99901
|
|
Abstract
Large mass-independent fractionation signatures in Hg have been observed in the laboratory and the environment, prompting deep questions about the chemical reasons behind these signatures. Since the relative lack of mechanistic information about Hg chemistry in the environment has precluded explanations of these isotope effects, the present study uses high-level electronic structure methods to evaluate the possible photochemical mechanisms of mass-independent isotope effects (MIEs) in HgX2 and CH3HgX (X = Cl, Br, I, and SCH3). The results show that spin-orbit coupling wipes out the potential of MIEs for Hg bound to Br or I, but that complexes involving lighter elements, HgX2 and CH3HgX (X = Cl and SCH3), have relatively small spin-orbit couplings upon photolysis. This unexpected finding shows that magnetic isotope fractionation due to hyperfine coupling is possible, depending on the identity of the Hg complex. By examination of the photolysis potential energy profiles, this study shows that HgX2 complexes can have a positive or a negative MIE (depending on reaction conditions), while CH3HgX complexes exclusively result in a positive MIE. These findings agree with MIE recorded in natural samples, demonstrating a plausible mechanism for the surprising mass-independent fractionation of Hg in the environment.
Collapse
Affiliation(s)
- Laura C Motta
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Alan D Chien
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Alan E Rask
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
99902
|
|
Wen S, Wang W, Liu R, He P. Amylase-Protected Ag Nanodots for in vivo Fluorescence Imaging and Photodynamic Therapy of Tumors. Int J Nanomedicine 2020; 15:3405-14. [PMID: 32523340 DOI: 10.2147/IJN.S233214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/21/2020] [Indexed: 11/24/2022] Open
Abstract
Background Fluorescent metallic nanodots (NDs) have become a promising nanoprobe for a wide range of biomedical applications. Because Ag NDs have a high tendency to be oxidized, their synthesis and storage are a big challenge. Thus, the method for preparing stable Ag NDs is urgently needed. Surface modification and functionalization can enrich the capability of Ag NDs. Methods In this work, fluorescent Ag NDs were synthesized in deoxygenated water by using porcine pancreatic α-amylase (PPA) as the stabilizing/capping agent. The absorption and fluorescence of PPA-protected Ag NDs (PPA@AgNDs) were measured with a spectrophotometer and a spectrofluorometer, respectively. The morphology of PPA@AgNDs was characterized by high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM). The biocompatibility of PPA@AgNDs was evaluated by tetrazolium (MTT)-based assay. PolyLys-Cys-SH (sequence: KKKKKKC) peptides were conjugated to PPA@AgNDs via heterobifunctional crosslinkers. PolyLys-Cys-linked PPA@AgNDs absorbed 5-aminolevulinic acid (ALA) by electrostatic interaction at physiological pH. The capability of tumor targeting was evaluated by intravenously injecting PPA@AgND-ALA into 4T1 breast cancer xenograft mouse models. Photodynamic therapy (PDT) against tumors was performed under 635 nm laser irradiation. Results PPA@AgNDs emitted at 640 nm with quantum yield of 2.1%. The Ag NDs exhibited strong photostability over a long period and a fluorescence lifetime of 5.1 ns. PPA@AgNDs easily entered the cells to stain the nuclei, showing the capabilities of living cell imaging with negligible cytotoxicity. ALA-loaded PPA@AgNDs (PPA@AgND-ALA) presented the superiority of passive tumor targeting via the enhanced permeability and retention (EPR) effect. Tumors were visualized in the near-infrared (NIR) region with reduced background noise. ALA molecules released from PPA@AgND-ALA was converted into the photosensitizer (PS) of protoporphyrin IX (PpIX) intracellularly and intratumorally, which greatly improved the PDT efficacy. Conclusion Our approach opens a new way to design a novel theranostic nanoplatform of PPA@AgND-ALA for effective tumor targeting and fluorescence image-guided PDT.
Collapse
Affiliation(s)
- Shuguang Wen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.,Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Basic Medical College, Henan University, Kaifeng 475000, People's Republic of China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Ruimin Liu
- Basic Medical College, Henan University, Kaifeng 475000, People's Republic of China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
99903
|
|
Nugent J, Shire BR, Caputo DFJ, Pickford HD, Nightingale F, Houlsby ITT, Mousseau JJ, Anderson EA. Synthesis of All‐Carbon Disubstituted Bicyclo[1.1.1]pentanes by Iron‐Catalyzed Kumada Cross‐Coupling. Angew Chem Int Ed Engl 2020; 132:11964-8. [DOI: 10.1002/ange.202004090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jeremy Nugent
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Bethany R. Shire
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Dimitri F. J. Caputo
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Helena D. Pickford
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Frank Nightingale
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Ian T. T. Houlsby
- Syngenta Ltd. Jealott's Hill International Research Centre Bracknell RG42 6EY UK
| | | | - Edward A. Anderson
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
99904
|
|
Wang Y, Wang N, Zhao J, Sun M, You H, Fang F, Liu Z. Visible-Light-Promoted Site-Specific and Diverse Functionalization of a C(sp 3 )–C(sp 3 ) Bond Adjacent to an Arene. ACS Catal 2020; 10:6603-12. [DOI: 10.1021/acscatal.0c01495] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaxin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Nengyong Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Jianyou Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Minzhi Sun
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Huichao You
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Fang Fang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| | - Zhong-Quan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
| |
Collapse
|
99905
|
|
Rahman A, Sharma P, Kaur N, Shanavas A, Neelakandan PP. Synthesis and Anti‐Proliferative Activity of a Triazole‐Fused Thymidine Analogue. ChemistrySelect 2020; 5:5473-5478. [DOI: 10.1002/slct.202001013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
99906
|
|
Son EC, Lee J, Kim S. Base-Promoted Cycloaddition of γ-Hydroxy- and δ-Hydroxy-α,β-Unsaturated Carbonyls with Azaoxyallyl Cations: Rapid Synthesis of N,O -Heterocycles: Base-Promoted Cycloaddition of γ-Hydroxy- and δ-Hydroxy-α,β-Unsaturated Carbonyls with Azaoxyallyl Cations: Rapid Synthesis of N,O -Heterocycles. European J Org Chem 2020; 2020:3090-100. [DOI: 10.1002/ejoc.202000368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eun Chae Son
- Department of Chemistry; Kyonggi University; 154-42 Gwanggyosan-ro 16227 Yeongtong-gu Suwon Republic of Korea
| | - Jiseon Lee
- Department of Chemistry; Kyonggi University; 154-42 Gwanggyosan-ro 16227 Yeongtong-gu Suwon Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry; Kyonggi University; 154-42 Gwanggyosan-ro 16227 Yeongtong-gu Suwon Republic of Korea
| |
Collapse
|
99907
|
|
Fontani M, Colombo A, Dragonetti C, Righetto S, Roberto D, Marinotto D. Cyclometalated Ir(III) Complexes with Curcuminoid Ligands as Active Second-Order NLO Chromophores and Building Blocks for SHG Polymeric Films. Inorganics 2020; 8:36. [DOI: 10.3390/inorganics8050036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The second-order nonlinear optical (NLO) properties of iridium(III) complexes having two cyclometalated 2-phenylpyridines and curcumin or tetrahydrocurcumin as ancillary ligand have been investigated both in solution and as guest in a polymeric organic matrix. In solution, these complexes are characterized by a significant second-order NLO response, as determined by the Electric Field Induced Second Harmonic (EFISH) technique, like the related complex with acetylacetonate. Whereas the low second-harmonic generation response of a composite film of [Ir(2-phenylpyridine)2(acetylacetonate)] in polymethyl methacrylate was not stable and fell down to zero upon turning off the electric field. A good and stable response was obtained with a film based on the iridium(III) complex bearing two cyclometalated 2-phenylpyridines and curcumin.
