51
|
Xie Y, Hang Y, Wang Y, Sleightholm R, Prajapati DR, Bader J, Yu A, Tang W, Jaramillo L, Li J, Singh RK, Oupický D. Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy. ACS NANO 2020; 14:255-271. [PMID: 31927946 PMCID: PMC7041410 DOI: 10.1021/acsnano.9b03978] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomedicines achieve tumor-targeted delivery mainly through enhanced permeability and retention (EPR) effect following intravenous (IV) administration. Unfortunately, the EPR effect is severely compromised in pancreatic cancer due to hypovascularity and dense desmoplastic stroma. Intraperitoneal (IP) administration may be an effective EPR-independent local delivery approach to target peritoneal tumors. Besides improved delivery, effective combination delivery strategies are needed to improve pancreatic cancer therapy by targeting both cancer cells and cellular interactions within the tumor stroma. Here, we described simple cholesterol-modified polymeric CXCR4 antagonist (PCX) nanoparticles (to block cancer-stroma interactions) for codelivery of anti-miR-210 (to inactivate stroma-producing pancreatic stellate cells (PSCs)) and siKRASG12D (to kill pancreatic cancer cells). IP administration delivered the nanoparticles to an orthotopic syngeneic pancreatic tumors as a result of preferential localization to the tumors and metastases with disrupted mesothelium and effective tumor penetration. The local IP delivery resulted in nearly 15-fold higher tumor accumulation than delivery by IV injection. Through antagonism of CXCR4 and downregulation of miR-210/KRASG12D, the triple-action nanoparticles favorably modulated desmoplastic tumor microenvironment via inactivating PSCs and promoting the infiltration of cytotoxic T cells. The combined therapy displayed improved therapeutic effect when compared with individual therapies as documented by the delayed tumor growth, depletion of stroma, reduction of immunosuppression, inhibition of metastasis, and prolonged survival. Overall, we present data that a local IP delivery of a miRNA/siRNA combination holds the potential to improve pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Yazhe Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Richard Sleightholm
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Dipakkumar R Prajapati
- Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Johannes Bader
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy , Ludwig-Maximilians-Universität München , 81337 Munich , Germany
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Lee Jaramillo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
- Bohemica Pharmaceuticals, LLC , La Vista , Nebraska 68128 , United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Rakesh K Singh
- Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
52
|
Intraperitoneal aerosolized drug delivery: Technology, recent developments, and future outlook. Adv Drug Deliv Rev 2020; 160:105-114. [PMID: 33132169 DOI: 10.1016/j.addr.2020.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Current therapies for patients with peritoneal metastases (PM) are only moderately effective. Recently, a novel locoregional treatment method for PM was introduced, consisting of a combination of laparoscopy with intraperitoneal (IP) delivery of anticancer agents as an aerosol. This 'pressurized intraperitoneal aerosol chemotherapy' (PIPAC) may enhance tissue drug penetration by the elevated IP pressure during CO2 capnoperitoneum. Also, repeated PIPAC cycles allow to accurately stage peritoneal disease and verify histological response to treatment. This review provides an overview of the rationale, indications, and currently used technology for therapeutic IP nebulization, and discusses the basic mechanisms governing aerosol particle transport and peritoneal deposition. We discuss early clinical results in patients with advanced, irresectable PM and highlight the potential of electrostatic aerosol precipitation. Finally, we discuss promising novel approaches, including nebulization of nanoparticles and prolonged release formulations.
Collapse
|
53
|
Lee G, Han S, Inocencio I, Cao E, Hong J, Phillips ARJ, Windsor JA, Porter CJH, Trevaskis NL. Lymphatic Uptake of Liposomes after Intraperitoneal Administration Primarily Occurs via the Diaphragmatic Lymphatics and is Dependent on Liposome Surface Properties. Mol Pharm 2019; 16:4987-4999. [DOI: 10.1021/acs.molpharmaceut.9b00855] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Given Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Iasmin Inocencio
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jiwon Hong
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Anthony R. J. Phillips
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - John A. Windsor
- Surgical and Translational Research Centre, University of Auckland, Auckland 1023, New Zealand
- HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland 1023, New Zealand
| | - Christopher J. H. Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Natalie L. Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
54
|
De Clercq K, Xie F, De Wever O, Descamps B, Hoorens A, Vermeulen A, Ceelen W, Vervaet C. Preclinical evaluation of local prolonged release of paclitaxel from gelatin microspheres for the prevention of recurrence of peritoneal carcinomatosis in advanced ovarian cancer. Sci Rep 2019; 9:14881. [PMID: 31619730 PMCID: PMC6795903 DOI: 10.1038/s41598-019-51419-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/25/2019] [Indexed: 01/12/2023] Open
Abstract
Patients with advanced ovarian cancer develop recurrence despite initial treatment response to standard treatment of surgery and intravenous/intraperitoneal (IP) chemotherapy, partly due to a limited peritoneal exposure time of chemotherapeutics. Paclitaxel-loaded genipin-crosslinked gelatin microspheres (PTX-GP-MS) are evaluated for the treatment of microscopic peritoneal carcinomatosis and prevention of recurrent disease. The highest drug load (39.2 µg PTX/mg MS) was obtained by immersion of GP-MS in aqueous PTX nanosuspension (PTXnano-GP-MS) instead of ethanolic PTX solution (PTXEtOH-GP-MS). PTX release from PTX-GP-MS was prolonged. PTXnano-GP-MS displayed a more controlled release compared to a biphasic release from PTXEtOH-GP-MS. Anticancer efficacy of IP PTX-GP-MS (PTXEtOH-GP-MS, D = 7.5 mg PTX/kg; PTXnano-GP-MS D = 7.5 and 35 mg PTX/kg), IP nanoparticular albumin-bound PTX (D = 35 mg PTX/kg) and controls (0.9% NaCl, blank GP-MS) was evaluated in a microscopic peritoneal carcinomatosis xenograft mouse model. PTXnano-GP-MS showed superior anticancer efficacy with significant increased survival time, decreased peritoneal carcinomatosis index score and ascites incidence. However, prolonged PTX release over 14 days from PTXnano-GP-MS caused drug-related toxicity in 27% of high-dosed PTXnano-GP-MS-treated mice. Dose simulations for PTXnano-GP-MS demonstrated an optimal survival without drug-induced toxicity in a range of 7.5-15 mg PTX/kg. Low-dosed PTXnano-GP-MS can be a promising IP drug delivery system to prevent recurrent ovarian cancer.
