 3:113-21. [PMID: 22224170 PMCID: PMC3251745 DOI: 10.4252/wjsc.v3.i12.113] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/30/2011] [Accepted: 11/07/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To improve hepatic differentiation of human mesenchymal stem cell (MSC) using insulin growth factor 1 (IGF-I), which has important role in liver development, hepatocyte differentiation and function. METHODS Bone marrow of healthy donors was aspirated from the iliac crest. The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established. The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes. To effectively induce hepatic differentiation, we designed a protocol based on a combination of IGF-I and liver specific factors (hepatocyte growth factor, oncostatin M and dexamethasone). Morphological features, hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs. RESULTS Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specific markers and functional tests. Morphological assessment and evaluation of glycogen storage, albumin and α-feto protein expression, as well as albumin and urea secretion revealed a statistically significant difference between the experimental groups and control. CONCLUSION In vitro differentiated MSCs using IGF-I were able to display advanced liver metabolic functions, supporting the possibility of developing them as potential alternatives to primary hepatocytes.
Collapse
|
811
|
Sun XY, Nong J, Qin K, Warnock GL, Dai LJ. Mesenchymal stem cell-mediated cancer therapy: A dual-targeted strategy of personalized medicine. World J Stem Cells 2011; 3:96-103. [PMID: 22180830 PMCID: PMC3240679 DOI: 10.4252/wjsc.v3.i11.96] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/23/2011] [Accepted: 10/29/2011] [Indexed: 02/06/2023] Open
Abstract
Cancer remains one of the leading causes of mortality and morbidity throughout the world. To a significant extent, current conventional cancer therapies are symptomatic and passive in nature. The major obstacle to the development of effective cancer therapy is believed to be the absence of sufficient specificity. Since the discovery of the tumor-oriented homing capacity of mesenchymal stem cells (MSCs), the application of specific anticancer gene-engineered MSCs has held great potential for cancer therapies. The dual-targeted strategy is based on MSCs' capacity of tumor-directed migration and incorporation and in situ expression of tumor-specific anticancer genes. With the aim of translating bench work into meaningful clinical applications, we describe the tumor tropism of MSCs and their use as therapeutic vehicles, the dual-targeted anticancer potential of engineered MSCs and a putative personalized strategy with anticancer gene-engineered MSCs.
Collapse
|
812
|
Azouna NB, Berraeis L, Regaya Z, Jenhani F. Immunophenotyping of hematopoietic progenitor cells: Comparison between cord blood and adult mobilized blood grafts. World J Stem Cells 2011; 3:104-12. [PMID: 22180831 PMCID: PMC3240678 DOI: 10.4252/wjsc.v3.i11.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/30/2011] [Accepted: 10/05/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To study the immunophenotype of hematopoietic progenitor cells from cord blood (CB) grafts (n = 39) in comparison with adult apheresis grafts (AG, n = 229) and pre-apheresis peripheral blood (PAPB) samples (n = 908) using flow cytometry analysis. METHODS First, we performed a qualitative analysis of CD34+ cell sub-populations in both CB and PAPB grafts using the standardized ISHAGE protocol and a wide panel of 20 monoclonal antibodies. Next, we studied some parameters, such as the age of mothers and the weight of newborns, which can influence the quality and the quantity of CD34+ cells from CB. RESULTS We found that the percentage of apoptotic cells was high in CB in comparison to PAPB (PAPB: 4.6% ± 2.6% vs CB: 53.4% ± 5.2%, P < 0.001). In CB, the weight of newborn and the age of the mother have the influence on CD34+ cells. The follow-up of Ag CD133 in the ISHAGE double platform protocol in association with CD45, CD34 and the 7'AAD shows an equal rate between the two cell populations CD133+CD45+CD34+ high and CD34+CD45+ high with a higher percentage. So, is the inclusion of Ac CD133 necessary in the present panel included in the ISHAGE method? Last part, we showed a significant presence of interferon γ in CB in comparison to PAPB, the annexin showing the high number of apoptotic cells in CB. CONCLUSION This study demonstrates that many different obstetric factors must be taken into account when processing and cryo-banking umbilical CB units for transplantation.