Collapse
|
99908
|
|
Liu M, Zhang L, Little MA, Kapil V, Ceriotti M, Yang S, Ding L, Holden DL, Balderas-Xicohténcatl R, He D, Clowes R, Chong SY, Schütz G, Chen L, Hirscher M, Cooper AI. Barely porous organic cages for hydrogen isotope separation. Science 2019; 366:613-20. [PMID: 31672893 DOI: 10.1126/science.aax7427] [Citation(s) in RCA: 131] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 01/18/2023]
Abstract
The separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up. In this study, we use organic synthesis to modify the internal cavities of cage molecules to produce hybrid materials that are excellent quantum sieves. By combining small-pore and large-pore cages together in a single solid, we produce a material with optimal separation performance that combines an excellent deuterium/hydrogen selectivity (8.0) with a high deuterium uptake (4.7 millimoles per gram).
Collapse
Affiliation(s)
- Ming Liu
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Linda Zhang
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Marc A Little
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Venkat Kapil
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Siyuan Yang
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China
| | - Lifeng Ding
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China
| | - Daniel L Holden
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | | | - Donglin He
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Rob Clowes
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Samantha Y Chong
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Gisela Schütz
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Linjiang Chen
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.,Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| | - Michael Hirscher
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK. .,Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK
| |
Collapse
|
99909
|
|
Rabeah J, Briois V, Adomeit S, La Fontaine C, Bentrup U, Brückner A. Multivariate Analysis of Coupled Operando EPR/XANES/EXAFS/UV-Vis/ATR-IR Spectroscopy: A New Dimension for Mechanistic Studies of Catalytic Gas-Liquid Phase Reactions. Chemistry 2020; 26:7395-404. [PMID: 32118340 DOI: 10.1002/chem.202000436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 01/12/2023]
Abstract
Operando EPR, XANES/EXAFS, UV‐Vis and ATR‐IR spectroscopic methods have been coupled for the first time in the same experimental setup for investigation of unclear mechanistic aspects of selective aerobic oxidation of benzyl alcohol by a Cu/TEMPO catalytic system (TEMPO=2,2,6,6‐tetramethylpiperidinyloxyl). By multivariate curve resolution with alternating least‐squares fitting (MCR‐ALS) of simultaneously recorded XAS and UV‐Vis data sets, it was found that an initially formed (bpy)(NMI)CuI‐ complex (bpy=2,2′‐bipyridine, NMI=N‐methylimidazole ) is converted to two different CuII species, a mononuclear (bpy)(NMI)(CH3CN)CuII‐OOH species detectable by EPR and ESI‐MS, and an EPR‐silent dinuclear (CH3CN)(bpy)(NMI)CuII(μ‐OH)2⋅CuII (bpy)(NMI) complex. The latter is cleaved in the further course of reaction into (bpy)(NMI)(HOO)CuII‐TEMPO monomers that are also EPR‐silent due to dipolar interaction with bound TEMPO. Both Cu monomers and the Cu dimer are catalytically active in the initial phase of the reaction, yet the dimer is definitely not a major active species nor a resting state since it is irreversibly cleaved in the course of the reaction while catalytic activity is maintained. Gradual formation of non‐reducible CuII leads to slight deactivation at extended reaction times.
Collapse
Affiliation(s)
- Jabor Rabeah
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Valérie Briois
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, 91192 Gif-sur Yvette, France
| | - Sven Adomeit
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Camille La Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Saint-Aubin, 91192 Gif-sur Yvette, France
| | - Ursula Bentrup
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
99910
|
|
Li ZY, Li C, Li P, Zuo Y, Liu X, Xu S, Zou L, Zhuang Q, Gao S, Liu X, Zhang S. Amphiphilic Organic Cages: Self-Assembly into Nanotubes and Enhanced Anion-π Interactions. Chempluschem 2020; 85:906-9. [PMID: 32401409 DOI: 10.1002/cplu.202000143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Indexed: 12/14/2022]
Abstract
An amphiphilic organic cage was synthesized and used as self-assembly synthon for the fabrication of novel functional supramolecular structures in solution. The transmission electron microscopy (TEM) results showed that this amphiphilic cage self-assembled in aqueous solution into unilamellar nanotubes with a diameter of 29±4 nm at a concentration of 0.05 mg mL-1 . Interestingly, the self-assembly of this cage significantly enhanced the anion-π interactions as indicated by a remarkable increasement of association constant (Ka ) between Cl- and this amphiphilic cage after self-assembly. In specific, Ka was increased from 223 M-1 for discrete cages in methanol to 6800 M-1 for aggregated cages after self-assembly in water at the same concentration of 2.26×10-5 M. A mechanism based on a synergistic effect was proposed in order to explain this self-assembly process through enhanced anion-π interactions.
