451
|
Kwon YW, Cheon SY, Park SY, Song J, Lee JH. Tryptanthrin Suppresses the Activation of the LPS-Treated BV2 Microglial Cell Line via Nrf2/HO-1 Antioxidant Signaling. Front Cell Neurosci 2017; 11:18. [PMID: 28210215 PMCID: PMC5288339 DOI: 10.3389/fncel.2017.00018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/20/2017] [Indexed: 12/31/2022] Open
Abstract
Microglia are the resident macrophages in the central nervous system (CNS) and play essential roles in neuronal homeostasis and neuroinflammatory pathologies. Recently, microglia have been shown to contribute decisively to neuropathologic processes after ischemic stroke. Furthermore, natural compounds have been reported to attenuate inflammation and pathologies associated with neuroinflammation. Tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) is a phytoalkaloid with known anti-inflammatory effects in cells. In present study, the authors confirmed middle cerebral artery occlusion (MCAO) injury triggers the activation of microglia in brain tissue, and investigated whether tryptanthrin influences the function of mouse murine BV2 microglia under LPS-induced inflammatory conditions in vitro. It was found tryptanthrin protected BV2 microglia cells against LPS-induced inflammation and inhibited the induction of M1 phenotype microglia under inflammatory conditions. In addition, tryptanthrin reduced the production of pro-inflammatory cytokines in BV2 microglia cells via nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling and NF-κB signaling. The authors suggest that tryptanthrin might alleviate the progress of neuropathologies by controlling microglial functions under neuroinflammatory conditions.
Collapse
Affiliation(s)
- Young-Won Kwon
- College of Korean Medicine, Dongguk University Goyang, South Korea
| | - So Yeong Cheon
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine Seoul, South Korea
| | - Sung Yun Park
- College of Korean Medicine, Dongguk University Goyang, South Korea
| | - Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University Gwangju, South Korea
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University Goyang, South Korea
| |
Collapse
|
452
|
Gu R, Zhang F, Chen G, Han C, Liu J, Ren Z, Zhu Y, Waddington JL, Zheng LT, Zhen X. Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming. Brain Behav Immun 2017; 60:206-219. [PMID: 27769915 DOI: 10.1016/j.bbi.2016.10.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023] Open
Abstract
Clock (Clk)1/COQ7 is a mitochondrial hydroxylase that is necessary for the biosynthesis of ubiquinone (coenzyme Q or UQ). Here, we investigate the role of Clk1 in neuroinflammation and consequentially dopaminergic (DA) neuron survival. Reduced expression of Clk1 in microglia enhanced the LPS-induced proinflammatory response and promoted aerobic glycolysis. Inhibition of glycolysis abolished Clk1 deficiency-induced hypersensitivity to the inflammatory stimulation. Mechanistic studies demonstrated that mTOR/HIF-1α and ROS/HIF-1α signaling pathways were involved in Clk1 deficiency-induced aerobic glycolysis. The increase in neuronal cell death was observed following treatment with conditioned media from Clk1 deficient microglia. Increased DA neuron loss and microgliosis were observed in Clk1+/- mice after treatment with MPTP, a rodent model of Parkinson's disease (PD). This increase in DA neuron loss was due to an exacerbated microglial inflammatory response, rather than direct susceptibility of Clk1+/- DA cells to MPP+, the active species of MPTP. Exaggerated expressions of proinflammatory genes and loss of DA neurons were also observed in Clk1+/- mice after stereotaxic injection of LPS. Our results suggest that Clk1 regulates microglial metabolic reprogramming that is, in turn, involved in the neuroinflammatory processes and PD.
Collapse
Affiliation(s)
- Ruinan Gu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Fali Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Gang Chen
- Nanjing Galaxy Biopharma Co. Ltd., 12 Xuefu Road, Pukou High Tech District, Nanjing, Jiangsu 210016, China
| | - Chaojun Han
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Jay Liu
- Nanjing Galaxy Biopharma Co. Ltd., 12 Xuefu Road, Pukou High Tech District, Nanjing, Jiangsu 210016, China
| | - Zhaoxiang Ren
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - John L Waddington
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China; Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Long Tai Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| |
Collapse
|
453
|
Pardo J, Abba MC, Lacunza E, Francelle L, Morel GR, Outeiro TF, Goya RG. Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats. Hippocampus 2017; 27:435-449. [DOI: 10.1002/hipo.22703] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Joaquín Pardo
- INIBIOLP, Histology B–Pathology B, School of Medicine, UNLPLa Plata Argentina
| | | | | | - Laetitia Francelle
- Department of Neurodegeneration and Restorative ResearchUniversity Medical Center GöttingenGöttingen Germany
| | - Gustavo R. Morel
- INIBIOLP, Histology B–Pathology B, School of Medicine, UNLPLa Plata Argentina
| | - Tiago F. Outeiro
- Department of Neurodegeneration and Restorative ResearchUniversity Medical Center GöttingenGöttingen Germany
| | - Rodolfo G. Goya
- INIBIOLP, Histology B–Pathology B, School of Medicine, UNLPLa Plata Argentina
| |
Collapse
|
454
|
Zhu Y, Chai YL, Hilal S, Ikram MK, Venketasubramanian N, Wong BS, Chen CP, Lai MKP. Serum IL-8 is a marker of white-matter hyperintensities in patients with Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 7:41-47. [PMID: 28239640 PMCID: PMC5318538 DOI: 10.1016/j.dadm.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Neuroinflammation and cerebrovascular disease (CeVD) have been implicated in cognitive impairment and Alzheimer's disease (AD). The present study aimed to examine serum inflammatory markers in preclinical stages of dementia and in AD, as well as to investigate their associations with concomitant CeVD. METHODS We performed a cross-sectional case-control study including 96 AD, 140 cognitively impaired no dementia (CIND), and 79 noncognitively impaired participants. All subjects underwent neuropsychological and neuroimaging assessments, as well as collection of blood samples for measurements of serum samples interleukin (IL)-6, IL-8, and tumor necrosis factor α levels. Subjects were classified as CIND or dementia based on clinical criteria. Significant CeVD, including white-matter hyperintensities (WMHs), lacunes, and cortical infarcts, was assessed by magnetic resonance imaging. RESULTS After controlling for covariates, higher concentrations of IL-8, but not the other measured cytokines, were associated with both CIND and AD only in the presence of significant CeVD (CIND with CeVD: odds ratios [ORs] 4.53; 95% confidence interval [CI] 1.5-13.4 and AD with CeVD: OR 7.26; 95% CI 1.2-43.3). Subsequent multivariate analyses showed that among the types of CeVD assessed, only WMH was associated with higher IL-8 levels in CIND and AD (WMH: OR 2.81; 95% CI 1.4-5.6). DISCUSSION Serum IL-8 may have clinical utility as a biomarker for WMH in AD. Longitudinal follow-up studies would help validate these findings.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Narayanaswamy Venketasubramanian
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Raffles Neuroscience Centre, Raffles Hospital, Singapore, Singapore
| | - Boon-Seng Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| |
Collapse
|
455
|
Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int J Inflam 2017; 2017:8385961. [PMID: 28127491 PMCID: PMC5239986 DOI: 10.1155/2017/8385961] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sterile neuroinflammation is essential for the proper brain development and tissue repair. However, uncontrolled neuroinflammation plays a major role in the pathogenesis of various disease processes. The endogenous intracellular molecules so called damage-associated molecular patterns or alarmins or damage signals that are released by activated or necrotic cells are thought to play a crucial role in initiating an immune response. Sterile inflammatory response that occurs in Alzheimer's disease (AD), Parkinson's disease (PD), stroke, hemorrhage, epilepsy, or traumatic brain injury (TBI) creates a vicious cycle of unrestrained inflammation, driving progressive neurodegeneration. Neuroinflammation is a key mechanism in the progression (e.g., AD and PD) or secondary injury development (e.g., stroke, hemorrhage, stress, and TBI) of multiple brain conditions. Hence, it provides an opportunity for the therapeutic intervention to prevent progressive tissue damage and loss of function. The key for developing anti-neuroinflammatory treatment is to minimize the detrimental and neurotoxic effects of inflammation while promoting the beneficial and neurotropic effects, thereby creating ideal conditions for regeneration and repair. This review outlines how inflammation is involved in the pathogenesis of major nonpathogenic neuroinflammatory conditions and discusses the complex response of glial cells to damage signals. In addition, emerging experimental anti-neuroinflammatory drug treatment strategies are discussed.
