1
|
Song Q, Gao M, Weng Y, Zhuang X, Wu Y, Cui H, Ding N, Wang L, Bi S, Zhang L, Zhang W, Cui Y. Evolutionary adaptation and asymmetric inheritance of polyploid giant cancer cells in esophageal squamous cell carcinoma. Cancer Lett 2025:217818. [PMID: 40414521 DOI: 10.1016/j.canlet.2025.217818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Polyploid Giant Cancer Cells (PGCCs) play a critical role in tumor progression due to their distinctive biological behaviors. However, the mechanisms by which PGCCs regulate their composition and structure to adapt to dynamic environments during their formation remain poorly understood. In this study, we used multicolor labeling of major organelles in esophageal squamous cell carcinoma (ESCC) cells combined with high- and super-resolution time-lapse imaging to monitor induced PGCCs in three dimensions. In addition to abnormal PGCC division, we observed nuclear dynamics and transient cell-in-cell formations. PGCCs exhibited cell cycle abnormalities, including prolonged G1/S transitions, asynchronous micronuclei, and intranuclear mitosis. Notably, early progeny continued dividing despite cell cycle dysregulation, resulting in asymmetric offspring. Quantitative analysis of subcellular structures revealed asymmetric inheritance of organelles, particularly mitochondria and the Golgi apparatus, in recurrent cells. These adaptive mechanisms in PGCCs may also be relevant in the context of anticancer treatments, contributing to the heterogeneity of recurrent tumors arising from early PGCC progeny populations.
Collapse
Affiliation(s)
- Qiqin Song
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Mingwei Gao
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China
| | - Yongjia Weng
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Xuehan Zhuang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China
| | - Yueguang Wu
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Heyang Cui
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, 999077, SAR, Hong Kong, China
| | - Ning Ding
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Longlong Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Shanshan Bi
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Li Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Weimin Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China; State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100142, P. R. China.
| | - Yongping Cui
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China.
| |
Collapse
|
2
|
Kashima Y, Tsuyama T, Sakai A, Morita K, Suzuki H, Azuma Y, Tada S. Cdt1 Self-associates via the Winged-Helix Domain of the Central Region during the Licensing Reaction, Which Is Inhibited by Geminin. Biol Pharm Bull 2024; 47:1338-1344. [PMID: 39048355 DOI: 10.1248/bpb.b24-00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The initiation of DNA replication is tightly controlled by the licensing system that loads replicative DNA helicases onto replication origins to form pre-replicative complexes (pre-RCs) once per cell cycle. Cdc10-dependent transcript 1 (Cdt1) plays an essential role in the licensing reaction by recruiting mini-chromosome maintenance (MCM) complexes, which are eukaryotic replicative DNA helicases, to their origins via direct protein-protein interactions. Cdt1 interacts with other pre-RC components, the origin recognition complex, and the cell division cycle 6 (Cdc6) protein; however, the molecular mechanism by which Cdt1 functions in the MCM complex loading process has not been fully elucidated. Here, we analyzed the protein-protein interactions of recombinant Cdt1 and observed that Cdt1 self-associates via the central region of the molecule, which is inhibited by the endogenous licensing inhibitor, geminin. Mutation of two β-strands of the winged-helix domain in the central region of Cdt1 attenuated its self-association but could still interact with other pre-RC components and DNA similarly to wild-type Cdt1. Moreover, the Cdt1 mutant showed decreased licensing activity in Xenopus egg extracts. Together, these results suggest that the self-association of Cdt1 is crucial for licensing.
Collapse
Affiliation(s)
- Yuki Kashima
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Takashi Tsuyama
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Azusa Sakai
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Kenta Morita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Hironori Suzuki
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Yutaro Azuma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| | - Shusuke Tada
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
3
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
SPOP mutation induces replication over-firing by impairing Geminin ubiquitination and triggers replication catastrophe upon ATR inhibition. Nat Commun 2021; 12:5779. [PMID: 34599168 PMCID: PMC8486843 DOI: 10.1038/s41467-021-26049-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Geminin and its binding partner Cdt1 are essential for the regulation of DNA replication. Here we show that the CULLIN3 E3 ubiquitin ligase adaptor protein SPOP binds Geminin at endogenous level and regulates DNA replication. SPOP promotes K27-linked non-degradative poly-ubiquitination of Geminin at lysine residues 100 and 127. This poly-ubiquitination of Geminin prevents DNA replication over-firing by indirectly blocking the association of Cdt1 with the MCM protein complex, an interaction required for DNA unwinding and replication. SPOP is frequently mutated in certain human cancer types and implicated in tumorigenesis. We show that cancer-associated SPOP mutations impair Geminin K27-linked poly-ubiquitination and induce replication origin over-firing and re-replication. The replication stress caused by SPOP mutations triggers replication catastrophe and cell death upon ATR inhibition. Our results reveal a tumor suppressor role of SPOP in preventing DNA replication over-firing and genome instability and suggest that SPOP-mutated tumors may be susceptible to ATR inhibitor therapy. Geminin-Cdt1 plays essential roles in the regulation of DNA replication. Here the authors reveal that the CULLIN3 E3 ubiquitin ligase adaptor protein SPOP prevents DNA replication over-firing and genome instability by affecting Geminin ubiquitination.
Collapse
|
5
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
6
|
Turcu DC, Lillehaug JR, Seo HC. SIX3 and SIX6 interact with GEMININ via C-terminal regions. Biochem Biophys Rep 2019; 20:100695. [PMID: 31844685 PMCID: PMC6895700 DOI: 10.1016/j.bbrep.2019.100695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/13/2023] Open
Abstract
The histoarchitecture and function of eye and forebrain depend on a well-controlled balance between cell proliferation and differentiation. For example, the binding of the cell cycle regulator GEMININ to CDT1, which is a part of the pre-replication complex, promotes cell differentiation. Homeodomain transcription factors SIX3 and SIX6 also interact with GEMININ of which SIX3-GEMININ interaction promotes cell proliferation, whereas the nature of SIX6-GEMININ interaction has not been studied to date. We investigated SIX3/SIX6 and GEMININ interactions using bimolecular fluorescence complementation, surface plasmon resonance and isothermal titration calorimetry. Interactions between SIX3/SIX6 and GEMININ were detected in mammalian cells in culture. The presence of the C-terminal regions of SIX3 and SIX6 proteins, but not their SIX domains or homeodomains as previously thought, were required for interaction with GEMININ. Interestingly, the disordered C- and N- terminal regions of GEMININ were involved in binding to SIX3/SIX6. The coiled-coil region of GEMININ, which is the known protein-binding domain and also interacts with CDT1, was not involved in GEMININ-SIX3/SIX6 interaction. Using SPR and ITC, SIX3 bound GEMININ with a micromolar affinity and the binding stoichiometry was 1:2 (SIX3 - GEMININ). The present study gives new insights into the binding properties of SIX proteins, especially the role of their variable and disordered C-terminal regions. C-terminal regions of SIX3/SIX6 bind GEMININ. GEMININ coiled-coil region is not involved in SIX3/SIX6 interaction. C- and N-terminal regions of GEMININ bind SIX3/SIX6. SIX3 binds GEMININ with a binding stoichiometry of 1:2.
Collapse
Affiliation(s)
- Diana C Turcu
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Johan R Lillehaug
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Hee-Chan Seo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Yuan Y, Ma XS, Liang QX, Xu ZY, Huang L, Meng TG, Lin F, Schatten H, Wang ZB, Sun QY. Geminin deletion in pre-meiotic DNA replication stage causes spermatogenesis defect and infertility. J Reprod Dev 2017; 63:481-488. [PMID: 28690291 PMCID: PMC5649097 DOI: 10.1262/jrd.2017-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Geminin plays a critical role in cell cycle regulation by regulating DNA replication and serves as a transcriptional molecular switch that directs cell fate decisions. Spermatogonia lacking Geminin disappear
during the initial wave of mitotic proliferation, while geminin is not required for meiotic progression of spermatocytes. It is unclear whether geminin plays a role in pre-meiotic DNA replication in later-stage spermatogonia and
their subsequent differentiation. Here, we selectively disrupted Geminin in the male germline using the Stra8-Cre/loxP conditional knockout system.
Geminin-deficient mice showed atrophic testes and infertility, concomitant with impaired spermatogenesis and reduced sperm motility. The number of undifferentiated spermatogonia and spermatocytes was significantly
reduced; the pachytene stage was impaired most severely. Expression of cell proliferation-associated genes was reduced in Gmnnfl/Δ; Stra8-Cre testes compared to in controls. Increased
DNA damage, decreased Cdt1, and increased phosphorylation of Chk1/Chk2 were observed in Geminin-deficient germ cells. These results suggest that geminin plays important roles in pre-meiotic DNA replication and
subsequent spermatogenesis.
Collapse
Affiliation(s)
- Yue Yuan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,The Reproductive Medical Center, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Qiu-Xia Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao-Yang Xu
- The Reproductive Medical Center, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Lin Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Zhang L, Cai M, Gong Z, Zhang B, Li Y, Guan L, Hou X, Li Q, Liu G, Xue Z, Yang MH, Ye J, Chin YE, You H. Geminin facilitates FoxO3 deacetylation to promote breast cancer cell metastasis. J Clin Invest 2017; 127:2159-2175. [PMID: 28436938 DOI: 10.1172/jci90077] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/21/2017] [Indexed: 01/29/2023] Open
Abstract
Geminin expression is essential for embryonic development and the maintenance of chromosomal integrity. In spite of this protective role, geminin is also frequently overexpressed in human cancers and the molecular mechanisms underlying its role in tumor progression remain unclear. The histone deacetylase HDAC3 modulates transcription factors to activate or suppress transcription. Little is known about how HDAC3 specifies substrates for modulation among highly homologous transcription factor family members. Here, we have demonstrated that geminin selectively couples the transcription factor forkhead box O3 (FoxO3) to HDAC3, thereby specifically facilitating FoxO3 deacetylation. We determined that geminin-associated HDAC3 deacetylates FoxO3 to block its transcriptional activity, leading to downregulation of the downstream FoxO3 target Dicer, an RNase that suppresses metastasis. Breast cancer cells depleted of geminin or HDAC3 exhibited poor metastatic potential that was attributed to reduced suppression of the FoxO3-Dicer axis. Moreover, elevated levels of geminin, HDAC3, or both together with decreased FoxO3 acetylation and reduced Dicer expression were detected in aggressive human breast cancer specimens. These results underscore a prominent role for geminin in promoting breast cancer metastasis via the enzyme-substrate-coupling mechanism in HDAC3-FoxO3 complex formation.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Meizhen Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Zhicheng Gong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Bingchang Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Yuanpei Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Li Guan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Xiaonan Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Qing Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zengfu Xue
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Muh-Hua Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences-Jiaotong University School of Medicine, Shanghai, China
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, and
| |
Collapse
|
9
|
Tang XF, Chen XY, Zhang CD, Li YF, Liu TH, Zhou XL, Wang L, Zhang Q, Chen P, Lu C, Pan MH. Two Geminin homologs regulate DNA replication in silkworm, Bombyx mori. Cell Cycle 2017; 16:830-840. [PMID: 28379781 DOI: 10.1080/15384101.2017.1282582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA replication is rigorously controlled in cells to ensure that the genome duplicates exactly once per cell cycle. Geminin is a small nucleoprotein, which prevents DNA rereplication by directly binding to and inhibiting the DNA replication licensing factor, Cdt1. In this study, we have identified 2 Geminin genes, BmGeminin1 and BmGeminn2, in silkworm, Bombyx mori. These genes contain the Geminin conserved coiled-coil domain and are periodically localized in the nucleus during the S-G2 phase but are degraded at anaphase in mitosis. Both BmGeminin1 and BmGeminin2 are able to homodimerize and interact with BmCdt1 in cells. In addition, BmGeminin1 and BmGeminin2 can interact with each other. Overexpression of BmGeminin1 affects cell cycle progression: cell cycle is arrested in S phase, and RNA interference of BmGeminin1 leads to rereplication. In contrast, overexpression or knockdown of BmGeminin2 with RNAi did not significantly affect cell cycle, while more rereplication occurred when BmGeminin1 and BmGeminin2 together were knocked down in cells than when only BmGeminin1 was knocked down. These data suggest that both BmGeminin1 and BmGeminin2 are involved in the regulation of DNA replication. These findings provide insight into the function of Geminin and contribute to our understanding of the regulation mechanism of cell cycle in silkworm.
Collapse
Affiliation(s)
- Xiao-Fang Tang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Xiang-Yun Chen
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b Basic Medical School , Guiyang College of Traditional Chinese Medicine , Guiyang , China
| | - Chun-Dong Zhang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,c Department of Biochemistry and Molecular Biology , Chongqing Medical University , Chongqing , China
| | - Yao-Feng Li
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,b Basic Medical School , Guiyang College of Traditional Chinese Medicine , Guiyang , China
| | - Tai-Hang Liu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Xiao-Lin Zhou
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - La Wang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Qian Zhang
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China
| | - Peng Chen
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,d Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| | - Cheng Lu
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,d Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| | - Min-Hui Pan
- a State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing , China.,d Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry , Southwest University , Chongqing , China
| |
Collapse
|
10
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
11
|
Peng YP, Zhu Y, Yin LD, Zhang JJ, Guo S, Fu Y, Miao Y, Wei JS. The Expression and Prognostic Roles of MCMs in Pancreatic Cancer. PLoS One 2016; 11:e0164150. [PMID: 27695057 PMCID: PMC5047525 DOI: 10.1371/journal.pone.0164150] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Minichromosome maintenance (MCM) proteins play important roles in DNA replication by interacting with other factors which participate in the regulation of DNA synthesis. Abnormal over-expression of MCMs was observed in numerous malignancies, such as colorectal cancer. However, the expression of MCMs in pancreatic cancer (PC) was less investigated so far. This study was designed to analyze the expression and prognostic roles of MCM1-10 in PC based on the data provided by The Cancer Genome Atlas (TCGA). METHODS Pearson χ2 test was applied to evaluate the association of MCMs expression with clinicopathologic indicators, and biomarkers for tumor biological behaviors. Kaplan-Meier plots and log-rank tests were used to assess survival analysis, and univariate and multivariate Cox proportional hazard regression models were used to recognize independent prognostic factors. RESULTS MCM1-10 were generally expressed in PC samples. The levels of some molecules were markedly correlated with that of biomarkers for S phase, proliferation, gemcitabine resistance. And part of these molecules over-expression was significantly associated with indicators of disease progression, such as depth of tumor invasion and lymph node metastasis. Furthermore, MCM2, 4, 6, 8, and 10 over-expression was remarkably associated with shorter disease free survival time, and MCM2, 4,8, and 10 over-expression was associated with shorter overall survival time. Further multivariate analysis suggested that MCM8 was an independent prognostic factor for PC. CONCLUSION MCMs abnormal over-expression was significantly associated with PC progression and prognosis. These molecules could be regarded as prognostic and therapeutic biomarkers for PC. The roles of MCMs may be vitally important and the underlying mechanisms need to be furtherinvestigated.
Collapse
Affiliation(s)
- Yun-Peng Peng
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yi Zhu
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Ling-Di Yin
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jing-Jing Zhang
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Song Guo
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yue Fu
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Yi Miao
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- * E-mail: (MY); (WJ-S)
| | - Ji-Shu Wei
- Pancreas Institute of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of General Surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- * E-mail: (MY); (WJ-S)
| |
Collapse
|
12
|
Phillips RK, Peter LG, Gilbert SP, Rayment I. Family-specific Kinesin Structures Reveal Neck-linker Length Based on Initiation of the Coiled-coil. J Biol Chem 2016; 291:20372-86. [PMID: 27462072 DOI: 10.1074/jbc.m116.737577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/24/2022] Open
Abstract
Kinesin-1, -2, -5, and -7 generate processive hand-over-hand 8-nm steps to transport intracellular cargoes toward the microtubule plus end. This processive motility requires gating mechanisms to coordinate the mechanochemical cycles of the two motor heads to sustain the processive run. A key structural element believed to regulate the degree of processivity is the neck-linker, a short peptide of 12-18 residues, which connects the motor domain to its coiled-coil stalk. Although a shorter neck-linker has been correlated with longer run lengths, the structural data to support this hypothesis have been lacking. To test this hypothesis, seven kinesin structures were determined by x-ray crystallography. Each included the neck-linker motif, followed by helix α7 that constitutes the start of the coiled-coil stalk. In the majority of the structures, the neck-linker length differed from predictions because helix α7, which initiates the coiled-coil, started earlier in the sequence than predicted. A further examination of structures in the Protein Data Bank reveals that there is a great disparity between the predicted and observed starting residues. This suggests that an accurate prediction of the start of a coiled-coil is currently difficult to achieve. These results are significant because they now exclude simple comparisons between members of the kinesin superfamily and add a further layer of complexity when interpreting the results of mutagenesis or protein fusion. They also re-emphasize the need to consider factors beyond the kinesin neck-linker motif when attempting to understand how inter-head communication is tuned to achieve the degree of processivity required for cellular function.
Collapse
Affiliation(s)
- Rebecca K Phillips
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Logan G Peter
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Susan P Gilbert
- the Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ivan Rayment
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 and
| |
Collapse
|
13
|
Ohno Y, Suzuki-Takedachi K, Yasunaga S, Kurogi T, Santo M, Masuhiro Y, Hanazawa S, Ohtsubo M, Naka K, Takihara Y. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin. PLoS One 2016; 11:e0155558. [PMID: 27195810 PMCID: PMC4873132 DOI: 10.1371/journal.pone.0155558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/29/2016] [Indexed: 02/02/2023] Open
Abstract
Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin) was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kyoko Suzuki-Takedachi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Shin’ichiro Yasunaga
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Toshiaki Kurogi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Mimoko Santo
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Shigemasa Hanazawa
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Motoaki Ohtsubo
- Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Kita-ishigaki 82, Beppu-city, Oita, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
14
|
Ma XS, Lin F, Wang ZW, Hu MW, Huang L, Meng TG, Jiang ZZ, Schatten H, Wang ZB, Sun QY. Geminin deletion in mouse oocytes results in impaired embryo development and reduced fertility. Mol Biol Cell 2016; 27:768-75. [PMID: 26764091 PMCID: PMC4803303 DOI: 10.1091/mbc.e15-06-0346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/06/2016] [Indexed: 12/28/2022] Open
Abstract
Geminin is an important regulator of DNA replication and cell differentiation, but its role in female reproduction remains uncertain. Maternal geminin does not regulate oocyte meiotic maturation but does control accurate DNA replication. Geminin deletion in oocytes results in impaired embryo development and reduced fertility. Geminin controls proper centrosome duplication, cell division, and differentiation. We investigated the function of geminin in oogenesis, fertilization, and early embryo development by deleting the geminin gene in oocytes from the primordial follicle stage. Oocyte-specific disruption of geminin results in low fertility in mice. Even though there was no evident anomaly of oogenesis, oocyte meiotic maturation, natural ovulation, or fertilization, early embryo development and implantation were impaired. The fertilized eggs derived from mutant mice showed developmental delay, and many were blocked at the late zygote stage. Cdt1 protein was decreased, whereas Chk1 and H2AX phosphorylation was increased, in fertilized eggs after geminin depletion. Our results suggest that disruption of maternal geminin may decrease Cdt1 expression and cause DNA rereplication, which then activates the cell cycle checkpoint and DNA damage repair and thus impairs early embryo development.
