51
|
Bronisz-Budzyńska I, Kozakowska M, Pietraszek-Gremplewicz K, Madej M, Józkowicz A, Łoboda A, Dulak J. NRF2 Regulates Viability, Proliferation, Resistance to Oxidative Stress, and Differentiation of Murine Myoblasts and Muscle Satellite Cells. Cells 2022; 11:cells11203321. [PMID: 36291188 PMCID: PMC9600498 DOI: 10.3390/cells11203321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Increased oxidative stress can slow down the regeneration of skeletal muscle and affect the activity of muscle satellite cells (mSCs). Therefore, we evaluated the role of the NRF2 transcription factor (encoded by the Nfe2l2 gene), the main regulator of the antioxidant response, in muscle cell biology. We used (i) an immortalized murine myoblast cell line (C2C12) with stable overexpression of NRF2 and (ii) primary mSCs isolated from wild-type and Nfe2l2 (transcriptionally)-deficient mice (Nfe2l2tKO). NRF2 promoted myoblast proliferation and viability under oxidative stress conditions and decreased the production of reactive oxygen species. Furthermore, NRF2 overexpression inhibited C2C12 cell differentiation by down-regulating the expression of myogenic regulatory factors (MRFs) and muscle-specific microRNAs. We also showed that NRF2 is indispensable for the viability of mSCs since the lack of its transcriptional activity caused high mortality of cells cultured in vitro under normoxic conditions. Concomitantly, Nfe2l2tKO mSCs grown and differentiated under hypoxic conditions were viable and much more differentiated compared to cells isolated from wild-type mice. Taken together, NRF2 significantly influences the properties of myoblasts and muscle satellite cells. This effect might be modulated by the muscle microenvironment.
Collapse
|
52
|
Casadevall C, Sancho-Muñoz A, Vicente I, Pascual-Guardia S, Admetlló M, Gea J. Influence of COPD systemic environment on the myogenic function of muscle precursor cells in vitro. Respir Res 2022; 23:282. [PMID: 36242002 PMCID: PMC9569059 DOI: 10.1186/s12931-022-02203-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Loss of muscle mass and function are well-recognized systemic manifestations of chronic obstructive pulmonary disease (COPD). Acute exacerbations, in turn, significantly contribute to upgrade these systemic comorbidities. Involvement of myogenic precursors in muscle mass maintenance and recovery is poorly understood. The aim of the present study was to investigate the effects of the vascular systemic environment from stable and exacerbated COPD patients on the myogenic behavior of human muscle precursor cells (MPC) in vitro. Methods: Serum from healthy controls and from stable and exacerbated COPD patients (before and after Methylprednisolone treatment) was used to stimulate human MPC cultures. Proliferation analysis was assessed through BrdU incorporation assays. MPC differentiation was examined through real-time RT-PCR, western blot and immunofluorescence analysis. Results: Stimulation of MPCs with serum obtained from stable COPD patients did not affect myogenic precursor cell function. The vascular systemic environment during an acute exacerbation exerted a mitotic effect on MPCs without altering myogenic differentiation outcome. After Methylprednisolone treatment of acute exacerbated COPD patients, however, the mitotic effect was further amplified, but it was followed by a deficient differentiation capacity. Moreover, these effects were prevented when cells were co-treated with the glucocorticoid receptor antagonist Mifepristone. Conclusion: Our findings suggest that MPC capacity is inherently preserved in COPD patients, but is compromised after systemic administration of MP. This finding strengthens the concept that glucocorticoid treatment over the long term can negatively impact myogenic stem cell fate decisions and interfere with muscle mass recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02203-6.
Collapse
Affiliation(s)
- Carme Casadevall
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), C/ Dr. Aigüader 88, 08003, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 08003, Barcelona, Spain. .,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Antonio Sancho-Muñoz
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 08003, Barcelona, Spain.,Pulmonology Department, Hospital del Mar-IMIM, 08003, Barcelona, Spain
| | - Ignacio Vicente
- Hospital de l'Esperança, Av. Santuario, Ptge. de Sant Josep la Muntanya 12, 08024, Barcelona, Spain
| | - Sergi Pascual-Guardia
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), C/ Dr. Aigüader 88, 08003, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,Pulmonology Department, Hospital del Mar-IMIM, 08003, Barcelona, Spain
| | - Mireia Admetlló
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 08003, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,Pulmonology Department, Hospital del Mar-IMIM, 08003, Barcelona, Spain
| | - Joaquim Gea
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), C/ Dr. Aigüader 88, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 08003, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,Pulmonology Department, Hospital del Mar-IMIM, 08003, Barcelona, Spain
| |
Collapse
|
53
|
Lawson D, Vann C, Schoenfeld BJ, Haun C. Beyond Mechanical Tension: A Review of Resistance Exercise-Induced Lactate Responses & Muscle Hypertrophy. J Funct Morphol Kinesiol 2022; 7:jfmk7040081. [PMID: 36278742 PMCID: PMC9590033 DOI: 10.3390/jfmk7040081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
The present review aims to explore and discuss recent research relating to the lactate response to resistance training and the potential mechanisms by which lactate may contribute to skeletal muscle hypertrophy or help to prevent muscle atrophy. First, we will discuss foundational information pertaining to lactate including metabolism, measurement, shuttling, and potential (although seemingly elusive) mechanisms for hypertrophy. We will then provide a brief analysis of resistance training protocols and the associated lactate response. Lastly, we will discuss potential shortcomings, resistance training considerations, and future research directions regarding lactate's role as a potential anabolic agent for skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- Daniel Lawson
- School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK 74078, USA
- Correspondence:
| | - Christopher Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC 27701, USA
| | - Brad J. Schoenfeld
- Department of Exercise Science and Recreation, Lehman College of CUNY, Bronx, NY 10468, USA
| | - Cody Haun
- Fitomics, LLC, Alabaster, AL 35007, USA
| |
Collapse
|
54
|
Yu B, Liu J, Zhang J, Mu T, Feng X, Ma R, Gu Y. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Front Cell Dev Biol 2022; 10:929183. [PMID: 35990615 PMCID: PMC9389409 DOI: 10.3389/fcell.2022.929183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023] Open
Abstract
Functional cells in embryonic myogenesis and postnatal muscle development undergo multiple stages of proliferation and differentiation, which are strict procedural regulation processes. N6-methyladenosine (m6A) is the most abundant RNA modification that regulates gene expression in specific cell types in eukaryotes and regulates various biological activities, such as RNA processing and metabolism. Recent studies have shown that m6A modification-mediated transcriptional and post-transcriptional regulation plays an essential role in myogenesis. This review outlines embryonic and postnatal myogenic differentiation and summarizes the important roles played by functional cells in each developmental period. Furthermore, the key roles of m6A modifications and their regulators in myogenesis were highlighted, and the synergistic regulation of m6A modifications with myogenic transcription factors was emphasized to characterize the cascade of transcriptional and post-transcriptional regulation during myogenesis. This review also discusses the crosstalk between m6A modifications and non-coding RNAs, proposing a novel mechanism for post-transcriptional regulation during skeletal muscle development. In summary, the transcriptional and post-transcriptional regulatory mechanisms mediated by m6A and their regulators may help develop new strategies to maintain muscle homeostasis, which are expected to become targets for animal muscle-specific trait breeding and treatment of muscle metabolic diseases.
Collapse
|
55
|
Flierl A, Schriner SE, Hancock S, Coskun PE, Wallace DC. The mitochondrial adenine nucleotide transporters in myogenesis. Free Radic Biol Med 2022; 188:312-327. [PMID: 35714845 DOI: 10.1016/j.freeradbiomed.2022.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 01/06/2023]
Abstract
Adenine Nucleotide Translocator isoforms (ANTs) exchange ADP/ATP across the inner mitochondrial membrane, are also voltage-activated proton channels and regulate mitophagy and apoptosis. The ANT1 isoform predominates in heart and muscle while ANT2 is systemic. Here, we report the creation of Ant mutant mouse myoblast cell lines with normal Ant1 and Ant2 genes, deficient in either Ant1 or Ant2, and deficient in both the Ant1 and Ant2 genes. These cell lines are immortal under permissive conditions (IFN-γ + serum at 32 °C) permitting expansion but return to normal myoblasts that can be differentiated into myotubes at 37 °C. With this system we were able to complement our Ant1 mutant studies by demonstrating that ANT2 is important for myoblast to myotube differentiation and myotube mitochondrial respiration. ANT2 is also important in the regulation of mitochondrial biogenesis and antioxidant defenses. ANT2 is also associated with increased oxidative stress response and modulation for Ca++ sequestration and activation of the mitochondrial permeability transition (mtPTP) pore during cell differentiation.
Collapse
Affiliation(s)
- Adrian Flierl
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Samuel E Schriner
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Saege Hancock
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Pinar E Coskun
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
56
|
Wang M, Li W, Hao J, Gonzales A, Zhao Z, Flores RS, Kuang X, Mu X, Ching T, Tang G, Luo Z, Garciamendez-Mijares CE, Sahoo JK, Wells MF, Niu G, Agrawal P, Quiñones-Hinojosa A, Eggan K, Zhang YS. Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Nat Commun 2022; 13:3317. [PMID: 35680907 PMCID: PMC9184597 DOI: 10.1038/s41467-022-31002-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Digital light processing bioprinting favors biofabrication of tissues with improved structural complexity. However, soft-tissue fabrication with this method remains a challenge to balance the physical performances of the bioinks for high-fidelity bioprinting and suitable microenvironments for the encapsulated cells to thrive. Here, we propose a molecular cleavage approach, where hyaluronic acid methacrylate (HAMA) is mixed with gelatin methacryloyl to achieve high-performance bioprinting, followed by selectively enzymatic digestion of HAMA, resulting in tissue-matching mechanical properties without losing the structural complexity and fidelity. Our method allows cellular morphological and functional improvements across multiple bioprinted tissue types featuring a wide range of mechanical stiffness, from the muscles to the brain, the softest organ of the human body. This platform endows us to biofabricate mechanically precisely tunable constructs to meet the biological function requirements of target tissues, potentially paving the way for broad applications in tissue and tissue model engineering.
Collapse
Affiliation(s)
- Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jin Hao
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Arthur Gonzales
- University of the Philippines Diliman, Quezon City, Metro Manila, Philippines
| | - Zhibo Zhao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Regina Sanchez Flores
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Terry Ching
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | | | - Michael F Wells
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gengle Niu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Prajwal Agrawal
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | | | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
57
|
Therapeutic Benefit in Rheumatoid Cachexia Illustrated Using a Novel Primary Human Triple Cell Coculture Model. Int J Inflam 2022; 2022:1524913. [PMID: 35693848 PMCID: PMC9184217 DOI: 10.1155/2022/1524913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background The loss of muscle mass in rheumatoid arthritis (RA), termed rheumatoid cachexia, is predicted to result from the complex interactions between different cell types involved in the maintenance of skeletal muscle mass, namely, myoblasts, fibroblasts, and macrophages. The complexity within the muscle is further highlighted by the incidence of nonresponsiveness to current RA treatment strategies. Method This study aimed at determining differences in the cellular responses in a novel human primary cell triple coculture model exposed to serum collected from nonarthritic controls (NC), RA treatment naïve (RATN), and RA treatment-nonresponding (RATNR) patients. Bone morphogenetic protein-7 (BMP-7) was investigated as a treatment option. Results Plasma analysis indicated that samples were indeed representative of healthy and RA patients—notably, the RATNR patients additionally exhibited dysregulated IL-6/IL-10 correlations. Coculture exposure to serum from RATNR patients demonstrated increased cellular growth (p < 0.001), while both hepatocyte growth factor (p < 0.01) and follistatin (p < 0.001) were reduced when compared to NC. Furthermore, decreased concentration of markers of extracellular matrix formation, transforming growth factor-β (TGF-β; p < 0.05) and fibronectin (p < 0.001), but increased collagen IV (p < 0.01) was observed following RATNR serum exposure. Under healthy conditions, BMP-7 exhibited potentially beneficial results in reducing fibrosis-generating TGF-β (p < 0.05) and fibronectin (p < 0.05). BMP-7 further exhibited protective potential in the RA groups through reversing the aberrant tendencies observed especially in the RATNR serum-exposed group. Conclusion Exposure of the triple coculture to RATN and RATNR serum resulted in dysregulated myoblast proliferation and growth, and ECM impairment, which was reversed by BMP-7 treatment.
Collapse
|
58
|
Wang Q, Park KH, Geng B, Chen P, Yang C, Jiang Q, Yi F, Tan T, Zhou X, Bian Z, Ma J, Zhu H. MG53 Inhibits Necroptosis Through Ubiquitination-Dependent RIPK1 Degradation for Cardiac Protection Following Ischemia/Reperfusion Injury. Front Cardiovasc Med 2022; 9:868632. [PMID: 35711363 PMCID: PMC9193967 DOI: 10.3389/fcvm.2022.868632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
RationaleWhile reactive oxygen species (ROS) has been recognized as one of the main causes of cardiac injury following myocardial infarction, the clinical application of antioxidants has shown limited effects on protecting hearts against ischemia–reperfusion (I/R) injury. Thus, the precise role of ROS following cardiac injury remains to be fully elucidated.ObjectiveWe investigated the role of mitsugumin 53 (MG53) in regulating necroptosis following I/R injury to the hearts and the involvement of ROS in MG53-mediated cardioprotection.Methods and ResultsAntioxidants were used to test the role of ROS in MG53-mediated cardioprotection in the mouse model of I/R injury and induced human pluripotent stem cells (hiPSCs)-derived cardiomyocytes subjected to hypoxia or re-oxygenation (H/R) injury. Western blotting and co-immunoprecipitation were used to identify potential cell death pathways that MG53 was involved in. CRISPR/Cas 9-mediated genome editing and mutagenesis assays were performed to further identify specific interaction amino acids between MG53 and its ubiquitin E3 ligase substrate. We found that MG53 could protect myocardial injury via inhibiting the necroptosis pathway. Upon injury, the generation of ROS in the infarct zone of the hearts promoted interaction between MG53 and receptor-interacting protein kinase 1 (RIPK1). As an E3 ubiquitin ligase, MG53 added multiple ubiquitin chains to RIPK1 at the sites of K316, K604, and K627 for proteasome-mediated RIPK1 degradation and inhibited necroptosis. The application of N-acetyl cysteine (NAC) disrupted the interaction between MG53 and RIPK1 and abolished MG53-mediated cardioprotective effects.ConclusionsTaken together, this study provided a molecular mechanism of a potential beneficial role of ROS following acute myocardial infarction. Thus, fine-tuning ROS levels might be critical for cardioprotection.
Collapse
|
59
|
Metabolic and molecular signatures of improved growth in Atlantic salmon ( Salmo salar) fed surplus levels of methionine, folic acid, vitamin B 6 and B 12 throughout smoltification. Br J Nutr 2022; 127:1289-1302. [PMID: 34176547 DOI: 10.1017/s0007114521002336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A moderate surplus of the one carbon (1C) nutrients methionine, folic acid, vitamin B6 and B12 above dietary recommendations for Atlantic salmon has shown to improve growth and reduce hepatosomatic index in the on-growing saltwater period when fed throughout smoltification. Metabolic properties and molecular mechanisms determining the improved growth are unexplored. Here, we investigate metabolic and transcriptional signatures in skeletal muscle taken before and after smoltification to acquire deeper insight into pathways and possible nutrient–gene interactions. A control feed (Ctrl) or 1C nutrient surplus feed (1C+) were fed to Atlantic salmon 6 weeks prior to smoltification until 3 months after saltwater transfer. Both metabolic and gene expression signatures revealed significant 1C nutrient-dependent changes already at pre-smolt, but differences intensified when analysing post-smolt muscle. Transcriptional differences revealed lower expression of genes related to translation, growth and amino acid metabolisation in post-smolt muscle when fed additional 1C nutrients. The 1C+ group showed less free amino acid and putrescine levels, and higher methionine and glutathione amounts in muscle. For Ctrl muscle, the overall metabolic profile suggests a lower amino acid utilisation for protein synthesis, and increased methionine metabolisation in polyamine and redox homoeostasis, whereas transcription changes are indicative of compensatory growth regulation at local tissue level. These findings point to fine-tuned nutrient–gene interactions fundamental for improved growth capacity through better amino acid utilisation for protein accretion when salmon was fed additional 1C nutrients throughout smoltification. It also highlights potential nutritional programming strategies on improved post-smolt growth through 1C+ supplementation before and throughout smoltification.
Collapse
|
60
|
Wang J, Broer T, Chavez T, Zhou CJ, Tran S, Xiang Y, Khodabukus A, Diao Y, Bursac N. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials 2022; 284:121508. [PMID: 35421801 PMCID: PMC9289780 DOI: 10.1016/j.biomaterials.2022.121508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Satellite cells (SCs), the adult Pax7-expressing stem cells of skeletal muscle, are essential for muscle repair. However, in vitro investigations of SC function are challenging due to isolation-induced SC activation, loss of native quiescent state, and differentiation to myoblasts. In the present study, we optimized methods to deactivate in vitro expanded human myoblasts within a 3D culture environment of engineered human skeletal muscle tissues ("myobundles"). Immunostaining and gene expression analyses revealed that a fraction of myoblasts within myobundles adopted a quiescent phenotype (3D-SCs) characterized by increased Pax7 expression, cell cycle exit, and activation of Notch signaling. Similar to native SCs, 3D-SC quiescence is regulated by Notch and Wnt signaling while loss of quiescence and reactivation of 3D-SCs can be induced by growth factors including bFGF. Myobundle injury with a bee toxin, melittin, induces robust myofiber fragmentation, functional decline, and 3D-SC proliferation. By applying single cell RNA-sequencing (scRNA-seq), we discover the existence of two 3D-SC subpopulations (quiescent and activated), identify deactivation-associated gene signature using trajectory inference between 2D myoblasts and 3D-SCs, and characterize the transcriptomic changes within reactivated 3D-SCs in response to melittin-induced injury. These results demonstrate the ability of an in vitro engineered 3D human skeletal muscle environment to support the formation of a quiescent and heterogeneous SC population recapitulating several aspects of the native SC phenotype, and provide a platform for future studies of human muscle regeneration and disease-associated SC dysfunction.
Collapse
Affiliation(s)
- Jason Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Torie Broer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chris J Zhou
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sabrina Tran
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Yarui Diao
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
61
|
Abstract
In vitro meat (IVM) is a recent development in the production of sustainable food. The consumer perception of IVM has a strong impact on the commercial success of IVM. Hence this review examines existing studies related to consumer concerns, acceptance and uncertainty of IVM. This will help create better marketing strategies for IVM-producing companies in the future. In addition, IVM production is described in terms of the types of cells and culture conditions employed. The applications of self-organising, scaffolding, and 3D printing techniques to produce IVM are also discussed. As the conditions for IVM production are controlled and can be manipulated, it will be feasible to produce a chemically safe and disease-free meat with improved consumer acceptance on a sustainable basis.
Collapse
|
62
|
Baek M, Cho H, Min DS, Choi CS, Yoon M. Self-transducible LRS-UNE-L peptide enhances muscle regeneration. J Cachexia Sarcopenia Muscle 2022; 13:1277-1288. [PMID: 35178893 PMCID: PMC8977975 DOI: 10.1002/jcsm.12947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Muscle regeneration includes proliferation and differentiation of muscle satellite cells, which involves the mammalian target of rapamycin (mTOR). We identified the C-terminal unique attached sequence motif (UNE) domain of leucyl-tRNA synthetase (LRS-UNE-L) as an mTORC1 (mTOR complex1)-activating domain that acts through Vps34 and phospholipase D1 (PLD1) when introduced in the form of a muscle-enhancing peptide. METHODS In vitro Vps34 lipid kinase assay, phosphatidylinositol 3-phosphate (PI(3)P) measurement, in vivo PLD1 assay, and western blot assay were performed in HEK293 cells to test the effect of the LRS-UNE-L on the Vps34-PLD1-mTOR pathway. Adeno-associated virus (AAV)-LRS-UNE-L was transduced in C2C12 cells in vitro, in BaCl2 -injured tibialis anterior (TA) muscles, and in 18-month-old TA muscles to analyse its effect on myogenesis, muscle regeneration, and aged muscle, respectively. The muscle-specific cell-permeable peptide M12 was fused with LRS-UNE-L and tested for cell integration in C2C12 and HEK293 cells using FACS analysis and immunocytochemistry. Finally, M12-LRS-UNE-L was introduced into BaCl2 -injured TA muscles of 15-week-old Pld1+/+ or Pld1-/- mice, and its effect was analysed by measurement of cross-sectional area of regenerating muscle fibres. RESULTS The LRS-UNE-L expression restored amino acid-induced S6K1 phosphorylation in LRS knockdown cells in a RagD GTPases-independent manner (421%, P = 0.007 vs. LRS knockdown control cells). The LRS-UNE-L domain was directly bound to Vps34; this interaction was accompanied by increases in Vps34 activity (166%, P = 0.0352), PI(3)P levels (146%, P = 0.0039), and PLD1 activity (228%, P = 0.0294) compared with amino acid-treated control cells, but it did not affect autophagic flux. AAV-delivered LRS-UNE-L domain augmented S6K1 phosphorylation (174%, P = 0.0013), mRNA levels of myosin heavy chain (MHC) (122%, P = 0.0282) and insulin-like growth factor 2 (IGF2) (146%, P = 0.008), and myogenic fusion (133%, P = 0.0479) in C2C12 myotubes. AAV-LRS-UNE-L increased the size of regenerating muscle fibres in BaCl2 -injured TA muscles (124%, P = 0.0279) (n = 9-10), but it did not change the muscle fibre size of TA muscles in old mice. M12-LRS-UNE-L was preferentially delivered into C2C12 cells compared with HEK293 cells and augmented regeneration of BaCl2 -injured TA muscles in a PLD1-dependent manner (116%, P = 0.0022) (n = 6). CONCLUSIONS Our results provide compelling evidence that M12-LRS-UNE-L could be a muscle-enhancing protein targeting mTOR.
Collapse
Affiliation(s)
- Mi‐Ock Baek
- Department of Health Sciences and TechnologyGAIHST, Gachon UniversityIncheonRepublic of Korea
| | - Hye‐Jeong Cho
- Lee Gil Ya Cancer and Diabetes InstituteIncheonRepublic of Korea
| | - Do Sik Min
- College of PharmacyYonsei UniversityIncheonRepublic of Korea
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping CenterLee Gil Ya Cancer and Diabetes Institute, Gachon UniversityIncheonRepublic of Korea
- Department of Internal Medicine, Gil Medical CenterGachon UniversityIncheonRepublic of Korea
- Department of Molecular MedicineGachon University College of MedicineIncheonRepublic of Korea
| | - Mee‐Sup Yoon
- Department of Health Sciences and TechnologyGAIHST, Gachon UniversityIncheonRepublic of Korea
- Lee Gil Ya Cancer and Diabetes InstituteIncheonRepublic of Korea
- Department of Molecular MedicineGachon University College of MedicineIncheonRepublic of Korea
| |
Collapse
|
63
|
Ianovici I, Zagury Y, Redenski I, Lavon N, Levenberg S. 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials 2022; 284:121487. [PMID: 35421802 DOI: 10.1016/j.biomaterials.2022.121487] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Cultivated meat harnesses tissue engineering (TE) concepts to create sustainable, edible muscle tissues, for addressing the rising meat product demands and their global consequences. As 3D-printing is a promising method for creating thick and complex structures, two plant-protein-enriched scaffolding compositions were primarily assessed in our work as 3D-printable platforms for bovine satellite cells (BSC) maturation. Mixtures of pea protein isolate (PPI) and soy protein isolate (SPI) with RGD-modified alginate (Alginate(RGD)) were evaluated as prefabricated mold-based and 3D-printed scaffolds for BSC cultivation, and ultimately, as potential bioinks for cellular printing. Mold-based protein enriched scaffolds exhibited elevated stability and stiffness compared to ones made of Alginate(RGD) alone, while allowing unhindered BSC spreading and maturation. Extrusion based 3D-printing with the two compositions was then developed, while using an edible, removable agar support bath. Successfully fabricated constructs with well-defined geometries supported BSC attachment and differentiation. Finally, cellular bioprinting was demonstrated with PPI-enriched bioinks. Cell recovery post-printing was observed in two cultivation configurations, reaching ∼80-90% viability over time. Moreover, cells could mature within 3D-printed cellular constructs. As animal-derived materials were avoided in our scaffold fabrication process, and pea-protein is known for its low allergic risk, these findings have great promise for further cultivated meat research.
Collapse
Affiliation(s)
- Iris Ianovici
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yedidya Zagury
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Idan Redenski
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Neta Lavon
- Aleph-Farms Ltd., Rehovot, 7670609, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel; Aleph-Farms Ltd., Rehovot, 7670609, Israel.
| |
Collapse
|
64
|
Pyroptosis and Sarcopenia: Frontier Perspective of Disease Mechanism. Cells 2022; 11:cells11071078. [PMID: 35406642 PMCID: PMC8998102 DOI: 10.3390/cells11071078] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
With global ageing, sarcopenia, as an age-related disease, has brought a heavy burden to individuals and society. Increasing attention has been given to further exploring the morbidity mechanism and intervention measures for sarcopenia. Pyroptosis, also known as cellular inflammatory necrosis, is a kind of regulated cell death that plays a role in the ageing progress at the cellular level. It is closely related to age-related diseases such as cardiovascular diseases, Alzheimer’s disease, osteoarthritis, and sarcopenia. In the process of ageing, aggravated oxidative stress and poor skeletal muscle perfusion in ageing muscle tissues can activate the nod-like receptor (NLRP) family to trigger pyroptosis. Chronic inflammation is a representative characteristic of ageing. The levels of inflammatory factors such as TNF-α may activate the signaling pathways of pyroptosis by the NF-κB-GSDMD axis, which remains to be further studied. Autophagy is a protective mechanism in maintaining the integrity of intracellular organelles and the survival of cells in adverse conditions. The autophagy of skeletal muscle cells can inhibit the activation of the pyroptosis pathway to some extent. A profound understanding of the mechanism of pyroptosis in sarcopenia may help to identify new therapeutic targets in the future. This review article focuses on the role of pyroptosis in the development and progression of sarcopenia.
Collapse
|
65
|
Oh M, Ha DI, Son C, Kang JG, Hwang H, Moon SB, Kim M, Nam J, Kim JS, Song SY, Kim YS, Park S, Yoo JS, Ko JH, Park K. Defect in cytosolic Neu2 sialidase abrogates lipid metabolism and impairs muscle function in vivo. Sci Rep 2022; 12:3216. [PMID: 35217678 PMCID: PMC8881595 DOI: 10.1038/s41598-022-07033-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Sialic acid (SA) is present in glycoconjugates and important in cell-cell recognition, cell adhesion, and cell growth and as a receptor. Among the four mammalian sialidases, cytosolic NEU2 has a pivotal role in muscle and neuronal differentiation in vitro. However, its biological functions in vivo remain unclear due to its very low expression in humans. However, the presence of cytoplasmic glycoproteins, gangliosides, and lectins involved in cellular metabolism and glycan recognition has suggested the functional importance of cytosolic Neu2 sialidases. We generated a Neu2 knockout mouse model via CRISPR/Cas9-mediated genome engineering and analyzed the offspring littermates at different ages to investigate the in vivo function of cytosolic Neu2 sialidase. Surprisingly, knocking out the Neu2 gene in vivo abrogated overall lipid metabolism, impairing motor function and leading to diabetes. Consistent with these results, Neu2 knockout led to alterations in sialylated glycoproteins involved in lipid metabolism and muscle function, as shown by glycoproteomics analysis.
Collapse
Affiliation(s)
- Mijung Oh
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Dae-In Ha
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Chaeyeon Son
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jeong Gu Kang
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Su Bin Moon
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Minjeong Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jihae Nam
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Soo Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Sang Yong Song
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Sangwoo Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea.
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Kyoungsook Park
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
66
|
Elashry MI, Kinde M, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Res Ther 2022; 13:56. [PMID: 35123554 PMCID: PMC8817503 DOI: 10.1186/s13287-022-02730-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Skeletal muscle-derived stem cells (SC) have become a promising approach for investigating myogenic differentiation and optimizing tissue regeneration. Muscle regeneration is performed by SC, a self-renewal cell population underlying the basal lamina of muscle fibers. Here, we examined the impact of hypoxia condition on the regenerative capacity of SC either in their native microenvironment or via isolation in a monolayer culture using ectopic differentiation inductions. Furthermore, the effect of low oxygen tension on myogenic differentiation protocols of the myoblasts cell line C2C12 was examined.
Methods
Hind limb muscles of wild type mice were processed for both SC/fiber isolation and myoblast extraction using magnetic beads. SC were induced for myogenic, adipogenic and osteogenic commitments under normoxic (21% O2) and hypoxic (3% O2) conditions. SC proliferation and differentiation were evaluated using histological staining, immunohistochemistry, morphometric analysis and RT-qPCR. The data were statistically analyzed using ANOVA.
Results
The data revealed enhanced SC proliferation and motility following differentiation induction after 48 h under hypoxia. Following myogenic induction, the number of undifferentiated cells positive for Pax7 were increased at 72 h under hypoxia. Hypoxia upregulated MyoD and downregulated Myogenin expression at day-7 post-myogenic induction. Hypoxia promoted both SC adipogenesis and osteogenesis under respective induction as shown by using Oil Red O and Alizarin Red S staining. The expression of adipogenic markers; peroxisome proliferator activated receptor gamma (PPARγ) and fatty acid-binding protein 4 (FABP4) were upregulated under hypoxia up to day 14 compared to normoxic condition. Enhanced osteogenic differentiation was detected under hypoxic condition via upregulation of osteocalcin and osteopontin expression up to day 14 as well as, increased calcium deposition at day 21. Hypoxia exposure increases the number of adipocytes and the size of fat vacuoles per adipocyte compared to normoxic culture. Combining the differentiation medium with dexamethasone under hypoxia improves the efficiency of the myogenic differentiation protocol of C2C12 by increasing the length of the myotubes.
Conclusions
Hypoxia exposure increases cell resources for clinical applications and promotes SC multipotency and thus beneficial for tissue regeneration.
Collapse
|
67
|
Yan J, Yang Y, Fan X, Liang G, Wang Z, Li J, Wang L, Chen Y, Adetula AA, Tang Y, Li K, Wang D, Tang Z. circRNAome profiling reveals circFgfr2 regulates myogenesis and muscle regeneration via a feedback loop. J Cachexia Sarcopenia Muscle 2022; 13:696-712. [PMID: 34811940 PMCID: PMC8818660 DOI: 10.1002/jcsm.12859] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) represent a novel class of non-coding RNAs formed by a covalently closed loop and play crucial roles in many biological processes. Several circRNAs associated with myogenesis have been reported. However, the dynamic expression, function, and mechanism of circRNAs during myogenesis and skeletal muscle development are largely unknown. METHODS Strand-specific RNA-sequencing (RNA-seq) and microarray datasets were used to profile the dynamic circRNAome landscape during skeletal muscle development and myogenic differentiation. Bioinformatics analyses were used to characterize the circRNAome and identify candidate circRNAs associated with myogenesis. Bulk and single-cell RNA-seq were performed to identify the downstream genes and pathways of circFgfr2. The primary myoblast cells, C2C12 cells, and animal model were used to assess the function and mechanism of circFgfr2 in myogenesis and muscle regeneration in vitro or in vivo by RT-qPCR, western blotting, dual-luciferase activity assay, RNA immunoprecipitation, RNA fluorescence in situ hybridization, and chromatin immunoprecipitation. RESULTS We profiled the dynamic circRNAome in pig skeletal muscle across 27 developmental stages and detected 52 918 high-confidence circRNAs. A total of 2916 of these circRNAs are conserved across human, mouse, and pig, including four circRNAs (circFgfr2, circQrich1, circMettl9, and circCamta1) that were differentially expressed (|log2 fold change| > 1 and adjusted P value < 0.05) in various myogenesis systems. We further focused on a conserved circRNA produced from the fibroblast growth factor receptor 2 (Fgfr2) gene, termed circFgfr2, which was found to inhibit myoblast proliferation and promote differentiation and skeletal muscle regeneration. Mechanistically, circFgfr2 acted as a sponge for miR-133 to regulate the mitogen-activated protein kinase kinase kinase 20 (Map3k20) gene and JNK/MAPK pathway. Importantly, transcription factor Kruppel like factor 4 (Klf4), the downstream target of the JNK/MAPK pathway, directly bound to the promoter of circFgfr2 and affected its expression via an miR-133/Map3k20/JNK/Klf4 auto-regulatory feedback loop. RNA binding protein G3BP stress granule assembly factor 1 (G3bp1) inhibited the biogenesis of circFgfr2. CONCLUSIONS The present study provides a comprehensive circRNA resource for skeletal muscle study. The functional and mechanistic analysis of circFgfr2 uncovered a circRNA-mediated auto-regulatory feedback loop regulating myogenesis and muscle regeneration, which provides new insight to further understand the regulatory mechanism of circRNAs.
Collapse
Affiliation(s)
- Junyu Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinhao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoming Liang
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zishuai Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jiju Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Liyuan Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yun Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Adeyinka Abiola Adetula
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yijie Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dazhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen, China.,GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama, China.,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China
| |
Collapse
|
68
|
Magnesium Homeostasis in Myogenic Differentiation-A Focus on the Regulation of TRPM7, MagT1 and SLC41A1 Transporters. Int J Mol Sci 2022; 23:ijms23031658. [PMID: 35163580 PMCID: PMC8836031 DOI: 10.3390/ijms23031658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Magnesium (Mg) is essential for skeletal muscle health, but little is known about the modulation of Mg and its transporters in myogenic differentiation. Here, we show in C2C12 murine myoblasts that Mg concentration fluctuates during their differentiation to myotubes, declining early in the process and reverting to basal levels once the cells are differentiated. The level of the Mg transporter MagT1 decreases at early time points and is restored at the end of the process, suggesting a possible role in the regulation of intracellular Mg concentration. In contrast, TRPM7 is rapidly downregulated and remains undetectable in myotubes. The reduced amounts of TRPM7 and MagT1 are due to autophagy, one of the proteolytic systems activated during myogenesis and essential for the membrane fusion process. Moreover, we investigated the levels of SLC41A1, which increase once cells are differentiated, mainly through transcriptional regulation. In conclusion, myogenesis is associated with alterations of Mg homeostasis finely tuned through the modulation of MagT1, TRPM7 and SLC41A1.
Collapse
|
69
|
van Santen VJB, Klein-Nulend J, Bakker AD, Jaspers RT. Stiff matrices enhance myoblast proliferation, reduce differentiation, and alter the response to fluid shear stress in vitro. Cell Biochem Biophys 2022; 80:161-170. [DOI: 10.1007/s12013-021-01050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
|
70
|
Arroyo E, Troutman AD, Moorthi RN, Avin KG, Coggan AR, Lim K. Klotho: An Emerging Factor With Ergogenic Potential. FRONTIERS IN REHABILITATION SCIENCES 2022; 2:807123. [PMID: 36188832 PMCID: PMC9397700 DOI: 10.3389/fresc.2021.807123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022]
Abstract
Sarcopenia and impaired cardiorespiratory fitness are commonly observed in older individuals and patients with chronic kidney disease (CKD). Declines in skeletal muscle function and aerobic capacity can progress into impaired physical function and inability to perform activities of daily living. Physical function is highly associated with important clinical outcomes such as hospitalization, functional independence, quality of life, and mortality. While lifestyle modifications such as exercise and dietary interventions have been shown to prevent and reverse declines in physical function, the utility of these treatment strategies is limited by poor widespread adoption and adherence due to a wide variety of both perceived and actual barriers to exercise. Therefore, identifying novel treatment targets to manage physical function decline is critically important. Klotho, a remarkable protein with powerful anti-aging properties has recently been investigated for its role in musculoskeletal health and physical function. Klotho is involved in several key processes that regulate skeletal muscle function, such as muscle regeneration, mitochondrial biogenesis, endothelial function, oxidative stress, and inflammation. This is particularly important for older adults and patients with CKD, which are known states of Klotho deficiency. Emerging data support the existence of Klotho-related benefits to exercise and for potential Klotho-based therapeutic interventions for the treatment of sarcopenia and its progression to physical disability. However, significant gaps in our understanding of Klotho must first be overcome before we can consider its potential ergogenic benefits. These advances will be critical to establish the optimal approach to future Klotho-based interventional trials and to determine if Klotho can regulate physical dysfunction.
Collapse
Affiliation(s)
- Eliott Arroyo
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ashley D. Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Ranjani N. Moorthi
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Keith G. Avin
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, IN, United States
| | - Andrew R. Coggan
- Department of Kinesiology, School of Health and Human Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Kenneth Lim
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
71
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
72
|
Manneken JD, Dauer MVP, Currie PD. Dynamics of muscle growth and regeneration: Lessons from the teleost. Exp Cell Res 2021; 411:112991. [PMID: 34958765 DOI: 10.1016/j.yexcr.2021.112991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
The processes of myogenesis during both development and regeneration share a number of similarities across both amniotes and teleosts. In amniotes, the process of muscle formation is considered largely biphasic, with developmental myogenesis occurring through hyperplastic fibre deposition and postnatal muscle growth driven through hypertrophy of existing fibres. In contrast, teleosts continue generating new muscle fibres during adult myogenesis through a process of eternal hyperplasia using a dedicated stem cell system termed the external cell layer. During developmental and regenerative myogenesis alike, muscle progenitors interact with their niche to receive cues guiding their transition into myoblasts and ultimately mature myofibres. During development, muscle precursors receive input from neighbouring embryological tissues; however, during repair, this role is fulfilled by other injury resident cell types, such as those of the innate immune response. Recent work has focused on the role of macrophages as a pro-regenerative cell type which provides input to muscle satellite cells during regenerative myogenesis. As zebrafish harbour a satellite cell system analogous to that of mammals, the processes of regeneration can be interrogated in vivo with the imaging intensive approaches afforded in the zebrafish system. This review discusses the strengths of zebrafish with a focus on both the similarities and differences to amniote myogenesis during both development and repair.
Collapse
Affiliation(s)
- Jessica D Manneken
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Mervyn V P Dauer
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia; EMBL Australia, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
73
|
Activation of the Hippo Pathway in Rana sylvatica: Yapping Stops in Response to Anoxia. Life (Basel) 2021; 11:life11121422. [PMID: 34947952 PMCID: PMC8708225 DOI: 10.3390/life11121422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
Wood frogs (Rana sylvatica) display well-developed anoxia tolerance as one component of their capacity to endure prolonged whole-body freezing during the winter months. Under anoxic conditions, multiple cellular responses are triggered to efficiently cope with stress by suppressing gene transcription and promoting activation of mechanisms that support cell survival. Activation of the Hippo signaling pathway initiates a cascade of protein kinase reactions that end with phosphorylation of YAP protein. Multiple pathway components of the Hippo pathway were analyzed via immunoblotting, qPCR or DNA-binding ELISAs to assess the effects of 24 h anoxia and 4 h aerobic recovery, compared with controls, on liver and heart metabolism of wood frogs. Immunoblot results showed significant increases in the relative levels of multiple proteins of the Hippo pathway representing an overall activation of the pathway in both organs under anoxia stress. Upregulation of transcript levels further confirmed this. A decrease in YAP and TEAD protein levels in the nuclear fraction also indicated reduced translocation of these proteins. Decreased DNA-binding activity of TEAD at the promoter region also suggested repression of gene transcription of its downstream targets such as SOX2 and OCT4. Furthermore, changes in the protein levels of two downstream targets of TEAD, OCT4 and SOX2, established regulated transcriptional activity and could possibly be associated with the activation of the Hippo pathway. Increased levels of TAZ in anoxic hearts also suggested its involvement in the repair mechanism for damage caused to cardiac muscles during anoxia. In summary, this study provides the first insights into the role of the Hippo pathway in maintaining cellular homeostasis in response to anoxia in amphibians.
Collapse
|
74
|
Sibisi NC, Snyman C, Myburgh KH, Niesler CU. Evaluating the role of nitric oxide in myogenesis in vitro. Biochimie 2021; 196:216-224. [PMID: 34838884 DOI: 10.1016/j.biochi.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022]
Abstract
Skeletal muscle injury activates satellite cells to proliferate as myoblasts and migrate, differentiate and fuse with existing fibres at the site of injury. Nitric oxide (NO), a free radical produced by NO synthase, is elevated and supports healing after in vivo injury. NOS-independent elevation of NO levels in vitro is possible via donors such as molsidomine (SIN-1). We hypothesized that alterations in NO levels may directly influence myogenic processes critical for skeletal muscle wound healing. This study aimed to clarify the role of NO in myoblast proliferation, migration and differentiation. Baseline NO levels were established in vitro, whereafter NO levels were manipulated during myogenesis using l-NAME (NOS inhibitor) or SIN-1. Baseline NO levels generated by myoblasts in proliferation media did not change 1 h after stimulation. Addition of a pro-proliferative dose of HGF slightly elevated NO levels 1 h post-stimulation, whereas cell numbers assessed 24 h later increased significantly; l-NAME reduced the HGF-driven increase in NO and proliferation, reducing wound closure over 16 h. In differentiation media, NO levels increased significantly within 24 h, returning to baseline over several days. Regular addition of l-NAME to differentiating cells significantly reduced NO levels and fusion. SIN-1 increased NO levels in a dose-dependent manner, reaching maximal levels 16 h post-treatment. SIN-1, added at 0, 2 and 4 days, significantly increased myofiber area (26 ± 1.8% vs 18.6 ± 3.4% in control at 5 day, p < 0.0001), without affecting proliferation or migration. In conclusion, this study demonstrates that, during skeletal muscle regeneration, increased NO specifically stimulates myoblast differentiation.
Collapse
Affiliation(s)
- N C Sibisi
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - C Snyman
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - K H Myburgh
- Department Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - C U Niesler
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
75
|
Minari ALA, Thomatieli-Santos RV. From skeletal muscle damage and regeneration to the hypertrophy induced by exercise: What is the role of different macrophages subsets? Am J Physiol Regul Integr Comp Physiol 2021; 322:R41-R54. [PMID: 34786967 DOI: 10.1152/ajpregu.00038.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that these macrophages could also present two major subsets during tissue healing; proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are accountable for the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets is critical during myogenesis, not only to understand the inflammatory role of macrophages during muscle recovery but also to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. This narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Universidade estadual Paulista, Campus Presidente Prudente, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| | - Ronaldo V Thomatieli-Santos
- Universidade Federal de São Paulo, Campus Baixada Santista, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| |
Collapse
|
76
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
77
|
Wang B, Guo J, Zhang M, Liu Z, Zhou R, Guo F, Li K, Mu Y. Insulin-Degrading Enzyme Regulates the Proliferation and Apoptosis of Porcine Skeletal Muscle Stem Cells via Myostatin/MYOD Pathway. Front Cell Dev Biol 2021; 9:685593. [PMID: 34712657 PMCID: PMC8545900 DOI: 10.3389/fcell.2021.685593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying the genes relevant for muscle development is pivotal to improve meat production and quality in pigs. Insulin-degrading enzyme (IDE), a thiol zinc-metalloendopeptidase, has been known to regulate the myogenic process of mouse and rat myoblast cell lines, while its myogenic role in pigs remained elusive. Therefore, the current study aimed to identify the effects of IDE on the proliferation and apoptosis of porcine skeletal muscle stem cells (PSMSCs) and underlying molecular mechanism. We found that IDE was widely expressed in porcine tissues, including kidney, lung, spleen, liver, heart, and skeletal muscle. Then, to explore the effects of IDE on the proliferation and apoptosis of PSMSCs, we subjected the cells to siRNA-mediated knockdown of IDE expression, which resulted in promoted cell proliferation and reduced apoptosis. As one of key transcription factors in myogenesis, MYOD, its expression was also decreased with IDE knockdown. To further elucidate the underlying molecular mechanism, RNA sequencing was performed. Among transcripts perturbed by the IDE knockdown after, a downregulated gene myostatin (MSTN) which is known as a negative regulator for muscle growth attracted our interest. Indeed, MSTN knockdown led to similar results as those of the IDE knockdown, with upregulation of cell cycle-related genes, downregulation of MYOD as well as apoptosis-related genes, and enhanced cell proliferation. Taken together, our findings suggest that IDE regulates the proliferation and apoptosis of PSMSCs via MSTN/MYOD pathway. Thus, we recruit IDE to the gene family of regulators for porcine skeletal muscle development and propose IDE as an example of gene to prioritize in order to improve pork production.
Collapse
Affiliation(s)
- Bingyuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiankang Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingrui Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiguo Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Guo
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
78
|
Jayawardena TU, Kim SY, Jeon YJ. Sarcopenia; functional concerns, molecular mechanisms involved, and seafood as a nutritional intervention - review article. Crit Rev Food Sci Nutr 2021; 63:1983-2003. [PMID: 34459311 DOI: 10.1080/10408398.2021.1969889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fundamental basis for the human function is provided by skeletal muscle. Advancing age causes selective fiber atrophy, motor unit loss, and hybrid fiber formation resulting in hampered mass and strength, thus referred to as sarcopenia. Influence on the loss of independence of aged adults, contribute toward inclined healthcare costs conveys the injurious impact. The current understating of age-related skeletal muscle changes are addressed in this review, and further discusses mechanisms regulating protein turnover, although they do not completely define the process yet. Moreover, the reduced capacity of muscle regeneration due to impairment of satellite cell activation and proliferation with neuronal, immunological, hormonal factors were brought into the light of attention. Nevertheless, complete understating of sarcopenia requires disentangling it from disuse and disease. Nutritional intervention is considered a potentially preventable factor contributing to sarcopenia. Seafood is a crucial player in the fight against hunger and malnutrition, where it consists of macro and micronutrients. Hence, the review shed light on seafood as a nutritional intrusion in the treatment and prevention of sarcopenia. Understanding multiple factors will provide therapeutic targets in the prevention, treatment, and overcoming adverse effects of sarcopenia.
Collapse
Affiliation(s)
- Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Seo-Young Kim
- Division of Practical Application, Honam National Institute of Biological Resources, Mokpo-si, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea.,Marine Science Institute, Jeju National University, Jeju, Jeju Self-Governing Province, Republic of Korea
| |
Collapse
|
79
|
Shen X, Wei Y, You G, Liu W, Amevor FK, Zhang Y, He H, Ma M, Zhang Y, Li D, Zhu Q, Yin H. Circular PPP1R13B RNA Promotes Chicken Skeletal Muscle Satellite Cell Proliferation and Differentiation via Targeting miR-9-5p. Animals (Basel) 2021; 11:ani11082396. [PMID: 34438852 PMCID: PMC8388737 DOI: 10.3390/ani11082396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle plays important roles in animal locomotion, metabolism, and meat production in farm animals. Current studies showed that non-coding RNAs, especially the circular RNA (circRNA) play an indispensable role in skeletal muscle development. Our previous study revealed that several differentially expressed circRNAs among fast muscle growing broilers (FMGB) and slow muscle growing layers (SMGL) may regulate muscle development in the chicken. In this study, a novel differentially expressed circPPP1R13B was identified. Molecular mechanism analysis indicated that circPPP1R13B targets miR-9-5p and negatively regulates the expression of miR-9-5p, which was previously reported to be an inhibitor of skeletal muscle development. In addition, circPPP1R13B positively regulated the expression of miR-9-5p target gene insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) and further activated the downstream insulin like growth factors (IGF)/phosphatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) signaling pathway. The results also showed that the knockdown of circPPP1R13B inhibits chicken skeletal muscle satellite cells (SMSCs) proliferation and differentiation, and the overexpression of circPPP1R13B promotes the proliferation and differentiation of chicken SMSCs. Furthermore, the overexpression of circPPP1R13B could block the inhibitory effect of miR-9-5p on chicken SMSC proliferation and differentiation. In summary, our results suggested that circPPP1R13B promotes chicken SMSC proliferation and differentiation by targeting miR-9-5p and activating IGF/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiaoxu Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Yuanhang Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Guishuang You
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Wei Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Haorong He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yun Zhang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China;
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
- Correspondence: (Q.Z.); (H.Y.)
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (Y.W.); (G.Y.); (W.L.); (F.K.A.); (Y.Z.); (H.H.); (D.L.)
- Correspondence: (Q.Z.); (H.Y.)
| |
Collapse
|
80
|
Xiong X, Gao H, Lin Y, Yechoor V, Ma K. Inhibition of Rev-erbα ameliorates muscular dystrophy. Exp Cell Res 2021; 406:112766. [PMID: 34364881 DOI: 10.1016/j.yexcr.2021.112766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/25/2023]
Abstract
Duchene muscular dystrophy leads to progressive muscle structural and functional decline due to chronic degenerative-regenerative cycles. Enhancing the regenerative capacity of dystrophic muscle provides potential therapeutic options. We previously demonstrated that the circadian clock repressor Rev-erbα inhibited myogenesis and Rev-erbα ablation enhanced muscle regeneration. Here we show that Rev-erbα deficiency in the dystrophin-deficient mdx mice promotes regenerative myogenic response to ameliorate muscle damage. Loss of Rev-erbα in mdx mice improved dystrophic pathology and muscle wasting. Rev-erbα-deficient dystrophic muscle exhibit augmented myogenic response, enhanced neo-myofiber formation and attenuated inflammatory response. In mdx myoblasts devoid of Rev-erbα, myogenic differentiation was augmented together with up-regulation of Wnt signaling and proliferative pathways, suggesting that loss of Rev-erbα inhibition of these processes contributed to the improvement in regenerative myogenesis. Collectively, our findings revealed that the loss of Rev-erbα function protects dystrophic muscle from injury by promoting myogenic repair, and inhibition of its activity may have therapeutic utilities for muscular dystrophy.
Collapse
Affiliation(s)
- Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongbo Gao
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yayu Lin
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
81
|
Hu Z, Ge L, Zhang H, Liu X. Expression of FKBP prolyl isomerase 5 gene in tissues of muscovy duck at different growth stages and its association with muscovy duck weight. Anim Biosci 2021; 35:1-12. [PMID: 34237933 PMCID: PMC8738923 DOI: 10.5713/ab.20.0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/25/2021] [Indexed: 11/27/2022] Open
Abstract
Objective FKBP prolyl isomerase 5 (FKBP5) has been shown to play an important role in metabolically active tissues such as skeletal muscle. However, the expression of FKBP5 in Muscovy duck tissues and its association with body weight are still unclear. Methods In this study, real-time quantitative polymerase chain reaction was used to detect the expression of FKBP5 in different tissues of Muscovy duck at different growth stages. Further, single nucleotide polymorphisms (SNPs) were detected in the exon region of FKBP5 and were combined analyzed with the body weight of 334 Muscovy ducks. Results FKBP5 was highly expressed in various tissues of Muscovy duck at days 17, 19, 21, 24, and 27 of embryonic development. In addition, the expression of FKBP5 in the tissues of female adult Muscovy ducks was higher than that of male Muscovy ducks. Besides, an association analysis indicated that 3 SNPs were related to body weight trait. At the g.4819252 A>G, the body weight of AG genotype was significantly higher than that of the AA and the GG genotype. At the g.4821390 G>A, the genotype GA was extremely significantly related to body weight. At the g.4830622 T>G, the body weight of TT was significantly higher than GG and TG. Conclusion These findings indicate the possible effects of expression levels in various tissues and the SNPs of FKBP5 on Muscovy duck body weight trait. FKBP5 could be used as molecular marker for muscle development trait using early marker-assisted selection of Muscovy ducks.
Collapse
Affiliation(s)
- Zhigang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liyan Ge
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
82
|
Dact1 is expressed during chicken and mouse skeletal myogenesis and modulated in human muscle diseases. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110645. [PMID: 34252542 DOI: 10.1016/j.cbpb.2021.110645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022]
Abstract
Vertebrate skeletal muscle development and repair relies on the precise control of Wnt signaling. Dact1 (Dapper/Frodo) is an important modulator of Wnt signaling, interacting with key components of the various Wnt transduction pathways. Here, we characterized Dact1 mRNA and protein expression in chicken and mouse fetal muscles in vivo and during the differentiation of chick primary and mouse C2C12 myoblasts in vitro. We also performed in silico analysis to investigate Dact1 gene expression in human myopathies, and evaluated the Dact1 protein structure to seek an explanation for the accumulation of Dact1 protein aggregates in the nuclei of myogenic cells. Our results show for the first time that in both chicken and mouse, Dact1 is expressed during myogenesis, with a strong upregulation as cells engage in terminal differentiation, cell cycle withdrawal and cell fusion. In humans, Dact1 expression was found to be altered in specific muscle pathologies, including muscular dystrophies. Our bioinformatic analyses of Dact1 proteins revealed long intrinsically disordered regions, which may underpin the ability of Dact1 to interact with its many partners in the various Wnt pathways. In addition, we found that Dact1 has strong propensity for liquid-liquid phase separation, a feature that explains its ability to form nuclear aggregates and points to a possible role as a molecular 'on'-'off' switch. Taken together, our data suggest Dact1 as a candidate, multi-faceted regulator of amniote myogenesis with a possible pathophysiological role in human muscular diseases.
Collapse
|
83
|
Gene Expression and Carcass Traits Are Different between Different Quality Grade Groups in Red-Faced Hereford Steers. Animals (Basel) 2021; 11:ani11071910. [PMID: 34198984 PMCID: PMC8300355 DOI: 10.3390/ani11071910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Producing a consistent and positive experience for beef consumers is challenging. The gene expression in muscle at harvest may provide insight into better prediction of United States Department of Agriculture (USDA) quality grade. In this pilot study muscle samples were collected at harvest on sixteen steers with a similar background and identical management. Muscle transcripts were sequenced to determine gene expression. Transcripts related to the extracellular matrix, stem cell differentiation, and focal cell adhesions were differentially expressed in muscle tissue from carcasses with differing USDA quality grades. This confirmed the application of this technique to provide insight into muscle development and fat deposition necessary for better prediction and selection to improve consistency and consumer experience. Abstract Fat deposition is important to carcass value and some palatability characteristics. Carcasses with higher USDA quality grades produce more value for producers and processors in the US system and are more likely to have greater eating satisfaction. Using genomics to identify genes impacting marbling deposition provides insight into muscle biochemistry that may lead to ways to better predict fat deposition, especially marbling and thus quality grade. Hereford steers (16) were managed the same from birth through harvest after 270 days on feed. Samples were obtained for tenderness and transcriptome profiling. As expected, steaks from Choice carcasses had a lower shear force value than steaks from Select carcasses; however, steaks from Standard carcasses were not different from steaks from Choice carcasses. A significant number of differentially expressed (DE) genes was observed in the longissimus lumborum between Choice and Standard carcass RNA pools (1257 genes, p < 0.05), but not many DE genes were observed between Choice and Select RNA pools. Exploratory analysis of global muscle tissue transcriptome from Standard and Choice carcasses provided insight into muscle biochemistry, specifically the upregulation of extracellular matrix development and focal adhesion pathways and the downregulation of RNA processing and metabolism in Choice versus Standard. Additional research is needed to explore the function and timing of gene expression changes.
Collapse
|
84
|
Rosa I, Marini M, Manetti M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J Histochem Cytochem 2021; 69:795-818. [PMID: 34165348 DOI: 10.1369/00221554211025489] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telocytes (TCs) are newly identified interstitial cells characterized by thin and long cytoplasmic processes, called telopodes, which exhibit a distinctive moniliform shape and, often, a sinuous trajectory. Telopodes typically organize in intricate networks within the stromal space of most organs, where they communicate with neighboring cells by means of specialized cell-to-cell junctions or shedding extracellular vesicles. Hence, TCs are generally regarded as supporting cells that help in the maintenance of local tissue homeostasis, with an ever-increasing number of studies trying to explore their functions both in physiological and pathological conditions. Notably, TCs appear to be part of stem cell (SC) niches in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Indeed, growing evidence points toward a possible implication of TCs in the regulation of the activity of tissue-resident SCs and in shaping the SC niche microenvironment, thus contributing to tissue renewal and repair. Here, we review how the introduction of TCs into the scientific literature has deepened our knowledge of the stromal architecture focusing on the intestine and skeletal muscle, two organs in which the recently unveiled unique relationship between TCs and SCs is currently in the spotlight as potential target for tissue regenerative purposes.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
85
|
Cappellozza BI, Cooke RF, Harvey KM. Omega-6 Fatty Acids: A Sustainable Alternative to Improve Beef Production Efficiency. Animals (Basel) 2021; 11:ani11061764. [PMID: 34204706 PMCID: PMC8231484 DOI: 10.3390/ani11061764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The global beef industry is currently challenged with improving production efficiency while fostering judicious use of limited natural resources. Sustainable management systems are warranted to ensure that worldwide demands for beef and ecological stewardship are met. Supplementing cattle with omega-6 fatty acids is a nutritional intervention shown to sustainably enhance productivity across different sectors of the beef industry. The purpose of this review is to discuss recent research that describes the advantages of supplementing omega-6 fatty acids on traits that are critical to beef production efficiency, including reproduction, immunocompetence, growth, and quality of carcass and beef products. Abstract Global beef production must increase in the next decades to meet the demands of a growing population, while promoting sustainable use of limited natural resources. Supplementing beef cattle with omega-6 fatty acids (FAs) is a nutritional approach shown to enhance production efficiency, with research conducted across different environments and sectors of the beef industry. Omega-6 FA from natural feed ingredients such as soybean oil are highly susceptible to ruminal biohydrogenation. Hence, our and other research groups have used soybean oil in the form of Ca soaps (CSSO) to lessen ruminal biohydrogenation, and maximize delivery of omega-6 FA to the duodenum for absorption. In cow–calf systems, omega-6 FA supplementation to beef cows improved pregnancy success by promoting the establishment of early pregnancy. Cows receiving omega-6 FA during late gestation gave birth to calves that were healthier and more efficient in the feedlot, suggesting the potential role of omega-6 FA on developmental programming. Supplementing omega-6 FA to young cattle also elicited programming effects toward improved adipogenesis and carcass quality, and improved calf immunocompetence upon a stress stimulus. Cattle supplemented with omega-6 FA during growing or finishing periods also experienced improved performance and carcass quality. All these research results were generated using cattle of different genetic composition (Bos taurus and B. indicus influenced), and in different environments (tropical, subtropical, and temperate region). Hence, supplementing omega-6 FA via CSSO is a sustainable approach to enhance the production efficiency of beef industries across different areas of the world.
Collapse
Affiliation(s)
| | - Reinaldo Fernandes Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
- Correspondence: ; Tel.: +1-979-458-2703
| | | |
Collapse
|
86
|
Harvey KM, Cooke RF, Colombo EA, Rett B, de Sousa OA, Harvey LM, Russell JR, Pohler KG, Brandão AP. Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: postweaning responses of offspring reared as replacement heifers or feeder cattle. J Anim Sci 2021; 99:6170620. [PMID: 33715010 PMCID: PMC8186539 DOI: 10.1093/jas/skab082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
One hundred and ninety nonlactating, pregnant beef cows (¾ Bos taurus and ¼ Bos indicus; 138 multiparous and 52 primiparous) were assigned to this experiment at 117 ± 2.2 d of gestation (day 0). Cows were ranked by parity, pregnancy type (artificial insemination = 102, natural service = 88), body weight (BW) and body condition score, and assigned to receive a supplement containing: (1) sulfate sources of Cu, Co, Mn, and Zn (INR; n = 95) or (2) an organic complexed source of Cu, Mn, Co, and Zn (AAC; Availa4; Zinpro Corporation, Eden Prairie, MN; n = 95). The INR and AAC provided the same daily amount of Cu, Co, Mn, and Zn, based on 7 g of the AAC source. From day 0 to calving, cows were maintained in a single pasture and segregated 3 times weekly into 1 of 24 individual feeding pens to receive treatments. Calves were weaned on day 367 (200 ± 2 d of age), managed as a single group for a 45-d preconditioning period (days 367 to 412), and transferred to a single oat (Avena sativa L.) pasture on day 412. Heifer calves were moved to an adjacent oat pasture on day 437, where they remained until day 620. Heifer puberty status was verified weekly (days 437 to 619) based on plasma progesterone concentrations. Steer calves were shipped to a commercial feedlot on day 493, where they were managed as a single group until slaughter (day 724). Plasma cortisol concentration was greater (P = 0.05) in AAC calves at weaning but tended to be less (P = 0.10) on day 370 compared with INR calves. Mean plasma haptoglobin concentration was greater (P = 0.03) in INR vs. AAC calves during preconditioning, and no treatment effects were noted (P = 0.76) for preconditioning average daily gain (ADG). Puberty attainment was hastened in AAC heifers during the experiment (treatment × day; P < 0.01), despite similar (P = 0.39) ADG between treatments from days 412 to 620. Expression of myogenin mRNA in the longissimus muscle was greater (P = 0.05) in INR vs. AAC heifers on day 584. No treatment effects were detected (P ≥ 0.24) for steer ADG from day 412 until slaughter, nor for carcass quality traits. Hepatic mRNA expression of metallothionein 1A was greater (P = 0.02) in INR vs. AAC steers on day 586. In summary, supplementing Co, Cu, Zn, and Mn as organic complexed instead of sulfate sources to beef cows during the last 5 mo of gestation did not improve performance and physiological responses of the steer progeny until slaughter, but hastened puberty attainment in the female progeny reared as replacement heifers.
Collapse
Affiliation(s)
- Kelsey M Harvey
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA.,Prairie Research Unit, Mississippi State University, Prairie, MS 39756, USA
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Eduardo A Colombo
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Bruna Rett
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, SP 18618-970, Brazil
| | - Osvaldo A de Sousa
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, SP 18618-970, Brazil
| | - Lorin M Harvey
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA.,Pontotoc Ridge-Flatwoods Branch Experiment Station,Mississippi State University, Pontotoc, MS 38863, USA
| | | | - Ky G Pohler
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Alice P Brandão
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
87
|
Alarcin E, Bal-Öztürk A, Avci H, Ghorbanpoor H, Dogan Guzel F, Akpek A, Yesiltas G, Canak-Ipek T, Avci-Adali M. Current Strategies for the Regeneration of Skeletal Muscle Tissue. Int J Mol Sci 2021; 22:5929. [PMID: 34072959 PMCID: PMC8198586 DOI: 10.3390/ijms22115929] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic injuries, tumor resections, and degenerative diseases can damage skeletal muscle and lead to functional impairment and severe disability. Skeletal muscle regeneration is a complex process that depends on various cell types, signaling molecules, architectural cues, and physicochemical properties to be successful. To promote muscle repair and regeneration, various strategies for skeletal muscle tissue engineering have been developed in the last decades. However, there is still a high demand for the development of new methods and materials that promote skeletal muscle repair and functional regeneration to bring approaches closer to therapies in the clinic that structurally and functionally repair muscle. The combination of stem cells, biomaterials, and biomolecules is used to induce skeletal muscle regeneration. In this review, we provide an overview of different cell types used to treat skeletal muscle injury, highlight current strategies in biomaterial-based approaches, the importance of topography for the successful creation of functional striated muscle fibers, and discuss novel methods for muscle regeneration and challenges for their future clinical implementation.
Collapse
Affiliation(s)
- Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34854 Istanbul, Turkey;
| | - Ayca Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Hüseyin Avci
- Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Translational Medicine Research and Clinical Center, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Hamed Ghorbanpoor
- AvciBio Research Group, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey;
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
- Department of Biomedical Engineering, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Department of Biomedical Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey;
| | - Ali Akpek
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Gözde Yesiltas
- Department of Bioengineering, Gebze Technical University, 41400 Gebze, Turkey; (A.A.); (G.Y.)
| | - Tuba Canak-Ipek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany;
| |
Collapse
|
88
|
Harvey KM, Cooke RF, Colombo EA, Rett B, de Sousa OA, Harvey LM, Russell JR, Pohler KG, Brandão AP. Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: physiological and productive response of cows and their offspring until weaning. J Anim Sci 2021; 99:6184569. [PMID: 33758933 PMCID: PMC8218868 DOI: 10.1093/jas/skab095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
One hundred and ninety non-lactating, pregnant beef cows (three-fourth Bos taurus and one-fourth Bos indicus; 138 multiparous and 52 primiparous) were assigned to this experiment at 117 ± 2.2 d of gestation (day 0). Cows were ranked by parity, pregnancy type (artificial insemination = 102 and natural service = 88), body weight (BW), and body condition score (BCS) and assigned to receive a supplement containing: 1) sulfate sources of Cu, Co, Mn, and Zn (INR; n = 95) or 2) an organic-complexed source of Cu, Mn, Co, and Zn (AAC; Availa 4; Zinpro Corporation, Eden Prairie, MN; n = 95). The INR and AAC provided the same daily amount of Cu, Co, Mn, and Zn, based on 7 g of the AAC source. From day 0 to calving, cows were maintained in a single pasture and were segregated three times weekly into 1 of the 24 individual feeding pens to receive treatments. Cow BW and BCS were recorded on days -30, 97, upon calving, and at weaning (day 367). Milk production was estimated at 42 ± 0.5 d postpartum via weigh-suckle-weigh (WSW) method. Liver biopsies were performed in 30 cows per treatment on days -30, 97, upon calving, and the day after WSW. Calf BW was recorded at birth and weaning. Liver and longissimus muscle (LM) biopsies were performed in 30 calves per treatment upon calving and 24 h later, the day after WSW, and at weaning. No treatment effects were detected (P ≥ 0.49) for cow BCS during gestation, despite AAC cows having greater (P = 0.04) BW on day 97. Liver Co concentrations were greater (P < 0.01) for AAC compared with INR cows, and liver concentrations of Cu were greater (P = 0.02) for INR compared with AAC cows on day 97. Upon calving, INR cows had greater (P ≤ 0.01) liver Cu and Zn concentrations compared with AAC cows. No other treatment differences were noted (P ≥ 0.17) for cow and calf liver trace mineral concentrations. Cows receiving AAC had greater (P = 0.04) hepatic mRNA expression of metallothionein 1A at calving, and their calves had greater (P = 0.04) hepatic mRNA expression of superoxide dismutase at weaning. Milk production did not differ between AAC and INR cows (P = 0.70). No treatment effects were detected (P ≥ 0.29) for mRNA expression of LM genes associated with adipogenic or muscle development activities in calves at birth and weaning. Calf birth and weaning BW also did not differ (P ≥ 0.19) between treatments. In summary, supplementing AAC or INR to beef cows during the last 5 mo of gestation yielded similar cow-calf productive responses until weaning.
Collapse
Affiliation(s)
- Kelsey M Harvey
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA.,Prairie Research Unit, Mississippi State University, Prairie, MS 39756, USA
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Eduardo A Colombo
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Bruna Rett
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, SP 18618-970, Brazil
| | - Osvaldo A de Sousa
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, SP 18618-970, Brazil
| | - Lorin M Harvey
- Pontotoc Ridge-Flatwoods Branch Experiment Station, Mississippi State University, Pontotoc, MS 38863, USA
| | | | - Ky G Pohler
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Alice P Brandão
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
89
|
Tiago T, Hummel B, Morelli FF, Basile V, Vinet J, Galli V, Mediani L, Antoniani F, Pomella S, Cassandri M, Garone MG, Silvestri B, Cimino M, Cenacchi G, Costa R, Mouly V, Poser I, Yeger-Lotem E, Rosa A, Alberti S, Rota R, Ben-Zvi A, Sawarkar R, Carra S. Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death Dis 2021; 12:452. [PMID: 33958580 PMCID: PMC8102500 DOI: 10.1038/s41419-021-03737-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
One of the critical events that regulates muscle cell differentiation is the replacement of the lamin B receptor (LBR)-tether with the lamin A/C (LMNA)-tether to remodel transcription and induce differentiation-specific genes. Here, we report that localization and activity of the LBR-tether are crucially dependent on the muscle-specific chaperone HSPB3 and that depletion of HSPB3 prevents muscle cell differentiation. We further show that HSPB3 binds to LBR in the nucleoplasm and maintains it in a dynamic state, thus promoting the transcription of myogenic genes, including the genes to remodel the extracellular matrix. Remarkably, HSPB3 overexpression alone is sufficient to induce the differentiation of two human muscle cell lines, LHCNM2 cells, and rhabdomyosarcoma cells. We also show that mutant R116P-HSPB3 from a myopathy patient with chromatin alterations and muscle fiber disorganization, forms nuclear aggregates that immobilize LBR. We find that R116P-HSPB3 is unable to induce myoblast differentiation and instead activates the unfolded protein response. We propose that HSPB3 is a specialized chaperone engaged in muscle cell differentiation and that dysfunctional HSPB3 causes neuromuscular disease by deregulating LBR.
Collapse
Affiliation(s)
- Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Valentina Basile
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Veronica Galli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesco Antoniani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Maria Giovanna Garone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Marco Cimino
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Roberta Costa
- Department of Biomedical and Neuromotor Sciences DIBINEM, University of Bologna, Bologna, Italy; Centre for Applied Biomedical Research - CRBA, University of Bologna, IRCCS St. Orsola Hospital, Bologna, Italy
| | - Vincent Mouly
- Centre de Recherche en Myologie, Sorbonne Université, Inserm, Institut de Myologie, F-75013, Paris, France
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Dewpoint Therapeutics GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Medical Research Council (MRC), University of Cambridge, Cambridge, CB2 1QR, UK
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
90
|
Gupta A, Storey KB. Coordinated expression of Jumonji and AHCY under OCT transcription factor control to regulate gene methylation in wood frogs during anoxia. Gene 2021; 788:145671. [PMID: 33887369 DOI: 10.1016/j.gene.2021.145671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Wood frogs (Rana sylvatica) can survive extended periods of whole body freezing. Freezing imparts multiple stresses on cells that include anoxia and dehydration, but these can also be experienced as independent stresses. Under anoxia stress, energy metabolism is suppressed, and pro-survival pathways are prioritized to differentially regulate some transcription factors including OCT1 and OCT4. Jumonji C domain proteins (JMJD1A and JMJD2C) are hypoxia responsive demethylases whose expression is accelerated by OCT1 and OCT4 which act to demethylate genes related to the methionine cycle. The responses by these factors to 24 h anoxia exposure and 4 h aerobic recovery was analyzed in liver and skeletal muscle of wood frogs to assess their involvement in metabolic adaptation to oxygen limitation. Immunoblot results showed a decrease in JMJD1A levels under anoxia in liver and muscle, but an increase was observed in JMJD2C demethylase protein in anoxic skeletal muscle. Protein levels of adenosylhomocysteinase (AHCY) and methionine adenosyl transferase (MAT), enzymes of the methionine cycle, also showed an increase in the reoxygenated liver, whereas the levels decreased in muscle. A transcription factor ELISA showed a decrease in DNA binding by OCT1 in the reoxygenated liver and anoxic skeletal muscle, and transcript levels also showed tissue specific gene expression. The present study provides the first analysis of the role of the OCT1 transcription factor, associated proteins, and lysine demethylases in mediating responses to anoxia by wood frog tissues.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
91
|
Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring. Animals (Basel) 2021; 11:ani11041159. [PMID: 33919507 PMCID: PMC8072782 DOI: 10.3390/ani11041159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary During gestation, the fetus relies on the dam for the supply of all nutrients, including trace minerals, which are essential for developmental processes including organogenesis, vascularization, and differentiation. Alterations in maternal nutritional status may promote adaptations that permanently alter the trajectory of growth, physiology, and metabolism of the offspring. Supplementing trace minerals to gestating cows may be a strategy to enhance progeny performance and health. The purpose of this review is to highlight current information relevant to trace mineral supplementation during gestation, with an emphasis on Zn, Cu, Co, and Mn, and their impacts on offspring productive responses. Identifying nutritional strategies targeted at this period of development and understanding the implications of such provides an opportunity to enhance the productive efficiency of beef cattle systems. Abstract Nutritional management during gestation is critical to optimize the efficiency and profitability of beef production systems. Given the essentiality of trace minerals to fetal developmental processes, their supplementation represents one approach to optimize offspring productivity. Our research group investigated the impacts of supplementing gestating beef cows with organic-complexed (AAC) or inorganic sources (INR) of Co, Cu, Mn, or Zn on productive and health responses of the progeny. Calves born to AAC supplemented cows had reduced incidence of bovine respiratory disease and were >20 kg heavier from weaning until slaughter compared to unsupplemented cohorts. Complementing these findings, heifer progeny born to AAC supplemented cows had accelerated puberty attainment. Collectively, research demonstrates supplementing trace minerals to gestating beef cows may be a strategy to enhance offspring productivity in beef production systems.
Collapse
|
92
|
Wellmann KB, Kim J, Urso PM, Smith ZK, Johnson BJ. Evaluation of vitamin A status on myogenic gene expression and muscle fiber characteristics. J Anim Sci 2021; 99:6161323. [PMID: 33693597 DOI: 10.1093/jas/skab075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 02/05/2023] Open
Abstract
A randomized complete block design experiment with 30 yearling crossbred steers (average BW = 436.3 ± 39.8 kg) fed a steam-flaked corn-based diet was used to evaluate the effects dietary vitamin A (Rovimix A 1000; DSM Nutritional Products Ltd., Sisseln, SUI) supplementation on myogenic gene expression and skeletal muscle fiber characteristics during the finishing phase. Steers were blocked by BW (n = 5 blocks; 6 steers/block), randomly assigned to pens (n = 2 steers/pen), and one of the following treatments: no added vitamin A (0 IU; 0.0 IU/kg of dietary dry matter intake of additional vitamin A), vitamin A supplemented at the estimated requirement (2,200 IU; 2,200 IU/kg of dietary dry matter (DM) of additional vitamin A), and vitamin A supplemented at 5× the estimated requirement (11,000 IU; 11,000 IU/kg of dietary DM of additional vitamin A). After all treatments underwent a 91-d vitamin A depletion period, additional vitamin A was top-dressed at feeding via a ground corn carrier. Blood, longissimus muscle, and liver biopsy samples were obtained on days 0, 28, 56, 84, and 112. Biopsy samples were used for immunohistochemical and mRNA analysis. Sera and liver samples were used to monitor circulating vitamin A and true vitamin A status of the cattle. Expression for myosin heavy chain (MHC)-I diminished and rebounded (P = 0.04) over time. The intermediate fiber type, MHC-IIA, had a similar pattern of expression (P = 0.01) to that of MHC-I. On day 84, C/EBPβ expression was also the greatest (P = 0.03). The pattern of PPARγ (P < 0.01) and PPARδ (P < 0.01) expression seemed to mimic that of MHC-I expression, increasing from days 84 to 112. Distribution of MHC-IIA demonstrated a change over time (P = 0.02). Muscle fiber cross-sectional area increased by day (P < 0.01) for each MHC with the notable increase between days 0 and 56. Total nuclei density decreased (P = 0.02) over time. Cells positive for only Myf5 increased (P < 0.01) in density early in the feeding period, then declined, indicating that satellite cells were fusing into fibers. The dual-positive (PAX7+Myf5) nuclei also peaked (P < 0.01) around day 56 then declined. These data indicated that gene expression associated with oxidative proteins may be independent of vitamin A status in yearling cattle.
Collapse
Affiliation(s)
- Kimberly B Wellmann
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Phil M Urso
- School of Agricultural Sciences, Sam Houston State University, Huntsville, TX, USA
| | - Zachary K Smith
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Bradley J Johnson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
93
|
Peng Y, Xu M, Dou M, Shi X, Yang G, Li X. MicroRNA-129-5p inhibits C2C12 myogenesis and represses slow fiber gene expression in vitro. Am J Physiol Cell Physiol 2021; 320:C1031-C1041. [PMID: 33826407 DOI: 10.1152/ajpcell.00578.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The miR-129 family is widely reported as tumor repressors, although their roles in skeletal muscle have not been fully investigated. Here, the function and mechanism of miR-129-5p in skeletal muscle, a member of the miR-129 family, were explored using C2C12 cell line. Our study showed that miR-129-5p was widely detected in mouse tissues, with the highest expression in skeletal muscle. Gain- and loss-of-function study showed that miR-129-5p could negatively regulate myogenic differentiation, indicated by reduced ratio of MyHC-positive myofibers and repressed expression of myogenic genes, such as MyoD, MyoG, and MyHC. Furthermore, miR-129-5p was more enriched in fast extensor digitorum longus (EDL) than in slow soleus (SOL). Enhanced miR-129-5p could significantly reduce the expression of mitochondrial cox family, together with that of MyHC I, and knockdown of miR-129-5p conversely increased the expression of cox genes and MyHC I. Mechanistically, miR-129-5p directly targeted the 3'-UTR of Mef2a, which was suppressed by miR-129-5p agomir at both mRNA and protein levels in C2C12 cells. Moreover, overexpression of Mef2a could rescue the inhibitory effects of miR-129-5p on the expression of myogenic factors and MyHC I. Collectively, our data revealed that miR-129-5p is a negative regulator of myogenic differentiation and slow fiber gene expression, thus affecting body metabolic homeostasis.
Collapse
Affiliation(s)
- Ying Peng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Meixue Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Mingle Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Xin'E Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| |
Collapse
|
94
|
Wang M, Song W, Jin C, Huang K, Yu Q, Qi J, Zhang Q, He Y. Pax3 and Pax7 Exhibit Distinct and Overlapping Functions in Marking Muscle Satellite Cells and Muscle Repair in a Marine Teleost, Sebastes schlegelii. Int J Mol Sci 2021; 22:ijms22073769. [PMID: 33916485 PMCID: PMC8038590 DOI: 10.3390/ijms22073769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Pax3 and Pax7 are members of the Pax gene family which are essential for embryo and organ development. Both genes have been proved to be markers of muscle satellite cells and play key roles in the process of muscle growth and repair. Here, we identified two Pax3 genes (SsPax3a and SsPax3b) and two Pax7 genes (SsPax7a and SsPax7b) in a marine teleost, black rockfish (Sebastes schlegelii). Our results showed SsPax3 and SsPax7 marked distinct populations of muscle satellite cells, which originated from the multi-cell stage and somite stage, respectively. In addition, we constructed a muscle injury model to explore the function of these four genes during muscle repair. Hematoxylin–eosin (H–E) of injured muscle sections showed new-formed myofibers occurred at 16 days post-injury (dpi). ISH (in situ hybridization) analysis demonstrated that the expression level of SsPax3a and two SsPax7 genes increased gradually during 0–16 dpi and peaked at 16 dpi. Interestingly, SsPax3b showed no significant differences during the injury repair process, indicating that the satellite cells labeled by SsPax3b were not involved in muscle repair. These results imply that the muscle stem cell populations in teleosts are more complicated than in mammals. This lays the foundation for future studies on the molecular mechanism of indeterminant growth and muscle repair of large fish species.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Weihao Song
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Chaofan Jin
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Kejia Huang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Qianwen Yu
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
| | - Jie Qi
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Quanqi Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yan He
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (W.S.); (C.J.); (K.H.); (Q.Y.); (J.Q.); (Q.Z.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence:
| |
Collapse
|
95
|
Hamilton BR, Lima G, Barrett J, Seal L, Kolliari-Turner A, Wang G, Karanikolou A, Bigard X, Löllgen H, Zupet P, Ionescu A, Debruyne A, Jones N, Vonbank K, Fagnani F, Fossati C, Casasco M, Constantinou D, Wolfarth B, Niederseer D, Bosch A, Muniz-Pardos B, Casajus JA, Schneider C, Loland S, Verroken M, Marqueta PM, Arroyo F, Pedrinelli A, Natsis K, Verhagen E, Roberts WO, Lazzoli JK, Friedman R, Erdogan A, Cintron AV, Yung SHP, Janse van Rensburg DC, Ramagole DA, Rozenstoka S, Drummond F, Papadopoulou T, Kumi PYO, Twycross-Lewis R, Harper J, Skiadas V, Shurlock J, Tanisawa K, Seto J, North K, Angadi SS, Martinez-Patiño MJ, Borjesson M, Di Luigi L, Dohi M, Swart J, Bilzon JLJ, Badtieva V, Zelenkova I, Steinacker JM, Bachl N, Pigozzi F, