1
|
|
Smirnov A, Melino G, Candi E. Gene expression in organoids: an expanding horizon. Biol Direct 2023;18:11. [PMID: 36964575 DOI: 10.1186/s13062-023-00360-2] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Indexed: 03/26/2023] Open
Abstract
Recent development of human three-dimensional organoid cultures has opened new doors and opportunities ranging from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are opening new horizons to the classic understanding of human development and disease. However, the complexity and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid development of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for development and a platform for precision medicine.
Collapse
|
2
|
|
Chowdhury SR, Koley T, Singh M, Samath EA, Kaur P. Association of Hsp90 with p53 and Fizzy related homolog (Fzr) synchronizing Anaphase Promoting Complex (APC/C): An unexplored ally towards oncogenic pathway. Biochim Biophys Acta Rev Cancer 2023;:188883. [PMID: 36972769 DOI: 10.1016/j.bbcan.2023.188883] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/29/2023]
Abstract
The intricate molecular interactions leading to the oncogenic pathway are the consequence of cell cycle modification controlled by a bunch of cell cycle regulatory proteins. The tumor suppressor and cell cycle regulatory proteins work in coordination to maintain a healthy cellular environment. The integrity of this cellular protein pool is perpetuated by heat shock proteins/chaperones, which assist in proper protein folding during normal and cellular stress conditions. Among these versatile groups of chaperone proteins, Hsp90 is one of the significant ATP-dependent chaperones that aid in stabilizing many tumor suppressors and cell cycle regulator protein targets. Recently, studies have revealed that in cancerous cell lines, Hsp90 stabilizes mutant p53, 'the guardian of the genome.' Hsp90 also has a significant impact on Fzr, an essential regulator of the cell cycle having an important role in the developmental process of various organisms, including Drosophila, yeast, Caenorhabditis elegans, and plants. During cell cycle progression, p53 and Fzr coordinately regulate the Anaphase Promoting Complex (APC/C) from metaphase to anaphase transition up to cell cycle exit. APC/C mediates proper centrosome function in the dividing cell. The centrosome acts as the microtubule organizing center for the correct segregation of the sister chromatids to ensure perfect cell division. This review examines the structure of Hsp90 and its co-chaperones, which work in synergy to stabilize proteins such as p53 and Fizzy-related homolog (Fzr) to synchronize the Anaphase Promoting Complex (APC/C). Dysfunction of this process activates the oncogenic pathway leading to the development of cancer. Additionally, an overview of current drugs targeting Hsp90 at various phases of clinical trials has been included.
Collapse
|
3
|
|
Li H, Zhang P, Li D, Chen B, Li J, Wang T. The Expression Patterns of Exogenous Plant miRNAs in Chickens. Genes (Basel) 2023;14:760. [PMID: 36981030 DOI: 10.3390/genes14030760] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/30/2023] Open
Abstract
(1) Background: MicroRNAs (miRNAs) are involved in a variety of biological processes, such as cell proliferation, cell differentiation, and organ development. Recent studies have shown that plant miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease; however, little is known about plant miRNAs in chickens. (2) Methods: Here, we analyzed miRNA sequencing data, with the use of five Chinese native chicken breeds and six different tissues (heart, liver, spleen, lung, kidney, and leg muscle), and used Illumina sequencing to detect the expression of plant miRNAs in the pectoralis muscles at fourteen developmental stages of Tibetan chickens. (3) Results: The results showed that plant miRNAs are detectable in multiple tissues and organs in different chicken breeds. Surprisingly, we found that plant miRNAs, such as tae-miR2018, were detectable in free-range Tibetan chicken embryos at different stages. The results of gavage feeding experiments also showed that synthetic tae-miR2018 was detectable in caged Tibetan chickens after ingestion. The analysis of tae-miR2018 showed that its target genes were related to skeletal muscle organ development, regulation of mesodermal cell fate specification, growth factor activity, negative regulation of the cell cycle, and regulation of growth, indicating that exogenous miRNA may regulate the development of chicken embryos. Further cell cultures and exogenous miRNA uptake assay experiments showed that synthetic wheat miR2018 can be absorbed by chicken myoblasts. (4) Conclusions: Our study found that chickens can absorb and deposit plant miRNAs in various tissues and organs. The plant miRNAs detected in embryos may be involved in the development of chicken embryos.
Collapse
|
4
|
|
Corazzari M, Collavin L. Wild-type and mutant p53 in cancer-related ferroptosis. A matter of stress management? Front Genet 2023;14. [DOI: 10.3389/fgene.2023.1148192] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/22/2023] Open
Abstract
Cancer cells within tumor masses are chronically exposed to stress caused by nutrient deprivation, oxygen limitation, and high metabolic demand. They also accumulate hundreds of mutations, potentially generating aberrant proteins that can induce proteotoxic stress. Finally, cancer cells are exposed to various damages during chemotherapy. In a growing tumor, transformed cells eventually adapt to these conditions, eluding the death-inducing outcomes of signaling cascades triggered by chronic stress. One such extreme outcome is ferroptosis, a form of iron-dependent non-apoptotic cell death mediated by lipid peroxidation. Not surprisingly, the tumor suppressor p53 is involved in this process, with evidence suggesting that it acts as a pro-ferroptotic factor and that its ferroptosis-inducing activity may be relevant for tumor suppression. Missense alterations of the TP53 gene are extremely frequent in human cancers and give rise to mutant p53 proteins (mutp53) that lose tumor suppressive function and can acquire powerful oncogenic activities. This suggests that p53 mutation provides a selective advantage during tumor progression, raising interesting questions on the impact of p53 mutant proteins in modulating the ferroptotic process. Here, we explore the role of p53 and its cancer-related mutants in ferroptosis, using a perspective centered on the resistance/sensitivity of cancer cells to exogenous and endogenous stress conditions that can trigger ferroptotic cell death. We speculate that an accurate molecular understanding of this particular axis may improve cancer treatment options.
Collapse
|
5
|
|
Zhang Z, Huang Y, Guo A, Yang L. Research progress of circular RNA molecules in aging and age-related diseases. Ageing Res Rev 2023;87:101913. [PMID: 36934850 DOI: 10.1016/j.arr.2023.101913] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/19/2023]
Abstract
Circular RNAs (circRNAs) are a class of single-chain endogenous closed circular RNAs that do not have a poly(A) tail at the 3' end and a cap structure at the 5' end and are connected end-to-end by covalent bonds. CircRNAs, which are pervasive, diverse, stable, and conversed, have functions in transcriptional control and protein translation and play vital roles in modulating cell senescence, individual aging, as well as the occurrence and development of age-related diseases. Studies in recent years were reviewed from aspects including the biosynthesis mechanisms, classification, expression, biomedical functions, associations with aging and age-related diseases, and potential clinical applications of circRNAs. It will provide the theoretic basis for exploring the molecular biological mechanisms of aging, using circRNA as the therapeutic target to delay aging, and finding therapeutic strategies to prevent and treat age-related diseases.
Collapse
|
6
|
|
Zhang JX, Bao SC, Chen J, Chen T, Wei HL, Zhou XY, Li JT, Yan SG. Xiaojianzhong decoction prevents gastric precancerous lesions in rats by inhibiting autophagy and glycolysis in gastric mucosal cells. World J Gastrointest Oncol 2023; 15(3): 464-489 [DOI: 10.4251/wjgo.v15.i3.464] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Gastric precancerous lesions (GPL) precede the development of gastric cancer (GC). They are characterized by gastric mucosal intestinal metaplasia and dysplasia caused by various factors such as inflammation, bacterial infection, and injury. Abnormalities in autophagy and glycolysis affect GPL progression, and their effective regulation can aid in GPL treatment and GC prevention. Xiaojianzhong decoction (XJZ) is a classic compound for the treatment of digestive system diseases in ancient China which can inhibit the progression of GPL. However, its specific mechanism of action is still unclear.
AIM To investigate the therapeutic effects of XJZ decoction on a rat GPL model and the mechanisms underlying its effects on autophagy and glycolysis regulation in GPLs.
METHODS Wistar rats were randomly divided into six groups of five rats each and all groups except the control group were subjected to GPL model construction for 18 wk. The rats’ body weight was monitored every 2 wk starting from the beginning of modeling. Gastric histopathology was examined using hematoxylin-eosin staining and Alcian blue-periodic acid-Schiff staining. Autophagy was observed using transmission electron microscopy. The expressions of autophagy, hypoxia, and glycolysis related proteins in gastric mucosa were detected using immunohistochemistry and immunofluorescence. The expressions of the following proteins in gastric tissues: B cell lymphoma/Leukemia-2 and adenovirus E1B19000 interacting protein 3 (Bnip-3), microtubule associated protein 1 light chain 3 (LC-3), moesin-like BCL2-interacting protein 1 (Beclin-1), phosphatidylinositol 3-kimase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), p53, AMP-activated protein kinase (AMPK), and Unc-51 like kinase 1 (ULK1) were detected using western blot. The relative expressions of autophagy, hypoxia, and glycolysis related mRNA in gastric tissues was detected using reverse transcription-polymerase chain reaction.