Collapse
Affiliation(s)
- Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhong-Wei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Wen Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zong-Zhe Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Caillat C, Fish A, Pefani DE, Taraviras S, Lygerou Z, Perrakis A. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2278-86. [PMID: 26527144 PMCID: PMC4631479 DOI: 10.1107/s1399004715016892] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022]
Abstract
GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin-Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.
Collapse
Affiliation(s)
- Christophe Caillat
- Department of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Alexander Fish
- Department of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Anastassis Perrakis
- Department of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
16
|
Suchyta M, Miotto B, McGarry TJ. An inactive geminin mutant that binds cdt1. Genes (Basel) 2015; 6:252-66. [PMID: 25988259 PMCID: PMC4488664 DOI: 10.3390/genes6020252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/27/2022] Open
Abstract
The initiation of DNA replication is tightly regulated in order to ensure that the genome duplicates only once per cell cycle. In vertebrate cells, the unstable regulatory protein Geminin prevents a second round of DNA replication by inhibiting the essential replication factor Cdt1. Cdt1 recruits mini-chromosome maintenance complex (MCM2-7), the replication helicase, into the pre-replication complex (pre-RC) at origins of DNA replication. The mechanism by which Geminin inhibits MCM2-7 loading by Cdt1 is incompletely understood. The conventional model is that Geminin sterically hinders a direct physical interaction between Cdt1 and MCM2-7. Here, we describe an inactive missense mutant of Geminin, GemininAWA, which binds to Cdt1 with normal affinity yet is completely inactive as a replication inhibitor even when added in vast excess. In fact, GemininAWA can compete with GemininWT for binding to Cdt1 and prevent it from inhibiting DNA replication. GemininAWA does not inhibit the loading of MCM2-7 onto DNA in vivo, and in the presence of GemininAWA, nuclear DNA is massively over-replicated within a single S phase. We conclude that Geminin does not inhibit MCM loading by simple steric interference with a Cdt1-MCM2-7 interaction but instead works by a non-steric mechanism, possibly by inhibiting the histone acetyltransferase HBO1.
Collapse
Affiliation(s)
- Marissa Suchyta
- Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University Chicago, IL 60610, USA.
| | - Benoit Miotto
- Epigenetics and Cell Fate, Sorbonne Paris Cité, University Paris Diderot, UMR 7216 CNRS, Paris 75013, France.
| | - Thomas J McGarry
- Department of Medicine, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University Chicago, IL 60610, USA.
- George Wahlen Veterans Affairs Medical Center, Room 2E 24, 500 Foothill Drive, Salt Lake City, UT 84103, USA.
| |
Collapse
|
17
|
Zielke N, Edgar BA. FUCCI sensors: powerful new tools for analysis of cell proliferation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:469-87. [PMID: 25827130 PMCID: PMC6681141 DOI: 10.1002/wdev.189] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Visualizing the cell cycle behavior of individual cells within living organisms can facilitate the understanding of developmental processes such as pattern formation, morphogenesis, cell differentiation, growth, cell migration, and cell death. Fluorescence Ubiquitin Cell Cycle Indicator (FUCCI) technology offers an accurate, versatile, and universally applicable means of achieving this end. In recent years, the FUCCI system has been adapted to several model systems including flies, fish, mice, and plants, making this technology available to a wide range of researchers for studies of diverse biological problems. Moreover, a broad range of FUCCI‐expressing cell lines originating from diverse cell types have been generated, hence enabling the design of advanced studies that combine in vivo experiments and cell‐based methods such as high‐content screening. Although only a short time has passed since its introduction, the FUCCI technology has already provided fundamental insight into how cells establish quiescence and how G1 phase length impacts the balance between pluripotency and stem cell differentiation. Further discoveries using the FUCCI technology are sure to come. WIREs Dev Biol 2015, 4:469–487. doi: 10.1002/wdev.189 This article is categorized under:
Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Technologies > Generating Chimeras and Lineage Analysis Technologies > Analysis of Cell, Tissue, and Animal Phenotypes
Collapse
Affiliation(s)
- N Zielke
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| | - B A Edgar
- Deutsches Krebsforschungszentrum (DKFZ), Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) Allianz, Heidelberg, Germany
| |
Collapse
|
18
|
Ohno Y, Saeki K, Yasunaga S, Kurogi T, Suzuki-Takedachi K, Shirai M, Mihara K, Yoshida K, Voncken JW, Ohtsubo M, Takihara Y. Transcription of the Geminin gene is regulated by a negative-feedback loop. Mol Biol Cell 2014; 25:1374-83. [PMID: 24554762 PMCID: PMC3983001 DOI: 10.1091/mbc.e13-09-0534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Geminin transcription, regulated by E2Fs, is negatively regulated by Geminin through the inhibition of chromatin remodeling. Geminin transcription is thus regulated by a negative-feedback loop through the chromatin configuration. Homeostatically regulated Geminin may help couple regulation of DNA replication and transcription. Geminin performs a central function in regulating cellular proliferation and differentiation in development and also in stem cells. Of interest, down-regulation of Geminin induces gene transcription regulated by E2F, indicating that Geminin is involved in regulation of E2F-mediated transcriptional activity. Because transcription of the Geminin gene is reportedly regulated via an E2F-responsive region (E2F-R) located in the first intron, we first used a reporter vector to examine the effect of Geminin on E2F-mediated transcriptional regulation. We found that Geminin transfection suppressed E2F1- and E2F2-mediated transcriptional activation and also mildly suppressed such activity in synergy with E2F5, 6, and 7, suggesting that Geminin constitutes a negative-feedback loop for the Geminin promoter. Of interest, Geminin also suppressed nuclease accessibility, acetylation of histone H3, and trimethylation of histone H3 at lysine 4, which were induced by E2F1 overexpression, and enhanced trimethylation of histone H3 at lysine 27 and monoubiquitination of histone H2A at lysine 119 in E2F-R. However, Geminin5EQ, which does not interact with Brahma or Brg1, did not suppress accessibility to nuclease digestion or transcription but had an overall dominant-negative effect. These findings suggest that E2F-mediated activation of Geminin transcription is negatively regulated by Geminin through the inhibition of chromatin remodeling.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita 562-0025, Japan Department of Life Sciences, Meiji University School of Agriculture, Kawasaki 214-8571, Japan Department of Molecular Genetics, Maastricht University Medical Centre, 6229ER Maastricht, Netherlands Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Beppu 874-0915, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Caillat C, Pefani DE, Gillespie PJ, Taraviras S, Blow JJ, Lygerou Z, Perrakis A. The Geminin and Idas coiled coils preferentially form a heterodimer that inhibits Geminin function in DNA replication licensing. J Biol Chem 2013; 288:31624-34. [PMID: 24064211 PMCID: PMC3814758 DOI: 10.1074/jbc.m113.491928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/28/2013] [Indexed: 01/03/2023] Open
Abstract
Geminin is an important regulator of proliferation and differentiation in metazoans, which predominantly inhibits the DNA replication licensing factor Cdt1, preventing genome over-replication. We show that Geminin preferentially forms stable coiled-coil heterodimers with its homologue, Idas. In contrast to Idas-Geminin heterodimers, Idas homodimers are thermodynamically unstable and are unlikely to exist as a stable macromolecule under physiological conditions. The crystal structure of the homology regions of Idas in complex with Geminin showed a tight head-to-head heterodimeric coiled-coil. This Idas-Geminin heterodimer binds Cdt1 less strongly than Geminin-Geminin, still with high affinity (∼30 nm), but with notably different thermodynamic properties. Consistently, in Xenopus egg extracts, Idas-Geminin is less active in licensing inhibition compared with a Geminin-Geminin homodimer. In human cultured cells, ectopic expression of Idas leads to limited over-replication, which is counteracted by Geminin co-expression. The properties of the Idas-Geminin complex suggest it as the functional form of Idas and provide a possible mechanism to modulate Geminin activity.
Collapse
Affiliation(s)
- Christophe Caillat
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Anastassis Perrakis
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
20
|
Mcm10 self-association is mediated by an N-terminal coiled-coil domain. PLoS One 2013; 8:e70518. [PMID: 23894664 PMCID: PMC3720919 DOI: 10.1371/journal.pone.0070518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/11/2013] [Indexed: 01/13/2023] Open
Abstract
Minichromosome maintenance protein 10 (Mcm10) is an essential eukaryotic DNA-binding replication factor thought to serve as a scaffold to coordinate enzymatic activities within the replisome. Mcm10 appears to function as an oligomer rather than in its monomeric form (or rather than as a monomer). However, various orthologs have been found to contain 1, 2, 3, 4, or 6 subunits and thus, this issue has remained controversial. Here, we show that self-association of Xenopus laevis Mcm10 is mediated by a conserved coiled-coil (CC) motif within the N-terminal domain (NTD). Crystallographic analysis of the CC at 2.4 Å resolution revealed a three-helix bundle, consistent with the formation of both dimeric and trimeric Mcm10 CCs in solution. Mutation of the side chains at the subunit interface disrupted in vitro dimerization of both the CC and the NTD as monitored by analytical ultracentrifugation. In addition, the same mutations also impeded self-interaction of the full-length protein in vivo, as measured by yeast-two hybrid assays. We conclude that Mcm10 likely forms dimers or trimers to promote its diverse functions during DNA replication.
Collapse
|
21
|
Geminin deploys multiple mechanisms to regulate Cdt1 before cell division thus ensuring the proper execution of DNA replication. Proc Natl Acad Sci U S A 2013; 110:E2848-53. [PMID: 23836640 DOI: 10.1073/pnas.1310677110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cdc10-dependent transcript 1 (Cdt1) is an essential DNA replication protein whose accumulation at the end of the cell cycle promotes the formation of pre-replicative complexes and replication in the next cell cycle. Geminin is thought to be involved in licensing replication by promoting the accumulation of Cdt1 in mitosis, because decreasing the Geminin levels prevents Cdt1 accumulation and impairs DNA replication. Geminin is known to inhibit Cdt1 function; its depletion during G2 leads to DNA rereplication and checkpoint activation. Here we show that, despite rapid Cdt1 protein turnover in G2 phase, Geminin promotes Cdt1 accumulation by increasing its RNA and protein levels in the unperturbed cell cycle. Therefore, Geminin is a master regulator of cell-cycle progression that ensures the timely onset of DNA replication and prevents its rereplication.
Collapse
|
22
|
Abstract
One of the fundamental challenges facing the cell is to accurately copy its genetic material to daughter cells. When this process goes awry, genomic instability ensues in which genetic alterations ranging from nucleotide changes to chromosomal translocations and aneuploidy occur. Organisms have developed multiple mechanisms that can be classified into two major classes to ensure the fidelity of DNA replication. The first class includes mechanisms that prevent premature initiation of DNA replication and ensure that the genome is fully replicated once and only once during each division cycle. These include cyclin-dependent kinase (CDK)-dependent mechanisms and CDK-independent mechanisms. Although CDK-dependent mechanisms are largely conserved in eukaryotes, higher eukaryotes have evolved additional mechanisms that seem to play a larger role in preventing aberrant DNA replication and genome instability. The second class ensures that cells are able to respond to various cues that continuously threaten the integrity of the genome by initiating DNA-damage-dependent "checkpoints" and coordinating DNA damage repair mechanisms. Defects in the ability to safeguard against aberrant DNA replication and to respond to DNA damage contribute to genomic instability and the development of human malignancy. In this article, we summarize our current knowledge of how genomic instability arises, with a particular emphasis on how the DNA replication process can give rise to such instability.
Collapse
Affiliation(s)
- Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
23
|
Poole E, Bain M, Teague L, Takei Y, Laskey R, Sinclair J. The cellular protein MCM3AP is required for inhibition of cellular DNA synthesis by the IE86 protein of human cytomegalovirus. PLoS One 2012; 7:e45686. [PMID: 23094019 PMCID: PMC3477159 DOI: 10.1371/journal.pone.0045686] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
Like all DNA viruses, human cytomegalovirus (HCMV) infection is known to result in profound effects on host cell cycle. Infection of fibroblasts with HCMV is known to induce an advance in cell cycle through the G0-G1 phase and then a subsequent arrest of cell cycle in early S-phase, presumably resulting in a cellular environment optimum for high levels of viral DNA replication whilst precluding replication of cellular DNA. Although the exact mechanisms used to arrest cell cycle by HCMV are unclear, they likely involve a number of viral gene products and evidence points to the ability of the virus to prevent licensing of cellular DNA synthesis. One viral protein known to profoundly alter cell cycle is the viral immediate early 86 (IE86) protein - an established function of which is to initially drive cells into early S phase but then inhibit cellular DNA synthesis. Here we show that, although IE86 interacts with the cellular licensing factor Cdt1, it does not inhibit licensing of cellular origins. Instead, IE86-mediated inhibition of cellular DNA synthesis requires mini-chromosome-maintenance 3 (MCM3) associated protein (MCM3AP), which can cause subsequent inhibition of initiation of cellular DNA synthesis in a licensing-independent manner.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Mark Bain
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Linda Teague
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yoshinori Takei
- Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Ron Laskey
- Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - John Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Dynamic association of ORCA with prereplicative complex components regulates DNA replication initiation. Mol Cell Biol 2012; 32:3107-20. [PMID: 22645314 DOI: 10.1128/mcb.00362-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In eukaryotes, initiation of DNA replication requires the assembly of a multiprotein prereplicative complex (pre-RC) at the origins. We recently reported that a WD repeat-containing protein, origin recognition complex (ORC)-associated (ORCA/LRWD1), plays a crucial role in stabilizing ORC to chromatin. Here, we find that ORCA is required for the G(1)-to-S-phase transition in human cells. In addition to binding to ORC, ORCA associates with Cdt1 and its inhibitor, geminin. Single-molecule pulldown experiments demonstrate that each molecule of ORCA can bind to one molecule of ORC, one molecule of Cdt1, and two molecules of geminin. Further, ORCA directly interacts with the N terminus of Orc2, and the stability of ORCA is dependent on its association with Orc2. ORCA associates with Orc2 throughout the cell cycle, with Cdt1 during mitosis and G(1), and with geminin in post-G(1) cells. Overexpression of geminin results in the loss of interaction between ORCA and Cdt1, suggesting that increased levels of geminin in post-G(1) cells titrate Cdt1 away from ORCA. We propose that the dynamic association of ORCA with pre-RC components modulates the assembly of its interacting partners on chromatin and facilitates DNA replication initiation.
Collapse
|
25
|
Structural basis for homeodomain recognition by the cell-cycle regulator Geminin. Proc Natl Acad Sci U S A 2012; 109:8931-6. [PMID: 22615398 DOI: 10.1073/pnas.1200874109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeodomain-containing transcription factors play a fundamental role in the regulation of numerous developmental and cellular processes. Their multiple regulatory functions are accomplished through context-dependent inputs of target DNA sequences and collaborating protein partners. Previous studies have well established the sequence-specific DNA binding to homeodomains; however, little is known about how protein partners regulate their functions through targeting homeodomains. Here we report the solution structure of the Hox homeodomain in complex with the cell-cycle regulator, Geminin, which inhibits Hox transcriptional activity and enrolls Hox in cell proliferative control. Side-chain carboxylates of glutamates and aspartates in the C terminus of Geminin generate an overall charge pattern resembling the DNA phosphate backbone. These residues provide electrostatic interactions with homeodomain, which combine with the van der Waals contacts to form the stereospecific complex. We further showed that the interaction with Geminin is homeodomain subclass-selective and Hox paralog-specific, which relies on the stapling role of residues R43 and M54 in helix III and the basic amino acid cluster in the N terminus. Interestingly, we found that the C-terminal residue Ser184 of Geminin could be phosphorylated by Casein kinase II, resulting in the enhanced binding to Hox and more potent inhibitory effect on Hox transcriptional activity, indicating an additional layer of regulation. This structure provides insight into the molecular mechanism underlying homeodomain-protein recognition and may serve as a paradigm for interactions between homeodomains and DNA-competitive peptide inhibitors.
Collapse
|
26
|
Abstract
One of the mechanisms controlling the initiation of DNA replication is the dynamic interaction between Cdt1, which promotes assembly of the pre-replication license complex, and Geminin, which inhibits it. Specifically, Cdt1 cooperates with the cell cycle protein Cdc6 to promote loading of the minichromosome maintenance helicases (MCM) onto the chromatin-bound origin recognition complex (ORC), by directly interacting with the MCM complex, and by modulating histone acetylation and inducing chromatin unfolding. Geminin, on the other hand, prevents the loading of the MCM onto the ORC both by directly binding to Cdt1, and by modulating Cdt1 stability and activity. Protein levels of Geminin and Cdt1 are tightly regulated through the cell cycle, and the Cdt1-Geminin complex likely acts as a molecular switch that can enable or disable the firing of each origin of replication. In this review we summarize structural studies of Cdt1 and Geminin and subsequent insights into how this molecular switch may function to ensure DNA is faithfully replicated only once during S phase of each cell cycle.
Collapse
Affiliation(s)
- Christophe Caillat
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
Pefani DE, Dimaki M, Spella M, Karantzelis N, Mitsiki E, Kyrousi C, Symeonidou IE, Perrakis A, Taraviras S, Lygerou Z. Idas, a novel phylogenetically conserved geminin-related protein, binds to geminin and is required for cell cycle progression. J Biol Chem 2011; 286:23234-46. [PMID: 21543332 PMCID: PMC3123090 DOI: 10.1074/jbc.m110.207688] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/30/2011] [Indexed: 11/06/2022] Open
Abstract
Development and homeostasis of multicellular organisms relies on an intricate balance between cell proliferation and differentiation. Geminin regulates the cell cycle by directly binding and inhibiting the DNA replication licensing factor Cdt1. Geminin also interacts with transcriptional regulators of differentiation and chromatin remodelling factors, and its balanced interactions are implicated in proliferation-differentiation decisions during development. Here, we describe Idas (Idas being a cousin of the Gemini in Ancient Greek Mythology), a previously uncharacterised coiled-coil protein related to Geminin. We show that human Idas localizes to the nucleus, forms a complex with Geminin both in cells and in vitro through coiled-coil mediated interactions, and can change Geminin subcellular localization. Idas does not associate with Cdt1 and prevents Geminin from binding to Cdt1 in vitro. Idas depletion from cells affects cell cycle progression; cells accumulate in S phase and are unable to efficiently progress to mitosis. Idas protein levels decrease in anaphase, whereas its overexpression causes mitotic defects. During development, we show that Idas exhibits high level expression in the choroid plexus and the cortical hem of the mouse telencephalon. Our data highlight Idas as a novel Geminin binding partner, implicated in cell cycle progression, and a putative regulator of proliferation-differentiation decisions during development.
Collapse
Affiliation(s)
- Dafni-Eleutheria Pefani
- From the Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Maria Dimaki
- From the Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Magda Spella
- the Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece, and
| | - Nickolas Karantzelis
- the Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece, and
| | - Eirini Mitsiki
- the Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Christina Kyrousi
- the Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece, and
| | - Ioanna-Eleni Symeonidou
- From the Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Anastassis Perrakis
- the Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Stavros Taraviras
- the Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece, and
| | - Zoi Lygerou
- From the Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| |
Collapse
|
28
|
Wong PG, Glozak MA, Cao TV, Vaziri C, Seto E, Alexandrow M. Chromatin unfolding by Cdt1 regulates MCM loading via opposing functions of HBO1 and HDAC11-geminin. Cell Cycle 2010; 9:4351-63. [PMID: 20980834 PMCID: PMC3055186 DOI: 10.4161/cc.9.21.13596] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/11/2010] [Indexed: 12/22/2022] Open
Abstract
The efficiency of metazoan origins of DNA replication is known to be enhanced by histone acetylation near origins. Although this correlates with increased MCM recruitment, the mechanism by which such acetylation regulates MCM loading is unknown. We show here that Cdt1 induces large-scale chromatin decondensation that is required for MCM recruitment. This process occurs in G₁, is suppressed by Geminin, and requires HBO1 HAT activity and histone H4 modifications. HDAC11, which binds Cdt1 and replication origins during S-phase, potently inhibits Cdt1-induced chromatin unfolding and re-replication, suppresses MCM loading and binds Cdt1 more efficiently in the presence of Geminin. We also demonstrate that chromatin at endogenous origins is more accessible in G₁ relative to S-phase. These results provide evidence that histone acetylation promotes MCM loading via enhanced chromatin accessibility. This process is regulated positively by Cdt1 and HBO1 in G₁ and repressed by Geminin-HDAC11 association with Cdt1 in S-phase, and represents a novel form of replication licensing control.
Collapse
Affiliation(s)
- Philip G Wong
- Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|
29
|
Lai F, Wu R, Wang J, Li C, Zou L, Lu Y, Liang C. Far3p domains involved in the interactions of Far proteins and pheromone-induced cell cycle arrest in budding yeast. FEMS Yeast Res 2010; 11:72-9. [PMID: 20977626 DOI: 10.1111/j.1567-1364.2010.00691.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Far3p (factor arrest), a protein that interacts with Far7-11p, is required for the pheromone-mediated cell cycle arrest in G1 phase. We used a combination of computational and experimental strategies to identify the Far3p self-association, to map the Far3p domains that interact with Far3p itself and with other Far proteins, and to reveal the importance of the two coiled-coil motifs of Far3p in the integrity and function of the Far complex. We show that Far3p self-associates through its central region and its C-terminal coiled-coil domain, that the amino acid 61-100 region of Far3p interacts with Far7p, and that the Far3p N-terminal coiled-coil domain interacts with Far9p and Far10p. Mutation of the N-terminal coiled coil disrupts the interactions of Far3p with Far9p and Far10p, and mutation of the C-terminal domain weakens the Far3p self-interaction. Although the N- and C-terminal coiled-coil mutants reserve some of the interactions with itself and some other Far proteins, both mutants are defective in the pheromone-mediated G1 arrest, indicating that both coiled-coil motifs of Far3p are essential for the integrity and the function of the Far complex.
Collapse
Affiliation(s)
- Fenju Lai
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China Section of Biochemistry and Cell Biology, Division of Life Science, and Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Piergiovanni G, Costanzo V. GEMC1 is a novel TopBP1-interacting protein involved in chromosomal DNA replication. Cell Cycle 2010; 9:3662-6. [PMID: 20855966 PMCID: PMC3047794 DOI: 10.4161/cc.9.18.13060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 01/07/2023] Open
Abstract
Chromosomal DNA must be precisely replicated in each cell cycle in order to ensure maintenance of genome stability. Most of the factors controlling this process have been identified in lower eukaryotes. Several factors involved in DNA replication are also important for the cellular response to stress conditions. However, the regulation of DNA replication in multi-cellular organisms is still poorly understood. Using the Xenopus laevis egg cell-free system, we have recently identified a novel vertebrate protein named GEMC1 required for DNA replication. xGEMC1 is a Cyclin dependent kinase (CDK) target required forCdc45 loading onto chromatin and it interacts with the checkpoint and replication factor TopBP1, which promotes its binding to chromatin during prereplication complex formation. Here we discuss our recent findings and propose possible roles for GEMC1. Interestingly, recent studies have identified other proteins with analogous functions, showing a higher level of complexity in metazoan replication control compared to lower eukaryotes.
Collapse
Affiliation(s)
- Gabriele Piergiovanni
- Genome Stability Unit, London Research Institute, Clare Hall Laboratories, South Mimms, Herts, UK
| | | |
Collapse
|
31
|
Lee HO, Zacharek SJ, Xiong Y, Duronio RJ. Cell type-dependent requirement for PIP box-regulated Cdt1 destruction during S phase. Mol Biol Cell 2010; 21:3639-53. [PMID: 20826610 PMCID: PMC2965682 DOI: 10.1091/mbc.e10-02-0130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that Cdt1 overexpression in cultured cells can trigger re-replication, but not whether CRL4Cdt2-triggered destruction of Cdt1 is required for normal mitotic cell cycle progression in vivo. We demonstrate that PIP box–mediated destruction of Cdt1Dup during S phase is necessary for the cell division cycle in Drosophila. DNA synthesis–coupled proteolysis of the prereplicative complex component Cdt1 by the CRL4Cdt2 E3 ubiquitin ligase is thought to help prevent rereplication of the genome during S phase. To directly test whether CRL4Cdt2-triggered destruction of Cdt1 is required for normal cell cycle progression in vivo, we expressed a mutant version of Drosophila Cdt1 (Dup), which lacks the PCNA-binding PIP box (DupΔPIP) and which cannot be regulated by CRL4Cdt2. DupΔPIP is inappropriately stabilized during S phase and causes developmental defects when ectopically expressed. DupΔPIP restores DNA synthesis to dup null mutant embryonic epidermal cells, but S phase is abnormal, and these cells do not progress into mitosis. In contrast, DupΔPIP accumulation during S phase did not adversely affect progression through follicle cell endocycles in the ovary. In this tissue the combination of DupΔPIP expression and a 50% reduction in Geminin gene dose resulted in egg chamber degeneration. We could not detect Dup hyperaccumulation using mutations in the CRL4Cdt2 components Cul4 and Ddb1, likely because these cause pleiotropic effects that block cell proliferation. These data indicate that PIP box–mediated destruction of Dup is necessary for the cell division cycle and suggest that Geminin inhibition can restrain DupΔPIP activity in some endocycling cell types.
Collapse
Affiliation(s)
- Hyun O Lee
- Curriculum in Genetics and Molecular Biology, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
32
|
Balestrini A, Cosentino C, Errico A, Garner E, Costanzo V. GEMC1 is a TopBP1-interacting protein required for chromosomal DNA replication. Nat Cell Biol 2010; 12:484-91. [PMID: 20383140 PMCID: PMC2875115 DOI: 10.1038/ncb2050] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/19/2010] [Indexed: 01/07/2023]
Abstract
Many of the factors required for chromosomal DNA replication have been identified in unicellular eukaryotes. However, DNA replication is poorly understood in multicellular organisms. Here, we report the identification of GEMC1 (geminin coiled-coil containing protein 1), a novel vertebrate protein required for chromosomal DNA replication. GEMC1 is highly conserved in vertebrates and is preferentially expressed in proliferating cells. Using Xenopus laevis egg extract we show that Xenopus GEMC1 (xGEMC1) binds to the checkpoint and replication factor TopBP1, which promotes binding of xGEMC1 to chromatin during pre-replication complex (pre-RC) formation. We demonstrate that xGEMC1 interacts directly with replication factors such as Cdc45 and the kinase Cdk2-CyclinE, through which it is heavily phosphorylated. Phosphorylated xGEMC1 stimulates initiation of DNA replication, whereas depletion of xGEMC1 prevents the onset of DNA replication owing to the impairment of Cdc45 loading onto chromatin. Similarly, inhibition of GEMC1 expression with morpholino and siRNA oligos prevents DNA replication in embryonic and somatic vertebrate cells. These data suggest that GEMC1 promotes initiation of chromosomal DNA replication in multicellular organisms by mediating TopBP1- and Cdk2-dependent recruitment of Cdc45 onto replication origins.
Collapse
|
33
|
De Marco V, Gillespie PJ, Li A, Karantzelis N, Christodoulou E, Klompmaker R, van Gerwen S, Fish A, Petoukhov MV, Iliou MS, Lygerou Z, Medema RH, Blow JJ, Svergun DI, Taraviras S, Perrakis A. Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing. Proc Natl Acad Sci U S A 2009; 106:19807-12. [PMID: 19906994 PMCID: PMC2775996 DOI: 10.1073/pnas.0905281106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Indexed: 01/12/2023] Open
Abstract
All organisms need to ensure that no DNA segments are rereplicated in a single cell cycle. Eukaryotes achieve this through a process called origin licensing, which involves tight spatiotemporal control of the assembly of prereplicative complexes (pre-RCs) onto chromatin. Cdt1 is a key component and crucial regulator of pre-RC assembly. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent DNA rereplication. Here, we address the mechanism of DNA licensing inhibition by Geminin, by combining X-ray crystallography, small-angle X-ray scattering, and functional studies in Xenopus and mammalian cells. Our findings show that the Cdt1:Geminin complex can exist in two distinct forms, a "permissive" heterotrimer and an "inhibitory" heterohexamer. Specific Cdt1 residues, buried in the heterohexamer, are important for licensing. We postulate that the transition between the heterotrimer and the heterohexamer represents a molecular switch between licensing-competent and licensing-defective states.
Collapse
Affiliation(s)
- V. De Marco
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - P. J. Gillespie
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - A. Li
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | - E. Christodoulou
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - R. Klompmaker
- Department of Medical Oncology and Cancer Genomics Center, Laboratory of Experimental Oncology, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; and
| | - S. van Gerwen
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - A. Fish
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - M. V. Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | - M. S. Iliou
- Biology, Medical School, University of Patras, 26500 Rio, Patras, Greece
| | - Z. Lygerou
- Biology, Medical School, University of Patras, 26500 Rio, Patras, Greece
| | - R. H. Medema
- Department of Medical Oncology and Cancer Genomics Center, Laboratory of Experimental Oncology, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands; and
| | - J. J. Blow
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - D. I. Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | - A. Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
34
|
Geminin is partially localized to the centrosome and plays a role in proper centrosome duplication. Biol Cell 2009; 101:273-85. [PMID: 18798731 PMCID: PMC2782310 DOI: 10.1042/bc20080109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background information. Centrosome duplication normally parallels with DNA replication and is responsible for correct segregation of replicated DNA into the daughter cells. Although geminin interacts with Cdt1 to prevent loading of MCMs (minichromosome maintenance proteins) on to the replication origins, inactivation of geminin nevertheless causes centrosome over-duplication in addition to the re-replication of the genome, suggesting that geminin may play a role in centrosome duplication. However, the exact mechanism by which loss of geminin affects centrosomal duplication remains unclear and the possible direct interaction of geminin with centrosomal-localized proteins is still unidentified. Results. We report in the present study that geminin is physically localized to the centrosome. This unexpected geminin localization is cell-cycle dependent and mediated by the actin-related protein, Arp1, one subunit of the dynein–dynactin complex. Disruption of the integrity of the dynein–dynactin complex by overexpression of dynamitin/p50, a well-characterized inhibitor of dynactin, reduces the centrosomal localization of both geminin and Arp1. Enrichment of geminin on centrosomes was enhanced when cellular ATP production was suppressed in the ATP-inhibitor assay, whereas the accumulation of geminin on the centrosome was disrupted by depolymerization of the microtubules using nocodazole. We further demonstrate that the coiled-coil motif of geminin is required for its centrosomal localization and the interaction of geminin with Arp1. Depletion of geminin by siRNA (small interfering RNA) in MDA-MB-231 cells led to centrosome over-duplication. Conversely, overexpression of geminin inhibits centrosome over-duplication induced by HU in S-phase-arrested cells, and the coiled-coil-motif-mediated centrosomal localization of geminin is required for its inhibition of centrosome over-duplication. Centrosomal localization of geminin is conserved among mammalian cells and geminin might perform as an inhibitor of centrosome duplication. Conclusions. The results of the present study demonstrate that a fraction of geminin is localized on the centrosome, and the centrosomal localization of geminin is Arp1-mediated and dynein–dynactin-dependent. The coiled-coil motif of geminin is required for its targeting to the centrosome and inhibition of centrosome duplication. Thus the centrosomal localization of geminin might perform an important role in regulation of proper centrosome duplication.
Collapse
|
35
|
Liu X, Huang S, Ma J, Li C, Zhang Y, Luo L. NF-kappaB and Snail1a coordinate the cell cycle with gastrulation. ACTA ACUST UNITED AC 2009; 184:805-15. [PMID: 19307597 PMCID: PMC2699144 DOI: 10.1083/jcb.200806074] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cell cycle needs to strictly coordinate with developmental processes to ensure correct generation of the body plan and different tissues. However, the molecular mechanism underlying the coordination remains largely unknown. In this study, we investigate how the cell cycle coordinates gastrulation cell movements in zebrafish. We present a system to modulate the cell cycle in early zebrafish embryos by manipulating the geminin-Cdt1 balance. Alterations of the cell cycle change the apoptotic level during gastrulation, which correlates with the nuclear level of antiapoptotic nuclear factor κB (NF-κB). NF-κB associates with the Snail1a promoter region on the chromatin and directly activates Snail1a, an important factor controlling cell delamination, which is the initial step of mesendodermal cell movements during gastrulation. In effect, the cell cycle coordinates the delamination of mesendodermal cells through the transcription of Snail1a. Our results suggest a molecular mechanism by which NF-κB and Snail1a coordinate the cell cycle through gastrulation.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Aquatic Organism Reproduction and Development, Ministry of Education, Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Beibei, Chongqing, China
| | | | | | | | | | | |
Collapse
|
36
|
Glozak MA, Seto E. Acetylation/deacetylation modulates the stability of DNA replication licensing factor Cdt1. J Biol Chem 2009; 284:11446-53. [PMID: 19276081 DOI: 10.1074/jbc.m809394200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Proper expression of the replication licensing factor Cdt1 is primarily regulated post-translationally by ubiquitylation and proteasome degradation. In a screen to identify novel non-histone targets of histone deacetylases (HDACs), we found Cdt1 as a binding partner for HDAC11. Cdt1 associates specifically and directly with HDAC11. We show that Cdt1 undergoes acetylation and is reversibly deacetylated by HDAC11. In vitro, Cdt1 can be acetylated at its N terminus by the lysine acetyltransferases KAT2B and KAT3B. Acetylation protects Cdt1 from ubiquitylation and subsequent proteasomal degradation. These results extend the list of non-histone acetylated proteins to include a critical DNA replication factor and provide an additional level of complexity to the regulation of Cdt1.
Collapse
Affiliation(s)
- Michele A Glozak
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | |
Collapse
|
37
|
Telles E, Hosing AS, Kundu ST, Venkatraman P, Dalal SN. A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Exp Cell Res 2009; 315:1448-57. [PMID: 19331823 DOI: 10.1016/j.yexcr.2009.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/10/2008] [Accepted: 01/22/2009] [Indexed: 01/15/2023]
Abstract
Mitotic progression requires the activity of the dual specificity phosphatase, cdc25C. Cdc25C function is inhibited by complex formation with two 14-3-3 isoforms, 14-3-3epsilon and 14-3-3gamma. To understand the molecular basis of specific complex formation between 14-3-3 proteins and their ligands, chimeric 14-3-3 proteins were tested for their ability to form a complex with cdc25C in vivo. Specific complex formation between cdc25C and 14-3-3epsilon in vivo requires a phenylalanine residue at position 135 (F135) in 14-3-3epsilon. Mutation of this residue to the corresponding residue present in other 14-3-3 isoforms (F135V) leads to reduced binding to cdc25C and a decrease in the ability to inhibit cdc25C function in vivo. Similarly, F135V failed to rescue the incomplete S phase and the G2 DNA damage checkpoint defects observed in cells lacking 14-3-3epsilon. A comparative analysis of the 14-3-3 structures present in the database suggested that the F135 in 14-3-3epsilon was required to maintain the integrity of a pocket that might be involved in secondary interactions with cdc25C. These results suggest that the specificity of the 14-3-3 ligand interaction may be dependent on structural motifs present in the individual 14-3-3 isoforms.
Collapse
Affiliation(s)
- Elphine Telles
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar Node, Navi Mumbai 410210, India
| | | | | | | | | |
Collapse
|
38
|
Tsuyama T, Watanabe S, Aoki A, Cho Y, Seki M, Enomoto T, Tada S. Repression of nascent strand elongation by deregulated Cdt1 during DNA replication in Xenopus egg extracts. Mol Biol Cell 2008; 20:937-47. [PMID: 19064889 DOI: 10.1091/mbc.e08-06-0613] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Excess Cdt1 reportedly induces rereplication of chromatin in cultured cells and Xenopus egg extracts, suggesting that the regulation of Cdt1 activity by cell cycle-dependent proteolysis and expression of the Cdt1 inhibitor geminin is crucial for the inhibition of chromosomal overreplication between S phase and metaphase. We analyzed the consequences of excess Cdt1 for DNA replication and found that increased Cdt1 activity inhibited the elongation of nascent strands in Xenopus egg extracts. In Cdt1-supplemented extracts, overreplication was remarkably induced by the further addition of the Cdt1-binding domain of geminin (Gem79-130), which lacks licensing inhibitor activity. Further analyses indicated that fully active geminin, as well as Gem79-130, restored nascent strand elongation in Cdt1-supplemented extracts even after the Cdt1-induced stalling of replication fork elongation had been established. Our results demonstrate an unforeseen, negative role for Cdt1 in elongation and suggest that its function in the control of replication should be redefined. We propose a novel surveillance mechanism in which Cdt1 blocks nascent chain elongation after detecting illegitimate activation of the licensing system.
Collapse
Affiliation(s)
- Takashi Tsuyama
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Bagnéris C, Ageichik AV, Cronin N, Wallace B, Collins M, Boshoff C, Waksman G, Barrett T. Crystal structure of a vFlip-IKKgamma complex: insights into viral activation of the IKK signalosome. Mol Cell 2008; 30:620-31. [PMID: 18538660 DOI: 10.1016/j.molcel.2008.04.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 02/07/2008] [Accepted: 04/13/2008] [Indexed: 01/15/2023]
Abstract
Key to the pathogenicity of several viruses is activation of the canonical nuclear factor-kappaB (NF-kappaB) transcriptional pathway. Subversion of this tightly regulated mechanism is achieved through the production of host mimetic viral proteins that deregulate the transcription process. One such protein is ks-vFLIP (produced by the Kaposi's sarcoma herpes virus [KSHV]), which associates with IKKgamma, an essential component of the IKK complex or signalosome. This interaction renders the canonical NF-kappaB pathway constitutively active and has been linked to Kaposi's sarcoma and other malignancies. In order to elucidate the molecular basis underpinning ks-vFLIP-induced activation of the IKK signalosome, we have determined the crystal structure of a complex involving a fragment of IKKgamma bound to ks-vFLIP at 3.2 A. In addition to identifying and subsequently probing the ks-vFLIP-IKKgamma interface, we have also investigated the effects of a mutation implicated in the genetic disorder anhydrotic ectodermal dysplasia with immunodeficiency (EDA-ID).
Collapse
Affiliation(s)
- Claire Bagnéris
- Institute of Structural and Molecular Biology, School of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Auziol C, Méchali M, Maiorano D. Geminin is cleaved by caspase-3 during apoptosis in Xenopus egg extracts. Biochem Biophys Res Commun 2007; 361:276-80. [PMID: 17651691 DOI: 10.1016/j.bbrc.2007.06.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 06/16/2007] [Indexed: 10/23/2022]
Abstract
Geminin is an important cell cycle regulator having a dual role in cell proliferation and differentiation. During proliferation, Geminin controls DNA synthesis by interacting with the licensing factor Cdt1 and interferes with the onset of differentiation by inhibiting the activity of transcription factors such as Hox and Six3. During early development Geminin also functions as neural inducer. Thus differential interaction of Geminin with Cdt1 or development-specific transcription factors influence the balance between proliferation and differentiation. Here, we report an additional feature of Geminin showing that it is a novel substrate of caspase-3 during apoptosis in in vitro Xenopus egg extracts. We also show that cleavage of Geminin occurs both in solution and on chromatin with distinct kinetics. In addition we show that cleavage of Geminin by caspase-3 is not relevant to its function as regulator of DNA synthesis, suggesting that its cleavage may be relevant to its role in differentiation.
Collapse
Affiliation(s)
- Camille Auziol
- Institute of Human Genetics, CNRS-UPR14142, Montpellier, France
| | | | | |
Collapse
|
41
|
Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A. Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 2007; 21:2288-99. [PMID: 17761813 PMCID: PMC1973143 DOI: 10.1101/gad.1585607] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/24/2007] [Indexed: 01/03/2023]
Abstract
The MCM2-7 helicase complex is loaded on DNA replication origins during the G1 phase of the cell cycle to license the origins for replication in S phase. How the initiator primase-polymerase complex, DNA polymerase alpha (pol alpha), is brought to the origins is still unclear. We show that And-1/Ctf4 (Chromosome transmission fidelity 4) interacts with Mcm10, which associates with MCM2-7, and with the p180 subunit of DNA pol alpha. And-1 is essential for DNA synthesis and the stability of p180 in mammalian cells. In Xenopus egg extracts And-1 is loaded on the chromatin after Mcm10, concurrently with DNA pol alpha, and is required for efficient DNA synthesis. Mcm10 is required for chromatin loading of And-1 and an antibody that disrupts the Mcm10-And-1 interaction interferes with the loading of And-1 and of pol alpha, inhibiting DNA synthesis. And-1/Ctf4 is therefore a new replication initiation factor that brings together the MCM2-7 helicase and the DNA pol alpha-primase complex, analogous to the linker between helicase and primase or helicase and polymerase that is seen in the bacterial replication machinery. The discovery also adds to the connection between replication initiation and sister chromatid cohesion.
Collapse
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Chinweike Ukomadu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Sudhakar Jha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Takeshi Senga
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Suman K. Dhar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - James A. Wohlschlegel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Leta K. Nutt
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sally Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
42
|
Luo L, Uerlings Y, Happel N, Asli NS, Knoetgen H, Kessel M. Regulation of geminin functions by cell cycle-dependent nuclear-cytoplasmic shuttling. Mol Cell Biol 2007; 27:4737-44. [PMID: 17470552 PMCID: PMC1951490 DOI: 10.1128/mcb.00123-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/27/2007] [Accepted: 04/18/2007] [Indexed: 12/24/2022] Open
Abstract
The geminin protein functions both as a DNA rereplication inhibitor through association with Cdt1 and as a repressor of Hox gene transcription through the polycomb pathway. Here, we report that the functions of avian geminin are coordinated with and regulated by cell cycle-dependent nuclear-cytoplasmic shuttling. In S phase, geminin enters nuclei and inhibits both loading of the minichromosome maintenance (MCM) complex onto chromatin and Hox gene transcription. At the end of mitosis, geminin is exported from nuclei by the exportin protein Crm1 and is unavailable in the nucleus during the next G(1) phase, thus ensuring proper chromatin loading of the MCM complex and Hox gene transcription. This mechanism for regulating the functions of geminin adds to distinct mechanisms, such as protein degradation and ubiquitination, applied in other vertebrates.
Collapse
Affiliation(s)
- Lingfei Luo
- Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 2007; 21:497-518. [PMID: 17344412 DOI: 10.1101/gad.1508907] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, prereplication complexes (pre-RCs) are assembled on chromatin in the G1 phase, rendering origins of DNA replication competent to initiate DNA synthesis. When DNA replication commences in S phase, pre-RCs are disassembled, and multiple initiations from the same origin do not occur because new rounds of pre-RC assembly are inhibited. In most experimental organisms, multiple mechanisms that prevent pre-RC assembly have now been identified, and rereplication within the same cell cycle can be induced through defined perturbations of these mechanisms. This review summarizes the diverse array of inhibitory pathways used by different organisms to prevent pre-RC assembly, and focuses on the challenge of understanding how in any one cell type, various mechanisms cooperate to strictly enforce once per cell cycle regulation of DNA replication.
Collapse
Affiliation(s)
- Emily E Arias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
44
|
Xouri G, Squire A, Dimaki M, Geverts B, Verveer PJ, Taraviras S, Nishitani H, Houtsmuller AB, Bastiaens PIH, Lygerou Z. Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin. EMBO J 2007; 26:1303-14. [PMID: 17318181 PMCID: PMC1817642 DOI: 10.1038/sj.emboj.7601597] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 01/09/2007] [Indexed: 12/27/2022] Open
Abstract
To maintain genome integrity, eukaryotic cells initiate DNA replication once per cell cycle after assembling prereplicative complexes (preRCs) on chromatin at the end of mitosis and during G1. In S phase, preRCs are disassembled, precluding initiation of another round of replication. Cdt1 is a key member of the preRC and its correct regulation via proteolysis and by its inhibitor Geminin is essential to prevent premature re-replication. Using quantitative fluorescence microscopy, we study the interactions of Cdt1 with chromatin and Geminin in living cells. We find that Cdt1 exhibits dynamic interactions with chromatin throughout G1 phase and that the protein domains responsible for chromatin and Geminin interactions are separable. Contrary to existing in vitro data, we show that Cdt1 simultaneously binds Geminin and chromatin in vivo, thereby recruiting Geminin onto chromatin. We propose that dynamic Cdt1-chromatin associations and the recruitment of Geminin to chromatin provide spatio-temporal control of the licensing process.