Collapse
Affiliation(s)
- Zi-Ying Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chuanlong Li
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Pan Li
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yong Zuo
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoning Liu
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shijun Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Lingyi Zou
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qixin Zhuang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Shan Gao
- Neurological Department, Shanghai Jiao Tong University Affiliated Sixth People Hospital South Campus, Shanghai, 200240, P. R. China
| | - Xiaoyun Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Shaodong Zhang
- Frontiers Science Centre for Transformative Molecules Shanghai Key Laboratory of Electrical Insulation and Thermal Aging School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
99911
|
|
Abstract
The regioselective functionalization of heteroarenes is a highly attractive synthetic target due to the prevalence of multiply substituted heteroarenes in nature and bioactive compounds. Some substitution patterns remain challenging: While highly efficient methods for the C2‐selective olefination of 3‐substituted five‐membered heteroarenes have been reported, analogous methods to access the 5‐olefinated products have remained limited by poor regioselectivities and/or the requirement to use an excess of the valuable heteroarene starting material. Herein we report a sterically controlled C−H olefination using heteroarenes as the limiting reagent. The method enables the highly C5‐selective olefination of a wide range of heteroarenes and is shown to be useful in the context of late‐stage functionalization.
Collapse
Affiliation(s)
- Hao Chen
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Mirxan Farizyan
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Francesca Ghiringhelli
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Manuel van Gemmeren
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
99912
|
|
Yi D, Lu F, Zhang F, Liu S, Zhou B, Gao D, Wang X, Yao J. Regulating Charge Transfer of Lattice Oxygen in Single-Atom-Doped Titania for Hydrogen Evolution. Angew Chem Int Ed Engl 2020; 59:15855-9. [PMID: 32293087 DOI: 10.1002/anie.202004510] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/08/2022]
Abstract
Single-atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single-atom-doped titania enables tunable hydrogen evolution reaction (HER) activity. First-principles calculations disclose that the activity of lattice oxygen for the HER can be regularly promoted by substituting its nearest metal atom, and doping-induced charge transfer plays an essential role. Besides, the realm of the charge transfer of the active site can be enlarged to the second nearest atom by creating oxygen vacancies, resulting in further optimization for the HER. Various single-atom-doped titania nanosheets were fabricated to validate the proposed model. Taking advantage of the localized charge transfer to the lattice atom is demonstrated to be feasible for realizing precise regulation of the electronic structures and thus catalytic activity of the nanosheets.
Collapse
Affiliation(s)
- Ding Yi
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Department of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Fei Lu
- Department of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Fengchu Zhang
- Department of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Shoujie Liu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Bo Zhou
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Denglei Gao
- Department of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Xi Wang
- Department of Physics, School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
99913
|
|
Abstract
Alzheimer’s disease (AD) has been a major health issue for more than one century since it was first reported in 1906. As one of the most common neurodegenerative diseases, AD is characterized by the presence of senile plaques and neurofibrillary tangles (NFTs) in the affected brain area. Microglia are the major regulators of neuroinflammation in the brain, and neuroinflammation has become recognized as the core pathophysiological process of various neurodegenerative diseases. In the central nervous system (CNS), microglia play a dual role in AD development. For one thing, they degrade amyloid β (Aβ) to resist its deposition; for another, microglia release pro-inflammatory and inflammatory factors, contributing to neuroinflammation as well as the spreading of Aβ and tau pathology. Wnt pathways are important regulators of cell fate and cell activities. The dysregulation of Wnt pathways is responsible for both abnormal tau phosphorylation and synaptic loss in AD. Recent studies have also confirmed the regulatory effect of Wnt signaling on microglial inflammation. Thus, the study of microglia, Wnt pathways, and their possible interactions may open up a new direction for understanding the mechanisms of neuroinflammation in AD. In this review, we summarize the functions of microglia and Wnt pathways and their roles in AD in order to provide new ideas for understanding the pathogenesis of AD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
99914
|
|
Laird M, Van der Lee A, Dumitrescu DG, Carcel C, Ouali A, Bartlett JR, Unno M, Wong Chi Man M. Styryl-Functionalized Cage Silsesquioxanes as Nanoblocks for 3-D Assembly. Organometallics 2020; 39:1896-906. [DOI: 10.1021/acs.organomet.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mathilde Laird
- ICGM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Arie Van der Lee
- Institut Européen des Membranes, Université de Montpellier, UMR 5632 CNRS ENSCM, 34095 Montpellier, France
| | - Dan G. Dumitrescu
- XRD2 Beamline, Elettra − Sincrotrone Trieste S.C.p.A., Strada Statale 14-km 163,5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Carole Carcel
- ICGM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Armelle Ouali
- ICGM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - John R. Bartlett
- Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan
| | | |
Collapse
|
99915
|
|
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - David J. Bernhardson
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
99916
|
|
Korany M, Mahmoud B, Ayoub SM, Sakr TM, Ahmed SA. Synthesis and radiolabeling of vitamin C-stabilized selenium nanoparticles as a promising approach in diagnosis of solid tumors. J Radioanal Nucl Chem 2020; 325:237-44. [DOI: 10.1007/s10967-020-07195-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
99917
|
|
Affiliation(s)
- Nabin Sarkar
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) 752050 Bhubaneswar India
| | - Mamata Mahato
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) 752050 Bhubaneswar India
| | - Sharanappa Nembenna
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) 752050 Bhubaneswar India
| |
Collapse
|
99918
|
|