Collapse
|
456
|
Novo AM, Batista S. Multiple Sclerosis: Implications of Obesity in Neuroinflammation. ADVANCES IN NEUROBIOLOGY 2017; 19:191-210. [PMID: 28933066 DOI: 10.1007/978-3-319-63260-5_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the discovery of the remarkable properties of adipose tissue as a metabolically active organ, several evidences on the possible link between obesity and the pathogenesis of multiple sclerosis (MS) have been gathered. Obesity in early life, mainly during adolescence, has been proposed as a relevant risk factor for late MS development. Moreover, once MS is initiated, obesity can contribute to increase disease severity by negatively influencing disease progress. Despite the fact that clinical data are not yet conclusive, many biochemical links have been recently disclosed. The "low-grade inflammation" that characterizes obesity can lead to neuroinflammation through different mechanisms, including choroid plexus and blood-brain barrier disruption. Furthermore, it is well known that resident immune cells of central nervous system and peripheral immune cells are involved in the pathogenesis of MS, and adipokines and neuropeptides such as neuropeptide Y may mediate the cross talk between them.
Collapse
Affiliation(s)
- Ana Margarida Novo
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sónia Batista
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
457
|
Abstract
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions.
Collapse
Affiliation(s)
- Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA.
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior - Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
458
|
Abstract
Although the cause of Alzheimer’s disease (AD) remains unknown, a number of new findings suggest that the immune system may play a critical role in the early stages of the disease. Genome-wide association studies have identified a wide array of risk-associated genes for AD, many of which are associated with abnormal functioning of immune cells. Microglia are the brain’s immune cells. They play an important role in maintaining the brain’s extracellular environment, including clearance of aggregated proteins such as amyloid-β (Aβ). Recent studies suggest that microglia play a more active role in the brain than initially considered. Specifically, microglia provide trophic support to neurons and also regulate synapses. Microglial regulation of neuronal activity may have important consequences for AD. In this article we review the function of microglia in AD and examine the possible relationship between microglial dysfunction and network abnormalities, which occur very early in disease pathogenesis.
Collapse
Affiliation(s)
- Katherine A. Southam
- Correspondence to: Dr. Katherine Southam, Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000 Australia. Tel.: +61 3 6226 4834; Fax: +61 3 6226 7704; E-mail:
| | | | | |
Collapse
|
459
|
Han W, Umekawa T, Zhou K, Zhang XM, Ohshima M, Dominguez CA, Harris RA, Zhu C, Blomgren K. Cranial irradiation induces transient microglia accumulation, followed by long-lasting inflammation and loss of microglia. Oncotarget 2016; 7:82305-82323. [PMID: 27793054 PMCID: PMC5347693 DOI: 10.18632/oncotarget.12929] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/13/2016] [Indexed: 12/17/2022] Open
Abstract
The relative contribution of resident microglia and peripheral monocyte-derived macrophages in neuroinflammation after cranial irradiation is not known. A single dose of 8 Gy was administered to postnatal day 10 (juvenile) or 90 (adult) CX3CR1GFP/+ CCR2RFP/+ mouse brains. Microglia accumulated in the subgranular zone of the hippocampal granule cell layer, where progenitor cell death was prominent. The peak was earlier (6 h vs. 24 h) but less pronounced in adult brains. The increase in juvenile, but not adult, brains was partly attributed to proliferation. Microglia numbers then decreased over time to 39% (juvenile) and 58% (adult) of controls 30 days after irradiation, largely as a result of cell death. CD68 was expressed in 90% of amoeboid microglia in juvenile hippocampi but only in 9% of adult ones. Isolated hippocampal microglia revealed reduced CD206 and increased IL1-beta expression after irradiation, more pronounced in juvenile brains. CCL2 and IL-1 beta increased after irradiation, more in juvenile hippocampi, and remained elevated at all time points. In summary, microglia activation after irradiation was more pronounced, protracted and pro-inflammatory by nature in juvenile than in adult hippocampi. Common to both ages was long-lasting inflammation and the absence of monocyte-derived macrophages.
Collapse
Affiliation(s)
- Wei Han
- Department of Pediatrics, Henan Provincial Women's and Children's Hospital, Zhengzhou, P.R. China
- Henan Key Laboratory of Child Brain Injury, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Karolinska Institutet, Department of Women's and Children's Health, Stockholm, Sweden
| | - Takashi Umekawa
- Karolinska Institutet, Department of Women's and Children's Health, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kai Zhou
- Karolinska Institutet, Department of Women's and Children's Health, Stockholm, Sweden
| | - Xing-Mei Zhang
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Makiko Ohshima
- Karolinska Institutet, Department of Women's and Children's Health, Stockholm, Sweden
| | - Cecilia A. Dominguez
- Karolinska Institutet, Department of Women's and Children's Health, Stockholm, Sweden
| | - Robert A. Harris
- Karolinska Institutet, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Klas Blomgren
- Karolinska Institutet, Department of Women's and Children's Health, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
460
|
Does any drug to treat cancer target mTOR and iron hemostasis in neurodegenerative disorders? Biometals 2016; 30:1-16. [PMID: 27853903 DOI: 10.1007/s10534-016-9981-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are increased by age. Alleviation of their symptoms and protection of normal neurons against degeneration are the main aspects of the research to establish novel therapeutic strategies. Iron as the one of most important cation not only play important role in the structure of electron transport chain proteins but also has pivotal duties in cellular activities. But disruption in iron hemostasis can make it toxin to neurons which causes lipid peroxidation, DNA damage and etc. In patients with Alzheimer and Parkinson misbalancing in iron homeostasis accelerate neurodegeneration and cause neuroinflmmation. mTOR as the common signaling pathway between cancer and neurodegenerative disorders controls iron uptake and it is in active form in both diseases. Anti-cancer drugs which target mTOR causes iron deficiency and dual effects of mTOR inhibitors can candidate them as a therapeutic strategy to alleviate neurodegeneration/inflammation because of iron overloading.
Collapse
|
461
|
Xiao S, Zhou D, Luan P, Gu B, Feng L, Fan S, Liao W, Fang W, Yang L, Tao E, Guo R, Liu J. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 2016; 106:98-110. [DOI: 10.1016/j.biomaterials.2016.08.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/14/2016] [Indexed: 12/19/2022]
|
462
|
Relationship Between Obesity, Alzheimer’s Disease, and Parkinson’s Disease: an Astrocentric View. Mol Neurobiol 2016; 54:7096-7115. [PMID: 27796748 DOI: 10.1007/s12035-016-0193-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
|
463
|
Ji LL, Guo MW, Ren XJ, Ge DY, Li GM, Tu Y. Effects of electroacupuncture intervention on expression of cyclooxygenase 2 and microglia in spinal cord in rat model of neuropathic pain. Chin J Integr Med 2016; 23:786-792. [DOI: 10.1007/s11655-016-2606-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 01/30/2023]
|
464
|
Zhang Y, Gu R, Jia J, Hou T, Zheng LT, Zhen X. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase activity suppresses microglia-mediated inflammatory responses. Clin Exp Pharmacol Physiol 2016; 43:1134-1144. [DOI: 10.1111/1440-1681.12647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Yu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
- Department of Pharmacy; Xiangyang Hospital Affiliated to Hubei University of Medicine; Xiangyang Hubei China
| | - Ruinan Gu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
| | - Jia Jia
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
| | - Tingjun Hou
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Long Tai Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and the Collaborative Innovation Centre for Brain Science; College of Pharmaceutical Sciences; Soochow University; Suzhou Jiangsu China
| |
Collapse
|
465
|
Abstract
Substantial evidence has implicated microglia in neuropathic pain. After peripheral nerve injury, microglia in the spinal cord proliferate and increase cell-surface expression of the purinergic receptor P2X4. Activation of P2X4 receptors results in release of brain-derived neurotrophic factor, which acts on neurons to produce disinhibition of dorsal horn neurons which transmit nociceptive information to the brain. Disinhibition of these neurons produces pain hypersensitivity, a hallmark symptom of neuropathic pain. However, elucidating this microglia-neuronal signalling pathway was based on studies using only male rodents. Recent evidence has shown that the role of microglia in pain is sexually dimorphic. Despite similar microglia proliferation in the dorsal horn in both sexes, females do not upregulate P2X4Rs and use a microglia-independent pathway to mediate pain hypersensitivity. Instead, adaptive immune cells, possibly T cells, may mediate pain hypersensitivity in female mice. This profound sex difference highlights the importance of including subjects of both sexes in preclinical pain research.