Collapse
Affiliation(s)
- Kaat De Clercq
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Feifan Xie
- Laboratory for Medical Biochemistry and Clinical Analysis, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Benedicte Descamps
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - An Vermeulen
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Wim Ceelen
- Department of Gastro-intestinal Surgery, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
55
|
Trombino S, Servidio C, Curcio F, Cassano R. Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics 2019; 11:E407. [PMID: 31408954 PMCID: PMC6722772 DOI: 10.3390/pharmaceutics11080407] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022] Open
Abstract
Hyaluronic acid (HA) is a natural, linear, endogenous polysaccharide that plays important physiological and biological roles in the human body. Nowadays, among biopolymers, HA is emerging as an appealing starting material for hydrogels design due to its biocompatibility, native biofunctionality, biodegradability, non-immunogenicity, and versatility. Since HA is not able to form gels alone, chemical modifications, covalent crosslinking, and gelling agents are always needed in order to obtain HA-based hydrogels. Therefore, in the last decade, different strategies for the design of physical and chemical HA hydrogels have been developed, such as click chemistry reactions, enzymatic and disulfide crosslinking, supramolecular assembly via inclusion complexation, and so on. HA-based hydrogels turn out to be versatile platforms, ranging from static to smart and stimuli-responsive systems, and for these reasons, they are widely investigated for biomedical applications like drug delivery, tissue engineering, regenerative medicine, cell therapy, and diagnostics. Furthermore, the overexpression of HA receptors on various tumor cells makes these platforms promising drug delivery systems for targeted cancer therapy. The aim of the present review is to highlight and discuss recent advances made in the last years on the design of chemical and physical HA-based hydrogels and their application for biomedical purposes, in particular, drug delivery. Notable attention is given to HA hydrogel-based drug delivery systems for targeted therapy of cancer and osteoarthritis.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Camilla Servidio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy.
| |
Collapse
|
56
|
Wu X, Zhao G, He Y, Wang W, Yang CS, Zhang J. Pharmacological mechanisms of the anticancer action of sodium selenite against peritoneal cancer in mice. Pharmacol Res 2019; 147:104360. [PMID: 31326526 DOI: 10.1016/j.phrs.2019.104360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
Peritoneal carcinomatosis has an extremely poor overall prognosis and remains one of the greatest oncologic challenges. Prior studies in mice show that sodium selenite administered intraperitoneally is highly effective in inhibiting cancer cells implanted in the peritoneal cavity. However, the pharmacological mechanism remains unclear. The present study revisited the therapeutic effect of selenite and elucidated its mechanism of action. We found that intraperitoneal delivery of selenite to cancer cells in the peritoneal cavity of mice rapidly and robustly killed the cancer cells, with a therapeutic efficacy higher than that of cisplatin. The action of selenite was associated with the following pharmacological mechanisms. 1) Favorable drug distribution: selenite increased selenium levels in the cancer cells by 250-fold, while in normal tissues only by 7-fold. 2) Optimal selenium form: selenite was converted in the cancer cells mainly into selenium nanoparticles (SeNPs), which are more efficient than selenite in producing reactive oxygen species (ROS). 3) Persistent hijacking of two pro-survival systems to generate ROS: selenite did not impair thioredoxin- and glutaredoxin-coupled glutathione systems, which facilitate SeNPs to generate ROS and caused severe organelle injury and apoptotic response in the cancer cells. Overall, these mechanisms tend to maximize the potential of selenite in producing ROS in cancer cells and underlie selenite as a candidate therapeutic agent for peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Ximing Wu
- Laboratory of Redox Biology, School of Tea& Food Science and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Guangshan Zhao
- Laboratory of Redox Biology, School of Tea& Food Science and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yufeng He
- Laboratory of Redox Biology, School of Tea& Food Science and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenping Wang
- Laboratory of Redox Biology, School of Tea& Food Science and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jinsong Zhang
- Laboratory of Redox Biology, School of Tea& Food Science and State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
57
|
Shariati M, Willaert W, Ceelen W, De Smedt SC, Remaut K. Aerosolization of Nanotherapeutics as a Newly Emerging Treatment Regimen for Peritoneal Carcinomatosis. Cancers (Basel) 2019; 11:cancers11070906. [PMID: 31261685 PMCID: PMC6678324 DOI: 10.3390/cancers11070906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Recent advances in locoregional chemotherapy have opened the door to new approaches for the clinical management of peritoneal carcinomatosis (PC) by facilitating the delivery of anti-neoplastic agents directly to the tumor site, while mitigating adverse effects typically associated with systemic administration. In particular, an innovative intra-abdominal chemotherapeutic approach, known as Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC), was recently introduced to the intraperitoneal (IP) therapy regimens as a palliative therapeutic option in patients with PC, presumably providing a better drug distribution pattern together with deeper drug penetration into tumor nodules within the peritoneal space. Furthermore, the progress of nanotechnology in the past few decades has prompted the application of different nanomaterials in IP cancer therapy, offering new possibilities in this field ranging from an extended retention time to sustained drug release in the peritoneal cavity. This review highlights the progress, challenges, and opportunities in utilizing cancer nanotherapeutics for locoregional drug delivery, with a special emphasis on the aerosolization approach for intraperitoneal therapies.
Collapse
Affiliation(s)
- Molood Shariati
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Wouter Willaert
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Laboratory of Experimental Surgery, Department of Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Laboratory of Experimental Surgery, Department of Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
58
|
High Pressure Nebulization (PIPAC) Versus Injection for the Intraperitoneal Administration of mRNA Complexes. Pharm Res 2019; 36:126. [PMID: 31236829 DOI: 10.1007/s11095-019-2646-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a novel technique delivering drugs into the abdominal cavity as an aerosol under high pressure. It is hypothesized to have advantages such as enhancing tissue uptake, distributing drugs homogeneously within the closed and expanded abdominal cavity and higher local concentration of drugs in the peritoneal cavity. However, the clinical trials of PIPAC so far are limited to liquid chemotherapeutic solution, and the applicability of biomolecules (such as mRNA, siRNA and oligonucleotide) is not known. We aimed to investigate the feasibility of administrating mRNA lipoplexes to the peritoneal cavity via high pressure nebulization. METHODS We firstly investigated the influences of nebulization on physicochemical properties and in vitro transfection efficiency of mRNA lipoplexes. Then, mRNA lipoplexes were delivered to healthy rats through intravenous injection, intraperitoneal injection and PIPAC, respectively. RESULTS mRNA lipoplexes can withstand the high pressure applied during the PIPAC procedure in vitro. Bioluminescence localized to the peritoneal cavity of rats after administration by IP injection and nebulization, while intravenous injection mainly induced protein expression in the spleen. CONCLUSION This study demonstrated that local nebulization is feasible to apply mRNA complexes in the peritoneal cavity during a PIPAC procedure.
Collapse
|
59
|
Sarfarazi A, Lee G, Mirjalili SA, Phillips ARJ, Windsor JA, Trevaskis NL. Therapeutic delivery to the peritoneal lymphatics: Current understanding, potential treatment benefits and future prospects. Int J Pharm 2019; 567:118456. [PMID: 31238102 DOI: 10.1016/j.ijpharm.2019.118456] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
The interest in approaches to deliver therapeutics to the lymphatic system has increased in recent years as the lymphatics have been discovered to play an important role in a range of disease states such as cancer metastases, inflammatory and metabolic disease, and acute and critical illness. Therapeutic delivery to lymph has the potential to enhance treatment of these conditions. Currently much of the existing data explores therapeutic delivery to the lymphatic vessels and nodes that drain peripheral tissues and the intestine. Relatively little focus has been given to understanding the anatomy, function and therapeutic delivery to the peritoneal lymphatics. Gaining a better understanding of peritoneal lymphatic structure and function would contribute to the understanding of disease processes involving these lymphatics and facilitate the development of delivery systems to target therapeutics to the peritoneal lymphatics. This review explores the basic anatomy and ultrastructure of the peritoneal lymphatics system, the lymphatic drainage pathways from the peritoneum, and therapeutic and delivery system characteristics (size, lipophilicity and surface properties) that favour lymph uptake and retention after intraperitoneal delivery. Finally, techniques that can be used to quantify uptake into peritoneal lymph are outlined, providing a platform for future studies.
Collapse
Affiliation(s)
- Ali Sarfarazi
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Given Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - S Ali Mirjalili
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand; HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
60
|
Ando H, Abu Lila AS, Fukushima M, Matsuoka R, Shimizu T, Okuhira K, Ishima Y, Huang CL, Wada H, Ishida T. A simplified method for manufacturing RNAi therapeutics for local administration. Int J Pharm 2019; 564:256-262. [PMID: 31015002 DOI: 10.1016/j.ijpharm.2019.04.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/30/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
RNA interference (RNAi) is one of the most promising strategies for cancer therapeutics. The successful translation of RNAi therapeutics to a clinic setting requires a delivery system that is efficient and simple to upscale. In this study, we devised a simple industrial method to manufacture lipoplex, which includes short hairpin RNA against the expression of thymidylate synthase (TS shRNA) - a key molecule for DNA biosynthesis. An aqueous solution of TS shRNA was gently mixed with either a precursor of cationic liposome (Presome DF-1) or a cationic lipid mixture in an o/w emulsion. This solution was subsequently lyophilized under optimal conditions to obtain either FD-lipoplex-1 or FD-lipoplex-2, respectively. With this method, a lipoplex in activated form was obtained via a simple "one-step" hydration with saline. Both forms of FD-lipoplex showed physicochemical properties comparable to those of conventional lipoplex. FD-lipoplexes stably retained TS shRNA within their formulations in the presence of tumor ascites fluid. Intraperitoneal treatment with either FD-lipoplex-1 or FD-lipoplex-2 provided a therapeutic level of efficacy comparable to that of conventional lipoplex in the treatment of a peritoneal disseminated gastric cancer mouse model. Collectively, established freeze-drying-based methods for RNAi-therapeutic preparation could realistically be used in a clinical setting for the treatment of patients with peritoneal disseminated cancer.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan; Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; Department of Pharmaceutics, College of Pharmacy, Hail University, Hail, Saudi Arabia
| | - Masakazu Fukushima
- Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan; Delta-Fly Pharma, Inc., 37-5 Nishikino, Miyajima, Kawauchi-cho, Tokushima, Japan
| | - Rie Matsuoka
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Keiichiro Okuhira
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Cheng-Long Huang
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Wada
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan; Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| |
Collapse
|
61
|
Le DHT, Méndez-López E, Wang C, Commandeur U, Aranda MA, Steinmetz NF. Biodistribution of Filamentous Plant Virus Nanoparticles: Pepino Mosaic Virus versus Potato Virus X. Biomacromolecules 2019; 20:469-477. [PMID: 30516960 PMCID: PMC6485256 DOI: 10.1021/acs.biomac.8b01365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nanoparticles with high aspect ratios have favorable attributes for drug delivery and bioimaging applications based on their enhanced tissue penetration and tumor homing properties. Here, we investigated a novel filamentous viral nanoparticle (VNP) based on the Pepino mosaic virus (PepMV), a relative of the established platform Potato virus X (PVX). We studied the chemical reactivity of PepMV, produced fluorescent versions of PepMV and PVX, and then evaluated their biodistribution in mouse tumor models. We found that PepMV can be conjugated to various small chemical modifiers including fluorescent probes via the amine groups of surface-exposed lysine residues, yielding VNPs carrying payloads of up to 1600 modifiers per particle. Although PepMV and PVX share similarities in particle size and shape, PepMV achieved enhanced tumor homing and less nonspecific tissue distribution compared to PVX in mouse models of triple negative breast cancer and ovarian cancer. In conclusion, PepMV provides a novel tool for nanomedical research but more research is needed to fully exploit the potential of plant VNPs for health applications.
Collapse
Affiliation(s)
- Duc H. T. Le
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Chao Wang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Ulrich Commandeur
- Department of Molecular Biology, RWTH-Aachen University, Aachen 52064, Germany
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| |
Collapse
|
62
|
|
63
|
Kurtz F, Struller F, Horvath P, Solass W, Bösmüller H, Königsrainer A, Reymond MA. Feasibility, Safety, and Efficacy of Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) for Peritoneal Metastasis: A Registry Study. Gastroenterol Res Pract 2018; 2018:2743985. [PMID: 30473706 PMCID: PMC6220392 DOI: 10.1155/2018/2743985] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/10/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a novel drug delivery system with superior pharmacological properties for treating peritoneal metastasis (PM). Safety and efficacy results of PIPAC with cisplatin/doxorubicin or oxaliplatin from a registry cohort are presented. METHODS IRB-approved registry study. Retrospective analysis. No predefined inclusion criteria, individual therapeutic recommendation by the interdisciplinary tumor board. Safety assessment with CTCAE 4.0. Histological assessment of tumor response by an independent pathologist using the 4-tied peritoneal regression grading system (PRGS). Mean PRGS and ascites volume were assessed at each PIPAC. RESULTS A total of 142 PIPAC procedures were scheduled in 71 consecutive patients with PM from gastric (n = 26), colorectal (n = 17), hepatobiliary/pancreatic (n = 9), ovarian (n = 6), appendiceal (n = 5) origin, pseudomyxoma peritonei (n = 4), and other tumors (n = 3). Mean age was 58 ± 13 years. Patients were heavily pretreated. Mean PCI was 19 ± 13. Laparoscopic nonaccess rate was 11/142 procedures (7.7%). Mean number of PIPAC/patient was 2. All patients were eligible for safety analysis. There was no procedure-related mortality. There were 2.8% intraoperative and 4.9% postoperative complications. 39 patients underwent more than one PIPAC and were eligible for efficacy analysis, and PRGS could be assessed in 36 of them. In 24 patients (67%), PRGS improved or remained unchanged at PIPAC#2, reflecting tumor regression or stable disease. Ascites was present in 24 patients and diminished significantly under therapy. Median survival was 11.8 months (95% CI: 7.45-16.2 months) from PIPAC#1. CONCLUSION PIPAC is feasible, safe, and well-tolerated and can induce histological regression in a significant proportion of pretreated PM patients. This trial is registered with NCT03210298.
Collapse
Affiliation(s)
- Florian Kurtz
- Dept. of General Surgery, Karls-Eberhard University Tübingen, Germany
| | - Florian Struller
- Dept. of General Surgery, Karls-Eberhard University Tübingen, Germany
| | - Philipp Horvath
- Dept. of General Surgery, Karls-Eberhard University Tübingen, Germany
| | - Wiebke Solass
- Institute of Pathology, Karls-Eberhard University Tübingen, Germany
| | - Hans Bösmüller
- Institute of Pathology, Karls-Eberhard University Tübingen, Germany
| | | | - Marc A. Reymond
- Dept. of General Surgery, Karls-Eberhard University Tübingen, Germany
- National Center for Pleura and Peritoneum, Comprehensive Cancer Center South-Western Germany, Tübingen, Stuttgart, Germany
| |
Collapse
|
64
|
Shamsi M, Sedaghatkish A, Dejam M, Saghafian M, Mohammadi M, Sanati-Nezhad A. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv 2018; 25:846-861. [PMID: 29589479 PMCID: PMC7011950 DOI: 10.1080/10717544.2018.1455764] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intraperitoneal (IP) chemotherapy has revived hopes during the past few years for the management of peritoneal disseminations of digestive and gynecological cancers. Nevertheless, a poor drug penetration is one key drawback of IP chemotherapy since peritoneal neoplasms are notoriously resistant to drug penetration. Recent preclinical studies have focused on targeting the aberrant tumor microenvironment to improve intratumoral drug transport. However, tumor stroma targeting therapies have limited therapeutic windows and show variable outcomes across different cohort of patients. Therefore, the development of new strategies for improving the efficacy of IP chemotherapy is a certain need. In this work, we propose a new magnetically assisted strategy to elevate drug penetration into peritoneal tumor nodules and improve IP chemotherapy. A computational model was developed to assess the feasibility and predictability of the proposed active drug delivery method. The key tumor pathophysiology, including a spatially heterogeneous construct of leaky vasculature, nonfunctional lymphatics, and dense extracellular matrix (ECM), was reconstructed in silico. The transport of intraperitoneally injected magnetic nanoparticles (MNPs) inside tumors was simulated and compared with the transport of free cytotoxic agents. Our results on magnetically assisted delivery showed an order of magnitude increase in the final intratumoral concentration of drug-coated MNPs with respect to free cytotoxic agents. The intermediate MNPs with the radius range of 200-300 nm yield optimal magnetic drug targeting (MDT) performance in 5-10 mm tumors while the MDT performance remains essentially the same over a large particle radius range of 100-500 nm for a 1 mm radius small tumor. The success of MDT in larger tumors (5-10 mm in radius) was found to be markedly dependent on the choice of magnet strength and tumor-magnet distance while these two parameters were less of a concern in small tumors. We also validated in silico results against experimental results related to tumor interstitial hypertension, conventional IP chemoperfusion, and magnetically actuated movement of MNPs in excised tissue.
Collapse
Affiliation(s)
- Milad Shamsi
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada.,c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Amir Sedaghatkish
- c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Morteza Dejam
- d Department of Petroleum Engineering, College of Engineering and Applied Science , University of Wyoming , Laramie , WY , USA
| | - Mohsen Saghafian
- c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Mehdi Mohammadi
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada
| | - Amir Sanati-Nezhad
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada
| |
Collapse
|
65
|
Suffian IM, Wang JTW, Faruqu FN, Benitez J, Nishimura Y, Ogino C, Kondo A, Al-Jamal KT. Engineering Human Epidermal Growth Receptor 2-Targeting Hepatitis B Virus Core Nanoparticles for siRNA Delivery in Vitro and in Vivo. ACS APPLIED NANO MATERIALS 2018; 1:3269-3282. [PMID: 30613831 PMCID: PMC6312360 DOI: 10.1021/acsanm.8b00480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/04/2018] [Indexed: 05/10/2023]
Abstract
Hepatitis B virus core (HBc) particles acquire the capacity to disassemble and reassemble in a controlled manner, allowing entrapment and delivery of drugs and macromolecules to cells. HBc particles are made of 180-240 copies of 21 kDa protein monomers, assembled into 30-34 nm diameter icosahedral particles. In this study, we aimed at formulating HBc particles for the delivery of siRNA for gene silencing in vitro and in vivo. We have previously reported recombinant HBc particles expressing ZHER2 affibodies, specifically targeting human epidermal growth receptor 2 (HER2)-expressing cancer cells (ZHER2-ΔHBc). siRNA was encapsulated within the ZHER2-ΔHBc particles following disassembly and reassembly. The ZHER2-ΔHBc-siRNA hybrids were able to secure the encapsulated siRNA from serum and nucleases in vitro. Enhanced siRNA uptake in HER2-expressing cancer cells treated with ZHER2-ΔHBc-siRNA hybrids was observed compared to the nontargeted HBc-siRNA hybrids in a time- and dose-dependent manner. A successful in vitro polo-like kinase 1 (PLK1) gene knockdown was demonstrated in cancer cells treated with ZHER2-ΔHBc-siPLK1 hybrids, to levels comparable to commercial transfecting reagents. Interestingly, ZHER2-ΔHBc particles exhibit intrinsic capability of reducing the solid tumor mass, independent of siPLK1 therapy, in an intraperitoneal tumor model following intraperitoneal injection.
Collapse
Affiliation(s)
- Izzat
F. M. Suffian
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
| | - Julie T.-W. Wang
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
| | - Farid N. Faruqu
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
| | - Julio Benitez
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
| | - Yuya Nishimura
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Khuloud T. Al-Jamal
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
- K.T.A.-J. Tel: +44(0)20-7848-4525. E-mail:
| |
Collapse
|
66
|
Park EJ, Ahn J, Gwak SW, Park KS, Baik SH, Hwang SJ. Pharmacologic Properties of the Carrier Solutions for Hyperthermic Intraperitoneal Chemotherapy: Comparative Analyses Between Water and Lipid Carrier Solutions in the Rat Model. Ann Surg Oncol 2018; 25:3185-3192. [PMID: 30027459 PMCID: PMC6132421 DOI: 10.1245/s10434-018-6628-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 12/28/2022]
Abstract
Background Carrier solutions play an important role in the distribution, plasma absorption, chemical stability, and solubility of anticancer agents during hyperthermic intraperitoneal chemotherapy (HIPEC). In the current study, lipophilic properties of carrier solutions were evaluated to determine whether they improved anticancer drug absorption rates using mitomycin-C (MMC) or oxaliplatin HIPEC as compared to hydrophilic carrier solutions. Methods Sprague-Dawley rats were divided into two groups: MMC and oxaliplatin treatment groups. Each group was then further subdivided by carrier solution: Dianeal® PD-2 peritoneal dialysis solution, 5% dextrose solution and 20% lipid solution (Lipision®). HIPEC was performed over 60 min at 41–42 °C using the anticancer drugs MMC (35 mg/m2) or oxaliplatin (460 mg/m2). The plasma area under the curve (AUC; AUCplasma), peritoneal AUC (AUCperitoneum), and peritoneal/plasma AUC ratios were compared among HIPEC carrier solutions. Results Plasma drug concentrations were significantly different among carrier solutions, varying by time. In contrast, peritoneal drug concentrations did not change with carrier solution. In the MMC group, the peritoneal/plasma AUC ratio of a lipid solution was three times higher than Dianeal® (p < 0.001). In the oxaliplatin group, the peritoneal/plasma AUC ratio was significantly different between carrier solutions (p = 0.046). Although the oxaliplatin AUCperitoneum did not vary (p = 0.941), the AUCplasma of a lipid solution was lower than that of 5% dextrose solution (p = 0.039). Conclusions The lipid carrier solution increases the peritoneal/plasma AUC ratio and decreases plasma absorption rates. However, further study is required before clinical uses, considering its pharmacologic properties and possible risks after HIPEC. Electronic supplementary material The online version of this article (10.1245/s10434-018-6628-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eun Jung Park
- Division of Colon and Rectal Surgery, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Junhyun Ahn
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea.,College of Pharmacy, Yonsei University, Incheon, Korea
| | - Sang Won Gwak
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea.,College of Pharmacy, Yonsei University, Incheon, Korea
| | - Kyung Su Park
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Seung Hyuk Baik
- Division of Colon and Rectal Surgery, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea. .,College of Pharmacy, Yonsei University, Incheon, Korea.