Wang L, Lee JY, Gao L, Yin J, Duan Y, Jimenez LA, Adkins GB, Ren W, Li L, Fang J, Wang Y, Song J, Zhong W. A DNA aptamer for binding and inhibition of DNA methyltransferase 1. Nucleic Acids Res 2019; 47:11527-37. [PMID: 31733056 DOI: 10.1093/nar/gkz1083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/10/2023] Open
Abstract
DNA methyltransferases (DNMTs) are enzymes responsible for establishing and maintaining DNA methylation in cells. DNMT inhibition is actively pursued in cancer treatment, dominantly through the formation of irreversible covalent complexes between small molecular compounds and DNMTs that suffers from low efficacy and high cytotoxicity, as well as no selectivity towards different DNMTs. Herein, we discover aptamers against the maintenance DNA methyltransferase, DNMT1, by coupling Asymmetrical Flow Field-Flow Fractionation (AF4) with Systematic Evolution of Ligands by EXponential enrichment (SELEX). One of the identified aptamers, Apt. #9, contains a stem-loop structure, and can displace the hemi-methylated DNA duplex, the native substrate of DNMT1, off the protein on sub-micromolar scale, leading for effective enzymatic inhibition. Apt. #9 shows no inhibition nor binding activity towards two de novo DNMTs, DNMT3A and DNMT3B. Intriguingly, it can enter cancer cells with over-expression of DNMT1, colocalize with DNMT1 inside the nuclei, and inhibit the activity of DNMT1 in cells. This study opens the possibility of exploring the aptameric DNMT inhibitors being a new cancer therapeutic approach, by modulating DNMT activity selectively through reversible interaction. The aptamers could also be valuable tools for study of the functions of DNMTs and the related epigenetic mechanisms.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Ju Yong Lee
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Linfeng Gao
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Yaokai Duan
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Luis A Jimenez
- Program in Biomedical Sciences, University of California-Riverside, Riverside, CA 92521, USA
| | - Gary Brent Adkins
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Wendan Ren
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Linhui Li
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Jian Fang
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA.,Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | - Jikui Song
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA.,Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA.,Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
99919
|
|
List NH, Melin TRL, van Horn M, Saue T. Beyond the electric-dipole approximation in simulations of x-ray absorption spectroscopy: Lessons from relativistic theory. J Chem Phys 2020; 152:184110. [DOI: 10.1063/5.0003103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nanna Holmgaard List
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Timothé Romain Léo Melin
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS—Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Martin van Horn
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS—Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS—Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
99920
|
|
Abstract
Symmetry-adapted perturbation theory (SAPT) is a method for calculations of intermolecular (noncovalent) interaction energies. The set of SAPT codes that is described here, the current version named SAPT2020, includes virtually all variants of SAPT developed so far, among them two-body SAPT based on perturbative, coupled cluster, and density functional theory descriptions of monomers, three-body SAPT, and two-body SAPT for some classes of open-shell monomers. The properties of systems governed by noncovalent interactions can be predicted only if potential energy surfaces (force fields) are available. SAPT is the preferred approach for generating such surfaces since it is seamlessly connected to the asymptotic expansion of interaction energy. SAPT2020 includes codes for automatic development of such surfaces, enabling generation of complete dimer surfaces with a rigid monomer approximation for dimers containing about one hundred atoms. These codes can also be used to obtain surfaces including internal degrees of freedom of monomers.
Collapse
Affiliation(s)
- Javier Garcia
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Rafał Podeszwa
- Institute of Chemistry, University of Silesia at Katowice, Szkolna 9, Katowice, Poland
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
99921
|
|
Wang H, Luo H, Zhang Z, Zheng W, Yin Y, Qian H, Zhang J, Ma S. Pd-Catalyzed Enantioselective Syntheses of Trisubstituted Allenes via Coupling of Propargylic Benzoates with Organoboronic Acids. J Am Chem Soc. [DOI: 10.1021/jacs.0c02876] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hongwen Luo
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Zhan-Ming Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Yu Yin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
| | - Junliang Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, PR China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, PR China
| |
Collapse
|
99922
|
|
Liu J, Wu Z, Yang Y, Qian W, Wang L, Zeng X. 3-Nitrene-2-formylthiophene and 3-Nitrene-2-formylfuran: Matrix Isolation, Conformation, and Rearrangement Reactions. J Phys Chem A 2020; 124:3786-94. [PMID: 32309952 DOI: 10.1021/acs.jpca.9b11638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two new heteroarylnitrenes, 3-nitrene-2-formylthiophene (15/15') and 3-nitrene-2-formylfuran (16/16'), in the triplet ground state have been generated in solid Ar (10.0 K) and N2 (15.0 K) matrices by the 266 nm laser photolysis of 3-azido-2-formylthiophene (13) and 3-azido-2-formylfuran (14), respectively. According to the characterization with matrix-isolation IR spectroscopy and quantum chemical calculations at the B3LYP/6-311++G(3df,3pd) level, both nitrenes exhibit two conformations depending on the orientation of the formyl groups. Upon subsequent green-light irradiation (532 nm), both the nitrenes 15/15' and 16/16' undergo ring closure to form 3,2-thienoisoxazole (17) and 3,2-furoisoxazole (18), respectively. Traces of 3-imino-4,5-dihydrothiophene-2-ketene (19), formally formed through the intramolecular 1,4-H shift in the corresponding nitrenes 15/15', have been also identified among the laser photolysis products of the azide 13. In sharp contrast to the photochemistry, the high-vacuum flash pyrolysis (HVFP) of the azide 13 at ca. 1000 K mainly yields imino ketene in two conformations 19/19' together with traces of isoxazole 17. In addition to the reversible conformational interconversion in the imino ketene 19 ↔ 19', the photoisomerization from isoxazole 17 to imino ketene 19 has also been observed. The HVFP of the azide 14 at ca. 1000 K results in complete dissociation to HCN, C2H2, CO, CO2, H2O, and N2. Unlike the recently disclosed hydrogen-atom tunneling (HAT) in the transformation from the structurally related 2-formyl phenylnitrene (2) to imino ketene 3 in a cryogenic Ar-matrix, the absence of HAT in nitrenes 15 and 16 can be reasonably explained by the higher barrier heights and also larger barrier widths in the isomerization reactions.
