1
|
|
Chavda VP, Pandya A, Kumar L, Raval N, Vora LK, Pulakkat S, Patravale V, Salwa, Duo Y, Tang BZ. Exosome nanovesicles: A potential carrier for therapeutic delivery. Nano Today 2023;49:101771. [DOI: 10.1016/j.nantod.2023.101771] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/10/2023]
|
2
|
|
Mota BS, Bevilacqua JLB, Barrett J, Ricci MD, Munhoz AM, Filassi JR, Baracat EC, Riera R. Skin-sparing mastectomy for the treatment of breast cancer. Cochrane Database Syst Rev 2023;3:CD010993. [PMID: 36972145 DOI: 10.1002/14651858.CD010993.pub2] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Skin-sparing mastectomy (SSM) is a surgical technique that aims to maximize skin preservation, facilitate breast reconstruction, and improve cosmetic outcomes. Despite its use in clinical practice, the benefits and harms related to SSM are not well established. OBJECTIVES To assess the effectiveness and safety of skin-sparing mastectomy for the treatment of breast cancer. SEARCH METHODS We searched Cochrane Breast Cancer's Specialized Register, CENTRAL, MEDLINE, Embase, LILACS, the World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP), and ClinicalTrials.gov on 9 August 2019. SELECTION CRITERIA Randomized controlled trials (RCTs), quasi-randomized or non-randomized studies (cohort and case-control) comparing SSM to conventional mastectomy for treating ductal carcinoma in situ (DCIS) or invasive breast cancer. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. The primary outcome was overall survival. Secondary outcomes were local recurrence free-survival, adverse events (including overall complications, breast reconstruction loss, skin necrosis, infection and hemorrhage), cosmetic results, and quality of life. We performed a descriptive analysis and meta-analysis of the data. MAIN RESULTS We found no RCTs or quasi-RCTs. We included two prospective cohort studies and twelve retrospective cohort studies. These studies included 12,211 participants involving 12,283 surgeries (3183 SSM and 9100 conventional mastectomies). It was not possible to perform a meta-analysis for overall survival and local recurrence free-survival due to clinical heterogeneity across studies and a lack of data to calculate hazard ratios (HR). Based on one study, the evidence suggests that SSM may not reduce overall survival for participants with DCIS tumors (HR 0.41, 95% CI 0.17 to 1.02; P = 0.06; 399 participants; very low-certainty evidence) or for participants with invasive carcinoma (HR 0.81, 95% CI 0.48 to 1.38; P = 0.44; 907 participants; very low-certainty evidence). For local recurrence-free survival, meta-analysis was not possible, due to high risk of bias in nine of the ten studies that measured this outcome. Informal visual examination of effect sizes from nine studies suggested the size of the HR may be similar between groups. Based on one study that adjusted for confounders, SSM may not reduce local recurrence-free survival (HR 0.82, 95% CI 0.47 to 1.42; P = 0.48; 5690 participants; very low-certainty evidence). The effect of SSM on overall complications is unclear (RR 1.55, 95% CI 0.97 to 2.46; P = 0.07, I2 = 88%; 4 studies, 677 participants; very low-certainty evidence). Skin-sparing mastectomy may not reduce the risk of breast reconstruction loss (RR 1.79, 95% CI 0.31 to 10.35; P = 0.52; 3 studies, 475 participants; very low-certainty evidence), skin necrosis (RR 1.15, 95% CI 0.62 to 2.12; P = 0.22, I2 = 33%; 4 studies, 677 participants; very low-certainty evidence), local infection (RR 2.04, 95% CI 0.03 to 142.71; P = 0.74, I2 = 88%; 2 studies, 371 participants; very low-certainty evidence), nor hemorrhage (RR 1.23, 95% CI 0.47 to 3.27; P = 0.67, I2 = 0%; 4 studies, 677 participants; very low-certainty evidence). We downgraded the certainty of the evidence due to the risk of bias, imprecision, and inconsistency among the studies. There were no data available on the following outcomes: systemic surgical complications, local complications, explantation of implant/expander, hematoma, seroma, rehospitalization, skin necrosis with revisional surgery, and capsular contracture of the implant. It was not possible to perform a meta-analysis for cosmetic and quality of life outcomes due to a lack of data. One study performed an evaluation of aesthetic outcome after SSM: 77.7% of participants with immediate breast reconstruction had an overall aesthetic result of excellent or good versus 87% of participants with delayed breast reconstruction. AUTHORS' CONCLUSIONS Based on very low-certainty evidence from observational studies, it was not possible to draw definitive conclusions on the effectiveness and safety of SSM for breast cancer treatment. The decision for this technique of breast surgery for treatment of DCIS or invasive breast cancer must be individualized and shared between the physician and the patient while considering the potential risks and benefits of available surgical options.
Collapse
|
3
|
|
Yi Q, Xu Z, Thakur A, Zhang K, Liang Q, Liu Y, Yan Y. Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol Res 2023;190:106733. [PMID: 36931541 DOI: 10.1016/j.phrs.2023.106733] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/17/2023]
Abstract
Natural compounds are widely used to prevent and treat various diseases due to their antioxidant and anti-inflammatory effects. As a kind of promising natural compound, plant-derived exosome-like nanoparticles (PELNs) are extracted from multivesicular bodies of various edible plants, including vegetables, foods, and fruits, and mainly regulate the cellular immune response to pathogen attacks. Moreover, PELNs could remarkably interfere with the dynamic imbalance between pro-inflammatory and anti-inflammatory effects, facilitating to maintain the homeostasis of cellular immune microenvironment. PELNs may serve as a better alternative to animal-derived exosomes (ADEs) owing to their widespread sources, cost-effectiveness, and easy accessibility. PELNs can mediate interspecies communication by transferring various cargoes such as proteins, lipids, and nucleic acids from plant cells to mammalian cells. This review summarizes the biogenesis, composition, and classification of exosomes; the common separation, purification, and characterization methods of PELNs, the potential advantages of PELNs over ADEs; and the anti-inflammatory and immunomodulatory functions of PELNs in various diseases including colitis, cancer, and inflammation-associated metabolic diseases. Additionally, the future perspectives of PELNs and the challenges associated with their clinical application are discussed.
Collapse
|
4
|
|
Beernaert B, Parkes EE. cGAS-STING signalling in cancer: striking a balance with chromosomal instability. Biochem Soc Trans 2023:BST20220838. [PMID: 36876871 DOI: 10.1042/BST20220838] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/07/2023]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives tumour evolution. It is now recognised that CIN in cancer leads to the constitutive production of misplaced DNA in the form of micronuclei and chromatin bridges. These structures are detected by the nucleic acid sensor cGAS, leading to the production of the second messenger 2'3'-cGAMP and activation of the critical hub of innate immune signalling STING. Activation of this immune pathway should instigate the influx and activation of immune cells, resulting in the eradication of cancer cells. That this does not universally occur in the context of CIN remains an unanswered paradox in cancer. Instead, CIN-high cancers are notably adept at immune evasion and are highly metastatic with typically poor outcomes. In this review, we discuss the diverse facets of the cGAS-STING signalling pathway, including emerging roles in homeostatic processes and their intersection with genome stability regulation, its role as a driver of chronic pro-tumour inflammation, and crosstalk with the tumour microenvironment, which may collectively underlie its apparent maintenance in cancers. A better understanding of the mechanisms whereby this immune surveillance pathway is commandeered by chromosomally unstable cancers is critical to the identification of new vulnerabilities for therapeutic exploitation.