| |
Collapse
|
67
|
Takechi-Haraya Y, Goda Y, Sakai-Kato K. Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7805-7812. [PMID: 29869883 DOI: 10.1021/acs.langmuir.8b01121] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Division of Drugs , National Institute of Health Sciences , 3-25-26 Tonomachi , Kawasaki-ku, Kawasaki City , Kanagawa 210-9501 , Japan
| | - Yukihiro Goda
- National Institute of Health Sciences , 3-25-26 Tonomachi , Kawasaki-ku, Kawasaki City , Kanagawa 210-9501 , Japan
| | - Kumiko Sakai-Kato
- Division of Drugs , National Institute of Health Sciences , 3-25-26 Tonomachi , Kawasaki-ku, Kawasaki City , Kanagawa 210-9501 , Japan
| |
Collapse
|
68
|
Van De Sande L, Graversen M, Hubner M, Pocard M, Reymond M, Vaira M, Cosyns S, Willaert W, Ceelen W. Intraperitoneal aerosolization of albumin-stabilized paclitaxel nanoparticles (Abraxane™) for peritoneal carcinomatosis - a phase I first-in-human study. Pleura Peritoneum 2018; 3:20180112. [PMID: 30911657 PMCID: PMC6405003 DOI: 10.1515/pp-2018-0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/19/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Nanoparticles hold considerable promise for aerosol-based intraperitoneal delivery in patients with carcinomatosis. Recently, results from preclinical and early clinical trials suggested that albumin-bound paclitaxel (ABP, Abraxane™) may result in superior efficacy in the treatment of peritoneal metastases (PM) compared to the standard solvent-based paclitaxel formulation (Taxol™). Here, we propose a phase I study of pressurized intraperitoneal aerosol chemotherapy (PIPAC) using ABP in patients with upper Gastrointestinal, breast, or ovarian cancer. METHODS Eligible patients with advanced, biopsy-proven PM from ovarian, breast, gastric, hepatobiliary, or pancreatic origin will undergo three PIPAC treatments using ABP with a 4-week interval. The dose of ABP will be escalated from 35 to 140 mg/m² using a Bayesian approach until the maximally tolerated dose is determined. The primary end point is dose-limiting toxicity. Secondary analyses include surgical morbidity, non-access rate, pharmacokinetic and pharmacodynamic analyses, quality of life, and exploratory circulating biomarker analyses. DISCUSSION ABP holds considerable promise for intraperitoneal aerosol delivery. The aim of this study is to determine the dose level for future randomized phase II trials using ABP in PIPAC therapy. TRIAL REGISTRATION This trial is registered as EudraCT: 2017-001688-20 and Clinicaltrials.gov: NCT03304210.
Collapse
Affiliation(s)
| | - Martin Graversen
- Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Martin Hubner
- Department of Visceral Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Marc Pocard
- Digestive and Cancer Surgical Unit, Lariboisière Hospital, Paris, France
| | - Marc Reymond
- Department of Surgery and Transplantation, University Hospital, Tuebingen, Germany
| | | | - Sarah Cosyns
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Wouter Willaert
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
69
|
Bakker MH, Grillaud M, Wu DJ, Fransen PPKH, de Hingh IH, Dankers PYW. Cholesterol Modification of an Anticancer Drug for Efficient Incorporation into a Supramolecular Hydrogel System. Macromol Rapid Commun 2018; 39:e1800007. [PMID: 29806084 DOI: 10.1002/marc.201800007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/18/2018] [Indexed: 12/14/2022]
Abstract
Treatment of cancer in the peritoneal cavity may be improved with macroscale drug delivery systems that offer control over intraperitoneal concentration of chemotherapeutic agents. Currently, suitable drug carriers to facilitate a sustained release of small hydrophilic drugs such as mitomycin C are lacking. For this purpose, a pH-responsive supramolecular hydrogel based on ureido-pyrimidinone (UPy) chemistry is utilized here. In order to provide a sustained release profile, a lipophilicity-increasing cholesterol conjugation strategy is proposed that enhances affinity between the modified drug (mitomycin-PEG24 -cholesterol, MPC) and the hydrophobic compartments in the UPy gel. Additional advantages of cholesterol conjugation include improved chemical stability and potency of mitomycin C. In vitro the tunability of the system to obtain optimal effective concentrations over time is demonstrated with a combinatorial treatment of mitomycin C and MPC in one UPy hydrogel delivery system.
Collapse
Affiliation(s)
- Maarten H Bakker
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Maxime Grillaud
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Dan Jing Wu
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Peter-Paul K H Fransen
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Ignace H de Hingh
- Department of Surgical Oncology, Catharina Cancer Institute, 5623, EJ, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems and Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| |
Collapse
|
70
|
Simón-Gracia L, Hunt H, Teesalu T. Peritoneal Carcinomatosis Targeting with Tumor Homing Peptides. Molecules 2018; 23:molecules23051190. [PMID: 29772690 PMCID: PMC6100015 DOI: 10.3390/molecules23051190] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
Over recent decades multiple therapeutic approaches have been explored for improved management of peritoneally disseminated malignancies—a grim condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to achieve elevated local concentration and extended half-life of the drugs in the peritoneal cavity to improve their anticancer efficacy. However, IP-administered chemotherapeutics have a short residence time in the IP space, and are not tumor selective. An increasing body of work suggests that functionalization of drugs and nanoparticles with targeting peptides increases their peritoneal retention and provides a robust and specific tumor binding and penetration that translates into improved therapeutic response. Here we review the progress in affinity targeting of intraperitoneal anticancer compounds, imaging agents and nanoparticles with tumor-homing peptides. We review classes of tumor-homing peptides relevant for PC targeting, payloads for peptide-guided precision delivery, applications for targeted compounds, and the effects of nanoformulation of drugs and imaging agents on affinity-based tumor delivery.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia.
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
71
|
Carlier C, Mathys A, De Jaeghere E, Steuperaert M, De Wever O, Ceelen W. Tumour tissue transport after intraperitoneal anticancer drug delivery. Int J Hyperthermia 2018; 33:534-542. [PMID: 28540828 DOI: 10.1080/02656736.2017.1312563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intraperitoneal (IP) drug delivery, either as an intraoperative chemoperfusion or as an adjuvant, repeated instillation, is an established treatment modality in patients with peritoneal carcinomatosis. The efficacy of IP drugs depends on its ability to penetrate the tumour stroma in order to reach their (sub)cellular target. It is known, that drug penetration after IP delivery is limited to a few millimetres. Here, we review the basic tissue transport mechanisms after IP delivery and discuss the biophysical barriers and obstacles that limit penetration distance. In addition, we review the physical and pharmaceutical interventions that have been studied in order to improve delivery of small molecular and macromolecular drugs after IP instillation. These interventions could inform the design of future clinical trials aiming at an improved efficacy of IP-based drug delivery in carcinomatosis patients.