Collapse
Affiliation(s)
- Jie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Zhuang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Yang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| | - Lina Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.,Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
99923
|
|
Deng C, Sun C, Wang Z, Tao Y, Chen Y, Lin J, Luo G, Lin B, Sun D, Zheng L. A Sodalite‐Type Silver Orthophosphate Cluster in a Globular Silver Nanocluster. Angew Chem Int Ed Engl 2020; 59:12659-63. [DOI: 10.1002/anie.202003143] [Citation(s) in RCA: 25] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Chenglong Deng
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Cunfa Sun
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Yunwen Tao
- Department of Chemistry Southern Methodist University 3215 Daniel Avenue Dallas TX 75275-0314 USA
| | - Yilin Chen
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Jinqing Lin
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Genggeng Luo
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Bizhou Lin
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Lansun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
99924
|
|
Ghosh AK, Kovela S, Osswald HL, Amano M, Aoki M, Agniswamy J, Wang YF, Weber IT, Mitsuya H. Structure-Based Design of Highly Potent HIV-1 Protease Inhibitors Containing New Tricyclic Ring P2-Ligands: Design, Synthesis, Biological, and X-ray Structural Studies. J Med Chem 2020; 63:4867-79. [PMID: 32348139 DOI: 10.1021/acs.jmedchem.0c00202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We describe here design, synthesis, and biological evaluation of a series of highly potent HIV-1 protease inhibitors containing stereochemically defined and unprecedented tricyclic furanofuran derivatives as P2 ligands in combination with a variety of sulfonamide derivatives as P2' ligands. These inhibitors were designed to enhance the ligand-backbone binding and van der Waals interactions in the protease active site. A number of inhibitors containing the new P2 ligand, an aminobenzothiazole as the P2' ligand and a difluorophenylmethyl as the P1 ligand, displayed very potent enzyme inhibitory potency and also showed excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants. The tricyclic P2 ligand has been synthesized efficiently in an optically active form using enzymatic desymmetrization of meso-1,2-(dihydroxymethyl)cyclohex-4-ene as the key step. We determined high-resolution X-ray structures of inhibitor-bound HIV-1 protease. These structures revealed extensive interactions with the backbone atoms of HIV-1 protease and provided molecular insights into the binding properties of these new inhibitors.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Satish Kovela
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Heather L. Osswald
- Department of Chemistry, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Masayuki Amano
- Departments of Infectious Diseases and Hematology, Kumamoto University Graduate School of Biomedical Sciences, Kumamoto 860-8556, Japan
| | - Manabu Aoki
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto 861-5598, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Irene T. Weber
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infection, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| |
Collapse
|
99925
|
|
Liu Y, Li A, Xu S, Xu W, Liu Y, Tian W, Xu B. Reversible Luminescent Switching in an Organic Cocrystal: Multi‐Stimuli‐Induced Crystal‐to‐Crystal Phase Transformation. Angew Chem Int Ed Engl 2020; 132:15210-5. [DOI: 10.1002/ange.202002220] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yingjie Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Aisen Li
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
99926
|
|
Fang R, Feng Z, Kirillov AM, Yang L. Density Functional Theory Study of the Metal-Catalyzed Cycloaddition of Indolyl-Allenes: Possible Reaction Pathways, Stereoselectivity, and Regioselectivity. Organometallics 2020; 39:1782-9. [DOI: 10.1021/acs.organomet.0c00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ran Fang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhitao Feng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Alexander M. Kirillov
- Centro de Quı́mica Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow 117198, Russia
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
99927
|
|
Affiliation(s)
- Masanori Wakizaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology Yokohama 226‐8503 Japan
| | - Hisanori Muramatsu
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology Yokohama 226‐8503 Japan
| | - Takane Imaoka
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology Yokohama 226‐8503 Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology Yokohama 226‐8503 Japan
| |
Collapse
|
99928
|
|
Abstract
Herein, we show two new DNA binding small molecules, NCD-RO and NCD-RC, and their ability to bind and selectively assemble ruthenium complexes on G-G mismatch DNA. This study used a naphthyridine carbamate dimer (NCD) as an efficient scaffold to assemble metal complexes in a controlled manner on dsDNA.
Collapse
Affiliation(s)
- Lu Ni
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| | | | | |
Collapse
|
99929
|
|
Xiong S, Chen F, Zhao T, Li A, Xu G, Sessler JL, He Q. Selective Inclusion of Fluoride within the Cavity of a Two-Wall Bis-calix[4]pyrrole. Org Lett 2020; 22:4451-5. [DOI: 10.1021/acs.orglett.0c01440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenglun Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Fangyuan Chen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
- College of Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Tian Zhao
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
99930
|
|
Kalaiselvan A, Vamsi Krishna IS, Nambiar AP, Edwin A, Reddy VS, Gokulnath S. Carbazole-Based Porphyrins: Synthesis, Structure–Photophysical Property Correlations, and Mercury Ion Sensing. Org Lett 2020; 22:4494-9. [DOI: 10.1021/acs.orglett.0c01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arumugam Kalaiselvan
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | | | - Anjana Prasad Nambiar
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | - Aathira Edwin
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| | | | - Sabapathi Gokulnath
- Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
99931
|
|
Jin J, Zhao Q. Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J Nanobiotechnology 2020; 18:75. [PMID: 32408880 DOI: 10.1186/s12951-020-00629-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nanoparticles (NPs) have been increasingly studied for radiosensitization. The principle of NPs radio-enhancement is to use high-atomic number NPs (e.g. gold, hafnium, bismuth and gadolinium) or deliver radiosensitizing substances, such as cisplatin and selenium. Nowadays, cancer immunotherapy is emerged as a promising treatment and immune checkpoint regulation has a potential property to improve clinical outcomes in cancer immunotherapy. Furthermore, NPs have been served as an ideal platform for immunomodulator system delivery. Owing to enhanced permeability and retention (EPR) effect, modified-NPs increase the targeting and retention of antibodies in target cells. The purpose of this review is to highlight the latest progress of nanotechnology in radiotherapy (RT) and immunotherapy, as well as combining these three strategies in cancer treatment. Overall, nanomedicine as an effective strategy for RT can significantly enhance the outcome of immunotherapy response and might be beneficial for clinical transformation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China. .,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China. .,South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
99932
|
|
Xu Q, Lo J, Lee S. Directly Printed Hollow Connectors for Microfluidic Interconnection with UV-Assisted Coaxial 3D Printing. Applied Sciences 2020; 10:3384. [DOI: 10.3390/app10103384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effective and reliable interconnections are crucial for microfluidics to connect with the macro world. Current microfluidic interfaces are still bulky, expensive, or with issues of clogging and material limitation. In this study, a novel ultraviolet (UV)-assisted coaxial three-dimensional (3D) printing approach was proposed to fabricate hollow microfluidic connectors with advantages of rapid prototyping, fixture-free, and materials compatible. An assembled coaxial nozzle was designed to enable co-flow extrusion, where the inner flow (water) served as the sacrificial layer and the outer flow (adhesive) was cured for shell formation. Furthermore, a converged UV-LED light source was attached to the coaxial nozzle for UV curing of adhesives. UV rheological characterizations were performed to study the UV curing kinematics, and the gelation time was employed to describe the state transition behaviors of UV curable adhesives used in the study. To explore requirements for successful hollow connectors direct printing, processing criteria such as co-flow regime and pre-cure time were investigated. The hollow connectors with an inner channel diameter of ~150 μ m and a height of 5 mm were successfully printed on polymethyl methacrylate (PMMA) and glass substrate. The integration feasibility of the proposed method was also demonstrated by the presented microfluidic device with printed hollow connectors.