RESULTS Treatment with XJZ increased the rats’ body weight and improved GPL-related histopathological manifestations. It also decreased autophagosome and autolysosome formation in gastric tissues and reduced Bnip-3, Beclin-1, and LC-3II expressions, resulting in inhibition of autophagy. Moreover, XJZ down-regulated glycolysis-related monocarboxylate transporter (MCT1), MCT4, and CD147 expressions. XJZ prevented the increase of autophagy level by decreasing gastric mucosal hypoxia, activating the PI3K/AKT/mTOR pathway, inhibiting the p53/AMPK pathway activation and ULK1 Ser-317 and Ser-555 phosphorylation. In addition, XJZ improved abnormal gastric mucosal glucose metabolism by ameliorating gastric mucosal hypoxia and inhibiting ULK1 expression.
CONCLUSION This study demonstrates that XJZ may inhibit autophagy and glycolysis in GPL gastric mucosal cells by improving gastric mucosal hypoxia and regulating PI3K/AKT/mTOR and p53/ AMPK/ULK1 signaling pathways, providing a feasible strategy for the GPL treatment.
Collapse
|
7
|
|
Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, Wen M, Jiang T, Xiong Y, Lei J. Experimental mouse models for translational human cancer research. Front Immunol 2023;14. [PMID: 36969176 DOI: 10.3389/fimmu.2023.1095388] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023] Open
Abstract
The development and growth of tumors remains an important and ongoing threat to human life around the world. While advanced therapeutic strategies such as immune checkpoint therapy and CAR-T have achieved astonishing progress in the treatment of both solid and hematological malignancies, the malignant initiation and progression of cancer remains a controversial issue, and further research is urgently required. The experimental animal model not only has great advantages in simulating the occurrence, development, and malignant transformation mechanisms of tumors, but also can be used to evaluate the therapeutic effects of a diverse array of clinical interventions, gradually becoming an indispensable method for cancer research. In this paper, we have reviewed recent research progress in relation to mouse and rat models, focusing on spontaneous, induced, transgenic, and transplantable tumor models, to help guide the future study of malignant mechanisms and tumor prevention.
Collapse
|
8
|
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023;41:1141-67. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
|
9
|
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023;8:92. [PMID: 36859359 DOI: 10.1038/s41392-023-01347-1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
|
10
|
|
Sheekey E, Narita M. p53 in senescence - it's a marathon, not a sprint. FEBS J 2023;290:1212-20. [PMID: 34921507 DOI: 10.1111/febs.16325] [Cited by in Crossref: 5] [Cited by in RCA: 4] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/24/2022]
Abstract
The tumour suppressor p53, a stress-responsive transcription factor, plays a central role in cellular senescence. The role of p53 in senescence-associated stable proliferative arrest has been extensively studied. However, increasing evidence indicates that p53 also modulates the ability of senescent cells to produce and secrete diverse bioactive factors (collectively called the senescence-associated secretory phenotype, SASP). Senescence has been linked with both physiological and pathological conditions, the latter including ageing, cancer and other age-related disorders, in part through the SASP. Cellular functions are generally dictated by the expression profile of lineage-specific genes. Indeed, expression of SASP factors and their regulators are often biased by cell type. In addition, emerging evidence suggests that p53 contributes to deregulation of more stringent lineage-specific genes during senescence. P53 itself is also tightly regulated at the protein level. In contrast to the rapid and transient activity of p53 upon stress ('acute-p53'), during senescence and other prolonged pathological conditions, p53 activities are sustained and fine-tuned through a combination of different inputs and outputs ('chronic-p53').
Collapse
|
11
|
|
Reinhardt LS, Groen K, Newton C, Avery-kiejda KA. The role of truncated p53 isoforms in the DNA damage response. Biochim Biophys Acta Rev Cancer 2023. [PMID: 36977456 DOI: 10.1016/j.bbcan.2023.188882] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/28/2023]
Abstract
The tumour suppressor p53 is activated following genotoxic stress and regulates the expression of target genes involved in the DNA damage response (DDR). The discovery that p53 isoforms alter the transcription of p53 target genes or p53 protein interactions unveiled an alternative DDR. This review will focus on the role p53 isoforms play in response to DNA damage. The expression of the C-terminally truncated p53 isoforms may be modulated via DNA damage-induced alternative splicing, whereas alternative translation plays an important role in modulating the expression of N-terminally truncated isoforms. The DDR induced by p53 isoforms may enhance the canonical p53 DDR or block cell death mechanisms in a DNA damage- and cell-specific manner, which could contribute to chemoresistance in a cancer context. Thus, a better understanding of the involvement of p53 isoforms in the cell fate decisions could uncover potential therapeutic targets in cancer and other diseases.
Collapse
|
12
|
|
Yu C, Yang X, Jiang Q, Liu Z, Chen Y, Zang G, Huang W. SCD1 deficiency exacerbates osteoarthritis by inducing ferroptosis in chondrocytes. Ann Transl Med 2023;11:171. [PMID: 36923091 DOI: 10.21037/atm-22-6630] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/24/2023]
Abstract
Background Osteoarthritis (OA) is a severe joint disease that causes cartilage destruction and mobility loss. Abnormal fatty acid metabolism of chondrocytes plays a role in OA development. Stearoyl-CoA desaturase (SCD1) is a rate-limiting enzyme in the anabolism of unsaturated fatty acids. This study aimed to investigate the role of the SCD1 protein in the degenerative process of OA. Methods The GSE176199 gene expression profile dataset was analyzed by Gene Set Enrichment Analysis (GSEA). An animal model of OA was established using C57BL/6J wild-type (WT) (n=40) and SCD1 knockout (SCD1-KO) (n=20) mice. The histological scoring method of the Osteoarthritis Research Society International (OARSI) was used to quantify the degree of cartilage degeneration. The expression of SCD1 protein and relevant ferroptosis indicators were evaluated. Results The GSEA analysis showed that unsaturated fatty acid synthesis was inhibited in human OA chondrocytes. Meanwhile, the expression of SCD1 protein was significantly reduced in human OA articular cartilage. SCD1-KO mice exhibited early OA and accelerated cartilage loss after destabilization of medial meniscus (DMM)-induced OA. Furthermore, we found that the SCD1-PPARG axis regulates articular cartilage homeostasis via a mechanism involving the induction of ferroptosis-related gene expression in ATDC5 chondrocytes. Conclusions SCD1 deficiency exacerbates OA by inducing ferroptosis in chondrocytes.
Collapse
|
13
|
|
Centeno D, Farsinejad S, Kochetkova E, Volpari T, Klupczynska-Gabryszak A, Kung D, Polotaye T, Hyde E, Pavlovic T, Alshehri S, Sullivan W, Plewa S, Monsma FJ, Matysiak J, Zaborowski M, Difeo A, Martin LA, Norberg E, Iwanicki M. The Dietary Supplement Taurine Suppresses Ovarian Cancer Growth. bioRxiv 2023:2023. [PMID: 36909636 DOI: 10.1101/2023.02.24.529893] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/02/2023]
Abstract
Loss of treatment-induced ovarian carcinoma (OC) growth suppression poses a major clinical challenge because it leads to disease recurrence. Therefore, new and well-tolerated approaches to maintain OC suppression after standard-of-care treatment are needed. We have profiled ascites as OC tumor microenvironments (TMs) to search for potential components that would exert growth suppression on OC cell cultures. Our investigations revealed that low levels of taurine, a non-proteogenic sulfonic amino acid, were present within OC ascites. Taurine supplementation, beyond levels found in ascites, induced growth suppression without causing cytotoxicity in multiple OC cell cultures, including patient-derived chemotherapy-resistant spheroid and organoid cultures. Suppression of proliferation by taurine was associated with the inhibition of glycolysis, mitochondrial function, and the activation of p21 and TIGAR, the TP53 -dependent and independent tumor suppression regulatory pathways. Expression of p21 or TIGAR in various OC cells, in part, mimicked taurine-induced inhibition of OC cell proliferation. Our data support the potential therapeutic value of taurine supplementation in OC after chemotherapy.