Collapse
|
466
|
Affiliation(s)
- Maysaa Doughan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
467
|
Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016; 272:38-49. [PMID: 27382003 PMCID: PMC5201203 DOI: 10.1016/j.jneumeth.2016.06.018] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI.
Collapse
Affiliation(s)
- Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan
| | - Yi-En Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ya Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanuma K Karnati
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
468
|
Corbi G, Conti V, Davinelli S, Scapagnini G, Filippelli A, Ferrara N. Dietary Phytochemicals in Neuroimmunoaging: A New Therapeutic Possibility for Humans? Front Pharmacol 2016; 7:364. [PMID: 27790141 PMCID: PMC5062465 DOI: 10.3389/fphar.2016.00364] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
Although several efforts have been made in the search for genetic and epigenetic patterns linked to diseases, a comprehensive explanation of the mechanisms underlying pathological phenotypic plasticity is still far from being clarified. Oxidative stress and inflammation are two of the major triggers of the epigenetic alterations occurring in chronic pathologies, such as neurodegenerative diseases. In fact, over the last decade, remarkable progress has been made to realize that chronic, low-grade inflammation is one of the major risk factor underlying brain aging. Accumulated data strongly suggest that phytochemicals from fruits, vegetables, herbs, and spices may exert relevant immunomodulatory and/or anti-inflammatory activities in the context of brain aging. Starting by the evidence that a common denominator of aging and chronic degenerative diseases is represented by inflammation, and that several dietary phytochemicals are able to potentially interfere with and regulate the normal function of cells, in particular neuronal components, aim of this review is to summarize recent studies on neuroinflammaging processes and proofs indicating that specific phytochemicals may act as positive modulators of neuroinflammatory events. In addition, critical pathways involved in mediating phytochemicals effects on neuroinflammaging were discussed, exploring the real impact of these compounds in preserving brain health before the onset of symptoms leading to inflammatory neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, University of Salerno Salerno, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, University of Salerno Salerno, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of NaplesNaples, Italy; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of TeleseTelese Terme, Italy
| |
Collapse
|
469
|
Lee DS, Jeong GS. Butein provides neuroprotective and anti-neuroinflammatory effects through Nrf2/ARE-dependent haem oxygenase 1 expression by activating the PI3K/Akt pathway. Br J Pharmacol 2016; 173:2894-909. [PMID: 27465039 PMCID: PMC5055139 DOI: 10.1111/bph.13569] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Butein, 3,4,2',4'-tetrahydroxychalcone, has various pharmacological effects. However, no study has demonstrated the specific neurobiological mechanisms of the effects of butein in neuronal cells. The present study examined the role of butein as an antioxidative and anti-inflammatory inducer of haem oxygenase 1 (HO1) in mouse hippocampal HT22, BV2 microglial and primary mouse hippocampus neurons. EXPERIMENTAL APPROACH We investigated the neuroprotective effects of butein on glutamate-induced HT22 cell and primary mouse hippocampal neuron death and its anti-neuroinflammatory effects on LPS-induced activation of BV2 cells. We elucidated the underlying mechanisms by assessing the involvement of NF-κB, HO1, nuclear factor-E2-related factor 2 (Nrf2) and Akt signalling. KEY RESULTS Butein decreased cellular oxidative injury and the production of ROS in glutamate-treated HT22 cells and primary mouse hippocampal neurons. Furthermore, butein suppressed LPS-induced pro-inflammatory enzymes and mediators in BV2 microglia. Butein inhibited IL-6, IL-1β and TNF-α production and mRNA expression. In addition, butein decreased NO and PGE2 production and inducible NOS and COX-2 expression through the NF-κB signalling pathway. Butein up-regulated Nrf2/ARE-mediated HO1 expression through the PI3K/Akt pathway and this was positively associated with its cytoprotective effects and anti-neuroinflammatory actions. CONCLUSION AND IMPLICATIONS Our results indicate that butein effectively prevents glutamate-induced oxidative damage and LPS-induced activation and that the induction of HO1 by butein through the PI3K/Akt pathway and Nrf2 activation appears to play a pivotal role in its effects on neuronal cells. Our results provide evidence for the neuroprotective properties of butein.
Collapse
Affiliation(s)
- Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju, Korea
| | | |
Collapse
|
470
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
471
|
Basu Mallik S, Mudgal J, Nampoothiri M, Hall S, Dukie SA, Grant G, Rao CM, Arora D. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neurosci Lett 2016; 632:218-23. [PMID: 27597761 DOI: 10.1016/j.neulet.2016.08.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023]
Abstract
Accumulating data links inflammation, oxidative stress and immune system in the pathophysiology of major depressive disorders. Sickness behaviour is a set of behavioural changes that develop during infection, eventually leading to decrease in mobility and depressed behaviour. Lipopolysaccharide (LPS) induces a depression-like state in animals that mimics sickness behaviour. Caffeic acid, a naturally occurring polyphenol, possesses antioxidant and anti-inflammatory properties. The present study was designed to explore the potential of caffeic acid against LPS-induced sickness behaviour in mice. Caffeic acid (30mg/kg) and imipramine (15mg/kg) were administered orally one hour prior to LPS (1.5mg/kg) challenge. Behavioural assessment was carried out between 1 and 2h and blood samples were collected at 3h post-LPS injection. Additionally, cytokines (brain and serum) and brain oxidative stress markers were estimated. LPS increased the systemic and brain cytokine levels, altered the anti-oxidant defence and produced key signs of sickness behaviour in animals. Caffeic acid treatment significantly reduced the LPS-induced changes, including reduced expression of inflammatory markers in serum and whole brain. Caffeic acid also exerted an anti-oxidant effect, which was evident from the decreased levels of oxidative stress markers in whole brain. Our data suggests that caffeic acid can prevent the neuroinflammation-induced acute and probably the long term neurodegenerative changes.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India
| | - Susan Hall
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Pharmacy, Griffith University, Gold Coast, Australia
| | - Shailendra Anoopkumar- Dukie
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Pharmacy, Griffith University, Gold Coast, Australia
| | - Gary Grant
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Pharmacy, Griffith University, Gold Coast, Australia
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, India; Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Pharmacy, Griffith University, Gold Coast, Australia.