Collapse
|
813
|
Ly H. Telomere dynamics in induced pluripotent stem cells: Potentials for human disease modeling. World J Stem Cells 2011; 3:89-95. [PMID: 22110834 PMCID: PMC3220723 DOI: 10.4252/wjsc.v3.i10.89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/14/2011] [Accepted: 09/21/2011] [Indexed: 02/06/2023] Open
Abstract
Recent advances in reprograming somatic cells from normal and diseased tissues into induced pluripotent stem cells (iPSCs) provide exciting possibilities for generating renewed tissues for disease modeling and therapy. However, questions remain on whether iPSCs still retain certain markers (e.g. aging) of the original somatic cells that could limit their replicative potential and utility. A reliable biological marker for measuring cellular aging is telomere length, which is maintained by a specialized form of cellular polymerase known as telomerase. Telomerase is composed of the cellular reverse transcriptase protein, its integral RNA component, and other cellular proteins (e.g. dyskerin). Mutations in any of these components of telomerase can lead to a severe form of marrow deficiency known as dyskeratosis congenita (DC). This review summarizes recent findings on the effect of cellular reprograming via iPS of normal or DC patient-derived tissues on telomerase function and consequently on telomere length maintenance and cellular aging. The potentials and challenges of using iPSCs in a clinical setting will also be discussed.
Collapse
|
814
|
Li SC, Lee KL, Luo J, Zhong JF, Loudon WG. Convergence of normal stem cell and cancer stem cell developmental stage: Implication for differential therapies. World J Stem Cells 2011; 3:83-8. [PMID: 22007273 PMCID: PMC3192222 DOI: 10.4252/wjsc.v3.i9.83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 09/16/2011] [Accepted: 09/21/2011] [Indexed: 02/06/2023] Open
Abstract
Increased evidence shows that normal stem cells may contribute to cancer development and progression by acting as cancer-initiating cells through their interactions with abnormal environmental elements. We postulate that normal stem cells and cancer stem cells (CSC) possess similar mechanisms of self-renewal and differentiation. CSC can be the key to the elaboration of anti-cancer-based therapy. In this article, we focus on a controversial new theme relating to CSC. Tumorigenesis may have a critical stage characterized as a "therapeutic window", which can be identified by association of molecular, biochemical and biological events. Identifying such a stage can allow the production of more effective therapies (e.g. manipulated stem cells) to treat several cancers. More importantly, confirming the existence of a similar therapeutic window during the conversion of normal stem cells to malignant CSC may lead to targeted therapy specifically against CSC. This conversion information may be derived from investigating the biological behaviour of both normal stem cells and cancerous stem cells. Currently, there is little knowledge about the cellular and molecular mechanisms that govern the initiation and maintenance of CSC. Studies on co-evolution and interdependence of cancer with normal tissues may lead to a useful treatment paradigm of cancer. The crosstalk between normal stem cells and cancer formation may converge developmental stages of different types of stem cells (e.g. normal stem cells, CSC and embryonic stem cells). The differential studies of the convergence may result in novel therapies for treating cancers.