Collapse
|
14
|
|
Yao P, Zhang Z, Liu H, Jiang P, Li W, Du W. p53 protects against alcoholic fatty liver disease via ALDH2 inhibition. EMBO J 2023;:e112304. [PMID: 36825429 DOI: 10.15252/embj.2022112304] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/25/2023] Open
Abstract
The tumor suppressor p53 is critical for tumor suppression, but the regulatory role of p53 in alcohol-induced fatty liver remains unclear. Here, we show a role for p53 in regulating ethanol metabolism via acetaldehyde dehydrogenase 2 (ALDH2), a key enzyme responsible for the oxidization of alcohol. By repressing ethanol oxidization, p53 suppresses intracellular levels of acetyl-CoA and histone acetylation, leading to the inhibition of the stearoyl-CoA desaturase-1 (SCD1) gene expression. Mechanistically, p53 directly binds to ALDH2 and prevents the formation of its active tetramer and indirectly limits the production of pyruvate that promotes the activity of ALDH2. Notably, p53-deficient mice exhibit increased lipid accumulation, which can be reversed by ALDH2 depletion. Moreover, liver-specific knockdown of SCD1 alleviates ethanol-induced hepatic steatosis caused by p53 loss. By contrast, overexpression of SCD1 in liver promotes ethanol-induced fatty liver development in wild-type mice, while it has a mild effect on p53-/- or ALDH2-/- mice. Overall, our findings reveal a previously unrecognized function of p53 in alcohol-induced fatty liver and uncover pyruvate as a natural regulator of ALDH2.
Collapse
|
15
|
|
Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023;315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/07/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. It encodes the tumor suppressor protein p53, which suppresses tumorigenesis by acting as a critical transcription factor that can induce the expression of many genes controlling a plethora of fundamental cellular processes, including cell cycle progression, survival, apoptosis, and DNA repair. Missense mutations are the most frequent type of mutations in the TP53 gene. While these can have variable effects, they typically impair p53 function in a dominant-negative manner, thereby altering intra-cellular signaling pathways and promoting cancer development. Additionally, it is becoming increasingly apparent that p53 mutations also have non-cell autonomous effects that influence the tumor microenvironment (TME). The TME is a complex and heterogeneous milieu composed of both malignant and non-malignant cells, including cancer-associated fibroblasts (CAFs), adipocytes, pericytes, different immune cell types, such as tumor-associated macrophages (TAMs) and T and B lymphocytes, as well as lymphatic and blood vessels and extracellular matrix (ECM). Recently, a large body of evidence has demonstrated that various types of p53 mutations directly affect TME. They fine-tune the inflammatory TME and cell fate reprogramming, which affect cancer progression. Notably, re-educating the p53 signaling pathway in the TME may be an effective therapeutic strategy in combating cancer. Therefore, it is timely to here review the recent advances in our understanding of how TP53 mutations impact the fate of cancer cells by reshaping the TME.
Collapse
|
16
|
|
Fan CW, Li MS, Song XX, Luo L, Jiang JC, Luo JZ, Wang HS. Discovery of novel 2-oximino-2-indolylacetamide derivatives as potent anticancer agents capable of inducing cell autophagy and ferroptosis. Bioorg Med Chem 2023;80:117176. [PMID: 36709571 DOI: 10.1016/j.bmc.2023.117176] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/21/2023]
Abstract
A series of 2-oximino-2-indolylacetamide derivatives were designed, synthesized and evaluated for their antitumour effects. Among them, 4d exhibited the most potent antiproliferative effect in vitro on the tested human cancer cells. Additionally, 4d significantly induced cell apoptosis, caused mitochondrial dysfunction, promoted Bax, cleaved-PARP and p53 expression and inhibited Bcl-2 expression in 5-8F cells. Moreover, 4d remarkably promoted autophagosome formation, leading to cell apoptosis. Further investigation indicated that 4d could trigger cell death through cell ferroptosis, including increased ROS generation and lipid peroxidation and decreased glutathione peroxidase 4 (GPx4) expression and glutathione (GSH) levels. More importantly, 4d induced 5-8F cell death by activating ROS/MAPK and inhibiting the AKT/mTOR and STAT3 signalling pathways. Interestingly, 4d significantly suppressed tumour growth in a 5-8F cell xenograft model without obvious toxicity to mice. Overall, these results demonstrate that 4d may be a potential compound for cancer therapy.
Collapse
|
17
|
|
Zhou T, Zhang LY, He JZ, Miao ZM, Li YY, Zhang YM, Liu ZW, Zhang SZ, Chen Y, Zhou GC, Liu YQ. Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol 2023;14:1133899. [PMID: 36865554 DOI: 10.3389/fimmu.2023.1133899] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy is the major treatment of non-small cell lung cancer (NSCLC). The radioresistance and toxicity are the main obstacles that leading to therapeutic failure and poor prognosis. Oncogenic mutation, cancer stem cells (CSCs), tumor hypoxia, DNA damage repair, epithelial-mesenchymal transition (EMT), and tumor microenvironment (TME) may dominate the occurrence of radioresistance at different stages of radiotherapy. Chemotherapy drugs, targeted drugs, and immune checkpoint inhibitors are combined with radiotherapy to treat NSCLC to improve the efficacy. This article reviews the potential mechanism of radioresistance in NSCLC, and discusses the current drug research to overcome radioresistance and the advantages of Traditional Chinese medicine (TCM) in improving the efficacy and reducing the toxicity of radiotherapy.
Collapse
|
18
|
|
Coradduzza D, Congiargiu A, Chen Z, Zinellu A, Carru C, Medici S. Ferroptosis and Senescence: A Systematic Review. Int J Mol Sci 2023;24. [PMID: 36835065 DOI: 10.3390/ijms24043658] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/15/2023] Open
Abstract
Senescence is a cellular aging process in all multicellular organisms. It is characterized by a decay in cellular functions and proliferation, resulting in increased cellular damage and death. This condition plays an essential role in the aging process and significantly contributes to the development of age-related complications. On the other hand, ferroptosis is a systemic cell death pathway characterized by excessive iron accumulation followed by the generation of reactive oxygen species (ROS). Oxidative stress is a common trigger of this condition and may be induced by various factors such as toxins, drugs, and inflammation. Ferroptosis is linked to numerous disorders, including cardiovascular disease, neurodegeneration, and cancer. Senescence is believed to contribute to the decay in tissue and organ functions occurring with aging. It has also been linked to the development of age-related pathologies, such as cardiovascular diseases, diabetes, and cancer. In particular, senescent cells have been shown to produce inflammatory cytokines and other pro-inflammatory molecules that can contribute to these conditions. In turn, ferroptosis has been linked to the development of various health disorders, including neurodegeneration, cardiovascular disease, and cancer. Ferroptosis is known to play a role in the development of these pathologies by promoting the death of damaged or diseased cells and contributing to the inflammation often associated. Both senescence and ferroptosis are complex pathways that are still not fully understood. Further research is needed to thoroughly investigate the role of these processes in aging and disease, and to identify potential interventions to target such processes in order to prevent or treat age-related conditions. This systematic review aims to assess the potential mechanisms underlying the link connecting senescence, ferroptosis, aging, and disease, and whether they can be exploited to block or limit the decay of the physiological functions in elderly people for a healthy longevity.
Collapse
|
19
|
|
Cai H, Ren Y, Chen S, Wang Y, Chu L. Ferroptosis and tumor immunotherapy: A promising combination therapy for tumors. Front Oncol 2023;13:1119369. [PMID: 36845720 DOI: 10.3389/fonc.2023.1119369] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/11/2023] Open
Abstract
Low response rate and treatment resistance are frequent problems in the immunotherapy of tumors, resulting in the unsatisfactory therapeutic effects. Ferroptosis is a form of cell death characterized by the accumulation of lipid peroxides. In recent years, it has been found that ferroptosis may be related to the treatment of cancer. Various immune cells (including macrophages and CD8+ T cells) can induce ferroptosis of tumor cells, and synergistically enhance the anti-tumor immune effects. However, the mechanisms are different for each cell types. DAMP released in vitro by cancer cells undergoing ferroptosis lead to the maturation of dendritic cells, cross-induction of CD8+ T cells, IFN-γ production and M1 macrophage production. Thus, it activates the adaptability of the tumor microenvironment and forms positive feedback of the immune response. It suggests that induction of ferroptosis may contribute to reducing resistance of cancer immunotherapy and has great potential in cancer therapy. Further research into the link between ferroptosis and tumor immunotherapy may offer hope for those cancers that are difficult to treat. In this review, we focus on the role of ferroptosis in tumor immunotherapy, explore the role of ferroptosis in various immune cells, and discuss potential applications of ferroptosis in tumor immunotherapy.