| |
Collapse
|
472
|
Cobourne-Duval MK, Taka E, Mendonca P, Bauer D, Soliman KFA. The Antioxidant Effects of Thymoquinone in Activated BV-2 Murine Microglial Cells. Neurochem Res 2016; 41:3227-3238. [PMID: 27585756 DOI: 10.1007/s11064-016-2047-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022]
Abstract
Both neuroinflammation and microglial activation are pathological markers of a number of central nervous system (CNS) diseases. During chronic activation of the microglial cells, the induced release of excessive amounts of reactive oxygen species (ROS) and pro-inflammatory cytokines have been implicated in several neurodegenerative diseases such as Alzheimer's disease. Thymoquinone (TQ), a major bioactive compound of the natural product Nigella sativa seed, has been shown to be effective against numerous oxidative stress-induced and inflammatory disorders as well as possess neuroprotective properties. In this study, we investigated the antioxidant effects of TQ on LPS/IFNγ or H2O2-activated BV-2 microglia by assessing the levels of specific oxidative stress markers, the activities of selected antioxidant enzymes, as well as profiling 84 key genes related to oxidative stress via real-time reverse transcription (RT2) PCR array. Our results showed that in the LPS/IFNγ-activated microglia TQ significantly decreased the cellular production of both superoxide and nitric oxide fourfold (p < 0.0001) and sixfold (p < 0.0001), respectfully. In the H2O2-activated microglia, TQ also significantly decreased the cellular production of superoxide threefold (p < 0.0001) and significantly decreased hydrogen peroxide levels ~20 % (p < 0.05). Moreover, ΤQ treatment significantly decreased the levels oxidative stress in the activated BV-2 as evidenced by the assessed levels of lipid hydroperoxides and glutathione. TQ significantly decreased the levels of lipid hydroperoxides twofold (p < 0.0001) and significantly increased the levels of antioxidant glutathione 2.5-fold (p < 0.0001) in the LPS/IFNγ-activated BV-2 cells. In the H2O2-activated microglia, TQ significantly decreased lipid hydroperoxides eightfold (p < 0.0001) and significantly increased glutathione 15 % (p < 0.05). Activities of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), in the TQ-treated microglial cells also reflected a reduced oxidative stress status in the cellular environment. SOD and CAT activities were sixfold (p < 0.0001) and fivefold (p < 0.0001) lower, respectfully, for the LPS/INFγ-activated microglia treated with TQ in comparison to those that were not. For the H2O2-activated microglia treated with TQ, SOD and CAT activities were fivefold (p < 0.0001) and threefold (p < 0.01) lower, respectfully, compared to the untreated. Furthermore, RT2 PCR array profiling of the selected 84 genes related to oxidative stress confirmed that TQ treatment in the LPS/IFNγ-activated microglia downregulates specific pro-oxidant genes, upregulates specific anti-oxidant genes, and enhances the up- or downregulation of specific genes related to the cells' natural antioxidant defense against LPS/IFNγ activation. These findings suggest that TQ may be utilized as an effective therapeutic agent for delaying the onset and/or slowing/preventing the progression of microglia-derived neurodegeneration propagated by excessive oxidative stress in the CNS.
Collapse
Affiliation(s)
- Makini K Cobourne-Duval
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104 Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104 Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA
| | - Patricia Mendonca
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104 Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA
| | - David Bauer
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104 Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104 Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
473
|
Chen NF, Chen WF, Sung CS, Lu CH, Chen CL, Hung HC, Feng CW, Chen CH, Tsui KH, Kuo HM, Wang HMD, Wen ZH, Huang SY. Contributions of p38 and ERK to the antinociceptive effects of TGF-β1 in chronic constriction injury-induced neuropathic rats. J Headache Pain 2016; 17:72. [PMID: 27541934 PMCID: PMC4991976 DOI: 10.1186/s10194-016-0665-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022] Open
Abstract
Background Transforming growth factor-βs (TGF-βs) are a group of multifunctional proteins that have neuroprotective roles in various experimental models. We previously reported that intrathecal (i.t.) injections of TGF-β1 significantly inhibit neuropathy-induced thermal hyperalgesia, spinal microglia and astrocyte activation, as well as upregulation of tumor necrosis factor-α. However, additional cellular mechanisms for the antinociceptive effects of TGF-β1, such as the mitogen-activated protein kinase (MAPK) pathway, have not been elucidated. During persistent pain, activation of MAPKs, especially p38 and extracellular signal-regulated kinase (ERK), have crucial roles in the induction and maintenance of pain hypersensitivity, via both nontranscriptional and transcriptional regulation. In the present study, we used a chronic constriction injury (CCI) rat model to explore the role of spinal p38 and ERK in the analgesic effects of TGF-β1. Methods We investigated the cellular mechanisms of the antinociceptive effects of i.t. injections of TGF-β1 in CCI induced neuropathic rats by spinal immunohistofluorescence analyses. Results The results demonstrated that the antinociceptive effects of TGF-β1 (5 ng) were maintained at greater than 50 % of the maximum possible effect in rats with CCI for at least 6 h after a single i.t. administration. Thus, we further examined these alterations in spinal p38 and ERK from 0.5 to 6 h after i.t. administration of TGF-β1. TGF-β1 significantly attenuated CCI-induced upregulation of phosphorylated p38 (phospho-p38) and phosphorylated ERK (phospho-ERK) expression in the dorsal horn of the lumbar spinal cord. Double immunofluorescence staining illustrated that upregulation of spinal phospho-p38 was localized to neurons, activated microglial cells, and activated astrocytes in rats with CCI. Additionally, increased phospho-ERK occurred in activated microglial cells and activated astrocytes. Furthermore, i.t. administration of TGF-β1 markedly inhibited phospho-p38 upregulation in neurons, microglial cells, and astrocytes. However, i.t. injection of TGF-β1 also reduced phospho-ERK upregulation in microglial cells and astrocytes. Conclusions The present results demonstrate that suppressing p38 and ERK activity affects TGF-β1-induced analgesia during neuropathy.
Collapse
Affiliation(s)
- Nan-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 80424, Taiwan.,Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 80424, Taiwan.,Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ching-Hsiang Lu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
| | - Chun-Lin Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
| | - Han-Chun Hung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 80424, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, 80424, Taiwan
| | - Chien-Wei Feng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 80424, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, 80424, Taiwan
| | - Chun-Hong Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 80424, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, 80424, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Department of Obstetrics and Gynecology and Institute of Clinical Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.,Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, 90741, Taiwan
| | - Hsiao-Mei Kuo
- Center for Neuroscience, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 80424, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,College of Oceanology and Food Scienece, Quanzhou Normal University, Quanzhou, 362000, China
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 80424, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, 80424, Taiwan. .,Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Shi-Ying Huang
- Center for Neuroscience, National Sun Yat-sen University, #70 Lien-Hai Rd, Kaohsiung, 80424, Taiwan. .,College of Oceanology and Food Scienece, Quanzhou Normal University, Quanzhou, 362000, China.
| |
Collapse
|
474
|
Qasem H, Al-Ayadhi L, El-Ansary A. Cysteinyl leukotriene correlated with 8-isoprostane levels as predictive biomarkers for sensory dysfunction in autism. Lipids Health Dis 2016; 15:130. [PMID: 27530350 PMCID: PMC4988023 DOI: 10.1186/s12944-016-0298-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022] Open
Abstract
Background Autism is a neurodevelopmental disorder that clinically presented as cognitive deficits, social impairments and sensory dysfunction. An increasing body of evidence has shown that oxidative stress and inflammation are involved in the pathophysiology of autism. Recording biomarkers as measure of the severity of autistic features might help in understanding the pathophysiology of autism. Methods This study investigates the plasma levels of 8-isoprostane and Cysteinyl leukotrienes (CysLTs) in 44 autistic children and 40 healthy controls. The recruited autistic patients were assessed for behavior, cognitive and sensory deficits by using different autism severity rating scales, including the Childhood Autism Rating Scales (CARS), Social responsiveness scale (SRS) and Short Sensory Profile (SSP). Receiver Operating Characteristics analysis (ROC) of the obtained data was performed to measure the predictive value of 8-isoprostane and Cysteinyl leukotrienes (CysLTs) as oxidative stress- related parameters. Pearson’s correlations between the measured parameters was also performed. Results The concentrations of 8-isoprostane and CysLTs in autistic patients were significantly higher than those in controls. While cognitive and social impairments did not show any significant differences, the SSP results were strongly correlated with the levels of both of the biomarkers assessed. However, autistic children showed improvements in oxidative stress status (as determined by 8-isoprostane levels) at increasing ages. Conclusion This study indicates that 8-isoprostane and CysLTs can be used as markers for the early recognition of autistic patients through sensory deficits phenotypes which might help early intervention.