Collapse
Affiliation(s)
- Charlotte Carlier
- a Laboratory for Experimental Surgery, Department of Surgery , Ghent University , Ghent , Belgium
| | - Ada Mathys
- a Laboratory for Experimental Surgery, Department of Surgery , Ghent University , Ghent , Belgium
| | - Emiel De Jaeghere
- b Department of Radiation Oncology and Experimental Cancer Research , Ghent University , Ghent , Belgium
| | - Margo Steuperaert
- c Biofluid, Tissue and Solid Mechanics for Medical Applications (bioMMeda), Department of Electronics and Information Systems, iMinds Medical IT Department , Ghent University , Ghent , Belgium
| | - Olivier De Wever
- b Department of Radiation Oncology and Experimental Cancer Research , Ghent University , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG), Ghent University , Ghent , Belgium
| | - Wim Ceelen
- a Laboratory for Experimental Surgery, Department of Surgery , Ghent University , Ghent , Belgium.,d Cancer Research Institute Ghent (CRIG), Ghent University , Ghent , Belgium
| |
Collapse
|
72
|
Padmakumar S, Parayath N, Leslie F, Nair SV, Menon D, Amiji MM. Intraperitoneal chemotherapy for ovarian cancer using sustained-release implantable devices. Expert Opin Drug Deliv 2018; 15:481-494. [PMID: 29488406 DOI: 10.1080/17425247.2018.1446938] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) remains to be the most lethal of all gynecological malignancies mainly due to its asymptomatic nature. The late stages are manifested with predominant metastases confined to the peritoneal cavity. Although there has been a substantial progress in the treatment avenue with different therapeutic interventions, the overall survival rate of patients remain poor due to relapse and drug resistance. AREAS COVERED The pharmacokinetic advantages offered by intraperitoneal (IP) chemotherapy due to peritoneal-plasma barrier can be potentially exploited for EOC relapse treatment. The ability to retain high concentrations of chemo-drugs with high AUC peritoneum/plasma for prolonged durations in the peritoneal cavity can be utilized effectively through the clinical adoption of drug delivery systems (DDSs) which obviates the need for indwelling catheters. The metronomic dosing strategy could enhance anti-tumor efficacy with a continuous, low dose of chemo-drugs providing minimal systemic toxicity. EXPERT OPINION The development of a feasible, non-catheter based, IP DDS, retaining the peritoneal-drug levels, with less systemic levels could offer significant survival advantages as a patient-compliant therapeutic strategy. Suturable-implantable devices based on metronomic dosing, eluting drug in a sustained manner at low doses, could be implanted surgically post-debulking for treatment of refractory EOC patients.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA.,b Centre for Nanosciences and Molecular Medicine , Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham , Kochi , India
| | - Neha Parayath
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA
| | - Fraser Leslie
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA
| | - Shantikumar V Nair
- b Centre for Nanosciences and Molecular Medicine , Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham , Kochi , India
| | - Deepthy Menon
- b Centre for Nanosciences and Molecular Medicine , Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham , Kochi , India
| | - Mansoor M Amiji
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA
| |
Collapse
|
73
|
Xu G, Li B, Wang T, Wan J, Zhang Y, Huang J, Shen Y. Enhancing the anti-ovarian cancer activity of quercetin using a self-assembling micelle and thermosensitive hydrogel drug delivery system. RSC Adv 2018; 8:21229-21242. [PMID: 35539921 PMCID: PMC9080896 DOI: 10.1039/c8ra03274b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/16/2019] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer, as one of the killers that threaten women’s health, has been studied extensively. As a natural bioflavonoid with prospective effects, quercetin is highly recognized for its anti-cancer applications. However, one of the major challenges that quercetin faces is its poor water solubility, instability in physiological media, and subsequent poor bioavailability. Thus, optimizing the ideal drug delivery options is necessary to facilitate the harnessing of the maximum benefits from quercetin. In this study, a quercetin-loaded thermosensitive injectable hydrogel system (Qu-M–hydrogel composites) was constructed based on nanotechnology. Quercetin was encapsulated into MPEG-PCL (with a high drug loading of 7% and minor particle size of 32 nm) and then added into the blank thermosensitive hydrogel Pluronic F-127. The Qu-M–hydrogel composites showed a much slower release than Qu-M in vivo. Moreover, the cytotoxicity, apoptosis induction, and anti-tumor effects of the Qu-M–hydrogel composites on the abdominal SKOV-3 ovarian cancer mouse models were investigated in vivo. Compared with other groups, the Qu-M–hydrogel composites exhibited improved apoptosis induction and cell growth inhibition effects and in vivo trials showed a better balance between the anti-tumor efficacy in the Qu-M–hydrogel composite group than in other groups at an equal drug dose. In conclusion, the prepared Qu-M–hydrogel composites enhanced the anti-tumor activity by providing a high local quercetin concentration, sustained and stable drug release, extended drug retention inside the tumor, and low toxicity to normal tissues. The Qu-M–hydrogel composites might have great potential for clinical application in anti-ovarian cancer activity. In this study, a quercetin-loaded thermosensitive injectable hydrogel system (Qu-M–hydrogel composites) was constructed based on nanotechnology.![]()
Collapse
Affiliation(s)
- Guangya Xu
- Department of Anatomical Pathology and Pathophysiology
- College of Medicine
- Chengdu University
- Chengdu
- People’s Republic of China
| | - Bin Li
- Department of Anatomical Pathology and Pathophysiology
- College of Medicine
- Chengdu University
- Chengdu
- People’s Republic of China
| | - Ting Wang
- Department of Anatomical Pathology and Pathophysiology
- College of Medicine
- Chengdu University
- Chengdu
- People’s Republic of China
| | - Jun Wan
- Department of Anatomical Pathology and Pathophysiology
- College of Medicine
- Chengdu University
- Chengdu
- People’s Republic of China
| | - Yan Zhang
- Department of Anatomical Pathology and Pathophysiology
- College of Medicine
- Chengdu University
- Chengdu
- People’s Republic of China
| | - Jingwei Huang
- Department of Anatomical Pathology and Pathophysiology
- College of Medicine
- Chengdu University
- Chengdu
- People’s Republic of China
| | - Yangmei Shen
- Department of Pathology
- West China Second University Hospital
- Sichuan University
- Chengdu
- PR China
| |
Collapse
|
74
|
Nowacki M, Peterson M, Kloskowski T, McCabe E, Guiral DC, Polom K, Pietkun K, Zegarska B, Pokrywczynska M, Drewa T, Roviello F, Medina EA, Habib SL, Zegarski W. Nanoparticle as a novel tool in hyperthermic intraperitoneal and pressurized intraperitoneal aerosol chemotheprapy to treat patients with peritoneal carcinomatosis. Oncotarget 2017; 8:78208-78224. [PMID: 29100461 PMCID: PMC5652850 DOI: 10.18632/oncotarget.20596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022] Open
Abstract