Collapse
|
20
|
|
Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ 2023. [PMID: 36755067 DOI: 10.1038/s41418-023-01125-0] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/10/2023] Open
Abstract
Cuproptosis is a novel type of copper-induced cell death that primarily occurs in cells that utilize oxidative phosphorylation as the main metabolic pathway to produce energy. Copper directly associates with the lipoylated proteins of the tricarboxylic acid cycle, leading to the disulfide-bond-dependent aggregation of these lipoylated proteins, destabilization of the iron-sulfur cluster proteins, and consequent proteotoxic stress. Cancer cells prefer glycolysis (Warburg effect) to oxidative phosphorylation for producing intermediate metabolites and energy, thereby achieving resistance to cuproptosis. Interestingly, the tumor suppressor p53 is a crucial metabolic regulator that inhibits glycolysis and drives a metabolic switch towards oxidative phosphorylation in cancer cells. Additionally, p53 regulates the biogenesis of iron-sulfur clusters and the copper chelator glutathione, which are two critical components of the cuproptotic pathway, suggesting that this tumor suppressor might play a role in cuproptosis. Furthermore, the possible roles of mutant p53 in regulating cuproptosis are discussed. In this essay, we review the recent progress in the understanding of the mechanism underlying cuproptosis, revisit the roles of p53 in metabolic regulation and iron-sulfur cluster and glutathione biosynthesis, and propose several potential mechanisms for wild-type and mutant p53-mediated cuproptosis regulation.
Collapse
|
21
|
|
Pant V, Sun C, Lozano G. Tissue specificity and spatio-temporal dynamics of the p53 transcriptional program. Cell Death Differ 2023. [PMID: 36755072 DOI: 10.1038/s41418-023-01123-2] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/10/2023] Open
Abstract
Transcription factors regulate hundreds of genes and p53 is no exception. As a stress responsive protein, p53 transactivates an array of downstream targets which define its role in maintaining physiological functions of cells/tissues. Despite decades of studies, our understanding of the p53 in vivo transcriptional program is still incomplete. Here we discuss some of the physiological stressors that activate p53, the pathological and physiological implications of p53 activation and the molecular profiling of the p53 transcriptional program in maintaining tissue homeostasis. We argue that the p53 transcriptional program is spatiotemporally regulated in a tissue-specific manner and define a p53 target signature that faithfully depicts p53 activity. We further emphasize that additional in vivo studies are needed to refine the p53 transactivation profile to harness it for therapeutic purposes.
Collapse
|
22
|
|
Liu G, Qi H, Shen J. JMJD5 inhibits lung cancer progression by regulating glucose metabolism through the p53/TIGAR pathway.. [DOI: 10.21203/rs.3.rs-2504340/v1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/10/2023]
Abstract
Abstract
Metabolic reprogramming is considered one of the main driving forces for tumor progression, providing energy and substrates of biosynthesis to support rapid neoplastic proliferation. Particularly, the tumor suppressor protein p53 was shown to revert the Warburg effect and play complex roles in regulating glucose metabolism. Jumonji C domain-containing protein 5 (JMJD5) has previously been reported as a negative regulator of p53. However, the role of JMJD5 in p53-mediated metabolic reprogramming remains elusive. Here, we discovered that knockdown of JMJD5 significantly enhances TIGAR expression in p53 wild-type non-small cell lung cancer (NSCLC) cells, which could further suppress glycolysis and promote the pentose phosphate pathway. Besides, JMJD5 knockdown promotes the NSCLC cell proliferation in vitro and xenograft tumor growth in vivo, while silencing TIGAR can abolish this effect. Low expression levels of JMJD5 are correlated with increased levels of TIGAR and better prognosis of lung cancer patients. Taken together, our findings suggest that JMJD5 is a key regulator of tumor glucose metabolism by targeting the p53/TIGAR metabolic pathway.
Collapse
|
23
|
|
Zhao J, Zhou X, Chen B, Lu M, Wang G, Elumalai N, Tian C, Zhang J, Liu Y, Chen Z, Zhou X, Wu M, Li M, Prochownik EV, Tavassoli A, Jiang C, Li Y. p53 promotes peroxisomal fatty acid β-oxidation to repress purine biosynthesis and mediate tumor suppression. Cell Death Dis 2023;14:87. [PMID: 36750554 DOI: 10.1038/s41419-023-05625-2] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/09/2023]
Abstract
The metabolic pathways through which p53 functions as a potent tumor suppressor are incompletely understood. Here we report that, by associating with the Vitamin D receptor (VDR), p53 induces numerous genes encoding enzymes for peroxisomal fatty acid β-oxidation (FAO). This leads to increased cytosolic acetyl-CoA levels and acetylation of the enzyme 5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase (ATIC), which catalyzes the last two steps in the purine biosynthetic pathway. This acetylation step, mediated by lysine acetyltransferase 2B (KAT2B), occurs at ATIC Lys 266, dramatically inhibits ATIC activity, and inversely correlates with colorectal cancer (CRC) tumor growth in vitro and in vivo, and acetylation of ATIC is downregulated in human CRC samples. p53-deficient CRCs with high levels of ATIC is more susceptible to ATIC inhibition. Collectively, these findings link p53 to peroxisomal FAO, purine biosynthesis, and CRC pathogenesis in a manner that is regulated by the levels of ATIC acetylation.
Collapse
|
24
|
|
Sun A, Chen Y, Tian X, Lin Q. The Role of HECT E3 Ubiquitin Ligases in Colorectal Cancer. Biomedicines 2023;11. [PMID: 36831013 DOI: 10.3390/biomedicines11020478] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/11/2023] Open
Abstract
Colorectal cancer (CRC) is estimated to rank as the second reason for cancer-related deaths, and the prognosis of CRC patients remains unsatisfactory. Numerous studies on gastrointestinal cell biology have shown that the E3 ligase-mediated ubiquitination exerts key functions in the pathogenesis of CRC. The homologous to E6-associated protein C-terminus (HECT) family E3 ligases are a major group of E3 enzymes, featured with the presence of a catalytic HECT domain, which participate in multiple cellular processes; thus, alterations in HECT E3 ligases in function or expression are closely related to the occurrence and development of many human malignancies, including-but not limited to-CRC. In this review, we summarize the potential role of HECT E3 ligases in colorectal carcinogenesis and the related underlying molecular mechanism to expand our understanding of their pathological functions. Exploiting specific inhibitors targeting HECT E3 ligases could be a potential therapeutic strategy for CRC therapy in the future.
Collapse
|
25
|
|
Kumazoe M, Ogawa F, Hikida A, Shimada Y, Yoshitomi R, Watanabe R, Onda H, Fujimura Y, Tachibana H. Plant miRNA osa-miR172d-5p suppressed lung fibrosis by targeting Tab1. Sci Rep 2023;13:2128. [PMID: 36746980 DOI: 10.1038/s41598-023-29188-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/08/2023] Open
Abstract
Lung fibrosis, including idiopathic pulmonary fibrosis, is an intractable disease accompanied by an irreversible dysfunction in the respiratory system. Its pathogenesis involves the transforming growth factorβ (TGFβ)-induced overproduction of the extracellular matrix from fibroblasts; however, limited countermeasures have been established. In this study, we identified osa-miR172d-5p, a plant-derived microRNA (miR), as a potent anti-fibrotic miR. In silico analysis followed by an in vitro assay based on human lung fibroblasts demonstrated that osa-miR172d-5p suppressed the gene expression of TGF-β activated kinase 1 (MAP3K7) binding protein 1 (Tab1). It also suppressed the TGFβ-induced fibrotic gene expression in human lung fibroblasts. To assess the anti-fibrotic effect of osa-miR172d-5p, we established bleomycin-induced lung fibrosis models to demonstrate that osa-miR172d-5p ameliorated lung fibrosis. Moreover, it suppressed Tab1 expression in the lung tissues of bleomycin-treated mice. In conclusion, osa-miR172d-5p could be a potent candidate for the treatment of lung fibrosis, including idiopathic pulmonary fibrosis.