Collapse
Affiliation(s)
- Hanan Qasem
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia.,Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia.,Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, KSA, Saudi Arabia. .,Autism Research and Treatment Center, Riyadh, Saudi Arabia. .,Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia. .,Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
475
|
Quantitative Analysis of Psoralea corylifolia Linne and its Neuroprotective and Anti-Neuroinflammatory Effects in HT22 Hippocampal Cells and BV-2 Microglia. Molecules 2016; 21:molecules21081076. [PMID: 27548120 PMCID: PMC6274380 DOI: 10.3390/molecules21081076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
The seeds of Psoralea corylifolia L. (P. corylifolia), also known as “Bo-Gol-Zhee” in Korea, are used in a traditional herbal medicine for treating various skin diseases. In the present study, we performed quantitative analyses of the seven standard components of P. corylifolia: psoralen, angelicin, neobavaisoflavone, psoralidin, isobavachalcone, bavachinin, and bakuchiol, using high-performance liquid chromatography. We also investigated the neuroprotective and anti-neuroinflammation effects of P. corylifolia and its standard components in the hippocampal cell line HT22 and microglia cell line BV-2. A 70% ethanol extract of P. corylifolia was prepared and the seven standard components were separated using C-18 analytical columns by gradient solvents with acetonitrile and water, and ultraviolet detection at 215, 225 and 275 nm. The analytical method showed high linearity, with a correlation coefficient of ≥0.9999. The amounts of the standard components ranged from 0.74 to 11.71 mg/g. Among the components, bakuchiol (11.71 mg/g) was the most potent phytochemical component of P. corylifolia. Furthermore, we analyzed the inhibitory effects of the components from P. corylifolia to determine the bioactive compound needed to regulate neuronal cell changes. Angelicin, isobavachalcone, and bakuchiol suppressed lipopolysaccharide (LPS)-stimulated nitric oxide production in LPS-treated BV-2 microglia more significantly than did the other components. In HT22 hippocampal cells, neobavaisoflavone and bakuchiol had more potent inhibitory activity against hydrogen peroxide-induced cell death. Taken together of the quantification and efficacy analyses, bakuchiol appeared to be the most potent bioactive phytochemical component of P. corylifolia for the potential treatment of neurodegenerative diseases.
Collapse
|
476
|
Kan MH, Yang T, Fu HQ, Fan L, Wu Y, Terrando N, Wang TL. Pyrrolidine Dithiocarbamate Prevents Neuroinflammation and Cognitive Dysfunction after Endotoxemia in Rats. Front Aging Neurosci 2016; 8:175. [PMID: 27493629 PMCID: PMC4954850 DOI: 10.3389/fnagi.2016.00175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023] Open
Abstract
Systemic inflammation, for example as a result of infection, often contributes to long-term complications. Neuroinflammation and cognitive decline are key hallmarks of several neurological conditions, including advance age. The contribution of systemic inflammation to the central nervous system (CNS) remains not fully understood. Using a model of peripheral endotoxemia with lipopolysaccharide (LPS) we investigated the role of nuclear factor-κB (NF-κB) activity in mediating long-term neuroinflammation and cognitive dysfunction in aged rats. Herein we describe the anti-inflammatory effects of pyrrolidine dithiocarbamate (PDTC), a selective NF-κB inhibitor, in modulating systemic cytokines including tumor necrosis factor (TNF)-α and interleukin-1β (IL-1β) and CNS markers after LPS exposure in aged rats. In the hippocampus, PDTC not only reduced neuroinflammation by modulating canonical NF-κB activity but also affected IL-1β expression in astrocytes. Parallel effects were observed on behavior and postsynaptic density-95 (PSD95), a marker of synaptic function. Taken together these changes improved acute and long-term cognitive function in aged rats after LPS exposure.
Collapse
Affiliation(s)
- Min Hui Kan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical UniversityBeijing, China; Department of Anatomy, Capital Medical UniversityBeijing, China
| | - Ting Yang
- Department of Medicine, Division of Nephrology, Durham VA and Duke University Medical Centers Durham, NC, USA
| | - Hui Qun Fu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Long Fan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Yan Wu
- Department of Anatomy, Capital Medical University Beijing, China
| | - Niccolò Terrando
- Department of Anesthesiology, Basic Science Division, Duke University Medical Center Durham, NC, USA
| | - Tian-Long Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University Beijing, China
| |
Collapse
|
477
|
Nurr1 and PPARγ protect PC12 cells against MPP+ toxicity: involvement of selective genes, anti-inflammatory, ROS generation, and antimitochondrial impairment. Mol Cell Biochem 2016; 420:29-42. [DOI: 10.1007/s11010-016-2764-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022]
|
478
|
Das A, Kim SH, Arifuzzaman S, Yoon T, Chai JC, Lee YS, Park KS, Jung KH, Chai YG. Transcriptome sequencing reveals that LPS-triggered transcriptional responses in established microglia BV2 cell lines are poorly representative of primary microglia. J Neuroinflammation 2016; 13:182. [PMID: 27400875 PMCID: PMC4940985 DOI: 10.1186/s12974-016-0644-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/27/2016] [Indexed: 12/22/2022] Open
Abstract
Background Microglia are resident myeloid cells in the CNS that are activated by infection, neuronal injury, and inflammation. Established BV2 microglial cell lines have been the primary in vitro models used to study neuroinflammation for more than a decade because they reduce the requirement of continuously maintaining cell preparations and animal experimentation models. However, doubt has recently been raised regarding the value of BV2 cell lines as a model system. Methods We used triplicate RNA sequencing (RNA-seq) to investigate the molecular signature of primary and BV2 microglial cell lines using two transcriptomic techniques: global transcriptomic biological triplicate RNA-seq and quantitative real-time PCR. We analyzed differentially expressed genes (DEGs) to identify transcription factor (TF) motifs (−950 to +50 bp of the 5′ upstream promoters) and epigenetic mechanisms. Results Sequencing assessment and quality evaluation revealed that primary microglia have a distinct transcriptomic signature and express a unique cluster of transcripts in response to lipopolysaccharide. This microglial signature was not observed in BV2 microglial cell lines. Importantly, we observed that previously unidentified TFs (i.e., IRF2, IRF5, IRF8, STAT1, STAT2, and STAT5A) and the epigenetic regulators KDM1A, NSD3, and SETDB2 were significantly and selectively expressed in primary microglia (PM). Although transcriptomic alterations known to occur in BV2 microglial cell lines were identified in PM, we also observed several novel transcriptomic alterations in PM that are not frequently observed in BV2 microglial cell lines. Conclusions Collectively, these unprecedented findings demonstrate that established BV2 microglial cell lines are probably a poor representation of PM, and we establish a resource for future studies of neuroinflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0644-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sun Hwa Kim
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sarder Arifuzzaman
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Taeho Yoon
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jin Choul Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Young Seek Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyoung Sun Park
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea. .,Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
| |
Collapse
|
479
|
Streit WJ, Xue QS. Microglia in dementia with Lewy bodies. Brain Behav Immun 2016; 55:191-201. [PMID: 26518296 DOI: 10.1016/j.bbi.2015.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022] Open
Abstract
Microglial activation (neuroinflammation) is often cited as a pathogenic factor in the development of neurodegenerative diseases. However, there are significant caveats associated with the idea that inflammation directly causes either α-synuclein pathology or neurofibrillary degeneration (NFD). We have performed immunohistochemical studies on microglial cells in five cases of dementia with Lewy bodies (DLB), median age 87, and nine cases of non-demented (ND) controls, median age 74, using tissue samples from the temporal lobe and the superior frontal gyrus. Three different antibodies known to label microglia and macrophages were employed: iba1, anti-CD68, and anti-ferritin. All DLB cases showed both α-synuclein pathology (Lewy bodies and neurites) and NFD ranging from Braak stage II to IV. In contrast, all controls were devoid of α-synuclein pathology but did show NFD ranging from Braak stage I to III. Using iba1 labeling, our current results show a notable absence of activated microglia in all cases with the exception of two controls that showed small focal areas of microglial activation and macrophage formation. Both iba1 and ferritin antibodies revealed a mixture of ramified and dystrophic microglial cells throughout the regions examined, and there were no measurable differences in the prevalence of dystrophic microglial cells between DLB and controls. Double-labeling for α-synuclein and iba1-positive microglia showed that cortical Lewy bodies were surrounded by both ramified and dystrophic microglial cells. We found an increase in CD68 expression in DLB cases relative to controls. Since microglial dystrophy has been linked to NFD and since it did not appear to be worse in DLB cases over controls, our findings support the idea that the additional Lewy body pathology in DLB is not the result of intensified microglial dystrophy. CD68 is likely associated with lipofuscin deposits in microglial cells which may be increased in DLB cases because of impaired proteostasis. Overall, we conclude that neurodegenerative changes in DLB are unlikely to result directly from activated microglia but rather from dysfunctional ones.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610, USA.