Collapse
|
99933
|
|
Zhang Y, Zhou Y, Li Z, Chen H, Zhang L, Fan J. Computational investigation of geometrical effects in 2D boron nitride nanopores for DNA detection. Nanoscale 2020; 12:10026-34. [PMID: 32367083 DOI: 10.1039/c9nr10172a] [Citation(s) in RCA: 6] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanopore-based DNA detection and analysis have been intensively pursued theoretically and experimentally over the past decade. Owing to their nanometer thickness, 2D nanopores, such as boron nitride nanopores, show great potential for achieving DNA detection at base resolution. Although 2D nanopore devices hold great promise for next-generation DNA detection, efficiently and reliably detecting different DNA sequences is still a challenging problem. To date, most of the investigated nanopores adopt circular shapes. Because of the successful fabrication of triangular nanopores, investigating the shape effect of nanopores for DNA detection has become more and more important. In this study, boron nitride nanopores with circular, hexagonal, quadrangular and triangular shapes were modeled at various sizes. The translocation of homogeneous dsDNA through these nanopores was investigated by all-atom molecular dynamic simulations. The ionic conductivity of these nanopores was characterized and formulas for the total resistance based on the pore and access resistance were derived. The ionic current, dwell time and conductance blockade of homogeneous dsDNA were compared for nanopores with different shapes. We demonstrate that the charge distribution at the pore mouth plays an important role in the transportation of ions and DNA molecules. Our findings may shed light on the design of 2D nanopores and can facilitate the development of fast, low-cost and reliable nanopore-based DNA detection.
Collapse
Affiliation(s)
- Yonghui Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | | | | | | | | | | |
Collapse
|
99934
|
|
Han B, Li Y, Ji X, Song X, Ding S, Li B, Khalid H, Zhang Y, Xu X, Tian L, Dong H, Yu X, Hu W. Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of Molecule–Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. J Am Chem Soc. [DOI: 10.1021/jacs.0c02215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bin Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yao Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xuan Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xianneng Song
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shuaishuai Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Baili Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Hira Khalid
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yaogang Zhang
- School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiaona Xu
- School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
99935
|
|
Chandra A, Mebs S, Kundu S, Kuhlmann U, Hildebrandt P, Dau H, Ray K. Catalytic dioxygen reduction mediated by a tetranuclear cobalt complex supported on a stannoxane core. Dalton Trans 2020; 49:6065-73. [PMID: 32319492 DOI: 10.1039/d0dt00475h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis, spectroscopic characterization (infrared, electron paramagnetic resonance and X-ray absorption spectroscopies) and density functional theoretical calculations of a tetranuclear cobalt complex Co4L1 involving a nonheme ligand system, L1, supported on a stannoxane core are reported. Co4L1, similar to the previously reported hexanuclear cobalt complex Co6L2, shows a unique ability to catalyze dioxygen (O2) reduction, where product selectivity can be changed from a preferential 4e-/4H+ dioxygen-reduction (to water) to a 2e-/2H+ process (to hydrogen peroxide) only by increasing the temperature from -50 to 30 °C. Detailed mechanistic insights were obtained on the basis of kinetic studies on the overall catalytic reaction as well as by low-temperature spectroscopic (UV-Vis, resonance Raman and X-ray absorption spectroscopies) trapping of the end-on μ-1,2-peroxodicobalt(iii) intermediate 1. The Co4L1- and Co6L2-mediated O2-reduction reactions exhibit different reaction kinetics, and yield different ratios of the 2e-/2H+ and 4e-/4H+ products at -50 °C, which can be attributed to the different stabilities of the μ-1,2-peroxodicobalt(iii) intermediates formed upon dioxygen activation in the two cases. The deep mechanistic insights into the transition-metal mediated dioxygen reduction process that are obtained from the present study should serve as useful and broadly applicable principles for future design of more efficient catalysts in fuel cells.
Collapse
Affiliation(s)
- Anirban Chandra
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, D-12489 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
99936
|
|
Liu Y, Li A, Xu S, Xu W, Liu Y, Tian W, Xu B. Reversible Luminescent Switching in an Organic Cocrystal: Multi‐Stimuli‐Induced Crystal‐to‐Crystal Phase Transformation. Angew Chem Int Ed Engl 2020; 59:15098-103. [DOI: 10.1002/anie.202002220] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/02/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Yingjie Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Aisen Li
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Yu Liu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials Institute of Theoretical Chemistry Jilin University Qianjin Street No. 2699 Changchun 130012 China
| |
Collapse
|
99937
|
|
Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to Enhance the Metabolic Stability of Peptide-Based PET Radiopharmaceuticals. Molecules 2020; 25:E2314. [PMID: 32423178 DOI: 10.3390/molecules25102314] [Citation(s) in RCA: 39] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022] Open
Abstract
The high affinity and specificity of peptides towards biological targets, in addition to their favorable pharmacological properties, has encouraged the development of many peptide-based pharmaceuticals, including peptide-based positron emission tomography (PET) radiopharmaceuticals. However, the poor in vivo stability of unmodified peptides against proteolysis is a major challenge that must be overcome, as it can result in an impractically short in vivo biological half-life and a subsequently poor bioavailability when used in imaging and therapeutic applications. Consequently, many biologically and pharmacologically interesting peptide-based drugs may never see application. A potential way to overcome this is using peptide analogues designed to mimic the pharmacophore of a native peptide while also containing unnatural modifications that act to maintain or improve the pharmacological properties. This review explores strategies that have been developed to increase the metabolic stability of peptide-based pharmaceuticals. It includes modifications of the C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification, PEGylation and alkyl chain incorporation, cyclization and peptide bond substitution, and where those strategies have been, or could be, applied to PET peptide-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Brendan J. Evans
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew T. King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
| | - Lidia Matesic
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia;
| | - Joanne F. Jamie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
- Correspondence: ; Tel.: +61-2-9850-8283
| |
Collapse
|
99938
|
|
Hao H, Xie Q, Ai J, Wang Y, Bian H. Specific counter-cation effect on the molecular orientation of thiocyanate anions at the aqueous solution interface. Phys Chem Chem Phys 2020; 22:10106-15. [PMID: 32342973 DOI: 10.1039/d0cp00974a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the interfacial structure of aqueous electrolyte solutions is important and relevant to a wide range of systems, ranging from atmospheric aerosols to electrochemistry, and biological environments. Though significant efforts have been made to unravel the interfacial structure of water molecules, the structure and dynamics of ions at the interface have not yet been fully elucidated. Here, the interfacial structure of the aqueous solution was investigated directly by monitoring the thiocyanate (SCN-) anions using surface-specific sum frequency generation (SFG) vibrational spectroscopy. The molecular orientation of the SCN- anions and their adsorption behavior at the air/water interface were systematically determined by quantitative polarization analysis. The transition dipole of the CN stretching of the SCN- anion is oriented around 44° from the surface normal of the NaSCN aqueous solution surface and remained unchanged with the bulk concentration varying from 1 mol kg-1 to 13 mol kg-1. The free energy of adsorption of SCN- anions at the air/water interface was determined to be -1.53 ± 0.04 kcal mol-1. Furthermore, a new SFG peak positioned at 2080 cm-1 in the ppp polarization combination was observed at the air/15.0 mol kg-1 NaSCN aqueous solution interface for the first time. Concentration-dependent SFG analysis and density functional theory (DFT) calculation further revealed that the SCN- anions form an ion clustering structure at the air/water interface. The subtle and specific Na+ and K+ counter-cation effects on the interfacial structure of the SCN- anions at the aqueous solution interface were also observed, which showed that ion cooperativity plays an important role in affecting the interfacial structure of ions at the air/water interface. The results are expected to yield significant insights into the understanding of the structure of aqueous solution surfaces and the molecular level mechanism of the cationic Hofmeister effect.
Collapse
Affiliation(s)
- Hongxing Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Qing Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Jingwen Ai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Yuan Wang
- Institute of Science and Technology, University of Sanya, Sanya, Hainan 572022, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
99939
|
|
Abstract
The bottom-up fabrication of functional nanosystems for light-harvesting applications and excitonic devices often relies on molecular self-assembly. Gaining access to the intermediate species involved in self-assembly would provide valuable insights into the pathways via which the final architecture has evolved, yet difficult to achieve due to their intrinsically short-lived nature. Here, we employ a lab-on-a-chip approach as a means to obtain in situ control of the structural complexity of an artificial light-harvesting complex: molecular double-walled nanotubes. Rapid and stable dissolution of the outer wall was realized via microfluidic mixing thereby rendering the thermodynamically unstable inner tubes accessible to spectroscopy. By measurement of the linear dichroism and time-resolved photoluminescence of both double-walled nanotubes and isolated inner tubes we show that the optical (excitonic) properties of the inner tube are remarkably robust to such drastic perturbation of the system's supramolecular structure as removal of the outer wall. The developed platform is readily extendable to a broad range of practical applications such as e.g. self-assembling systems and molecular photonics devices.
Collapse
Affiliation(s)
- Björn Kriete
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Carolien J Feenstra
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| |
Collapse
|
99940
|
|
Yoo TH, Ryou H, Lee IG, Cho J, Cho BJ, Hwang WS. Comparison of Ga2O3 and TiO2 Nanostructures for Photocatalytic Degradation of Volatile Organic Compounds. Catalysts 2020; 10:545. [DOI: 10.3390/catal10050545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The photocatalytic degradation of formaldehyde, acetaldehyde, toluene, and styrene are compared using monoclinic Ga2O3 and anatase TiO2 nanostructures under ultraviolet-C irradiation. These Ga2O3 and TiO2 photocatalysts are characterized using a field emission scanning electron microscope, a powder X-ray diffraction system, the Brunauer–Emmett–Teller method, and a Fourier transform infrared spectrometer. The Ga2O3 shows a higher reaction rate constant (k, min−1) than TiO2 by a factor of 7.1 for toluene, 8.1 for styrene, 3.1 for formaldehyde, and 2.0 for acetaldehyde. The results demonstrate that the photocatalytic activity ratio of the Ga2O3 over the TiO2 becomes more prominent toward the aromatic compounds compared with the nonaromatic compounds. Highly energetic photo-generated carriers on the conduction/valence band-edge of the Ga2O3, in comparison with that of the TiO2, result in superior photocatalytic activity, in particular on aromatic volatile organic compounds (VOCs) with a high bond dissociation energy.