Collapse
|
26
|
|
Cao Y, Xiao W, Liu S, Zeng Y. Ferroptosis: Underlying mechanism and the crosstalk with other modes of neuronal death after intracerebral hemorrhage. Front Cell Neurosci 2023;17:1080344. [PMID: 36814866 DOI: 10.3389/fncel.2023.1080344] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/09/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a serious cerebrovascular disease with high rates of morbidity, mortality, and disability. Optimal treatment of ICH is a major clinical challenge, as the underlying mechanisms remain unclear. Ferroptosis, a newly identified form of non-apoptotic programmed cell death, is characterized by the iron-induced accumulation of lipid reactive oxygen species (ROS), leading to intracellular oxidative stress. Lipid ROS causes damage to nucleic acids, proteins, and cell membranes, eventually resulting in ferroptosis. In the past 10 years, ferroptosis has resulted in plenty of discoveries and breakthroughs in cancer, neurodegeneration, and other diseases. Some studies have also reported that ferroptosis does occur after ICH in vitro and in vivo and contribute to neuronal death. However, the studies on ferroptosis following ICH are still in the preliminary stage. In this review, we will summarize the current evidence on the mechanism underlying ferroptosis after ICH. And review the traditional modes of neuronal death to identify the crosstalk with ferroptosis in ICH, including apoptosis, necroptosis, and autophagy. Additionally, we also aim to explore the promising therapeutic application of ferroptosis in cell death-based ICH.
Collapse
|
27
|
|
Ji QX, Zeng FY, Zhou J, Wu WB, Wang XJ, Zhang Z, Zhang GY, Tong J, Sun DY, Zhang JB, Cao WX, Shen FM, Lu JJ, Li DJ, Wang P. Ferroptotic stress facilitates smooth muscle cell dedifferentiation in arterial remodelling by disrupting mitochondrial homeostasis. Cell Death Differ 2023;30:457-74. [PMID: 36477078 DOI: 10.1038/s41418-022-01099-5] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/12/2022] Open
Abstract
Smooth muscle cell (SMC) phenotypic switch from a quiescent 'contractile' phenotype to a dedifferentiated and proliferative state underlies the development of cardiovascular diseases (CVDs); however, our understanding of the mechanism is still incomplete. In the present study, we explored the potential role of ferroptosis, a novel nonapoptotic form of cell death, in SMC phenotypic switch and related neointimal formation. We found that ferroptotic stress was triggered in cultured dedifferentiated SMCs and arterial neointimal tissue of wire-injured mice. Moreover, pro-ferroptosis stress was activated in arterial neointimal tissue of clinical patients who underwent carotid endarterectomy. Blockade of ferroptotic stress via administration of a pharmacological inhibitor or by global genetic overexpression of glutathione peroxidase-4 (GPX4), a well-established anti-ferroptosis molecule, delayed SMC phenotype switch and arterial remodelling. Conditional SMC-specific gene delivery of GPX4 using adreno-associated virus in the carotid artery inhibited ferroptosis and prevented neointimal formation. Conversely, ferroptosis stress directly triggered dedifferentiation of SMCs. Transcriptomics analysis demonstrated that inhibition of ferroptotic stress mainly targets the mitochondrial respiratory chain and oxidative phosphorylation. Mechanistically, ferroptosis inhibition corrected the disrupted mitochondrial homeostasis in dedifferentiated SMCs, including enhanced mitochondrial ROS production, dysregulated mitochondrial dynamics, and mitochondrial hyperpolarization, and ultimately inhibited SMC phenotypic switch and growth. Copper-diacetyl-bisN4-methylthiosemicarbazone (CuATSM), an agent used for clinical molecular imaging and that potently inhibits ferroptosis, prevented SMC phenotypic switch, neointimal formation and arterial inflammation in mice. These results indicate that pro-ferroptosis stress is likely to promote SMC phenotypic switch during neointimal formation and imply that inhibition of ferroptotic stress may be a promising translational approach to treat CVDs with SMC phenotype switch.
Collapse
|
28
|
|
Wang D. Progress in the study of ferroptosis in cancer treatment: State-of-the-Art. Chem Biol Interact 2023;371:110348. [PMID: 36646403 DOI: 10.1016/j.cbi.2023.110348] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/15/2023]
Abstract
As a regulatory cell death mode defined in recent years, Ferroptosis is mainly characterized by increased intracellular free iron and the accumulation of lipid peroxides. Ferroptosis is closely related to iron ion metabolism, lipid metabolism, and amino acid metabolism. Cancer is the second leading cause of death worldwide, and effective removal of tumour cells while protecting normal cells is the key to tumour treatment. The continuous development and refinement of molecular mechanisms related to ferroptosis have shown promising applications in tumour therapy. There is increasing evidence that triggering ferroptosis in tumour cells is expected to be a new therapeutic strategy for tumour treatment.
Collapse
|
29
|
|
Zhang Q, Xie Z, Li Y, Zhu Q, Shi H, Zhao R, Yang X, Tian J, Ma L. The potential of Lycium barbarum miR166a in kidney cancer treatment. Exp Cell Res 2023;423:113455. [PMID: 36584744 DOI: 10.1016/j.yexcr.2022.113455] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/29/2022]
Abstract
Predator species of animal can absorb plant microRNA that can regulate target gene expression and physiological function across species. The herb Lycium barbarum, a traditional Chinese medicine, has a wide range of antitumor effects. However, there are no reports on the effects of microRNA derived from it on the cross-border regulation of renal cell carcinoma (RCC). We performed in vitro and in vivo experiments to explore the role and mechanism of the L. barbarum-derived microRNA miR166a (Lb-miR166a) in cross-border regulation of RCC. Our mRNA sequencing analysis showed that Lb-miR166a regulates the expression of various genes in tumor cells, including 1232 upregulated genes and 581 downregulated genes, which were enriched to 1094 Gene Ontology entries and 43 Kyoto Encyclopedia of Genes and Genomes pathways. In vitro cell experiments confirmed that Lb-miR166a can inhibit the proliferation of RCC cells, promote the apoptosis of tumor cells, and inhibit the invasion and metastasis of tumor cells by regulating the expression of related genes. Furthermore, our in vivo tumor-bearing experiment showed that subcutaneous tumor formation volume decreased in Lb-miR166a mice, along with the number of liver metastases. This study elucidates the role and mechanism of Lb-miR166a in RCC treatment (Fig. 1). Our results further mechanistically confirm the antitumor properties of L. barbarum. Our study may contribute to the clinical development of a targeted drug for RCC treatment.
Collapse
|
30
|
|
Xia Y, Zhang J, Liu G. A prospective strategy leveraging nanomedicine for cancer therapy: Pouring ferroptosis on apoptosis. Nano Today 2023;48:101740. [DOI: 10.1016/j.nantod.2022.101740] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/28/2022]
|
31
|
|
Ma K, Wang Z, Ju X, Huang J, He R. Rapeseed peptide inhibits HepG2 cell proliferation by regulating the mitochondrial and P53 signaling pathways. J Sci Food Agric 2023;103:1474-83. [PMID: 36168817 DOI: 10.1002/jsfa.12243] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/18/2023]
Abstract
BACKGROUND Rapeseed peptide, extracted from rapeseed protein, is known to have a variety of biological activities. In this study, the anti-proliferation effect and molecular mechanism of rapeseed peptide on HepG2 cells were investigated. RESULTS In vitro anticancer experiments showed that the rapeseed peptide NDGNQPL could inhibit HepG2 cell proliferation in a concentration-dependent manner [half maximal inhibitory concentration (IC50 ), 1.56 mmol L-1 ). HepG2 cells were induced by NDGNQPL at a 0.5 mmol L-1 concentration and exhibited a 28.39 ± 0.80% apoptosis rate and a cell cycle arrest in the G0/G1 phase. Meanwhile, rapeseed peptide induced a decrease in mitochondrial membrane potential, an increase in reactive oxygen species (ROS) release, and changes in the nuclear morphology of HepG2 cells, indicating that rapeseed peptide could induce cell apoptosis through the mitochondrial pathway. In addition, rapeseed peptide activated the proliferation-related P53 signaling pathway, in which the expression levels of P53, P21, and cleaved-caspase3 were up-regulated, while the expression levels of murine double minute 2 (MDM2) were down-regulated. In molecular docking simulations, NDGNQPL exhibited a good affinity for the MDM2 molecule, which supported the notion that the rapeseed peptide is able to inhibit MDM2, a negative regulator of P53. CONCLUSION The current results indicate that the rapeseed-derived NDGNQPL peptide has the potential to inhibit the proliferation of HepG2 cells and promote human health. © 2022 Society of Chemical Industry.
Collapse
|
32
|
|
Yuan Y, Qin H, Li H, Shi W, Bao L, Xu S, Yin J, Zheng L. The Functional Roles of ISG15/ISGylation in Cancer. Molecules 2023;28. [PMID: 36771004 DOI: 10.3390/molecules28031337] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/01/2023] Open
Abstract
The protein ISG15 encoded by interferon-stimulated gene (ISG) 15 is the first identified member of the ubiquitin-like protein family and exists in the form of monomers and conjugated complexes. Like ubiquitin, ISG15 can mediate an ubiquitin-like modification by covalently modifying other proteins, known as ISGylation. There is growing evidence showing that both the free and conjugated ISG15 are involved in multiple key cellular processes, including autophagy, exosome secretion, DNA repair, immune regulation, and cancer occurrence and progression. In this review, we aim to further clarify the function of ISG15 and ISGylation in cancer, demonstrate the important relationship between ISG15/ISGylation and cancer, and emphasize new insights into the different roles of ISG15/ISGylation in cancer progression. This review may contribute to therapeutic intervention in cancer. However, due to the limitations of current research, the regulation of ISG15/ISGylation on cancer progression is not completely clear, thus further comprehensive and sufficient correlation studies are still needed.