| | - Qing-Shan Xue
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610, USA
| |
Collapse
|
480
|
Paeoniflorin and Albiflorin Attenuate Neuropathic Pain via MAPK Pathway in Chronic Constriction Injury Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8082753. [PMID: 27429639 PMCID: PMC4939188 DOI: 10.1155/2016/8082753] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/10/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Neuropathic pain remains as the most frequent cause of suffering and disability around the world. The isomers paeoniflorin (PF) and albiflorin (AF) are major constituents extracted from the roots of Paeonia (P.) lactiflora Pall. Neuroprotective effect of PF has been demonstrated in animal models of neuropathologies. However, only a few studies are related to the biological activities of AF and no report has been published on analgesic properties of AF about neuropathic pain to date. The aim of this study was to compare the effects of AF and PF against CCI-induced neuropathic pain in rat and explore the underlying mechanism. We had found that both PF and AF could inhibit the activation of p38 mitogen-activated protein kinase (p38 MAPK) pathway in spinal microglia and subsequent upregulated proinflammatory cytokines (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)). AF further displayed remarkable effects on inhibiting the activation of astrocytes, suppressing the overelevated expression of phosphorylation of c-Jun N-terminal kinases (p-JNK) in astrocytes, and decreasing the content of chemokine CXCL1 in the spinal cord. These results suggest that both PF and AF are potential therapeutic agents for neuropathic pain, which merit further investigation.
Collapse
|
481
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
482
|
Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement 2016; 12:719-32. [DOI: 10.1016/j.jalz.2016.02.010] [Citation(s) in RCA: 738] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 02/14/2016] [Accepted: 02/25/2016] [Indexed: 01/19/2023]
Affiliation(s)
| | - Paul Edison
- Neurology Imaging Unit; Imperial College London; UK
| |
Collapse
|
483
|
Boorman E, Zajkowska Z, Ahmed R, Pariante CM, Zunszain PA. Crosstalk between endocannabinoid and immune systems: a potential dysregulation in depression? Psychopharmacology (Berl) 2016; 233:1591-604. [PMID: 26483037 PMCID: PMC4828487 DOI: 10.1007/s00213-015-4105-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The endocannabinoid (eCB) system, an endogenous lipid signaling system, appears to be dysregulated in depression. The role of endocannabinoids (eCBs) as potent immunomodulators, together with the accumulating support for a chronic low-grade inflammatory profile in depression, suggests a compelling hypothesis for a fundamental impairment in their intercommunication, in depression. OBJECTIVE We aim to review previous literature on individual associations between the immune and eCB systems and depression. It will focus on peripheral and central mechanisms of crosstalk between the eCB and immune systems. A potential dysregulation in this crosstalk will be discussed in the context of depression. RESULTS Investigations largely report a hypoactivity of the eCB system and increased inflammatory markers in individuals with depression. Findings depict a multifaceted communication whereby immunocompetent and eCB-related cells can both influence the suppression and enhancement of the other's activity in both the periphery and central nervous system. A dysregulation of the eCB system, as seen in depression, appears to be associated with central and peripheral concentrations of inflammatory agents implicated in the pathophysiology of this illness. CONCLUSION The eCB and immune systems have been individually associated with and implicated in pathogenic mechanisms of depression. Both systems tightly regulate the other's activity. As such, a dysregulation in this crosstalk has potential to influence the onset and maintenance of this neuropsychiatric illness. However, few studies have investigated both systems and depression conjointly. This review highlights the demand to consider joint eCB-immune interactions in the pathoetiology of depression.
Collapse
Affiliation(s)
- Emily Boorman
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Zuzanna Zajkowska
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rumsha Ahmed
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Patricia A Zunszain
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| |
Collapse
|
484
|
Meireles M, Marques C, Norberto S, Santos P, Fernandes I, Mateus N, Faria A, Calhau C. Anthocyanin effects on microglia M1/M2 phenotype: Consequence on neuronal fractalkine expression. Behav Brain Res 2016; 305:223-8. [DOI: 10.1016/j.bbr.2016.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 02/03/2023]
|
485
|
Abstract
Microglial activation is a key aspect of the neuroinflammatory process in neurodegenerative disorders including idiopathic and atypical parkinsonian disorders. With positron emission tomography (PET) it has become possible to image this phenomenon in vivo and over the last years patterns of microglia activation corresponding with the known distribution of neuropathological changes in these disorders have been demonstrated using this technique. In addition the effects of interventions aimed at suppressing microglia activation as part of interventional trials have successfully been demonstrated. Current research aims at evaluating PET tracers for microglial activation with more favorable properties than the prototypical [11C]-(R)-PK11195, as well as developing tracers targeting additional parameters of the neuroinflammatory process like astroglial function.
Collapse
Affiliation(s)
- Alexander Gerhard
- Wolfson Molecular Imaging Centre, Institute of Brain, Behaviour and Mental Health, The University of Manchester, 27 Palatine Road, Withington, Manchester, M20 3LJ UK
| |
Collapse
|
486
|
Silverman SM, Kim BJ, Howell GR, Miller J, John SWM, Wordinger RJ, Clark AF. C1q propagates microglial activation and neurodegeneration in the visual axis following retinal ischemia/reperfusion injury. Mol Neurodegener 2016; 11:24. [PMID: 27008854 PMCID: PMC4806521 DOI: 10.1186/s13024-016-0089-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background C1q represents the initiating protein of the classical complement cascade, however recent findings indicate pathway independent roles such as developmental pruning of retinal ganglion cell (RGC) axons. Furthermore, chronic neuroinflammation, including increased expression of C1q and activation of microglia and astrocytes, appears to be a common finding among many neurodegenerative disease models. Here we compare the effects of a retinal ischemia/reperfusion (I/R) injury on glial activation and neurodegeneration in wild type (WT) and C1qa-deficient mice in the retina and superior colliculus (SC). Retinal I/R was induced in mice through elevation of intraocular pressure to 120 mmHg for 60 min followed by reperfusion. Glial cell activation and population changes were assessed using immunofluorescence. Neuroprotection was determined using histological measurements of retinal layer thickness, RGC counts, and visual function by flash electroretinography (ERG). Results Retinal I/R injury significantly upregulated C1q expression in the retina as early as 72 h and within 7 days in the superficial SC, and was sustained as long as 28 days. Accompanying increased C1q expression was activation of microglia and astrocytes as well as a significantly increased glial population density observed in the retina and SC. Microglial activation and changes in density were completely ablated in C1qa-deficient mice, interestingly however there was no effect on astrocytes. Furthermore, loss of C1qa significantly rescued I/R-induced loss of RGCs and protected against retinal layer thinning in comparison to WT mice. ERG assessment revealed early preservation of b-wave amplitude deficits from retinal I/R injury due to C1qa-deficiency that was lost by day 28. Conclusions Our results for the first time demonstrate the spatiotemporal changes in the neuroinflammatory response following retinal I/R injury at both local and distal sites of injury. In addition, we have shown a role for C1q as a primary mediator of microglial activation and pathological damage. This suggests developmental mechanisms of C1q may be re-engaged during injury response, modulation of which may be beneficial for neuroprotection. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0089-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sean M Silverman
- North Texas Eye Research Institute, University of North Texas Health Science Center, CBH-441, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Byung-Jin Kim
- North Texas Eye Research Institute, University of North Texas Health Science Center, CBH-441, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, 04609, ME, USA.,Howard Hughes Medical Institute, Bar Harbor, ME, 04609, USA
| | - Robert J Wordinger
- North Texas Eye Research Institute, University of North Texas Health Science Center, CBH-441, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Abbot F Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, CBH-441, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
487
|
Shen Y, McMackin MZ, Shan Y, Raetz A, David S, Cortopassi G. Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34. PLoS One 2016; 11:e0151026. [PMID: 26954031 PMCID: PMC4783034 DOI: 10.1371/journal.pone.0151026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 02/23/2016] [Indexed: 12/13/2022] Open
Abstract
An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA). Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1) the mechanism by which frataxin deficiency activates microglia, 2) whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3) whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G) and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich's ataxia.