Collapse
|
99941
|
|
Deng C, Sun C, Wang Z, Tao Y, Chen Y, Lin J, Luo G, Lin B, Sun D, Zheng L. A Sodalite‐Type Silver Orthophosphate Cluster in a Globular Silver Nanocluster. Angew Chem Int Ed Engl 2020; 132:12759-63. [DOI: 10.1002/ange.202003143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chenglong Deng
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Cunfa Sun
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Yunwen Tao
- Department of Chemistry Southern Methodist University 3215 Daniel Avenue Dallas TX 75275-0314 USA
| | - Yilin Chen
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Jinqing Lin
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Genggeng Luo
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Bizhou Lin
- Key Laboratory of Environmental Friendly Function Materials Ministry of Education College of Materials Science and Engineering Huaqiao University Xiamen 361021 P. R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Lansun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
99942
|
|
Sushmita, Aggarwal T, Saini KM, Verma AK. Olefin-Oriented Selective Synthesis of Linear and Branched N-Alkylated Heterocycles by Hydroamination: Olefin-Oriented Selective Synthesis of Linear and Branched N-Alkylated Heterocycles by Hydroamination. European J Org Chem 2020; 2020:3312-6. [DOI: 10.1002/ejoc.202000373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sushmita
- Department of Chemistry; University of Delhi; 110007 Delhi India
| | - Trapti Aggarwal
- Department of Chemistry; University of Delhi; 110007 Delhi India
| | | | | |
Collapse
|
99943
|
|
Hayama N, Kobayashi Y, Sekimoto E, Miyazaki A, Inamoto K, Kimachi T, Takemoto Y. A solvent-dependent chirality-switchable thia-Michael addition to α,β-unsaturated carboxylic acids using a chiral multifunctional thiourea catalyst. Chem Sci 2020; 11:5572-6. [PMID: 32874501 DOI: 10.1039/d0sc01729a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An asymmetric thia-Michael addition of arylthiols to α,β-unsaturated carboxylic acids using a thiourea catalyst that bears arylboronic acid and tertiary amine moieties is reported.
An asymmetric thia-Michael addition of arylthiols to α,β-unsaturated carboxylic acids using a thiourea catalyst that bears arylboronic acid and tertiary amine moieties is reported. Both enantiomers of the Michael adducts can be obtained in high enantioselectivity and good yield merely by changing the solvent. The origin of the chirality switch in the products was examined in each solvent via spectroscopic analyses.
Collapse
Affiliation(s)
- Noboru Hayama
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan . .,School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan .
| | - Eriko Sekimoto
- School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Anna Miyazaki
- School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Kiyofumi Inamoto
- School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Tetsutaro Kimachi
- School of Pharmacy and Pharmaceutical Sciences , Mukogawa Women's University , 11-68, 9-Bancho, Koshien , Nishinomiya , Hyogo 663-8179 , Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan .
| |
Collapse
|
99944
|
|
Huet L, Perfetto A, Muniz-miranda F, Campetella M, Adamo C, Ciofini I. General Density-Based Index to Analyze Charge Transfer Phenomena: From Models to Butterfly Molecules. J Chem Theory Comput 2020; 16:4543-53. [DOI: 10.1021/acs.jctc.0c00296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Léon Huet
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| | - Anna Perfetto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| | - Francesco Muniz-Miranda
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| | - Marco Campetella
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
- France and Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Theoretical Chemistry and Modelling Group (CTM), 75005 Paris, France
| |
Collapse
|
99945
|
|
Dembowski M, Prange MP, Pouvreau M, Graham TR, Bowden ME, N'Diaye A, Schenter GK, Clark SB, Clark AE, Rosso KM, Pearce CI. Inference of principal species in caustic aluminate solutions through solid-state spectroscopic characterization. Dalton Trans 2020; 49:5869-80. [PMID: 32307503 DOI: 10.1039/d0dt00229a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tetrahedrally coordinated aluminate Al(OH)4- and dialuminate Al2O(OH)62- anions are considered to be major species in aluminum-rich alkaline solutions. However, their relative abundance remains difficult to spectroscopically quantify due to local structure similarities and poorly understood effects arising from extent of polymerization and counter-cations. To help unravel these relationships here we report detailed characterization of three solid-phase analogues as structurally and compositionally well-defined reference materials. We successfully synthesized a cesium salt of the aluminate monomer, CsAl(OH)4·2H2O, for comparison to potassium and rubidium salts of the aluminate dimer, K2Al2O(OH)6, and Rb2Al2O(OH)6, respectively. Single crystal and powder X-ray diffraction methods clearly reveal the structure and purity of these materials for which a combination of 27Al MAS-NMR, Al K-edge X-ray absorption and Raman/IR spectroscopies was then used to fingerprint the two major tetrahedrally coordinated Al species. The resulting insights into the effect of Al-O-Al bridge formation between aluminate tetrahedra on spectroscopic features may also be generalized to the many materials that are based on this motif.
Collapse
Affiliation(s)
- Mateusz Dembowski
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99946
|
|
Guo Y, Harutyunyan SR. Copper-catalysed alkylation of heterocyclic acceptors with organometallic reagents. Beilstein J Org Chem 2020; 16:1006-21. [PMID: 32509032 DOI: 10.3762/bjoc.16.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Copper-catalysed asymmetric C–C bond-forming reactions using organometallic reagents have developed into a powerful tool for the synthesis of complex molecules with single or multiple stereogenic centres over the past decades. Among the various acceptors employed in such reactions, those with a heterocyclic core are of particular importance because of the frequent occurrence of heterocyclic scaffolds in the structures of chiral natural products and bioactive molecules. Hence, this review focuses on the progress made over the past 20 years for heterocyclic acceptors.
Collapse
Affiliation(s)
- Yafei Guo
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
99947
|
|
Affiliation(s)
- Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| |
Collapse
|
99948
|
|
Wu Y, Duan H, Yang K, Guo H, Huang F. Ignition and Combustion Developments of Granular Explosive (RDX/HMX) in Response to Mild‐Impact Loading. Prop , Explos , Pyrotech 2020; 45:1250-68. [DOI: 10.1002/prep.201900365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanqing Wu
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongzheng Duan
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of Technology Beijing 100081 P. R. China
| | - Kun Yang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongfu Guo
- Xi'an Modern Chemistry Research Institute Xi'an Shanxi Province P. R. China
| | - Fenglei Huang
- State Key Laboratory of Explosion Science and TechnologyBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
99949
|
|
|
99950
|
|
Salazar E, Faraji S. Theoretical study of cyclohexadiene/hexatriene photochemical interconversion using spin-Flip time-Dependent density functional theory. Mol Phys 2020; 118:e1764120. [DOI: 10.1080/00268976.2020.1764120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Edison Salazar
- Theoretical Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Shirin Faraji
- Theoretical Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| |
Collapse
|