Collapse
|
815
|
Jeon MS, Yi TG, Lim HJ, Moon SH, Lee MH, Kang JS, Kim CS, Lee DH, Song SU. Characterization of mouse clonal mesenchymal stem cell lines established by subfractionation culturing method. World J Stem Cells 2011; 3:70-82. [PMID: 22007272 PMCID: PMC3192225 DOI: 10.4252/wjsc.v3.i8.70] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/10/2011] [Accepted: 01/20/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize single-cell-derived mouse clonal mesenchymal stem cells (mcMSCs) established with bone marrow samples from three different mouse strains. METHODS We established mcMSC lines using subfractionation culturing method from bone marrow samples obtained from long bones. These lines were characterized by measuring cell growth, cell surface epitopes, differentiation potential, lineage-specific gene expression and T-cell suppression capability. Nonclonal MSCs isolated by the conventional gradient centrifugation method were used as controls. RESULTS All mcMSC lines showed typical nonclonal MSC-like spindle shape morphology. Lines differed in optimal growth density requirement. Cell surface epitope profiles of these mcMSC lines were similar to those of nonclonal MSCs. However, some lines exhibited different expression levels in a few epitopes, such as CD44 and CD105. Differentiation assays showed that 90% of the mcMSC lines were capable of differentiating into adipogenic and/or chondrogenic lineages, but only 20% showed osteogenic lineage differentiation. T-cell suppression analysis showed that 75% of the lines exhibited T-cell suppression capability. CONCLUSION mcMSC lines have similar cell morphology and cell growth rate but exhibit variations in their cell surface epitopes, differentiation potential, lineage-specific gene expression and T-cell suppression capability.
Collapse
|
816
|
Sasikala M, Surya P, Radhika G, Kumar PP, Rao MS, Mukherjee RM, Rao PN, Reddy DN. Identification of circulating CD90 CD73 cells in cirrhosis of liver. World J Stem Cells 2011; 3:63-9. [PMID: 21860671 PMCID: PMC3158899 DOI: 10.4252/wjsc.v3.i7.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/15/2011] [Accepted: 01/25/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To identify circulating CD90(+) CD73(+) CD45(-) cells and evaluate their in vitro proliferating abilities. METHODS Patients with cirrhosis (n = 43), and healthy volunteers (n = 40) were recruited to the study. Mononuclear cells were isolated and cultured from the peripheral blood of controls and cirrhosis patients. Fibroblast-like cells that appeared in cultures were analyzed for morphological features, enumerated by flow cytometry and confirmed by immunocytochemistry (ICC). Colony forming efficiency (CFE) of these cells was assessed and expressed as a percentage. RESULTS In comparison to healthy volunteers, cells obtained from cirrhotic patients showed a significant increase (P < 0.001) in the percentage of CD90(+) CD73(+) CD45(-) cells in culture. Cultured cells also showed 10 fold increases in CFE. Flow cytometry and ICC confirmed that the proliferating cells expressed CD90(+) CD73(+) in the cultures from cirrhosis patients. CONCLUSION These results indicate the presence of circulating CD90(+) CD73(+) CD45(-) cells in patients with liver cirrhosis that have the potential to proliferate at a higher rate.
Collapse
|
817
|
López-Iglesias P, Blázquez-Martínez A, Fernández-Delgado J, Regadera J, Nistal M, Miguel MPD. Short and long term fate of human AMSC subcutaneously injected in mice. World J Stem Cells 2011; 3:53-62. [PMID: 21860670 PMCID: PMC3158900 DOI: 10.4252/wjsc.v3.i6.53] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 01/15/2011] [Accepted: 01/22/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To study the ability of human adipose-derived mesenchymal stem cells (AMSCs) to survive over the short and long term, their biodistribution and their biosafety in vivo in tumor-prone environments. METHODS We subcutaneously injected human AMSCs from different human donors into immunodeficient SCID mice over both short- (2 and 4 mo) and long- (17 mo) term in young, and aged tumor-prone mice. Presence of human cells was studied by immunohistochemistry and polymerase chain reaction analysis in all organs of injected mice. RESULTS Subcutaneously injected AMSCs did not form teratomas at any time point. They did not migrate but remained at the site of injection regardless of animal age, and did not fuse with host cells in any organ examined. AMSCs survived in vivo for at least 17 mo after injection, and differentiated into fibroblasts of the subdermic connective tissue and into mature adipocytes of fat tissue, exclusively at the site of injection. CONCLUSION Our results support the assertion that AMSC may be safe candidates for therapy when injected subcutaneously because of their long term inability to form teratomas.
Collapse
|
818
|
Guo CJ, Gao Y, Hou D, Shi DY, Tong XM, Shen D, Xi YM, Wang JF. Preclinical transplantation and safety of HS/PCs expanded from human umbilical cord blood. World J Stem Cells 2011; 3:43-52. [PMID: 21666821 PMCID: PMC3110917 DOI: 10.4252/wjsc.v3.i5.43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/05/2011] [Accepted: 01/12/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To expand hematopoietic/progenitor stem cells (HS/PCs) from umbilical cord blood (UCB) and prepare the HS/PC product, and analyze preclinical transplantation and safety of HS/PC product. METHODS Human bone marrow-derived mesenchymal stem cells (MSCs) were used as feeder cells to expand HS/PCs from UCB in a serum-free culture system. The proliferation potential of HS/PCs was analyzed. The expanded HS/PCs were suspended in the L-15 medium to prepare the HS/PC product. The contamination of bacteria, fungi and mycoplasmas, the infection of exogenous virus, the concentration of bacterial endotoxin, and the SCF residual in HS/PC product were determined. Finally, cells from the HS/PC product with or without bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the irradiated NOD/SCID mice to determine the in vivo engraftment potential. RESULTS After co-culture for 10 d, the total nuclear cells (TNCs) increased 125-fold, and CD34(+) cells increased 43-fold. The granulocyte-macrophage colony- forming cells (GM-CFCs) and erythroid colony-forming cells (E-CFCs) increased 3.3- and 4.7-fold respectively. The expanded cells were collected and prepared as the expanded product of HS/PCs by re-suspending cells in L-15 medium. For preclinical safety, the HS/PC product was analysed for contamination by bacteria, fungi and mycoplasmas, the bacterial endotoxin concentration and the SCF content. The results showed that the HS/PC product contained no bacteria, fungi or mycoplasmas. The bacterial endotoxin concentration was less than the detection limit of 6 EU/mL, and residual SCF was 75 pg/mL. Based on clinical safety, the HS/PC product was qualified for clinical transplantation. Finally, the HS/PC product was transplanted the irradiated mice where it resulted in rapid engraftment of hematopoietic cells. CONCLUSION HSPC product prepared from UCB in the serum-free culture system with hMSCs as feeder cells should be clinically safe and effective for clinical transplantation.
Collapse
|
819
|
Maurya DK, Doi C, Pyle M, Rachakatla RS, Davis D, Tamura M, Troyer D. Non-random tissue distribution of human naïve umbilical cord matrix stem cells. World J Stem Cells 2011; 3:34-42. [PMID: 21607135 PMCID: PMC3097938 DOI: 10.4252/wjsc.v3.i4.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 01/10/2011] [Accepted: 01/17/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the tissue and temporal distribution of human umbilical cord matrix stem (hUCMS) cells in severe combined immunodeficiency (SCID) mice. METHODS For studying the localization of hUCMS cells, tritiated thymidine-labeled hUCMS cells were injected in SCID mice and tissue distribution was quantitatively determined using a liquid scintillation counter at days 1, 3, 7 and 14. Furthermore, an immunofluorescence detection technique was employed in which anti-human mitochondrial antibody was used to identify hUCMS cells in mouse tissues. In order to visualize the distribution of transplanted hUCMS cells in H&E stained tissue sections, India Black ink 4415 was used to label the hUCMS cells. RESULTS When tritiated thymidine-labeled hUCMS cells were injected systemically (iv) in female SCID mice, the lung was the major site of accumulation at 24 h after transplantation. With time, the cells migrated to other tissues, and on day three, the spleen, stomach, and small and large intestines were the major accumulation sites. On day seven, a relatively large amount of radioactivity was detected in the adrenal gland, uterus, spleen, lung, and digestive tract. In addition, labeled cells had crossed the blood brain barrier by day 1. CONCLUSION These results indicate that peripherally injected hUCMS cells distribute quantitatively in a tissue-specific manner throughout the body.
Collapse
|
820
|
Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells: Their identity and uses in clinical trials, an update. World J Stem Cells 2011; 3:25-33. [PMID: 21607134 PMCID: PMC3097937 DOI: 10.4252/wjsc.v3.i4.25] [Citation(s) in RCA: 405] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 12/14/2010] [Accepted: 12/21/2010] [Indexed: 02/06/2023] Open
Abstract
In adults, adipose tissue is abundant and can be easily sampled using liposuction. Largely involved in obesity and associated metabolic disorders, it is now described as a reservoir of immature stromal cells. These cells, called adipose-derived stromal cells (ADSCs) must be distinguished from the crude stromal vascular fraction (SVF) obtained after digestion of adipose tissue. ADSCs share many features with mesenchymal stem cells derived from bone marrow, including paracrine activity, but they also display some specific features, including a greater angiogenic potential. Their angiogenic properties as well as their paracrine activity suggest a putative tumor-promoting role for ADSCs although contradictory data have been published on this issue. Both SVF cells and ADSCs are currently being investigated in clinical trials in several fields (chronic inflammation, ischemic diseases, etc.). Apart from a phase III trial on the treatment of fistula, most of these are in phase I and use autologous cells. In the near future, the end results of these trials should provide a great deal of data on the safety of ADSC use.
Collapse
|
821
|
Li GR, Deng XL. Functional ion channels in stem cells. World J Stem Cells 2011; 3:19-24. [PMID: 21607133 PMCID: PMC3097936 DOI: 10.4252/wjsc.v3.i3.19] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/14/2011] [Accepted: 01/21/2011] [Indexed: 02/06/2023] Open
Abstract
Bioelectrical signals generated by ion channels play crucial roles in excitation genesis and impulse conduction in excitable cells as well as in cell proliferation, migration and apoptosis in proliferative cells. Recent studies have demonstrated that multiple ion channels are heterogeneously present in different stem cells; however, patterns and phenotypes of ion channels are species- and/or origin-dependent. This editorial review focuses on the recent findings related to the expression of functional ion channels and the roles of these channels in regulation of cell proliferation in stem cells. Additional effort is required in the future to clarify the ion channel expression in different types of stem cells; special attention should be paid to the relationship between ion channels and stem cell proliferation, migration and differentiation.
Collapse
|
822
|
Walker PA, Letourneau PA, Bedi S, Shah SK, Jimenez F, Cox CS. Progenitor cells as remote "bioreactors": neuroprotection via modulation of the systemic inflammatory response. World J Stem Cells 2011; 3:9-18. [PMID: 21607132 PMCID: PMC3097935 DOI: 10.4252/wjsc.v3.i2.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 01/05/2011] [Accepted: 01/12/2011] [Indexed: 02/06/2023] Open
Abstract
Acute central nervous system (CNS) injuries such as spinal cord injury, traumatic brain injury, autoimmune encephalomyelitis, and ischemic stroke are associated with significant morbidity, mortality, and health care costs worldwide. Preliminary research has shown potential neuroprotection associated with adult tissue derived stem/progenitor cell based therapies. While initial research indicated that engraftment and transdifferentiation into neural cells could explain the observed benefit, the exact mechanism remains controversial. A second hypothesis details localized stem/progenitor cell engraftment with alteration of the loco-regional milieu; however, the limited rate of cell engraftment makes this theory less likely. There is a growing amount of preclinical data supporting the idea that, after intravenous injection, stem/progenitor cells interact with immunologic cells located in organ systems distant to the CNS, thereby altering the systemic immunologic/inflammatory response. Such distant cell "bioreactors" could modulate the observed post-injury pro-inflammatory environment and lead to neuroprotection. In this review, we discuss the current literature detailing the above mechanisms of action for adult stem/progenitor cell based therapies in the CNS.
Collapse
|
823
|
Bassi EJ, Aita CAM, Câmara NOS. Immune regulatory properties of multipotent mesenchymal stromal cells: Where do we stand? World J Stem Cells 2011; 3:1-8. [PMID: 21607131 PMCID: PMC3097934 DOI: 10.4252/wjsc.v3.i1.1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/18/2010] [Accepted: 12/25/2010] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) can be isolated and efficiently expanded from almost every single body tissue and have the ability of self-renewal and differentiation into various mesodermal cell lineages. Moreover, these cells are considered immunologically privileged, related to a lack of surface expression of costimulatory molecules required for complete T cell activation. Recently, it has been observed that MSC are capable of suppressing the immune response by inhibiting the maturation of dendritic cells and suppressing the function of T lymphocytes, B lymphocytes and natural killer cells in autoimmune and inflammatory diseases as a new strategy for immunosuppression. The understanding of immune regulation mechanisms by MSC is necessary for their use as immunotherapy in clinical applications for several diseases.
Collapse
|
824
|
Saraiva NZ, Oliveira CS, Garcia JM. Histone acetylation and its role in embryonic stem cell differentiation. World J Stem Cells 2010; 2:121-6. [PMID: 21607129 PMCID: PMC3097932 DOI: 10.4252/wjsc.v2.i6.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 02/06/2023] Open
Abstract
The understanding of mechanisms leading to cellular differentiation is the main aim of numerous studies. Accessibility of DNA to transcription factors depends on local chromatin structure and chromatin compaction inhibits gene transcription. Histone acetylation correlates with an open chromatin structure and increased gene expression. Gene transcription levels are changed in early embryonic stem cells differentiation in a tissue-specific manner and epigenetic marks are modified, including increased global acetylation levels. Manipulation of histone deacetylases activity might be an interesting tool to generate populations of specific cell types for transplantation purposes. Thus, this review aims to show recent findings on histone acetylation, a post translational modification and its manipulation in embryonic stem cells differentiation.
Collapse
|
825
|
Mamo S, Kobolak J, Borbíró I, Bíró T, Bock I, Dinnyes A. Gene targeting and Calcium handling efficiencies in mouse embryonic stem cell lines. World J Stem Cells 2010; 2:127-40. [PMID: 21607130 PMCID: PMC3097933 DOI: 10.4252/wjsc.v2.i6.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To compare gene targeting efficiencies, expression profiles, and Ca(2+) handling potentials in two widely used mouse embryonic stem cell lines. METHODS The two widely used mouse embryonic stem cell lines, R1 and HM-1, were cultured and maintained on Mitomycin C treated mouse embryonic fibroblast feeder cell layers, following standard culture procedures. Cells were incubated with primary and secondary antibodies before fluorescence activated cell sorting analysis to compare known pluripotency markers. Moreover, cells were harvested by trypsinization and transfected with a kinase-inactive murine Tyk2 targeting construct, following the BioRad and Amaxa transfection procedures. Subsequently, the cells were cultured and neomycin-resistant cells were picked after 13 d of selection. Surviving clones were screened twice by polymerase chain reaction (PCR) and finally confirmed by Southern blot analysis before comparison. Global gene expression profiles of more than 20 400 probes were also compared and significantly regulated genes were confirmed by real time PCR analysis. Calcium handling potentials of these cell lines were also compared using various agonists. RESULTS We found significant differences in transfection efficiencies of the two cell lines (91% ± 6.1% vs 75% ± 4.2%, P = 0.01). Differences in the targeting efficiencies were also significant whether the Amaxa or BioRad platforms were used for comparison. We did not observe significant differences in the levels of many known pluripotency markers. However, our genome-wide expression analysis using more than 20 400 spotted cDNA arrays identified 55 differentially regulated transcripts (P < 0.05) implicated in various important biological processes, including binding molecular functions (particularly Ca(2+) binding roles). Subsequently, we measured Ca(2+) signals in these cell lines in response to various calcium agonists, both in high and low Ca(2+) solutions, and found significant differences (P < 0.05) in the regulation of Ca(2+) homeostasis between the investigated cell lines. Then we further compared the detection and expression of various membrane and intracellular Ca(2+) receptors and similarly found significant (P < 0.05) variations in a number of calcium receptors between these cell lines. CONCLUSION Results of this study emphasize the importance of considering intrinsic cellular variations, during selection of cell lines for experiments and interpretations of experimental results.
Collapse
|