Collapse
Affiliation(s)
- Yan Shen
- Department of Molecular Biosciences, University of California Davis, Davis, California, 95616, United States of America
| | - Marissa Z. McMackin
- Department of Molecular Biosciences, University of California Davis, Davis, California, 95616, United States of America
| | - Yuxi Shan
- Department of Molecular Biosciences, University of California Davis, Davis, California, 95616, United States of America
| | - Alan Raetz
- Department of Chemistry, University of California Davis, Davis, California, 95616, United States of America
| | - Sheila David
- Department of Chemistry, University of California Davis, Davis, California, 95616, United States of America
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California Davis, Davis, California, 95616, United States of America
| |
Collapse
|
488
|
Kawano T, Eguchi S, Iwata H, Yamanaka D, Tateiwa H, Locatelli FM, Yokoyama M. Pregabalin can prevent, but not treat, cognitive dysfunction following abdominal surgery in aged rats. Life Sci 2016; 148:211-9. [DOI: 10.1016/j.lfs.2016.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 11/29/2022]
|
489
|
Li N, Liu BW, Ren WZ, Liu JX, Li SN, Fu SP, Zeng YL, Xu SY, Yan X, Gao YJ, Liu DF, Wang W. GLP-2 Attenuates LPS-Induced Inflammation in BV-2 Cells by Inhibiting ERK1/2, JNK1/2 and NF-κB Signaling Pathways. Int J Mol Sci 2016; 17:190. [PMID: 26861286 PMCID: PMC4783924 DOI: 10.3390/ijms17020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) often involves the over-activation of microglia. Over-activated microglia could produce several inflammatory mediators, which trigger excessive inflammation and ultimately cause dopaminergic neuron damage. Anti-inflammatory effects of glucagon-like peptide-2 (GLP-2) in the periphery have been shown. Nonetheless, it has not been illustrated in the brain. Thus, in this study, we aimed to understand the role of GLP-2 in microglia activation and to elucidate the underlying mechanisms. BV-2 cells were pretreated with GLP-2 and then stimulated by lipopolysaccharide (LPS). Cells were assessed for the responses of pro-inflammatory enzymes (iNOS and COX-2) and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α); the related signaling pathways were evaluated by Western blotting. The rescue effect of GLP-2 on microglia-mediated neurotoxicity was also examined. The results showed that GLP-2 significantly reduced LPS-induced production of inducible nitric oxide synthase (iNOS), cyclooxygenase-s (COX-2), IL-1β, IL-6 and TNF-α. Blocking of Gαs by NF449 resulted in a loss of this anti-inflammatory effect in BV-2 cells. Analyses in signaling pathways demonstrated that GLP-2 reduced LPS-induced phosphorylation of ERK1/2, JNK1/2 and p65, while no effect was observed on p38 phosphorylation. In addition, GLP-2 could suppress microglia-mediated neurotoxicity. All results imply that GLP-2 inhibits LPS-induced microglia activation by collectively regulating ERK1/2, JNK1/2 and p65.
Collapse
Affiliation(s)
- Nan Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Bo-Wen Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wen-Zhi Ren
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Ju-Xiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Su-Nan Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shou-Peng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Ya-Long Zeng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shi-Yao Xu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xuan Yan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Ying-Jie Gao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dian-Feng Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
490
|
Burnstock G. P2X ion channel receptors and inflammation. Purinergic Signal 2016; 12:59-67. [PMID: 26739702 DOI: 10.1007/s11302-015-9493-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation limits tissue damage in response to pathogens or injury and promotes repair. There are two stages of inflammation, initiation and resolution. P2X receptors are gaining attention in relation to immunology and inflammation. The P2X7 receptor in particular appears to be an essential immunomodulatory receptor, although P2X1 and P2X4 receptors also appear to be involved. ATP released from damaged or infected cells causes inflammation by release of inflammatory cytokines via P2X7 receptors and acts as a danger signal by occupying upregulated P2X receptors on immune cells to increase immune responses. The purinergic involvement in inflammation is being explored for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK. .,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
491
|
New Developments in Murine Imaging for Assessing Photoreceptor Degeneration In Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:269-75. [PMID: 26427421 DOI: 10.1007/978-3-319-17121-0_36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optical Coherence Tomography (OCT) is a powerful clinical tool that measures near infrared light backscattered from the eye and other tissues. OCT is used for assessing changes in retinal structure, including layer thicknesses, detachments and the presence of drusen in patient populations. Our custom-built OCT system for the mouse eye quantitatively images all layers of the neural retinal, the RPE, Bruchs' membrane and the choroid. Longitudinal assessment of the same retinal region reveals that the relative intensities of retinal layers are highly stable in healthy tissue, but show progressive increases in intensity in a model of retinal degeneration. The observed changes in OCT signal have been correlated with ultrastructural disruptions that were most dramatic in the inner segments and nuclei of the rods. These early changes in photoreceptor structure coincided with activation of retinal microglia, which migrated vertically from the inner to the outer retina to phagocytose photoreceptor cell bodies (Levine et al., Vis Res 102:71-79, 2014). We conclude that quantitative analysis of OCT light scattering signals may be a useful tool for early detection and subcellular localization of cell stress prior to cell death, and for assessing the progression of degenerative disease over time. Future efforts to develop sensitive approaches for monitoring microglial dynamics in vivo may likewise elucidate earlier signs of cellular stress during retinal degeneration.
Collapse
|
492
|
Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:972623. [PMID: 26793262 PMCID: PMC4697086 DOI: 10.1155/2015/972623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/17/2022]
Abstract
Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.
Collapse
|
493
|
Cavaleri F. Review of Amyotrophic Lateral Sclerosis, Parkinson’s and Alzheimer’s diseases helps further define pathology of the novel paradigm for Alzheimer’s with heavy metals as primary disease cause. Med Hypotheses 2015; 85:779-90. [DOI: 10.1016/j.mehy.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/25/2015] [Accepted: 10/11/2015] [Indexed: 01/07/2023]
|
494
|
Santhanasabapathy R, Vasudevan S, Anupriya K, Pabitha R, Sudhandiran G. Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: Behavioral and biochemical evidence. Neuroscience 2015; 308:212-27. [PMID: 26341906 DOI: 10.1016/j.neuroscience.2015.08.067] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 01/05/2023]
Abstract
Acrylamide (ACR) is an industrial pollutant, to which humans are exposed through chemicals associated with day to day human life and contributes to neurological disorders. The role of reactive gliosis upon toxic insults remains paradoxical, and the immunomodulatory events during ACR intoxication remain obscure. In view of this, the present study investigated ACR-induced (20mg/kgb.wt for 4weeks) neurodegeneration in the context of oxidative stress and associated inflammatory events and the ability of farnesol, a sesquiterpene, to mitigate reactive gliosis in the brain of Swiss albino mice. Farnesol supplementation (100mg/kgb.wt.) showed a marked improvement in gait performance, neuromuscular function and fine motor coordination and attenuated ACR-induced diminution in glutathione (GSH) with parallel reduction in lipid peroxidation (LPO), protein carbonyls, hydroxide, hydroperoxide and nitrite levels. Farnesol treatment significantly ameliorated ACR-mediated histological aberrations and reactive gliosis by downregulating Glial fibrillary acidic protein (GFAP) and Ionizsed calcium-binding adapter molecule-1 (Iba-1) in the cortex, hippocampus and striatum. Further, ACR stimulated increase in levels of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and inducible form of nitric oxide synthase (iNOS) were considerably decreased by farnesol. In conclusion, our findings indicate that farnesol exerts neuroprotective efficacy during ACR-induced neuropathology by suppressing reactive gliosis and associated inflammatory events.