The treatment of peritoneal surface malignances has changed considerably over the last thirty years. Unfortunately, the palliative is the only current treatment for peritoneal carcinomatosis (PC). Two primary intraperitoneal chemotherapeutic methods are used. The first is combination of cytoreductive surgery (CRS) and Hyperthermic IntraPEritoneal Chemotherapy (HIPEC), which has become the gold standard for many cases of PC. The second is Pressurized IntraPeritoneal Aerosol Chemotheprapy (PIPAC), which is promising direction to minimally invasive as safedrug delivery. These methods were improved through multicenter studies and clinical trials that yield important insights and solutions. Major method development has been made through nanomedicine, specifically nanoparticles. Here, we are presenting the latest advances of nanoparticles and their application to precision diagnostics and improved treatment strategies for PC. These advances will likely develop both HIPEC and PIPAC methods that used for in vitro and in vivo studies. Several benefits of using nanoparticles will be discussed including: 1) Nanoparticles as drug delivery systems; 2) Nanoparticles and Near Infrred (NIR) Irradiation; 3) use of nanoparticles in perioperative diagnostic and individualized treatment planning; 4) use of nanoparticles as anticancer dressing's, hydrogels and as active beeds for optimal reccurence prevention; and 5) finally the curent in vitro and in vivo studies and clinical trials of nanoparticles. The current review highlighted use of nanoparticles as novel tools in improving drug delivery to be effective for treatment patients with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Maciej Nowacki
- Chair of Department of Surgical Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre of Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Margarita Peterson
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Ludwik Rydygier's Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Eleanor McCabe
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Delia Cortes Guiral
- Department of General Surgery (Peritoneal Surface Surgical Oncology), Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Karol Polom
- General Surgery and Surgical Oncology Department, University of Siena, Siena, Italy
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Pietkun
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Bydgoszcz, Poland
| | - Barbara Zegarska
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Ludwik Rydygier's Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Ludwik Rydygier's Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Franco Roviello
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Bydgoszcz, Poland
| | - Edward A. Medina
- Department of Pathology, University of Texas Health, San Antonio, TX, USA
| | - Samy L. Habib
- Department of Cell Systems and Anatomy, University of Texas Health Geriatric Research Education, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Wojciech Zegarski
- Chair of Department of Surgical Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre of Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
75
|
Hunt H, Simón-Gracia L, Tobi A, Kotamraju VR, Sharma S, Nigul M, Sugahara KN, Ruoslahti E, Teesalu T. Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. J Control Release 2017; 260:142-153. [PMID: 28603028 PMCID: PMC6129970 DOI: 10.1016/j.jconrel.2017.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Gastrointestinal and gynecological malignancies disseminate in the peritoneal cavity - a condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to improve therapeutic index of anticancer drugs used for PC treatment. Activity of IP anticancer drugs can be further potentiated by encapsulation in nanocarriers and/or affinity targeting with tumor-specific affinity ligands, such as tumor homing peptides. Here we evaluated a novel tumor penetrating peptide, linTT1 (AKRGARSTA), as a PC targeting ligand for nanoparticles. We first demonstrated that the primary homing receptor for linTT1, p32 (or gC1qR), is expressed on the cell surface of peritoneal carcinoma cell lines of gastric (MKN-45P), ovarian (SKOV-3), and colon (CT-26) origin, and that peritoneal tumors in mice and clinical peritoneal carcinoma explants express p32 protein accessible from the IP space. Iron oxide nanoworms (NWs) functionalized with the linTT1 peptide were taken up and routed to mitochondria in cultured PC cells. NWs functionalized with linTT1 peptide in tandem with a pro-apoptotic [D(KLAKLAK)2] peptide showed p32-dependent cytotoxicity in MKN-45P, SKOV-3, and CT-26 cells. Upon IP administration in mice bearing MKN-45P, SKOV-3, and CT-26 tumors, linTT1-functionalized NWs showed robust homing and penetration into malignant lesions, whereas only a background accumulation was seen in control tissues. In tumors, the linTT1-NW accumulation was seen predominantly in CD31-positive blood vessels, in LYVE-1-positive lymphatic structures, and in CD11b-positive tumor macrophages. Experimental therapy of mice bearing peritoneal MKN-45P xenografts and CT-26 syngeneic tumors with IP linTT1-D(KLAKLAK)2-NWs resulted in significant reduction of weight of peritoneal tumors and significant decrease in the number of metastatic tumor nodules, whereas treatment with untargeted D(KLAKLAK)2-NWs had no effect. Our data show that targeting of p32 with linTT1 tumor-penetrating peptide improves tumor selectivity and antitumor efficacy of IP pro-apoptotic NWs. P32-directed intraperitoneal targeting of other anticancer agents and nanoparticles using peptides and other affinity ligands may represent a general strategy to increase their therapeutic index.
Collapse
Affiliation(s)
- Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Allan Tobi
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shweta Sharma
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mait Nigul
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Kazuki N Sugahara
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
76
|
Gao Y, Liu L, Shen B, Chen X, Wang L, Wang L, Feng W, Huang C, Li F. Amphiphilic PEGylated Lanthanide-Doped Upconversion Nanoparticles for Significantly Passive Accumulation in the Peritoneal Metastatic Carcinomatosis Models Following Intraperitoneal Administration. ACS Biomater Sci Eng 2017; 3:2176-2184. [PMID: 33440565 DOI: 10.1021/acsbiomaterials.7b00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inorganic nanoparticles have emerged as attractive materials for cancer research, because of their exceptional physical properties and multifunctional engineering. However, inorganic nanoparticle accumulation in the tumors located in the abdominal cavity after intravenous (IV) administration is confined because of the peritoneum-plasma barrier. To improve this situation, we developed lanthanide-doped upconversion nanoparticles (UCNPs), coated by amphiphilic polyethylene glycol (P-PEG), serving as a representative of inorganic nanoparticles. Following intraperitoneal (IP) administration into the peritoneal metastatic carcinomatosis models, UCNPs coated by P-PEG (P-PEG-UCNPs) passively accumulated in the cancerous tissues at a larger amount than that in the main normal organs. On the basis of spatial proximity, P-PEG-UCNPs administrated via the IP route exhibited higher passive accumulation in the tumors in the abdominal cavity compared to that via the IV route. It is suggested that IP administration could be a promising strategy for inorganic nanoparticles to be efficaciously applied in peritoneal cancer research.