Collapse
|
33
|
|
Yang WH, George AP, Wang CM, Yang RH, Duncan AM, Patel D, Neil ZD, Yang WH. Tumor Suppressor p53 Down-Regulates Programmed Cell Death Protein 4 (PDCD4) Expression. Curr Oncol 2023;30:1614-25. [PMID: 36826085 DOI: 10.3390/curroncol30020124] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/31/2023] Open
Abstract
The programmed cell death protein 4 (PDCD4), a well-known tumor suppressor, inhibits translation initiation and cap-dependent translation by inhibiting the helicase activity of EIF4A. The EIF4A tends to target mRNAs with a structured 5'-UTR. In addition, PDCD4 can also prevent tumorigenesis by inhibiting tumor promoter-induced neoplastic transformation, and studies indicate that PDCD4 binding to certain mRNAs inhibits those mRNAs' translation. A previous study demonstrated that PDCD4 inhibits the translation of p53 mRNA and that treatment with DNA-damaging agents down-regulates PDCD4 expression but activates p53 expression. The study further demonstrated that treatment with DNA-damaging agents resulted in the downregulation of PDCD4 expression and an increase in p53 expression, suggesting a potential mechanism by which p53 regulates the expression of PDCD4. However, whether p53 directly regulates PDCD4 remains unknown. Herein, we demonstrate for the first time that p53 regulates PDCD4 expression. Firstly, we found that overexpression of p53 in p53-null cells (H1299 and Saos2 cells) decreased the PDCD4 protein level. Secondly, p53 decreased PDCD4 promoter activity in gene reporter assays. Moreover, we demonstrated that mutations in p53 (R273H: contact hotspot mutation, and R175H: conformational hotspot mutation) abolished p53-mediated PDCD4 repression. Furthermore, mutations in the DNA-binding domain, but not in the C-terminal regulatory domain, of p53 disrupted p53-mediated PDCD4 repression. Finally, the C-terminal regulatory domain truncation study showed that the region between aa374 and aa370 is critical for p53-mediated PDCD4 repression. Taken together, our results suggest that p53 functions as a novel regulator of PDCD4, and the relationship between p53 and PDCD4 may be involved in tumor development and progression.
Collapse
|
34
|
|
Xu S, Li X, Wang Y. Regulation of the p53‑mediated ferroptosis signaling pathway in cerebral ischemia stroke (Review). Exp Ther Med 2023;25:113. [PMID: 36793330 DOI: 10.3892/etm.2023.11812] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/27/2023] Open
Abstract
Stroke is one of the most threatening diseases worldwide, particularly in countries with larger populations; it is associated with high morbidity, mortality and disability rates. As a result, extensive research efforts are being made to address these issues. Stroke can include either hemorrhagic stroke (blood vessel ruptures) or ischemic stroke (blockage of an artery). Whilst the incidence of stroke is higher in the elderly population (≥65), it is also increasing in the younger population. Ischemic stroke accounts for ~85% of all stroke cases. The pathogenesis of cerebral ischemic injury can include inflammation, excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance and increased vascular permeability. All of the aforementioned processes have been extensively studied, providing insights into the disease. Other clinical consequences observed include brain edema, nerve injury, inflammation, motor deficits and cognitive impairment, which not only cause disabilities obstructing daily life but also increase the mortality rates. Ferroptosis is a type of cell death that is characterized by iron accumulation and increased lipid peroxidation in cells. In particular, ferroptosis has been previously implicated in ischemia-reperfusion injury in the central nervous system. It has also been identified as a mechanism involved in cerebral ischemic injury. The tumor suppressor p53 has been reported to modulate the ferroptotic signaling pathway, which both positively and negatively affects the prognosis of cerebral ischemia injury. The present review summarizes the recent findings on the molecular mechanisms of ferroptosis under the regulation of p53 underlying cerebral ischemia injury. Understanding of the p53/ferroptosis signaling pathway may provide insights into developing methods for improving the diagnosis, treatment and even prevention of stroke.
Collapse
|
35
|
|
Lee J, Kim J, Min DW, Kim D, Kim J, Kim MJ, Lim H. GPX4 overexpressed non-small cell lung cancer cells are sensitive to RSL3-induced ferroptosis.. [DOI: 10.21203/rs.3.rs-2489462/v1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/24/2023]
Abstract
Abstract
Ferroptosis is a type of programmed cell death, that can be induced by inhibiting antioxidant enzymes glutathione peroxidase 4 (GPX4) or cystine/glutamate transporter (system Xc−), increased intracellular concentrations of iron, and lipid peroxidation. Recently, it has been suggested that ferroptosis can be an effective way to induce cell death in various cancers, although the specific relevance and mechanism of ferroptosis have not been fully elucidated. In this study, the anticancer effects of ferroptosis inducers, erastin, and RSL3 on non-small cell lung cancer (NSCLC) cells were investigated. RSL3-induced cell death much more effectively in NSCLC cells than erastin with very limited cytotoxicity in BEAS-2B, normal bronchial epithelial cell. The sensitivity of NSCLC cells to RSL3-induced cell death was different among NSCLC cells, which was dependent on GPX4 expression levels, and rescued by ferrostatin-1, a ferroptosis inhibitor, but not by Z-VAD-FMK, chloroquine, bafilomycin A1, and necrostatain-1. RSL3 induced ferroptosis by increased lipid peroxidation, intracellular LIP concentration, and ROS, and inhibition of GSH to GSSH conversion through the inhibition of GPX4, and induction of Nrf2/HO1. Furthermore, RSL3 induced autophagosome, but disrupted formation of autolysosome from autophagosome. Knockdown of GPX4 had a similar effect on ferroptosis phenotypes to that of RSL3. Zebrafish xenograft model in vivo confirmed in vitro result of RSL3. Taken together, this study provides evidence that RSL3-induced ferroptosis depends on the regulation of GPX4- Nrf2/HO1 in NSCLC cells. This process may aid in predicting the ferroptosis response in NSCLC as well as drug resistant cancer cells.
Collapse
|
36
|
|
Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023;10:rbad004. [PMID: 36817975 DOI: 10.1093/rb/rbad004] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/22/2023] Open
Abstract
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
Collapse
|
37
|
|
Koeberle SC, Kipp AP, Stuppner H, Koeberle A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med Res Rev 2023. [PMID: 36658724 DOI: 10.1002/med.21933] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent cell death program that is characterized by excessive lipid peroxidation. Triggering ferroptosis has been proposed as a promising strategy to fight cancer and overcome drug resistance in antitumor therapy. Understanding the molecular interactions and structural features of ferroptosis-inducing compounds might therefore open the door to efficient pharmacological strategies against aggressive, metastatic, and therapy-resistant cancer. We here summarize the molecular mechanisms and structural requirements of ferroptosis-inducing small molecules that target central players in ferroptosis. Focus is placed on (i) glutathione peroxidase (GPX) 4, the only GPX isoenzyme that detoxifies complex membrane-bound lipid hydroperoxides, (ii) the cystine/glutamate antiporter system Xc - that is central for glutathione regeneration, (iii) the redox-protective transcription factor nuclear factor erythroid 2-related factor (NRF2), and (iv) GPX4 repression in combination with induced heme degradation via heme oxygenase-1. We deduce common features for efficient ferroptotic activity and highlight challenges in drug development. Moreover, we critically discuss the potential of natural products as ferroptosis-inducing lead structures and provide a comprehensive overview of structurally diverse biogenic and bioinspired small molecules that trigger ferroptosis via iron oxidation, inhibition of the thioredoxin/thioredoxin reductase system or less defined modes of action.
Collapse
|
38
|
|
Lu S, Chen Z, Liu Z, Liu Z. Unmasking the biological function and regulatory mechanism of NOC2L: a novel inhibitor of histone acetyltransferase. Lab Invest 2023;21:31. [PMID: 36650543 DOI: 10.1186/s12967-023-03877-2] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/18/2023]
Abstract
NOC2 like nucleolar associated transcriptional repressor (NOC2L) was recently identified as a novel inhibitor of histone acetyltransferase (INHAT). NOC2L is found to have two INHAT function domains and regulates histone acetylation in a histone deacetylases (HDAC) independent manner, which is distinct from other INHATs. In this review, we summarize the biological function of NOC2L in histone acetylation regulation, P53-mediated transcription, ribosome RNA processing, certain development events and carcinogenesis. We propose that NOC2L may be explored as a potential biomarker and a therapeutic target in clinical practice.
Collapse
|
39
|
|
Poschel DB, Kehinde-Ige M, Klement JD, Yang D, Merting AD, Savage NM, Shi H, Liu K. IRF8 Regulates Intrinsic Ferroptosis through Repressing p53 Expression to Maintain Tumor Cell Sensitivity to Cytotoxic T Lymphocytes. Cells 2023;12. [PMID: 36672246 DOI: 10.3390/cells12020310] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis has emerged as a cytotoxic T lymphocyte (CTL)-induced tumor cell death pathway. The regulation of tumor cell sensitivity to ferroptosis is incompletely understood. Here, we report that interferon regulatory factor 8 (IRF8) functions as a regulator of tumor cell intrinsic ferroptosis. Genome-wide gene expression profiling identified the ferroptosis pathway as an IRF8-regulated pathway in tumor cells. IRF8.KO tumor cells acquire resistance to intrinsic ferroptosis induction and IRF8-deficient tumor cells also exhibit decreased ferroptosis in response to tumor-specific CTLs. Irf8 deletion increased p53 expression in tumor cells and knocking out p53 in IRF8.KO tumor cells restored tumor cell sensitivity to intrinsic ferroptosis induction. Furthermore, IRF8.KO tumor cells grew significantly faster than WT tumor cells in immune-competent mice. To restore IRF8 expression in tumor cells, we designed and synthesized codon usage-optimized IRF8-encoding DNA to generate IRF8-encoding plasmid NTC9385R-mIRF8. Restoring IRF8 expression via a lipid nanoparticle-encapsulated NTC9385R-mIRF8 plasmid therapy suppressed established tumor growth in vivo. In human cancer patients, nivolumab responders have a significantly higher IRF8 expression level in their tumor cells as compared to the non-responders. Our data determine that IRF8 represses p53 expression to maintain tumor cell sensitivity to intrinsic ferroptosis.
Collapse
|
40
|
|
Yang H, Sun W, Bi T, Wang Q, Wang W, Xu Y, Liu Z, Li J. The PTBP1‑NCOA4 axis promotes ferroptosis in liver cancer cells. Oncol Rep 2023;49:45. [PMID: 36660932 DOI: 10.3892/or.2023.8482] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/15/2023] Open
Abstract
Polypyrimidine tract‑binding protein 1 (PTBP1) plays an important role in tumor immunity, cell proliferation, apoptosis, and autophagy by regulating RNA metabolism. However, the specific function and mechanism of PTBP1 in ferroptosis remain unclear. In the present study, it was investigated whether PTBP1 regulates ferroptosis and the exact mechanism. The iron, malondialdehyde (MDA), and GSH levels were detected in sorafenib (SF)‑treated liver cancer cells. si‑PTBP1 introduction into SF‑treated liver cancer cells resulted in a significant reduction in the levels of MDA and iron. Additionally, a significant recovery of GSH levels was observed after silencing PTBP1. StarBase v2.0 database was used to predict potential transcripts that can physically interact with PTBP1 and nuclear receptor coactivator 4 (NCOA4) mRNA was identified as the most enriched binding partner in the PTBP1‑RNA complex. A dual‑luciferase assay then demonstrated that PTBP1 directly interacted with NCOA4. PTBP1 silencing did not affect NCOA4 stability following treatment with cycloheximide. A pull‑down assay revealed that the PTBP1‑binding region was in the 5'‑UTR of the NCOA4 mRNA sequence. These results suggest that PTBP1 mediates ferroptosis in liver cancer cells by regulating NCOA4 translation. In vivo experiments reconfirmed the role of the PTBP1‑NCOA4 axis in a xenograft transplantation model. It was observed that the mean tumor weight increased after PTBP1 knockout. In conclusion, silencing of PTBP1 decreased the sensitivity of liver cancer cells to ferroptosis after SF treatment and regulated ferritinophagy by mediating NCOA4 translation.
Collapse
|
41
|
|
Lei L, Lu Q, Ma G, Li T, Deng J, Li W. P53 protein and the diseases in central nervous system. Front Genet 2022;13:1051395. [PMID: 36712862 DOI: 10.3389/fgene.2022.1051395] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/11/2023] Open
Abstract
P53 protein is the product of P53 gene, which is a well acknowledged tumor suppressor gene. The function of P53 and the relevant mechanisms of anti-neoplasm have raised the interest of researchers since many years ago. It is demonstrated that P53 is a basic cell cycle regulator and a strong inhibitor for versatile cancers in humans. However, most research focuses on other organs and systems instead of the central nervous system (CNS). In fact, in recent years, more and more studies have been suggesting that P53 plays a significant role in multiple CNS tumors and other diseases and disorders such as cerebral stroke and neurodegenerative diseases. In this work, we mainly reviewed the P53's relationship with CNS tumors, cerebral stroke and neurodegenerative diseases, together with the relevant mechanisms, aiming to summarize the research achievements and providing new insight to the future study on diseases in CNS.
Collapse
|
42
|
|
Meng D, Zhu C, Jia R, Li Z, Wang W, Song S. The molecular mechanism of ferroptosis and its role in COPD. Front Med (Lausanne) 2022;9:1052540. [PMID: 36687445 DOI: 10.3389/fmed.2022.1052540] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/07/2023] Open
Abstract
Ferroptosis, a new type of cell death, is mainly characterized by intracellular iron accumulation and lipid peroxidation. The complex regulatory network of iron metabolism, lipid metabolism, amino acid metabolism, p53-related signaling, and Nrf2-related signaling factors is involved in the entire process of ferroptosis. It has been reported that ferroptosis is involved in the pathogenesis of neurological diseases, cancer, and ischemia-reperfusion injury. Recent studies found that ferroptosis is closely related to the pathogenesis of COPD, which, to some extent, indicates that ferroptosis is a potential therapeutic target for COPD. This article mainly discusses the related mechanisms of ferroptosis, including metabolic regulation and signaling pathway regulation, with special attention to its role in the pathogenesis of COPD, aiming to provide safe and effective therapeutic targets for chronic airway inflammatory diseases.
Collapse
|
43
|
|
Han F, Cao D, Zhu X, Shen L, Wu J, Chen Y, Xu Y, Xu L, Cheng X, Zhang Y. Construction and validation of a prognostic model for hepatocellular carcinoma: Inflammatory ferroptosis and mitochondrial metabolism indicate a poor prognosis. Front Oncol 2022;12:972434. [PMID: 36686830 DOI: 10.3389/fonc.2022.972434] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/07/2023] Open
Abstract
Background An increasing number of innovations have been discovered for treating hepatocellular carcinoma (HCC or commonly called HCC) therapy, Ferroptosis and mitochondrial metabolism are essential mechanisms of cell death. These pathways may act as functional molecular biomarkers that could have important clinical significance for determining individual differences and the prognosis of HCC. The aim of this study was to construct a stable and reliable comprehensive model of genetic features and clinical factors associated with HCC prognosis. Methods In this study, we used RNA-sequencing (fragments per kilobase of exon model per million reads mapped value) data from the Cancer Genome Atlas (TCGA) database to establish a prognostic model. We enrolled 104 patients for further validation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses (KEGG) analysis were used for the functional study of differentially expressed genes. Pan-cancer analysis was performed to evaluate the function of the Differentially Expressed Genes (DEGs). Thirteen genes were identified by univariate and least absolute contraction and selection operation (LASSO) Cox regression analysis. The prognostic model was visualized using a nomogram. Results We found that eight genes, namely EZH2, GRPEL2, PIGU, PPM1G, SF3B4, TUBG1, TXNRD1 and NDRG1, were hub genes for HCC and differentially expressed in most types of cancer. EZH2, GRPEL2 and NDRG1 may indicate a poor prognosis of HCC as verified by tissue samples. Furthermore, a gene set variation analysis algorithm was created to analyze the relationship between these eight genes and oxidative phosphorylation, mitophagy, and FeS-containing proteins, and it showed that ferroptosis might affect inflammatory-related pathways in HCC. Conclusion EZH2, GRPEL2, NDRG1, and the clinical factor of tumor size, were included in a nomogram for visualizing a prognostic model of HCC. This nomogram based on a functional study and verification by clinical samples, shows a reliable performance of patients with HCC.
Collapse
|
44
|
|
Stepanić V, Kučerová-Chlupáčová M. Review and Chemoinformatic Analysis of Ferroptosis Modulators with a Focus on Natural Plant Products. Molecules 2023;28. [PMID: 36677534 DOI: 10.3390/molecules28020475] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/06/2023] Open
Abstract
Ferroptosis is a regular cell death pathway that has been proposed as a suitable therapeutic target in cancer and neurodegenerative diseases. Since its definition in 2012, a few hundred ferroptosis modulators have been reported. Based on a literature search, we collected a set of diverse ferroptosis modulators and analyzed them in terms of their structural features and physicochemical and drug-likeness properties. Ferroptosis modulators are mostly natural products or semisynthetic derivatives. In this review, we focused on the abundant subgroup of polyphenolic modulators, primarily phenylpropanoids. Many natural polyphenolic antioxidants have antiferroptotic activities acting through at least one of the following effects: ROS scavenging and/or iron chelation activities, increased GPX4 and NRF2 expression, and LOX inhibition. Some polyphenols are described as ferroptosis inducers acting through the generation of ROS, intracellular accumulation of iron (II), or the inhibition of GPX4. However, some molecules have a dual mode of action depending on the cell type (cancer versus neural cells) and the (micro)environment. The latter enables their successful use (e.g., apigenin, resveratrol, curcumin, and EGCG) in rationally designed, multifunctional nanoparticles that selectively target cancer cells through ferroptosis induction.
Collapse
|
45
|
|
Wang X, Chen G, Pan C, Liu Y. Editorial: Ferroptosis in cancer and beyond. Front Mol Biosci 2022;9:1115974. [PMID: 36660428 DOI: 10.3389/fmolb.2022.1115974] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/06/2023] Open
|
46
|
|
Jia J, Duan H, Liu B, Ma Y, Ma Y, Cai X. Alfalfa Xeno-miR168b Target CPT1A to Regulate Milk Fat Synthesis in Bovine Mammary Epithelial Cells. Metabolites 2023;13. [PMID: 36677001 DOI: 10.3390/metabo13010076] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/04/2023] Open
Abstract
It was shown that microRNAs (miRNAs) play an important role in the synthesis of milk fat; thus, this manuscript evaluated whether exogenous miRNA (xeno-miRNAs) from alfalfa could influence the milk fat content in dairy cows. At first, mtr-miR168b was screened from dairy cow milk and blood. Then, EdU staining, flow cytometry, Oil Red O staining, qRT-PCR, and WB were applied to explore the effect of xeno-miR168b on the proliferation, apoptosis, and lipid metabolism of bovine mammary epithelial cells (BMECs). Finally, in order to clarify the pathway that regulated the lipid metabolism of BMECs using xeno-miR168b, a double-luciferase reporter assay was used to verify the target gene related to milk fat. These results showed that overexpression of xeno-miR168b inhibited cell proliferation but promoted apoptosis, which also decreased the expression of several lipid metabolism genes, including PPARγ, SCD1, C/EBPβ, and SREBP1, significantly inhibited lipid droplet formation, and reduced triglyceride content in BMECs. Furthermore, the targeting relationship between CPT1A and xeno-miR168b was determined and it was confirmed that CPT1A silencing reduced the expression of lipid metabolism genes and inhibited fat accumulation in BMECs. These findings identified xeno-miR168b from alfalfa as a cross-kingdom regulatory element that could influence milk fat content in dairy cows by modulating CPT1A expression.
Collapse
|
47
|
|
Wang Y, Wu X, Ren Z, Li Y, Zou W, Chen J, Wang H. Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat 2023;66:100916. [PMID: 36610291 DOI: 10.1016/j.drup.2022.100916] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/31/2022]
Abstract
Development of resistance to chemotherapy in cancer continues to be a major challenge in cancer management. Ferroptosis, a unique type of cell death, is mechanistically and morphologically different from other forms of cell death. Ferroptosis plays a pivotal role in inhibiting tumour growth and has presented new opportunities for treatment of chemotherapy-insensitive tumours in recent years. Emerging studies have suggested that ferroptosis can regulate the therapeutic responses of tumours. Accumulating evidence supports ferroptosis as a potential target for chemotherapy resistance. Pharmacological induction of ferroptosis could reverse drug resistance in tumours. In this review article, we first discuss the key principles of chemotherapeutic resistance in cancer. We then provide a brief overview of the core mechanisms of ferroptosis in cancer chemotherapeutic drug resistance. Finally, we summarise the emerging data that supports the fact that chemotherapy resistance in different types of cancers could be subdued by pharmacologically inducing ferroptosis. This review article suggests that pharmacological induction of ferroptosis by bioactive compounds (ferroptosis inducers) could overcome chemotherapeutic drug resistance. This article also highlights some promising therapeutic avenues that could be used to overcome chemotherapeutic drug resistance in cancer.
Collapse
|
48
|
|
Li Y, Niu JH, Wang Y. Machine learning-based neddylation landscape indicates different prognosis and immune microenvironment in endometrial cancer. Front Oncol 2023;13:1084523. [PMID: 36910623 DOI: 10.3389/fonc.2023.1084523] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/24/2023] Open
Abstract
Endometrial cancer (EC) is women's fourth most common malignant tumor. Neddylation plays a significant role in many diseases; however, the effect of neddylation and neddylation-related genes (NRGs) on EC is rarely reported. In this study, we first used MLN4924 to affect the activation of neddylation in different cell lines (Ishikawa and HEC-1-A) and determined the critical role of neddylation-related pathways for EC progression. Subsequently, we screened 17 prognostic NRGs based on expression files of the TCGA-UCEC cohort. Based on unsupervised consensus clustering analysis, patients with EC were classified into two neddylation patterns (C1 and C2). In terms of prognosis, substantial differences were observed between the two patterns. Compared with C2, C1 exhibited low levels of immune infiltration and promoted tumor progression. More importantly, based on the expression of 17 prognostic NRGs, we transformed nine machine-learning algorithms into 89 combinations. The random forest (RSF) was selected to construct the neddylation-related risk score according to the average C-index of different cohorts. Notably, our score had important clinical implications for EC. Patients with high scores have poor prognoses and a cold tumor state. In conclusion, neddylation-related patterns and scores can distinguish tumor microenvironment (TME) and prognosis and guide personalized treatment in patients with EC.
Collapse
|
49
|
|
Liu S, Liu T, Jiang J, Guo H, Yang R. p53 mutation and deletion contribute to tumor immune evasion. Front Genet 2023;14:1088455. [PMID: 36891151 DOI: 10.3389/fgene.2023.1088455] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/22/2023] Open
Abstract
TP53 (or p53) is widely accepted to be a tumor suppressor. Upon various cellular stresses, p53 mediates cell cycle arrest and apoptosis to maintain genomic stability. p53 is also discovered to suppress tumor growth through regulating metabolism and ferroptosis. However, p53 is always lost or mutated in human and the loss or mutation of p53 is related to a high risk of tumors. Although the link between p53 and cancer has been well established, how the different p53 status of tumor cells help themselves evade immune response remains largely elusive. Understanding the molecular mechanisms of different status of p53 and tumor immune evasion can help optimize the currently used therapies. In this context, we discussed the how the antigen presentation and tumor antigen expression mode altered and described how the tumor cells shape a suppressive tumor immune microenvironment to facilitate its proliferation and metastasis.
Collapse
|
50
|
|
Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y. An Overview: The Diversified Role of Mitochondria in Cancer Metabolism. Int J Biol Sci 2023;19:897-915. [PMID: 36778129 DOI: 10.7150/ijbs.81609] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are intracellular organelles involved in energy production, cell metabolism and cell signaling. They are essential not only in the process of ATP synthesis, lipid metabolism and nucleic acid metabolism, but also in tumor development and metastasis. Mutations in mtDNA are commonly found in cancer cells to promote the rewiring of bioenergetics and biosynthesis, various metabolites especially oncometabolites in mitochondria regulate tumor metabolism and progression. And mutation of enzymes in the TCA cycle leads to the unusual accumulation of certain metabolites and oncometabolites. Mitochondria have been demonstrated as the target for cancer treatment. Cancer cells rely on two main energy resources: oxidative phosphorylation (OXPHOS) and glycolysis. By manipulating OXPHOS genes or adjusting the metabolites production in mitochondria, tumor growth can be restrained. For example, enhanced complex I activity increases NAD+/NADH to prevent metastasis and progression of cancers. In this review, we discussed mitochondrial function in cancer cell metabolism and specially explored the unique role of mitochondria in cancer stem cells and the tumor microenvironment. Targeting the OXPHOS pathway and mitochondria-related metabolism emerging as a potential therapeutic strategy for various cancers.
Collapse
|