Collapse
Affiliation(s)
- R Santhanasabapathy
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Guindy Campus, Chennai 600 025, Tamil nadu, India
| | - S Vasudevan
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Guindy Campus, Chennai 600 025, Tamil nadu, India
| | - K Anupriya
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Guindy Campus, Chennai 600 025, Tamil nadu, India
| | - R Pabitha
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Guindy Campus, Chennai 600 025, Tamil nadu, India
| | - G Sudhandiran
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Guindy Campus, Chennai 600 025, Tamil nadu, India.
| |
Collapse
|
495
|
Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 2015; 104:226-42. [PMID: 26577017 DOI: 10.1016/j.neuropharm.2015.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
In the present review, we stress the importance of the purine nucleosides, adenosine and guanosine, in protecting the nervous system, both centrally and peripherally, via activation of their receptors and intracellular signalling mechanisms. A most novel part of the review focus on the mechanisms of neuronal regeneration that are targeted by nucleosides, including a recently identified action of adenosine on axonal growth and microtubule dynamics. Discussion on the role of the purine nucleosides transversally with the most established neurotrophic factors, e.g. brain derived neurotrophic factor (BDNF), glial derived neurotrophic factor (GDNF), is also focused considering the intimate relationship between some adenosine receptors, as is the case of the A2A receptors, and receptors for neurotrophins. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
|
496
|
Townsend BE, Johnson RW. Sulforaphane induces Nrf2 target genes and attenuates inflammatory gene expression in microglia from brain of young adult and aged mice. Exp Gerontol 2015; 73:42-8. [PMID: 26571201 DOI: 10.1016/j.exger.2015.11.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/14/2015] [Accepted: 11/09/2015] [Indexed: 01/24/2023]
Abstract
Increased neuroinflammation and oxidative stress resulting from heightened microglial activation are associated with age-related cognitive impairment. The objectives of this study were to examine the effects of the bioactive sulforaphane (SFN) on the nuclear factor E2-related factor 2 (Nrf2) pathway in BV2 microglia and primary microglia, and to evaluate proinflammatory cytokine expression in lipopolysaccharide (LPS)-stimulated primary microglia from adult and aged mice. BV2 microglia and primary microglia isolated from young adult and aged mice were treated with SFN and LPS. Changes in Nrf2 activity, expression of Nrf2 target genes, and levels of proinflammatory markers were assessed by quantitative PCR and immunoassay. SFN increased Nrf2 DNA-binding activity and upregulated Nrf2 target genes in BV2 microglia, while reducing LPS-induced interleukin (IL-)1β, IL-6, and inducible nitric oxide synthase (iNOS). In primary microglia from adult and aged mice, SFN increased expression of Nrf2 target genes and attenuated IL-1β, IL-6, and iNOS induced by LPS. These data indicate that SFN is a potential beneficial supplement that may be useful for reducing microglial mediated neuroinflammation and oxidative stress associated with aging.
Collapse
Affiliation(s)
- Brigitte E Townsend
- Division of Nutritional Sciences, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | - Rodney W Johnson
- Division of Nutritional Sciences, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
497
|
Park WH, Kang S, Piao Y, Pak CJ, Oh MS, Kim J, Kang MS, Pak YK. Ethanol extract of Bupleurum falcatum and saikosaponins inhibit neuroinflammation via inhibition of NF-κB. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:37-44. [PMID: 26231448 DOI: 10.1016/j.jep.2015.07.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/16/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Bupleurum falcatum L. (BF) has been used in traditional Korean and Chinese medicines for over 2000 years to treat infections, fever, and chronic liver diseases. Among the many active compounds in BF ethanol extract (BFE), saikosaponins exert pharmacological activities including anti-inflammatory effects. Activated microglial cells release a variety of pro-inflammatory substances, leading to neuronal cell death and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The aim of the present study was to investigate the mechanism of the anti-neuroinflammatory effects of BFE using lipopolysaccharide (LPS)-stimulated microglial cells and LPS-intraperitoneal injected C57BL/6 mice. MATERIALS AND METHODS Dried roots of BF were extracted with 70% ethanol (tenfold volume) on a stirring plate for 24h at room temperature to prepare BFE. Pure saikosaponins (SB3, SB4, and SD) were prepared by solvent extraction and column chromatography fractionation. BV2 murine microglial cells were treated with BFE or saikosaponins for 4h and stimulated with LPS. Generation of nitric oxide (NO), inflammatory cytokines, and reactive oxygen species (ROS) from activated microglial cells were monitored. The effects of BFE on NF-κB activation were determined using RT-PCR, reporter assay, and immunostaining. The in vivo effects of BFE were also assessed by immunohistochemical staining of tissue sections from LPS-injected mouse brains. RESULTS Treatment with BFE or saikosaponins dose-dependently attenuated LPS-induced production of NO, iNOS mRNA, and ROS by 30-50%. They reduced LPS-mediated increases in the mRNA levels of IL-6, IL-1β, and TNF-α by approximately 30-70% without affecting cell viability, and decreased LPS-mediated NF-κB activity via reducing p65/RELA mRNA, transcriptional activity, and nuclear localization of NF-κB. BFE also reduced LPS-induced activation of microglia and astrocytes in the hippocampus and substantia nigra of LPS-injected mice. CONCLUSION Our data suggest that BFE may be effective for reducing neuroinflammation-mediated neurodegeneration through suppressing NF-κB-mediated inflammatory pathways.
Collapse
Affiliation(s)
- Wook Ha Park
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Sora Kang
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Ying Piao
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Christine Jeehye Pak
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Seo Kang
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea
| | - Youngmi Kim Pak
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, Seoul 130-731, Republic of Korea.
| |
Collapse
|
498
|
Radford RA, Morsch M, Rayner SL, Cole NJ, Pountney DL, Chung RS. The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia. Front Cell Neurosci 2015; 9:414. [PMID: 26578880 PMCID: PMC4621294 DOI: 10.3389/fncel.2015.00414] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two progressive, fatal neurodegenerative syndromes with considerable clinical, genetic and pathological overlap. Clinical symptoms of FTD can be seen in ALS patients and vice versa. Recent genetic discoveries conclusively link the two diseases, and several common molecular players have been identified (TDP-43, FUS, C9ORF72). The definitive etiologies of ALS and FTD are currently unknown and both disorders lack a cure. Glia, specifically astrocytes and microglia are heavily implicated in the onset and progression of neurodegeneration witnessed in ALS and FTD. In this review, we summarize the current understanding of the role of microglia and astrocytes involved in ALS and FTD, highlighting their recent implications in neuroinflammation, alterations in waste clearance involving phagocytosis and the newly described glymphatic system, and vascular abnormalities. Elucidating the precise mechanisms of how astrocytes and microglia are involved in ALS and FTD will be crucial in characterizing these two disorders and may represent more effective interventions for disease progression and treatment options in the future.
Collapse
Affiliation(s)
- Rowan A Radford
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Stephanie L Rayner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Nicholas J Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| | - Dean L Pountney
- Menzies Health Institute Queensland, Griffith University Gold Coast, QLD, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
499
|
Hall S, Desbrow B, Anoopkumar-Dukie S, Davey AK, Arora D, McDermott C, Schubert MM, Perkins AV, Kiefel MJ, Grant GD. A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression. Food Res Int 2015; 76:626-636. [DOI: 10.1016/j.foodres.2015.07.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 01/17/2023]
|
500
|
Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A 2015; 112:12468-73. [PMID: 26385967 DOI: 10.1073/pnas.1511003112] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is associated with a broad spectrum of neurodegenerative and psychiatric diseases. The core process in neuroinflammation is activation of microglia, the innate immune cells of the brain. We measured the neuroinflammatory response produced by a systemic administration of the Escherichia coli lipopolysaccharide (LPS; also called endotoxin) in humans with the positron emission tomography (PET) radiotracer [11C]PBR28, which binds to translocator protein, a molecular marker that is up-regulated by microglial activation. In addition, inflammatory cytokines in serum and sickness behavior profiles were measured before and after LPS administration to relate brain microglial activation with systemic inflammation and behavior. Eight healthy male subjects each had two 120-min [11C]PBR28 PET scans in 1 d, before and after an LPS challenge. LPS (1.0 ng/kg, i.v.) was administered 180 min before the second [11C]PBR28 scan. LPS administration significantly increased [11C]PBR28 binding 30-60%, demonstrating microglial activation throughout the brain. This increase was accompanied by an increase in blood levels of inflammatory cytokines, vital sign changes, and sickness symptoms, well-established consequences of LPS administration. To our knowledge, this is the first demonstration in humans that a systemic LPS challenge induces robust increases in microglial activation in the brain. This imaging paradigm to measure brain microglial activation with [11C]PBR28 PET provides an approach to test new medications in humans for their putative antiinflammatory effects.
Collapse
|