Collapse
Affiliation(s)
- Georgia Xouri
- Laboratory of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Anthony Squire
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| | - Maria Dimaki
- Laboratory of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Bart Geverts
- Josephine Nefkens Institute, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Stavros Taraviras
- Laboratory of Pharmacology, School of Medicine, University of Patras, Patras, Greece
| | - Hideo Nishitani
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Adriaan B Houtsmuller
- Josephine Nefkens Institute, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Philippe I H Bastiaens
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg 69117, Germany. Tel.: + 49 6221 387 407; Fax: + 49 6221 387 512; E-mail:
| | - Zoi Lygerou
- Laboratory of General Biology, School of Medicine, University of Patras, Patras, Greece
- Laboratory of General Biology, School of Medicine, University of Patras, University Campus, Rio, Patras 26500, Greece. Tel.: + 30 2610 997621; Fax: + 30 2610 991769; E-mail:
| |
Collapse
|
45
|
Roukos V, Iliou MS, Nishitani H, Gentzel M, Wilm M, Taraviras S, Lygerou Z. Geminin cleavage during apoptosis by caspase-3 alters its binding ability to the SWI/SNF subunit Brahma. J Biol Chem 2007; 282:9346-9357. [PMID: 17261582 DOI: 10.1074/jbc.m611643200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Geminin has been proposed to coordinate cell cycle and differentiation events through balanced interactions with the cell cycle regulator Cdt1 and with homeobox transcription factors and chromatin remodeling activities implicated in cell fate decisions. Here we show that Geminin is cleaved in primary cells and cancer cell lines induced to undergo apoptosis by a variety of stimuli. Geminin targeting is mediated by caspase-3 both in vivo and in vitro. Two sites at the carboxyl terminus of Geminin (named C1 and C2) are cleaved by the caspase, producing truncated forms of Geminin. We provide evidence that Geminin cleavage is regulated by phosphorylation. Casein kinase II alters Geminin cleavage at site C1 in vitro, whereas mutating phosphorylation competent Ser/Thr residues proximal to site C1 affects Geminin cleavage in vivo. We show that truncated Geminin produced by cleavage at C1 can promote apoptosis. In contrast, Geminin cleaved at site C2 has lost the ability to interact with Brahma (Brm), a catalytic subunit of the SWI/SNF chromatin remodeling complex, while binding efficiently to Cdt1, indicating that targeting of Geminin during apoptosis differentially affects interactions with its binding partners.
Collapse
Affiliation(s)
- Vassilis Roukos
- Laboratory of General Biology, School of Medicine, University of Patras, 26500 Rio, Patras, Greece
| | - Maria S Iliou
- Laboratory of General Biology, School of Medicine, University of Patras, 26500 Rio, Patras, Greece
| | - Hideo Nishitani
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Marc Gentzel
- Gene Expression Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Matthias Wilm
- Gene Expression Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Stavros Taraviras
- Laboratory of Pharmacology, Medical School, University of Patras, 26500 Rio, Patras, Greece
| | - Zoi Lygerou
- Laboratory of General Biology, School of Medicine, University of Patras, 26500 Rio, Patras, Greece.
| |
Collapse
|
46
|
Abstract
Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
Collapse
Affiliation(s)
- R. A. Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045; ,
| | - T. M. Holzen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045; ,
| |
Collapse
|
47
|
Kerns SL, Torke SJ, Benjamin JM, McGarry TJ. Geminin prevents rereplication during xenopus development. J Biol Chem 2006; 282:5514-21. [PMID: 17179155 DOI: 10.1074/jbc.m609289200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To maintain a stable genome, it is essential that replication origins fire only once per cell cycle. The protein Geminin is thought to prevent a second round of DNA replication by inhibiting the essential replication factor Cdt1. Geminin also affects the development of several different organs by binding and inhibiting transcription factors and chromatin-remodeling proteins. It is not known if the defects in Geminin-deficient organisms are due to overreplication or to effects on cell differentiation. We previously reported that Geminin depletion in Xenopus causes early embryonic lethality due to a Chk1-dependent G(2) cell cycle arrest just after the midblastula transition. Here we report that expressing a non-Geminin-binding Cdt1 mutant in Xenopus embryos exactly reproduces the phenotype of geminin depletion. Expressing the same mutant in replication extracts induces a partial second round of DNA replication within a single S phase. We conclude that Geminin is required to suppress a second round of DNA replication in vivo and that the phenotype of Geminin-depleted Xenopus embryos is caused by abnormal Cdt1 regulation. Expressing a nondegradable Cdt1 mutant in embryos also reproduces the Geminin-deficient phenotype. In cell extracts, the nondegradable mutant has no effect by itself but augments the amount of rereplication observed when Geminin is depleted. We conclude that Cdt1 is regulated both by Geminin binding and by degradation.
Collapse
Affiliation(s)
- Sarah L Kerns
- Division of Cardiology, Department of Cell and Molecular Biology, and Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
48
|
Lutzmann M, Maiorano D, Méchali M. A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J 2006; 25:5764-74. [PMID: 17124498 PMCID: PMC1698883 DOI: 10.1038/sj.emboj.7601436] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 10/06/2006] [Indexed: 12/20/2022] Open
Abstract
Initiation of DNA synthesis involves the loading of the MCM2-7 helicase onto chromatin by Cdt1 (origin licensing). Geminin is thought to prevent relicensing by binding and inhibiting Cdt1. Here we show, using Xenopus egg extracts, that geminin binding to Cdt1 is not sufficient to block its activity and that a Cdt1-geminin complex licenses chromatin, but prevents rereplication, working as a molecular switch at replication origins. We demonstrate that geminin is recruited to chromatin already during licensing, while bulk geminin is recruited at the onset of S phase. A recombinant Cdt1-geminin complex binds chromatin, interacts with the MCM2-7 complex and licenses chromatin once per cell cycle. Accordingly, while recombinant Cdt1 induces rereplication in G1 or G2 and activates an ATM/ATR-dependent checkpoint, the Cdt1-geminin complex does not. We further demonstrate that the stoichiometry of the Cdt1-geminin complex regulates its activity. Our results suggest a model in which the MCM2-7 helicase is loaded onto chromatin by a Cdt1-geminin complex, which is inactivated upon origin firing by binding additional geminin. This origin inactivation reaction does not occur if only free Cdt1 is present on chromatin.
Collapse
Affiliation(s)
| | | | - Marcel Méchali
- Institute of Human Genetics, CNRS, Montpellier, France
- Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141, rue de la Cardonille, Montpellier 34396, France. Tel.: +33 499 619 917; Fax: +33 499 619 920; E-mail:
| |
Collapse
|
49
|
Boos A, Lee A, Thompson DM, Kroll KL. Subcellular translocation signals regulate Geminin activity during embryonic development. Biol Cell 2006; 98:363-75. [PMID: 16464175 DOI: 10.1042/bc20060007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND INFORMATION Geminin (Gem) is a protein with roles in regulating both the fidelity of DNA replication and cell fate during embryonic development. The distribution of Gem is predominantly nuclear in cells undergoing the cell cycle. Previous studies have demonstrated that Gem performs multiple activities in the nucleus and that regulation of Gem activation requires nuclear import in at least one context. In the present study, we defined structural and mechanistic features underlying subcellular localization of Gem and tested whether regulation of the subcellular localization of Gem has an impact on its activity in cell fate specification during embryonic development. RESULTS We determined that nuclear localization of Gem is dependent on a bipartite NLS (nuclear localization signal) in the N-terminus of Xenopus Gem protein. This bipartite motif mapped to a Gem N-terminal region previously shown to regulate neural cell fate acquisition. Microinjection into Xenopus embryos demonstrated that import-deficient Gem was incapable of modulating ectodermal cell fate, but that this activity was rescued by fusion to a heterologous NLS. Cross-species comparison of Gem protein sequences revealed that the Xenopus bipartite signal is conserved in many non-mammalian vertebrates, but not in mammalian species assessed. Instead, we found that human Gem employs an alternative N-terminal motif to regulate the protein's nuclear localization. Finally, we found that additional mechanisms contributed to regulating the subcellular localization of Gem. These included a link to Crm1-dependent nuclear export and the observation that Cdt1, a protein in the pre-replication complex, could also mediate nuclear import of Gem. CONCLUSIONS We have defined new structural and regulatory features of Gem, and showed that the activity of Gem in regulating cell fate, in addition to its cell-cycle-regulatory activity, requires control of its subcellular localization. Our data suggest that rather than being constitutively nuclear, Gem may undergo nucleocytoplasmic shuttling through several mechanisms involving distinct protein motifs. The use of multiple mechanisms for modulating Gem subcellular localization is congruent with observations that Gem levels and activity must be stringently controlled during cell-cycle progression and embryonic development.
Collapse
Affiliation(s)
- Aline Boos
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
50
|
Iizuka M, Matsui T, Takisawa H, Smith MM. Regulation of replication licensing by acetyltransferase Hbo1. Mol Cell Biol 2006; 26:1098-108. [PMID: 16428461 PMCID: PMC1347032 DOI: 10.1128/mcb.26.3.1098-1108.2006] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.
Collapse
Affiliation(s)
- Masayoshi Iizuka
- Department of Microbiology, University of Virginia Health System, P.O. Box 800734, Charlottesville, VA 22908-0734, USA
| | | | | | | |
Collapse
|