Collapse
Affiliation(s)
- Yilin Gao
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Lang Liu
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P.R. China
| | - Bin Shen
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Xiaofeng Chen
- Center of Analysis and Measurement, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Li Wang
- Center of Analysis and Measurement, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Liya Wang
- College of Chemical and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P.R. China
| | - Wei Feng
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Chunhui Huang
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | - Fuyou Li
- Department of Chemistry & Institute of Biomedicine Science & State Key Laboratory of Molecular Engineering of polymers, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| |
Collapse
|
77
|
Lemoine L, Sugarbaker P, Van der Speeten K. Drugs, doses, and durations of intraperitoneal chemotherapy: standardising HIPEC and EPIC for colorectal, appendiceal, gastric, ovarian peritoneal surface malignancies and peritoneal mesothelioma. Int J Hyperthermia 2017; 33:582-592. [PMID: 28540826 DOI: 10.1080/02656736.2017.1291999] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Lieselotte Lemoine
- Department of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Paul Sugarbaker
- Washington Cancer Institute, Washington Hospital Center, Washington DC, USA
| | - Kurt Van der Speeten
- Department of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium
| |
Collapse
|
78
|
Kitayama J, Ishigami H, Yamaguchi H, Yamada J, Soma D, Miyato H, Kamei T, Lefor AK, Sata N. Optimal drug delivery for intraperitoneal paclitaxel (PTX) in murine model. Pleura Peritoneum 2017; 2:95-102. [PMID: 30911637 DOI: 10.1515/pp-2017-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/02/2017] [Indexed: 01/20/2023] Open
Abstract
Background Repeated intraperitoneal (IP) administration of paclitaxel (PTX) with concurrent systemic chemotherapy is clinically effective for the treatment of peritoneal metastases (PM) from gastric cancer. However, it is unclear how biochemical modifications may affect the pharmacokinetics and bioavailability of IP administered PTX. Methods In a xenograft PM model using human gastric cancer cells, MKN45, fluorescein-conjugated PTX (OG-PTX) was given IP and the intra-tumor distribution of PTX examined with fluorescein microscopy. Results After IP injection, PTX was seen to directly infiltrate up to several hundred micrometers from the surface of the PM. Co-injection with 5 % non-animal stabilized hyaluronic acid increased PTX infiltration and suppressed the development of PM more efficiently than PTX alone. PTX solubilized with amphiphilic polymer composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) efficiently formed a micellar formation 50-100 nm in diameter. IP injection of the nanomicellar PTX (PTX-30W) also showed significantly enhanced tumor infiltration and further inhibition of the growth of PM compared with PTX solubilized with Cremophor-ethanol (PTX-Cre). Finally, IP administration of NK105, another nanomicellar PTX, inhibited the growth of subcutaneous tumors as well as PM, compared with conventional PTX-Cre in the same murine model. Conclusions PTX administered IP directly infiltrates PM and are thus a useful strategy for the treatment of PM. Drug modification with nanotechnology may further enhance penetration of PM resulting in improved clinical efficacy.
Collapse
Affiliation(s)
- Joji Kitayama
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | | | - Hironori Yamaguchi
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Jun Yamada
- Department of Surgical Oncology, University of Tokyo, Tokyo, Japan
| | - Daisuke Soma
- Department of Surgical Oncology, University of Tokyo, Tokyo, Japan
| | - Hideyo Miyato
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Takao Kamei
- Department of Surgical Oncology, University of Tokyo, Tokyo, Japan
| | - Alan Kawarai Lefor
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Gastrointestinal Surgery, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
79
|
188Re-Liposome Can Induce Mitochondrial Autophagy and Reverse Drug Resistance for Ovarian Cancer: From Bench Evidence to Preliminary Clinical Proof-of-Concept. Int J Mol Sci 2017; 18:ijms18050903. [PMID: 28441355 PMCID: PMC5454816 DOI: 10.3390/ijms18050903] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/13/2022] Open
Abstract
Despite standard treatment, about 70% of ovarian cancer will recur. Cancer stem cells (CSCs) have been implicated in the drug-resistance mechanism. Several drug resistance mechanisms have been proposed, and among these, autophagy plays a crucial role for the maintenance and tumorigenicity of CSCs. Compared to their differentiated counterparts, CSCs have been demonstrated to display a significantly higher level of autophagy flux. Moreover, mitophagy, a specific type of autophagy that selectively degrades excessive or damaged mitochondria, is shown to contribute to cancer progression and recurrence in several types of tumors. Nanomedicine has been shown to tackle the CSCs problem by overcoming drug resistance. In this work, we developed a nanomedicine, 188Re-liposome, which was demonstrated to target autophagy and mitophagy in the tumor microenvironment. Of note, the inhibition of autophagy and mitophagy could lead to significant tumor inhibition in two xenograft animal models. Lastly, we presented two cases of recurrent ovarian cancer, both in drug resistance status that received a level I dose from a phase I clinical trial. Both cases developing drug resistance showed drug sensitivity to 188Re-liposome. These results suggest that inhibition of autophagy and mitophagy by a nanomedicine may be a novel strategy to overcome drug resistance in ovarian cancer.
Collapse
|
80
|
Exploring the HYDRAtion method for loading siRNA on liposomes: the interplay between stability and biological activity in human undiluted ascites fluid. Drug Deliv Transl Res 2016; 7:241-251. [DOI: 10.1007/s13346-016-0329-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
81
|
Khomyakov V, Ryabov A, Ivanov A, Bolotina L, Utkina A, Volchenko N, Kaprin A. Bidirectional chemotherapy in gastric cancer with peritoneal metastasis combining intravenous XELOX with intraperitoneal chemotherapy with low-dose cisplatin and Doxorubicin administered as a pressurized aerosol: an open-label, Phase-2 study (PIPAC-GA2). Pleura Peritoneum 2016; 1:159-166. [PMID: 30911619 PMCID: PMC6386494 DOI: 10.1515/pp-2016-0017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 01/11/2023] Open
Abstract
Background: Peritoneal metastasis (PM) develop in more than 50 % of gastric cancer (GC) patients. Median survival without treatment is not more than 3-7 months, and 8-12 months after modern combination chemotherapy. Innovative therapeutic approaches are urgently needed. Methods: Phase-2, open label prospective clinical trial assessing safety and efficacy of bidirectional chemotherapy for treating peritoneal metastasis of gastric cancer (PMGC). Treatment protocol included initial staging laparoscopy or laparotomy, 3-4 courses of systemic chemotherapy (XELOX) followed by Pressurized IntraPeritoneal Aerosol Chemotherapy (PIPAC) procedures every 6 weeks until progression of disease or death. Primary endpoints were overall survival and histological peritoneal regression grading score after rebiopsy. Results: 31 patients were included (9 men, 22 women, mean age 52 years), 24 with synchronous PM at diagnosis, 7 with metachronous PM after previous chemotherapy. Mean PCI was 13.8 (min-max 6-34). XELOX was administered in all patients and combined with 56 PIPAC procedures. Complete and partial pathological response was found in 60 % of the 15 patients eligible for tumor response assessment (4 and 5 patients, respectively). Median survival was 13 months. Conclusions: Bidirectional chemotherapy combining XELOX with PIPAC with cisplatin and doxororubicin is well tolerated, can induce objective tumor regression and is associated with a promising survival in PMGC.
Collapse
Affiliation(s)
- Vladimir Khomyakov
- Moscow Research Oncological Institute n.a. P.A. Herzen, Thoracoabdominal, 2-nd Botkinsky proesd, 3, Moscow 125284, Russian Federation
| | - Andrey Ryabov
- Moscow Research Oncological Institute n.a. P.A. Herzen, Thoracoabdominal, Moscow, Russian Federation
| | - Andrey Ivanov
- Moscow Research Oncological Institute n.a. P.A. Herzen, Thoracoabdominal, Moscow, Russian Federation
| | - Larisa Bolotina
- Moscow Research Oncological Institute n.a. P.A. Herzen, Chemotherapy
| | - Anna Utkina
- Moscow Research Oncological Institute n.a. P.A. Herzen, Thoracoabdominal, Moscow, Russian Federation
| | | | - Andrey Kaprin
- Moscow Research Oncological Institute n.a. P.A. Herzen, Director General
| |
Collapse
|