Collapse
|
5
|
|
Mueed A, Deng Z, Korma SA, Shibli S, Jahangir M. Anticancer potential of flaxseed lignans, their metabolites and synthetic counterparts in relation with molecular targets: current challenges and future perspectives. Food Funct 2023;14:2286-303. [PMID: 36820797 DOI: 10.1039/d2fo02208g] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/25/2022]
Abstract
Lignans are known dietary polyphenols found in cereals, plants and seeds. Flaxseed is one of the major sources of lignans mainly existing in the form of secoisolariciresinol diglucoside (SDG) which can be metabolised by the gut microbes into secoisolariciresinol (SECO) and mammalian lignan (enterodiol and enterolactone) that are easily absorbed through the intestines. Numerous studies reveal that flaxseed lignans (FLs) can be promising chemotherapeutics/chemopreventive agents. Their anticancer activity can occur through the induction of apoptosis, inhibition of cell proliferation, and the hindering of metastasis and angiogenesis. The anti-carcinogenesis of flaxseed lignans is achieved through multiple molecular mechanisms involving biochemical entities such as cellular kinases, cell cycle mediators, transcription factors, inflammatory cytokines, reactive oxygen species, and drug transporters. This review summarizes the bioavailability of FLs, their anticancer mechanisms in relevance to molecular targets, safety, and the scope of future research. Overall, FLs can be utilized in functional foods, dietary supplements, and pharmaceuticals for the management and prevention of cancers.
Collapse
|
6
|
|
Diana K, Teh MS, Islam T, Lim WL, Beh ZY, Taib NAM. Benefits of PECS Block as Part of the Enhanced Recovery After Surgery (ERAS) Protocol for Breast Cancer Surgery in an Asian Institution: A Retrospective Cohort Study. World J Surg 2023;47:564-72. [PMID: 36599951 DOI: 10.1007/s00268-022-06881-7] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Regional analgesia techniques have been increasingly used for post-operative pain management following mastectomy. We aim to evaluate analgesic benefits of pectoral nerve (PECS2) block incorporated as part of the enhanced recovery after surgery (ERAS) protocol in patients undergoing mastectomy in University Malaya Medical Centre, Malaysia. MATERIAL AND METHODS A single centre, cohort study evaluating 335 women who have undergone unilateral mastectomy between January 2017 and March 2020 in Malaysia. Regional anaesthesia were given pre-operatively via ultrasound guided pectoral and intercostal nerves block (PECSII). RESULTS Utilization of regional anaesthesia increased from 11% in 2017 to 43% in 2020. Types and duration of surgeries were comparable. Opiod consumption was 3 mg lower in those who had PECS2 block ((27 [24-30] mg), in comparison with those who received general anaesthesia only (30 [26-34] mg), p < 0.001, and length of stay was half a day shorter in the regional anaesthesia group and these were statistically significant. However, pain score (2 [1-3]; 2 [1-3], p=0.719) and post-operative nausea and vomiting (PONV) (32.6-32.5%, p = 0.996) were similar. CONCLUSION This study highlights the importance of PECS2 block as a component of ERAS protocol for mastectomy in an Asian hospital. This study also inferred that patients may be safely discharged within 24 h of surgery and therefore, same day surgery may be feasible in selected group of patients undergoing mastectomy and this could imply overall cost benefits.
Collapse
|
7
|
|
d'Amone L, Matzeu G, Quijano-Rubio A, Callahan GP, Napier B, Baker D, Omenetto FG. Reshaping de Novo Protein Switches into Bioresponsive Materials for Biomarker, Toxin, and Viral Detection. Adv Mater 2023;35:e2208556. [PMID: 36493355 DOI: 10.1002/adma.202208556] [Cited by in Crossref: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/14/2022]
Abstract
De novo designed protein switches are powerful tools to specifically and sensitively detect diverse targets with simple chemiluminescent readouts. Finding an appropriate material host for de novo designed protein switches without altering their thermodynamics while preserving their intrinsic stability over time would enable the development of a variety of sensing formats to monitor exposure to pathogens, toxins, and for disease diagnosis. Here, a de novo protein-biopolymer hybrid that maintains the detection capabilities induced by the conformational change of the incorporated proteins in response to analytes of interest is generated in multiple, shelf-stable material formats without the need of refrigerated storage conditions. A set of functional demonstrator devices including personal protective equipment such as masks and laboratory gloves, free-standing films, air quality monitors, and wearable devices is presented to illustrate the versatility of the approach. Such formats are designed to be responsive to human epidermal growth factor receptor (HER2), anti-hepatitis B (HBV) antibodies, Botulinum neurotoxin B (BoNT/B), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This combination of form and function offers wide opportunities for ubiquitous sensing in multiple environments by enabling a large class of bio-responsive interfaces of broad utility.
Collapse
|
8
|
|
Cui S, Liu W, Wang W, Miao K, Guan X. Advances in the Diagnosis and Prognosis of Minimal Residual Lesions of Breast Cancer. Pathol Res Pract 2023. [DOI: 10.1016/j.prp.2023.154428] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/30/2023]
|
9
|
|
Can S, Atilla Ö, Karaçetin D. Calculated and measured radiation dose for the low energy xoft axxent eBT X-ray source. BMC Res Notes 2023;16:25. [PMID: 36855193 DOI: 10.1186/s13104-023-06287-1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 03/02/2023] Open
Abstract
PURPOSE In this study, it was aimed to evaluate the functionality to deliver different prescription dose except 20 Gy for the Xoft Axxent Ebt (electronic Brachytherapy) system and analyzing the system in terms of radiation dosimetry in water and 0.9% isotonic Sodium Chloride (NaCl) solution. MATERIALS AND METHODS In the Xoft Axxent eBT, different prescription dose in single fraction were calculated for different balloon applicator volumes based on source position and irradiation times. EBT-XD Gafchromic film was calibrated at 6MV photon energy. A balloon applicator filled with 0.9% isotonic NaCl solution was used to deliver a radiation dose of 20 Gy, 16 Gy, 10 Gy on the applicator surface. Then the balloon applicator was filled with water and the same measurements were repeated. Finally, the balloon applicator was irradiated by positioning it at different distances in the water phantom to simulate the isodose contour. RESULTS At the time the balloon applicator was filled with water and 0,9% NaCl solution, the difference between the planned dose and the absorbed dose was ~ 2% vs. 15% for 30 cc, ~ 5% vs. 14% for 35 cc and ~ 3,5% vs. 10% for 40 cc respectively. Finally, the absorbed dose at a distance of 1 cm from the applicator surface was measured as 9.63 Gy. CONCLUSION In this study, it was showed that different prescription dose could be possible to deliver in the Xoft Axxent eBT system based on the standard plan. In addition, the absorbed dose was higher than the planned dose depending on the effective atomic number of NaCl solution comparing to water due to photoelectric effect in low energy photons. By measuring the dose distributions at different distances from the balloon applicator surface, the absorbed dose in tissue equivalent medium was determined and the isodose contours characteristics was simulated.
Collapse
|
10
|
|
Lee Y, Graham P, Li Y. Extracellular vesicles as a novel approach for breast cancer therapeutics. Cancer Lett 2023;555:216036. [PMID: 36521658 DOI: 10.1016/j.canlet.2022.216036] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC) still lacks effective management approaches to control metastatic and therapy-resistant disease. Extracellular vesicles (EVs), with a diameter of 50-1000 nm, are secreted by all types of living cells, are protected by a lipid bilayer and encapsulate biological cargos including RNAs, proteins and lipids. They play an important role in intercellular communications and are significantly associated with pathological conditions. Accumulating evidence indicates that cancer cells secrete EVs and communicate with neighboring cells within the tumor microenvironment (TME), which plays an important role in BC metastasis, immune escape and chemoresistance, thus providing a new therapeutic window. EVs can stimulate angiogenesis and extracellular matrix remodeling, establish premetastatic niches, inhibit immune response and promote cancer metastasis. Recent advances have demonstrated that EVs are a potential therapeutic target or carrier and have emerged as promising strategies for BC treatment. In this review, we summarize the role of EVs in BC metastasis, chemoresistance and immune escape, which provides the foundation for developing novel therapeutic approaches. We also focus on current EV-based drug delivery strategies in BC and EV cargo-targeted BC therapy and discuss the limitations and future perspectives of EV-based drug delivery in BC.
Collapse
|
11
|
|
Lee YJ, Shin KJ, Jang HJ, Ryu JS, Lee CY, Yoon JH, Seo JK, Park S, Lee S, Je AR, Huh YH, Kong SY, Kwon T, Suh PG, Chae YC. GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis. Dev Cell 2023;58:320-334.e8. [PMID: 36800996 DOI: 10.1016/j.devcel.2023.01.006] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/18/2023]
Abstract
Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.
Collapse
|
12
|
|
Ban I, Tomašić L, Trakala M, Tolić IM, Pavin N. Proliferative advantage of specific aneuploid cells drives evolution of tumor karyotypes. Biophys J 2023;122:632-45. [PMID: 36654508 DOI: 10.1016/j.bpj.2023.01.017] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/19/2023] Open
Abstract
Most tumors have abnormal karyotypes, which arise from mistakes during mitotic division of healthy euploid cells and evolve through numerous complex mechanisms. In a recent mouse model with increased chromosome missegregation, chromosome gains dominate over losses both in pretumor and tumor tissues, whereas T-cell lymphomas are characterized by gains of chromosomes 14 and 15. However, the quantitative understanding of clonal selection leading to tumor karyotype evolution remains unknown. Here we show, by introducing a mathematical model based on a concept of a macro-karyotype, that tumor karyotypes can be explained by proliferation-driven evolution of aneuploid cells. In pretumor cells, increased apoptosis and slower proliferation of cells with monosomies lead to predominant chromosome gains over losses. Tumor karyotypes with gain of one chromosome can be explained by karyotype-dependent proliferation, whereas, for those with two chromosomes, an interplay with karyotype-dependent apoptosis is an additional possible pathway. Thus, evolution of tumor-specific karyotypes requires proliferative advantage of specific aneuploid karyotypes.
Collapse
|
13
|
|
Qu XM, Ren XD, Su N, Sun XG, Deng SL, Lu WP, Huang Q. Isothermal exponential amplification reactions triggered by circular templates (cEXPAR) targeting miRNA. Mol Biol Rep 2023. [PMID: 36807240 DOI: 10.1007/s11033-023-08291-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/21/2023]
Abstract
BACKGROUND Isothermal exponential amplification reaction (EXPAR) is an emerging amplification technique that is most frequently used to amplify microRNA (miRNA). However, EXPAR also exhibits non-specific background amplification in the absence of the targeted sequence, which limits the attainable assay sensitivity of EXPAR. METHODS AND RESULTS A novel modified isothermal EXPAR based on circular amplification templates (cEXPAR) was developed in this study. The circular template consists of two same linear fragments that complement the target sequence, and these two linear fragments are separated by two nicking agent recognition sequences (NARS). Compared with the linear structure template, this circular template allows DNA or RNA fragments to be randomly paired with two repeated sequences and can be successfully amplified. This reaction system developed in this study could rapidly synthesize short oligonucleotide fragments (12-22 bp) through simultaneous nicking and displacement reactions. Highly sensitive chain reactions can be specifically triggered by as low as a single copy of target molecule, and non-specific amplification can be effectively eliminated in this optimized system. Moreover, the proposed approach applied to miRNA test can discriminate single-nucleotide variations between miRNAs. CONCLUSION The newly developed cEXPAR assay provides a useful alternative tool for rapid, sensitive, and highly specific detection of miRNAs.
Collapse
|
14
|
|
Lee Y, Ni J, Beretov J, Wasinger VC, Graham P, Li Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol Cancer 2023;22:33. [PMID: 36797736 DOI: 10.1186/s12943-023-01741-x] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/18/2023] Open
Abstract
Current clinical tools for breast cancer (BC) diagnosis are insufficient but liquid biopsy of different bodily fluids has recently emerged as a minimally invasive strategy that provides a real-time snapshot of tumour biomarkers for early diagnosis, active surveillance of progression, and post-treatment recurrence. Extracellular vesicles (EVs) are nano-sized membranous structures 50-1000 nm in diameter that are released by cells into biological fluids. EVs contain proteins, nucleic acids, and lipids which play pivotal roles in tumourigenesis and metastasis through cell-to-cell communication. Proteins and miRNAs from small EVs (sEV), which range in size from 50-150 nm, are being investigated as a potential source for novel BC biomarkers using mass spectrometry-based proteomics and next-generation sequencing. This review covers recent developments in sEV isolation and single sEV analysis technologies and summarises the sEV protein and miRNA biomarkers identified for BC diagnosis, prognosis, and chemoresistance. The limitations of current sEV biomarker research are discussed along with future perspective applications.
Collapse
|
15
|
|
Padroni L, De Marco L, Dansero L, Fiano V, Milani L, Vasapolli P, Manfredi L, Caini S, Agnoli C, Ricceri F, Sacerdote C. An Epidemiological Systematic Review with Meta-Analysis on Biomarker Role of Circulating MicroRNAs in Breast Cancer Incidence. Int J Mol Sci 2023;24. [PMID: 36835336 DOI: 10.3390/ijms24043910] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/17/2023] Open
Abstract
Breast cancer (BC) is a multifactorial disease caused by an interaction between genetic predisposition and environmental exposures. MicroRNAs are a group of small non-coding RNA molecules, which seem to have a role either as tumor suppressor genes or oncogenes and seem to be related to cancer risk factors. We conducted a systematic review and meta-analysis to identify circulating microRNAs related to BC diagnosis, paying special attention to methodological problems in this research field. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seventy-five studies were included in the systematic review. A meta-analysis was performed for microRNAs analyzed in at least three independent studies where sufficient data to make analysis were presented. Seven studies were included in the MIR21 and MIR155 meta-analysis, while four studies were included in the MIR10b metanalysis. The pooled sensitivity and specificity of MIR21 for BC diagnosis were 0.86 (95%CI 0.76-0.93) and 0.84 (95%CI 0.71-0.92), 0.83 (95%CI 0.72-0.91) and 0.90 (95%CI 0.69-0.97) for MIR155, and 0.56 (95%CI 0.32-0.71) and 0.95 (95%CI 0.88-0.98) for MIR10b, respectively. Several other microRNAs were found to be dysregulated, distinguishing BC patients from healthy controls. However, there was little consistency between included studies, making it difficult to identify specific microRNAs useful for diagnosis.
Collapse
|
16
|
|
Perçin K, Mert Noyan D, Ömer B. Solutions in Breast Reconstruction. Breast Cancer Updates [Working Title] 2023. [DOI: 10.5772/intechopen.109782] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/26/2023]
Abstract
Breast reconstruction, after cancer surgery, is not only a reconstructive surgery but also an esthetic surgery. No woman should be expected to give up the breast tissue, which is the symbol of female identity, easily. The reconstruction stage after breast cancer is difficult enough in the early and late stages. It is generally not possible to cover the defect and to equalize the two breasts in a single step. General surgery and plastic surgery should work together. Recently, innovative solutions have been offered in breast reconstruction. Starting from skin grafts and local flaps, various flap options, dermal equivalents, fat transfer, and tissue expansion operations are among the options. Breast reconstruction is difficult enough in breasts that have undergone radiotherapy, and reconstruction with autologous tissue is preferred.
Collapse
|
17
|
|
Tu S, Yin Y, Yuan C, Chen H. Management of Intraductal Papilloma of the Breast Diagnosed on Core Needle Biopsy: Latest Controversies. Phenomics 2023. [DOI: 10.1007/s43657-022-00085-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/16/2023]
|
18
|
|
Milgrom ZZ, Milgrom DP, Han Y, Hui SL, Haggstrom DA, Fisher CS, Mendonca EA. Breast Cancer Screening, Diagnosis, and Surgery during the Pre- and Peri-pandemic: Experience of Patients in a Statewide Health Information Exchange. Ann Surg Oncol 2023;:1-12. [PMID: 36749504 DOI: 10.1245/s10434-023-13119-w] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/08/2023]
Abstract
BACKGROUND Measures taken to address the COVID-19 pandemic interrupted routine diagnosis and care for breast cancer. The aim of this study was to characterize the effects of the pandemic on breast cancer care in a statewide cohort. PATIENTS AND METHODS Using data from a large health information exchange, we retrospectively analyzed the timing of breast cancer screening, and identified a cohort of newly diagnosed patients with any stage of breast cancer to further access the information available about their surgical treatments. We compared data for four subgroups: pre-lockdown (preLD) 25 March to 16 June 2019; lockdown (LD) 23 March to 3 May 2020; reopening (RO) 4 May to 14 June 2020; and post-lockdown (postLD) 22 March to 13 June 2021. RESULTS During LD and RO, screening mammograms in the cohort decreased by 96.3% and 36.2%, respectively. The overall breast cancer diagnosis and surgery volumes decreased up to 38.7%, and the median time to surgery was prolonged from 1.5 months to 2.4 for LD and 1.8 months for RO. Interestingly, higher mean DCIS diagnosis (5.0 per week vs. 3.1 per week, p < 0.05) and surgery volume (14.8 vs. 10.5, p < 0.05) were found for postLD compared with preLD, while median time to surgery was shorter (1.2 months vs. 1.5 months, p < 0.0001). However, the postLD average weekly screening and diagnostic mammogram did not fully recover to preLD levels (2055.3 vs. 2326.2, p < 0.05; 574.2 vs. 624.1, p < 0.05). CONCLUSIONS Breast cancer diagnosis and treatment patterns were interrupted during the lockdown and still altered 1 year after. Screening in primary care should be expanded to mitigate possible longer-term effects of these interruptions.
Collapse
|
19
|
|
Jordan-Alejandre E, Campos-Parra AD, Castro-López DL, Silva-Cázares MB. Potential miRNA Use as a Biomarker: From Breast Cancer Diagnosis to Metastasis. Cells 2023;12. [PMID: 36831192 DOI: 10.3390/cells12040525] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most common cancer in women. Despite advances in diagnosis and prognosis, distal metastases occur in these patients in up to 15% of cases within 3 years of diagnosis. The main organs in which BC metastasises are the bones, lungs, liver, and brain. Unfortunately, 90% of metastatic patients will die, making this an incurable disease. Researchers are therefore seeking biomarkers for diagnosis and metastasis in different organs. Optimally, such biomarkers should be easy to detect using, preferably, non-invasive methods, such as using miRNA molecules, which are small molecules of about 22 nt that have as their main function the post-transcriptional regulation of genes. Furthermore, due to their uncomplicated detection and reproducibility in the laboratory, they are a tool of complementary interest for diagnosis, prognosis, and treatment. With this in mind, in this review, we focus on describing the most current studies that propose using miRNA independently as a potential biomarker for the diagnosis and prediction of brain, lung, liver, and bone metastases, as well as to open a window of opportunity to deepen this area of study to eventually use miRNAs molecules in clinical practice for the benefit of BC patients.
Collapse
|
20
|
|
Iqbal M, Khawaja UA, Soomro U, Rizvi SA, Rizvi ZH. Pancreatic adenocarcinoma in the elderly – Recurrence and survival: A physician's challenge. Advances in Cancer Biology - Metastasis 2023. [DOI: 10.1016/j.adcanc.2023.100092] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/05/2023] Open
|
21
|
|
Hingorani SR. Epithelial and stromal co-evolution and complicity in pancreatic cancer. Nat Rev Cancer 2023;23:57-77. [PMID: 36446904 DOI: 10.1038/s41568-022-00530-w] [Cited by in Crossref: 2] [Cited by in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/02/2022]
Abstract
Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis. The complex kinetics and stepwise development of pancreatic cancer suggests that it is governed by a discrete set of organizing rules and principles, and repeated attempts to target specific components within the microenvironment reveal self-regulating mechanisms of resistance. The histopathological and genetic progression models of the transforming ductal epithelium must therefore be considered together with a programme of stromal progression to create a comprehensive picture of pancreatic cancer evolution. Understanding the underlying organizational logic of the tumour to anticipate and pre-empt the almost inevitable compensatory mechanisms will be essential to eradicate the disease.
Collapse
|
22
|
|
Nguyen TN, Chebbi I, Le Fèvre R, Guyot F, Alphandéry E. Non-pyrogenic highly pure magnetosomes for efficient hyperthermia treatment of prostate cancer. Appl Microbiol Biotechnol 2023;107:1159-76. [PMID: 36633624 DOI: 10.1007/s00253-022-12247-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/13/2023]
Abstract
We report the fabrication of highly pure magnetosomes that are synthesized by magnetotactic bacteria (MTB) using pharmaceutically compatible growth media, i.e., without compounds of animal origin (yeast extracts), carcinogenic, mutagenic, or toxic for reproduction (CMR) products, and other heavy metals than iron. To enable magnetosome medical applications, these growth media are reduced and amended compared with media commonly used to grow these bacteria. Furthermore, magnetosomes are made non-pyrogenic by being extracted from these micro-organisms and heated above 400 °C to remove and denature bacterial organic material and produce inorganic magnetosome minerals. To be stabilized, these minerals are further coated with citric acid to yield M-CA, leading to fully reconstructed chains of magnetosomes. The heating properties and anti-tumor activity of highly pure M-CA are then studied by bringing M-CA into contact with PC3-Luc tumor cells and by exposing such assembly to an alternating magnetic field (AMF) of 42 mT and 195 kHz during 30 min. While in the absence of AMF, M-CA are observed to be non-cytotoxic, they result in a 35% decrease in cell viability following AMF application. The treatment efficacy can be associated with a specific absorption rate (SAR) value of M-CA, which is relatively high in cellular environment, i.e., SARcell = 253 ± 11 W/gFe, while being lower than the M-CA SAR value measured in water, i.e., SARwater = 1025 ± 194 W/gFe, highlighting that a reduction in the Brownian contribution to the SAR value in cellular environment does not prevent efficient tumor cell destruction with these nanoparticles. KEY POINTS : • Highly pure magnetosomes were produced in pharmaceutically compatible growth media • Non-pyrogenic and stable magnetosomes were prepared for human injection • Magnetosomes efficiently destroyed prostate tumor cells in magnetic hyperthermia.
Collapse
|
23
|
|
Sonnenberg A, Bauerfeind P, Bakis G. Cost-utility advantage of interventional endoscopy. Surg Endosc 2023;37:1031-7. [PMID: 36097098 DOI: 10.1007/s00464-022-09599-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 10/14/2022]
Abstract
BACKGROUND Gastroenterologists frequently face the dilemma of how to choose among different management options. AIM To develop a tool of medical decision analysis that helps choosing between competing management options of interventional endoscopy and surgery. METHODS Carcinoma-in-situ of the esophagus, large colonic polyps, and ampullary adenoma serve as three examples for disorders being managed by both techniques. A threshold analysis using a decision tree was modeled to compare the costs and utility values associated with managing the three examples. If the expected healing or success rate of interventional endoscopy exceeds a threshold calculated as the ratio of endoscopy costs over surgery costs, endoscopy becomes the preferred management option. A low threshold speaks in favor of endoscopic intervention as initial management strategy. RESULTS If the decision in favor of surgery is focused exclusively on preventing death from a given disease, surgical intervention may seem to provide the best treatment option. However, interventional endoscopy becomes a viable alternative, if the comparison is based on a broader perspective that includes adverse events and long-term disability, as well as the healthcare costs of both procedures. For carcinoma-in-situ of the esophagus, the threshold for the expected success rate is 24% (range in the sensitivity analysis: 7-29%); for large colonic polyps it is 10% (5-12%), and for duodenal papillary adenoma it is 17% (5-21%). CONCLUSIONS Even if a management strategy surpasses its alternative with respect to one important outcome parameter, there is often still room for the lesser alternative to be considered as viable option.
Collapse
|
24
|
|
Zhang H, Chen H, Yin S, Fan L, Jin C, Zhao C, Hu H. Docosahexaenoic acid reverses PD-L1-mediated immune suppression by accelerating its ubiquitin-proteasome degradation. J Nutr Biochem 2023;112:109186. [PMID: 36309154 DOI: 10.1016/j.jnutbio.2022.109186] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/05/2022]
Abstract
PD-L1 interacts with its receptor PD-1 on T cells to negatively regulate T cell function, leading to cancer cell immune escape from the immune surveillance. Therefore, targeting PD-L1 is considered to be an attractive approach for cancer immunotherapy. In this study, we demonstrated for the first time that ω-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) reduced the expression of PD-L1 in cancer cells both in vitro and in vivo. Promotion of PD-L1 ubiquitin-proteasome degradation by DHA resulted in a decrease of PD-L1 expression, leading to reduction of PD-L1 and PD-1 interaction, and reversing PD-L1-mediated immune suppression, which in turn contributed to the inhibitory effect on tumor growth. Furtherly, DHA significantly reduced fatty acid synthase (FASN) expression in cancer cells, which inhibited the palmitoyltransferases DHHC5, promoting the CSN5-dependent PD-L1 degradation. Our present finding uncovered a novel mechanism involved in the anti-cancer activity of DHA, and implicated that DHA holds promising potential to be developed as a novel immune-enhancer for cancer treatment and prevention.
Collapse
|
25
|
|
Kimmel GJ, Beck RJ, Yu X, Veith T, Bakhoum S, Altrock PM, Andor N. Intra-tumor heterogeneity, turnover rate and karyotype space shape susceptibility to missegregation-induced extinction. PLoS Comput Biol 2023;19:e1010815. [PMID: 36689467 DOI: 10.1371/journal.pcbi.1010815] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/24/2023] Open
Abstract
The phenotypic efficacy of somatic copy number alterations (SCNAs) stems from their incidence per base pair of the genome, which is orders of magnitudes greater than that of point mutations. One mitotic event stands out in its potential to significantly change a cell's SCNA burden-a chromosome missegregation. A stochastic model of chromosome mis-segregations has been previously developed to describe the evolution of SCNAs of a single chromosome type. Building upon this work, we derive a general deterministic framework for modeling missegregations of multiple chromosome types. The framework offers flexibility to model intra-tumor heterogeneity in the SCNAs of all chromosomes, as well as in missegregation- and turnover rates. The model can be used to test how selection acts upon coexisting karyotypes over hundreds of generations. We use the model to calculate missegregation-induced population extinction (MIE) curves, that separate viable from non-viable populations as a function of their turnover- and missegregation rates. Turnover- and missegregation rates estimated from scRNA-seq data are then compared to theoretical predictions. We find convergence of theoretical and empirical results in both the location of MIE curves and the necessary conditions for MIE. When a dependency of missegregation rate on karyotype is introduced, karyotypes associated with low missegregation rates act as a stabilizing refuge, rendering MIE impossible unless turnover rates are exceedingly high. Intra-tumor heterogeneity, including heterogeneity in missegregation rates, increases as tumors progress, rendering MIE unlikely.
Collapse
|
26
|
|
Stefańska K, Józkowiak M, Angelova Volponi A, Shibli JA, Golkar-Narenji A, Antosik P, Bukowska D, Piotrowska-Kempisty H, Mozdziak P, Dzięgiel P, Podhorska-Okołów M, Zabel M, Dyszkiewicz-Konwińska M, Kempisty B. The Role of Exosomes in Human Carcinogenesis and Cancer Therapy-Recent Findings from Molecular and Clinical Research. Cells 2023;12. [PMID: 36766698 DOI: 10.3390/cells12030356] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/20/2023] Open
Abstract
Exosomes are biological nanoscale spherical lipid bilayer vesicles, 40-160 nm in diameter, produced by most mammalian cells in both physiological and pathological conditions. Exosomes are formed via the endosomal sorting complex required for transport (ESCRT). The primary function of exosomes is mediating cell-to-cell communication. In terms of cancer, exosomes play important roles as mediators of intercellular communication, leading to tumor progression. Moreover, they can serve as biomarkers for cancer detection and progression. Therefore, their utilization in cancer therapies has been suggested, either as drug delivery carriers or as a diagnostic tool. However, exosomes were also reported to be involved in cancer drug resistance via transferring information of drug resistance to sensitive cells. It is important to consider the current knowledge regarding the role of exosomes in cancer, drug resistance, cancer therapies, and their clinical application in cancer therapies.
Collapse
|
27
|
|
Wakahara M, Hosoya K, Ishii H, Umekita Y. Clinical Significance of Subcellular Localization of Maspin in Breast Carcinoma: An Immunohistochemical Study Using Two Different Antibodies. Yonago Acta Med 2023;66:19-23. [PMID: 36820287 DOI: 10.33160/yam.2023.02.003] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/17/2023]
Abstract
Background Maspin is known to be a tumor suppressor protein: however, its prognostic value in patients with breast cancer remains controversial. The key influential factors contributing to this complexity may be the differences in antibodies used, as well as the positive criteria and sample size. To date, no study has investigated the prognostic significance of maspin expression by using two different antibodies in the same cohort. We aimed to clarify whether differences in antibodies could influence on the prognostic value of maspin in breast cancer patients. Methods Immunohistochemical analyses using an anti-maspin antibody (clone G167-70) were performed on 164 resected specimens of invasive carcinoma of no special type (NOS). The correlation with clinicopathological factors was compared to previous results using clone EAW24, with longer follow-up duration. Results The subcellular localization of maspin expression was as follows: cytoplasmic-only staining, 3 cases (1.8%), pancellular staining, 43 cases (26.2%); and no staining, 118 cases (72.0%). No nuclear-only staining was observed. There was no significant correlation between clinicopathological characteristics and the pancellualr expression of maspin. The pancellular expression group showed a significantly longer disease-free survival (DFS) than the other groups (P = 0.046). When clone EAW24 was used, the cytoplasmic-only staining group showed significantly shorter DFS than the pancellular staining group (P = 0.003). Conclusion Clone EAW24 may be superior to clone G167-70 in selecting breast carcinoma with an aggressive phenotype, while clone G167-70 may be superior to clone EAW24 in selecting non-aggressive breast carcinoma.
Collapse
|
28
|
|
Han K, Liu H, Cui J, Liu Y, Pan P. Recent strategies for electrochemical sensing detection of miRNAs in lung cancer. Anal Biochem 2023;661:114986. [PMID: 36384188 DOI: 10.1016/j.ab.2022.114986] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/15/2022]
Abstract
MicroRNAs (miRNAs) associated with lung cancer are diversifying. MiR-21, Let-7, and miR-141 are common diagnostic targets. Some new lung cancer miRNAs, such as miR-25, miR-145, and miR-126, have received increasing attention. Although various techniques are available for the analysis of lung cancer miRNAs, electrochemistry has been recognized for its high sensitivity, low cost, and rapid response. However, how to realize the signal amplification is one of the most important contents in the design of electrochemical biosensors. Herein, we mainly introduce the amplification strategy based on enzyme-free amplification and signal conversion, including non-linear HCR, catalytic hairpin assembly (CHA), electrochemiluminescence (ECL), and Faraday cage. Furthermore, new progress has emerged in the fields of nanomaterials, low oxidation potential, and simultaneous detection of multiple targets. Finally, we summarize some new challenges that electrochemical techniques may encounter in the future, such as improving single-base discrimination ability, shortening electrochemical detection time, and providing real body fluid samples assay.
Collapse
|
29
|
|
Seif F, Torki Z, Zalpoor H, Habibi M, Pornour M. Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023;28:132-57. [PMID: 36816749 DOI: 10.1016/j.omto.2023.01.001] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/13/2023]
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
30
|
|
Clack K, Soda N, Kasetsirikul S, Mahmudunnabi RG, Nguyen NT, Shiddiky MJA. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. Small 2023;:e2205856. [PMID: 36631277 DOI: 10.1002/smll.202205856] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/13/2023]
Abstract
Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.
Collapse
|
31
|
|
Asili P, Mirahmad M, Rezaei P, Mahdavi M, Larijani B, Tavangar SM. The Association of Oral Microbiome Dysbiosis with Gastrointestinal Cancers and Its Diagnostic Efficacy. J Gastrointest Cancer 2023. [PMID: 36600023 DOI: 10.1007/s12029-022-00901-4] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/06/2023]
Abstract
BACKGROUND The second leading mortality cause in the world is cancer, making it a critical issue that impacts human health. As a result, scientists are looking for novel biomarkers for cancer detection. The oral microbiome, made up of approximately 700 species-level taxa, is a significant source for discovering novel biomarkers. In this review, we aimed to prepare a summary of research that has investigated the association between the oral microbiome and gastrointestinal cancers. METHODS We searched online scientific datasets including Web of Science, PubMed, Scopus, and Google Scholar. Eligibility criteria included human studies that reported abundances of the oral microbiome, or its diagnostic/prognostic performance in patients with gastrointestinal cancers. RESULTS Some phyla of the oral microbiome have a relationship with cancers. Some particular phyla of the oral microbiome that may be related to gastrointestinal cancers consist of Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria. Changes in the abundances of Porphyromonas, Fusobacterium, Prevotella, and Veillonella are correlated with carcinogenesis, and may be used for distinguishing cancer patients from healthy subjects. Oral, colorectal, pancreatic, and esophageal cancers are the most important cancers related to the oral microbiome. CONCLUSION The results of this study may help future research to select bacteria as an early diagnostic or prognostic biomarker of gastrointestinal cancer. Given the current state of our knowledge, additional research is required to comprehend the multiplex processes underlying the role of bacterial microbiota upon cancer progression and to characterize the complex microbiota-host interaction network.
Collapse
|
32
|
|
Dissanayake I, Jaye K, Eladwy RAM, Farrukh S, Yasmin S, Bhuyan DJ, Pandohee J. Taxus wallichiana Zucc.: The Himalayan Yew. Immunity Boosting Medicinal Plants of the Western Himalayas 2023. [DOI: 10.1007/978-981-19-9501-9_22] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/17/2023]
|
33
|
|
Bouyahya A, Bakrim S, El Yaagoubi OM, Hakkour M, Balahbib A, Elmenyiy N, Chamkhi I, El Omari N. Exosomes: a novel tool for diagnosis and therapy. Design and Applications of Theranostic Nanomedicines 2023. [DOI: 10.1016/b978-0-323-89953-6.00001-5] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/30/2023]
|
34
|
|
Tang J, Li Q, Yao C, Yang D. DNA Nanomaterial-Based Optical Probes for Exosomal miRNA Detection. Chempluschem 2023;88:e202200345. [PMID: 36650721 DOI: 10.1002/cplu.202200345] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/24/2022]
Abstract
Micro ribonucleic acids (miRNAs) in exosomes have been proven as reliable biomarkers to detect disease progression. In recent years, deoxyribonucleic acid (DNA)-based nanomaterials show great potential in the field of diagnosis due to the programmable sequence, various molecule recognition and predictable assembly/disassembly of DNA. In this review, we focus on the molecular design and detection mechanism of DNA nanomaterials, and the developed DNA nanomaterial-based optical probes for exosomal miRNA detection are summarized and discussed. The rationally-designed DNA sequences endows these probes with low background signal and high sensitivity in exosomal miRNA detection, and the detection mechanisms based on different DNA nanomaterials are detailly introduced. At the end, the challenges and future opportunities of DNA nanomaterial-based optical probes in exosomal miRNA detection are discussed. We envision that DNA nanomaterial-based optical probes will be promising in precise biomedicine.
Collapse
|
35
|
|
Liu D, Li X, Zeng B, Zhao Q, Chen H, Zhang Y, Chen Y, Wang J, Xing HR. Exosomal microRNA-4535 of Melanoma Stem Cells Promotes Metastasis by Inhibiting Autophagy Pathway. Stem Cell Rev Rep 2023;19:155-69. [PMID: 35296991 DOI: 10.1007/s12015-022-10358-4] [Cited by in Crossref: 3] [Cited by in RCA: 4] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/29/2023]
Abstract
High mortality rate and poor survival in melanoma are associated with efficient metastatic colonization. The underlying mechanisms remain elusive. Elucidating the role of exosomes in mediating the interactions between cancer cells and the metastatic microenvironment has been focused on cancer cell derived exosomes in modulating the functions of stromal cells. Whether cancer stem cells (CSCs) can modify the metastatic properties of non-CSC cells, and whether exosomal crosstalk plays a role have not been demonstrated prior to this report. In this study, a paired M14 melanoma derivative cell line, i.e., melanoma parental cell (MPC) and its CSC derivative cell line melanoma stem cell (MSC) were employed. We demonstrated that exosomal crosstalk betwen MSCs and non-CSC MPCs is a new mechanism that underlies melanoma metastasis. Low metastatic melanoma cells (MPCs) can acquire the "metastatic power" from highly metastatic melanoma CSCs (MSCs). We illustrated an uncharacterized microRNA, miR-4535 in mediating such exosomal crosstalk. MSCs deliver its exosomal miR-4535 to the targeted MPCs. Upon entering MPCs, miR-4535 augments metastatic colonization of MPCs by inactivating the autophagy pathway.
Collapse
|
36
|
|
Somalraju A, Fofana B. Metabolomics and Transcriptomics-Based Tools for Linseed Improvement. The Flax Genome 2023. [DOI: 10.1007/978-3-031-16061-5_9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/05/2023]
|
37
|
|
Rybarczyk A, Lehmann T, Iwańczyk-Skalska E, Juzwa W, Pławski A, Kopciuch K, Blazewicz J, Jagodziński PP. In silico and in vitro analysis of the impact of single substitutions within EXO-motifs on Hsa-MiR-1246 intercellular transfer in breast cancer cell. J Appl Genet 2023;64:105-24. [PMID: 36394782 DOI: 10.1007/s13353-022-00730-y] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 11/19/2022]
Abstract
MiR-1246 has recently gained much attention and many studies have shown its oncogenic role in colorectal, breast, lung, and ovarian cancers. However, miR-1246 processing, stability, and mechanisms directing miR-1246 into neighbor cells remain still unclear. In this study, we aimed to determine the role of single-nucleotide substitutions within short exosome sorting motifs - so-called EXO-motifs: GGAG and GCAG present in miR-1246 sequence on its intracellular stability and extracellular transfer. We applied in silico methods such as 2D and 3D structure analysis and modeling of protein interactions. We also performed in vitro validation through the transfection of fluorescently labeled miRNA to MDA-MB-231 cells, which we analyzed by flow cytometry and fluorescent microscopy. Our results suggest that nucleotides alterations that disturbed miR-1246 EXO-motifs were able to modulate miRNA-1246 stability and its transfer level to the neighboring cells, suggesting that the molecular mechanism of RNA stability and intercellular transfer can be closely related.
Collapse
|
38
|
|
Hosseinikhah SM, Gheybi F, Moosavian SA, Shahbazi MA, Jaafari MR, Sillanpää M, Kesharwani P, Alavizadeh SH, Sahebkar A. Role of exosomes in tumour growth, chemoresistance and immunity: state-of-the-art. J Drug Target 2023;31:32-50. [PMID: 35971773 DOI: 10.1080/1061186X.2022.2114000] [Cited by in Crossref: 3] [Cited by in RCA: 2] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most lethal diseases, and limited available treatment options contribute to its high mortality rate. Exosomes are considered membrane-bound nanovesicles that include different molecules such as lipids, proteins, and nucleic acids. Virtually most cells could release exosomes via exocytosis in physiological and pathological conditions. Tumour-derived exosomes (TDEs) play essential roles in tumorigenesis, proliferation, progression, metastasis, immune escape, and chemoresistance by transferring functional biological cargos, triggering different autocrine, and paracrine signalling cascades. Due to their antigen-presenting properties, exosomes are widely used as biomarkers and drug carriers and have a prominent role in cancer immunotherapy. They offer various advantages in carrier systems (e.g. in chemotherapy, siRNA, and miRNA), delivery of diagnostic agents owing to their stability, loading of hydrophobic and hydrophilic agents, and drug targeting. Novel exosomes-based carriers can be generated as intelligent systems using various sources and crosslinking chemistry extracellular vesicles (EVs). Exosomes studded with targeting ligands, including peptides, can impart in targeted delivery of cargos to tumour cells. In this review, we comprehensively summarised the important role of tumour-derived exosomes in dictating cancer pathogenesis and resistance to therapy. We have therefore, investigated in further detail the pivotal role of tumour-derived exosomes in targeting various cancer cells and their applications, and prospects in cancer therapy and diagnosis. Additionally, we have implicated the potential utility and significance of tumour exosomes-based nanoparticles as an efficient and novel therapeutic carrier and their applications in treating advanced cancers.
Collapse
|
39
|
|
Visan KS, Wu LY, Voss S, Wuethrich A, Möller A. Status quo of Extracellular Vesicle isolation and detection methods for clinical utility. Semin Cancer Biol 2023;88:157-71. [PMID: 36581020 DOI: 10.1016/j.semcancer.2022.12.008] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/28/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized particles that hold tremendous potential in the clinical space, as their biomolecular profiles hold a key to non-invasive liquid biopsy for cancer diagnosis and prognosis. EVs are present in most bodily fluids, hence are easily obtainable from patients, advantageous to that of traditional, invasive tissue biopsies and imaging techniques. However, there are certain constraints that hinder clinical use of EVs. The translation of EV biomarkers from "bench-to-bedside" is encumbered by the methods of EV isolation and subsequent biomarker detection currently implemented in laboratories. Although current isolation and detection methods are effective, they lack practicality, with their requirement for high bodily fluid volumes, low equipment availability, slow turnaround times and high costs. The high demand for techniques that overcome these limitations has resulted in significant advancements in nanotechnological devices. These devices are designed to integrate EV isolation and biomarker detection into a one-step method of direct EV detection from bodily fluids. This provides promise for the acceleration of EVs into current clinical standards. This review highlights the importance of EVs as cancer biomarkers, the methodological obstacles currently faced in clinical studies and how novel nanodevices could advance clinical translation.
Collapse
|
40
|
|
Desai PP, Narra K, James JD, Jones HP, Tripathi AK, Vishwanatha JK. Combination of Small Extracellular Vesicle-Derived Annexin A2 Protein and mRNA as a Potential Predictive Biomarker for Chemotherapy Responsiveness in Aggressive Triple-Negative Breast Cancer. Cancers (Basel) 2022;15. [PMID: 36612209 DOI: 10.3390/cancers15010212] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/31/2022] Open
Abstract
Small extracellular vesicles (sEVs), mainly exosomes, are nanovesicles that shed from the membrane as intraluminal vesicles of the multivesicular bodies, serve as vehicles that carry cargo influential in modulating the tumor microenvironment for the multi-step process of cancer metastasis. Annexin A2 (AnxA2), a calcium(Ca2+)-dependent phospholipid-binding protein, is among sEV cargoes. sEV-derived AnxA2 (sEV-AnxA2) protein is involved in the process of metastasis in triple-negative breast cancer (TNBC). The objective of the current study is to determine whether sEV-AnxA2 protein and/or mRNA could be a useful biomarkers to predict the responsiveness of chemotherapy in TNBC. Removal of Immunoglobulin G (IgG) from the serum as well as using the System Bioscience's ExoQuick Ultra kit resulted in efficient sEV isolation and detection of sEV-AnxA2 protein and mRNA compared to the ultracentrifugation method. The standardized method was applied to the twenty TNBC patient sera for sEV isolation. High levels of sEV-AnxA2 protein and/or mRNA were associated with stage 3 and above in TNBC. Four patients who responded to neoadjuvant chemotherapy had high expression of AnxA2 protein and/or mRNA in sEVs, while other four who did not respond to chemotherapy had low levels of AnxA2 protein and mRNA in sEVs. Our data suggest that the sEV-AnxA2 protein and mRNA could be a combined predictive biomarker for responsiveness to chemotherapy in aggressive TNBC.
Collapse
|
41
|
|
Qian F, Huang Z, Zhong H, Lei Q, Ai Y, Xie Z, Zhang T, Jiang B, Zhu W, Sheng Y, Hu J, Brinker CJ. Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS Nano 2022;16:19980-20001. [PMID: 36475625 DOI: 10.1021/acsnano.2c11298] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) can facilitate essential communication among cells in a range of pathophysiological conditions including cancer metastasis and progression, immune regulation, and neuronal communication. EVs are membrane-enclosed vesicles generated through endocytic origin and contain many cellular components, including proteins, lipids, nucleic acids, and metabolites. Over the past few years, the intravesicular content of EVs has proven to be a valuable biomarker for disease diagnostics, involving cancer, cardiovascular diseases, and central nervous system diseases. This review aims to provide insight into EV biogenesis, composition, function, and isolation, present a comprehensive overview of emerging techniques for EV cargo analysis, highlighting their major technical features and limitations, and summarize the potential role of EV cargos as biomarkers in disease diagnostics. Further, progress and remaining challenges will be discussed for clinical diagnostic outlooks.
Collapse
|
42
|
|
Pallares-Rusiñol A, Bernuz M, Moura SL, Fernández-Senac C, Rossi R, Martí M, Pividori MI. Advances in exosome analysis. Adv Clin Chem 2023;112:69-117. [PMID: 36642486 DOI: 10.1016/bs.acc.2022.09.002] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/24/2022]
Abstract
There is growing demand for novel biomarkers that detect early stage disease as well as monitor clinical management and therapeutic strategies. Exosome analysis could provide the next advance in attaining that goal. Exosomes are membrane encapsulated biologic nanometric-sized particles of endocytic origin which are released by all cell types. Unfortunately, exosomes are exceptionally challenging to characterize with current technologies. Exosomes are between 30 and 200nm in diameter, a size that makes them out of the sensitivity range to most cell-oriented sorting or analysis platforms, i.e., traditional flow cytometers. The most common methods for targeting exosomes to date typically involve purification followed by the characterization and the specific determination of their cargo. The whole procedure is time consuming, requiring thus skilled personnel as well as laboratory facilities and benchtop instrumentation. The most relevant methodology for exosome isolation, characterization and quantification is addressed in this chapter, including the most up-to-date approaches to explore the potential usefulness of exosomes as biomarkers in liquid biopsies and in advanced nanomedicine.
Collapse
|
43
|
|
Luo X, Hang C, Zhang Z, Le K, Ying Y, Lv Y, Yan L, Huang Y, Ye L, Xu X, Zhong Y, Du L. PVECs-Derived Exosomal microRNAs Regulate PASMCs via FoxM1 Signaling in IUGR-induced Pulmonary Hypertension. J Am Heart Assoc 2022;11:e027177. [PMID: 36533591 DOI: 10.1161/JAHA.122.027177] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 12/23/2022]
Abstract
Background Intrauterine growth restriction (IUGR) is closely related to systemic or pulmonary hypertension (PH) in adulthood. Aberrant crosstalk between pulmonary vascular endothelial cells (PVECs) and pulmonary arterial smooth muscle cells (PASMCs) that is mediated by exosomes plays an essential role in the progression of PH. FoxM1 (Forkhead box M1) is a key transcription factor that governs many important biological processes. Methods and Results IUGR-induced PH rat models were established. Transwell plates were used to coculture PVECs and PASMCs. Exosomes were isolated from PVEC-derived medium, and a microRNA (miRNA) screening was proceeded to identify effects of IUGR on small RNAs enclosed within exosomes. Dual-Luciferase assay was performed to validate the predicted binding sites of miRNAs on FoxM1 3' untranslated region. FoxM1 inhibitor thiostrepton was used in IUGR-induced PH rats. In this study, we found that FoxM1 expression was remarkably increased in IUGR-induced PH, and PASMCs were regulated by PVECs through FoxM1 signaling in a non-contact way. An miRNA screening showed that miR-214-3p, miR-326-3p, and miR-125b-2-3p were downregulated in PVEC-derived exosomes of the IUGR group, which were associated with overexpression of FoxM1 and more significant proliferation and migration of PASMCs. Dual-Luciferase assay demonstrated that the 3 miRNAs directly targeted FoxM1 3' untranslated region. FoxM1 inhibition blocked the PVECs-PASMCs crosstalk and reversed the abnormal functions of PASMCs. In vivo, treatment with thiostrepton significantly reduced the severity of PH. Conclusions Transmission of exosomal miRNAs from PVECs regulated the functions of PASMCs via FoxM1 signaling, and FoxM1 may serve as a potential therapeutic target in IUGR-induced PH.
Collapse
|
44
|
|
Wise PM, Sahana J, Neviani P, Corydon TJ, Schulz H, Wehland M, Infanger M, Grimm D. Prolonged Exposure to Simulated Microgravity Changes Release of Small Extracellular Vesicle in Breast Cancer Cells. Int J Mol Sci 2022;23. [PMID: 36555738 DOI: 10.3390/ijms232416095] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is the leading cause of cancer incidence worldwide and among the five leading causes of cancer mortality. Despite major improvements in early detection and new treatment approaches, the need for better outcomes and quality of life for patients is still high. Extracellular vesicles play an important role in tumor biology, as they are able to transfer information between cells of different origins and locations. Their potential value as biomarkers or for targeted tumor therapy is apparent. In this study, we analyzed the supernatants of MCF-7 breast cancer cells, which were harvested following 5 or 10 days of simulated microgravity on a Random Positioning Machine (RPM). The primary results showed a substantial increase in released vesicles following incubation under simulated microgravity at both time points. The distribution of subpopulations regarding their surface protein expression is also altered; the minimal changes between the time points hint at an early adaption. This is the first step in gaining further insight into the mechanisms of tumor progression, metastasis, the education of the tumor microenvironments, and preparation of the metastatic niche. Additionally, this may lighten up the processes of the rapid cellular adaptions in the organisms of space travelers during spaceflights.
Collapse
|
45
|
|
Ahmed SA, Mendonca P, Elhag R, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. Int J Mol Sci 2022;23. [PMID: 36555740 DOI: 10.3390/ijms232416091] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/23/2022] Open
Abstract
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer.
Collapse
|
46
|
|
Lee HC, Lai WL, Lin CY, Zeng CW, Sheu JC, Chou TB, Tsai HJ. Anp32a Promotes Neuronal Regeneration after Spinal Cord Injury of Zebrafish Embryos. Int J Mol Sci 2022;23. [PMID: 36555564 DOI: 10.3390/ijms232415921] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/23/2022] Open
Abstract
After spinal cord injury (SCI) in mammals, neuronal regeneration is limited; in contrast, such regeneration occurs quickly in zebrafish. Member A of the acidic nuclear phosphoprotein 32 (ANP32a) family is involved in neuronal development, but its function is controversial, and its involvement in zebrafish SCI remains unknown. To determine the role of zebrafish ANP32a in the neuronal regeneration of SCI embryos, we microinjected ANP32a mRNA into embryos from zebrafish transgenic line Tg(mnx1:GFP) prior to SCI. Compared to control SCI embryos, the results showed that the regeneration of spinal cord and resumption of swimming capability were promoted by the overexpression of ANP32a mRNA but reduced by its knockdown. We next combined fluorescence-activated cell sorting with immunochemical staining of anti-GFAP and immunofluorescence staining against anti-PH3 on Tg(gfap:GFP) SCI embryos. The results showed that ANP32a promoted the proliferation and cell number of radial glial cells at the injury epicenter at 24 h post-injury (hpi). Moreover, when we applied BrdU labeling to SCI embryos derived from crossing the Tg(gfap:GFP) and Tg(mnx1:TagRFP) lines, we found that both radial glial cells and motor neurons had proliferated, along with their increased cell numbers in Anp32a-overexpression SCI-embryos. On this basis, we conclude that ANP32a plays a positive role in the regeneration of zebrafish SCI embryos.
Collapse
|
47
|
|
Feng L, Guo L, Tanaka Y, Su L. Tumor-Derived Small Extracellular Vesicles Involved in Breast Cancer Progression and Drug Resistance. Int J Mol Sci 2022;23. [PMID: 36499561 DOI: 10.3390/ijms232315236] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/09/2022] Open
Abstract
Breast cancer is one of the most serious and terrifying threats to the health of women. Recent studies have demonstrated that interaction among cancer cells themselves and those with other cells, including immune cells, in a tumor microenvironment potentially and intrinsically regulate and determine cancer progression and metastasis. Small extracellular vesicles (sEVs), a type of lipid-bilayer particles derived from cells, with a size of less than 200 nm, are recognized as one form of important mediators in cell-to-cell communication. sEVs can transport a variety of bioactive substances, including proteins, RNAs, and lipids. Accumulating evidence has revealed that sEVs play a crucial role in cancer development and progression, with a significant impact on proliferation, invasion, and metastasis. In addition, sEVs systematically coordinate physiological and pathological processes, such as coagulation, vascular leakage, and stromal cell reprogramming, to bring about premetastatic niche formation and to determine metastatic organ tropism. There are a variety of oncogenic factors in tumor-derived sEVs that mediate cellular communication between local stromal cells and distal microenvironment, both of which are important in cancer progression and metastasis. Tumor-derived sEVs contain substances that are similar to parental tumor cells, and as such, sEVs could be biomarkers in cancer progression and potential therapeutic targets, particularly for predicting and preventing future metastatic development. Here, we review the mechanisms underlying the regulation by tumor-derived sEVs on cancer development and progression, including proliferation, metastasis, drug resistance, and immunosuppression, which coordinately shape the pro-metastatic microenvironment. In addition, we describe the application of sEVs to the development of cancer biomarkers and potential therapeutic modalities and discuss how they can be engineered and translated into clinical practice.
Collapse
|
48
|
|
Zhao J, Xu L, Yang D, Tang H, Chen Y, Zhang X, Xu Y, Ou R, Li D. Exosome-driven liquid biopsy for breast cancer: Recent advances in isolation, biomarker identification and detection. Extracellular Vesicle 2022;1:100006. [DOI: 10.1016/j.vesic.2022.100006] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/24/2022]
|
49
|
|
Adnani L, Spinelli C, Tawil N, Rak J. Role of extracellular vesicles in cancer-specific interactions between tumour cells and the vasculature. Semin Cancer Biol 2022;87:196-213. [PMID: 36371024 DOI: 10.1016/j.semcancer.2022.11.003] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/11/2022]
Abstract
Cancer progression impacts and exploits the vascular system in several highly consequential ways. Among different types of vascular cells, blood cells and mediators that are engaged in these processes, endothelial cells are at the centre of the underlying circuitry, as crucial constituents of angiogenesis, angiocrine stimulation, non-angiogenic vascular growth, interactions with the coagulation system and other responses. Tumour-vascular interactions involve soluble factors, extracellular matrix molecules, cell-cell contacts, as well as extracellular vesicles (EVs) carrying assemblies of molecular effectors. Oncogenic mutations and transforming changes in the cancer cell genome, epigenome and signalling circuitry exert important and often cancer-specific influences upon pathways of tumour-vascular interactions, including the biogenesis, content, and biological activity of EVs and responses of cancer cells to them. Notably, EVs may carry and transfer bioactive, oncogenic macromolecules (oncoproteins, RNA, DNA) between tumour and vascular cells and thereby elicit unique functional changes and forms of vascular growth and remodeling. Cancer EVs influence the state of the vasculature both locally and systemically, as exemplified by cancer-associated thrombosis. EV-mediated communication pathways represent attractive targets for therapies aiming at modulation of the tumour-vascular interface (beyond angiogenesis) and could also be exploited for diagnostic purposes in cancer.
Collapse
|
50
|
|
Hu Y, Tse TJ, Shim YY, Purdy SK, Kim YJ, Meda V, Reaney MJT. A review of flaxseed lignan and the extraction and refinement of secoisolariciresinol diglucoside. Crit Rev Food Sci Nutr 2022. [DOI: 10.1080/10408398.2022.2148627] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/05/2022]
|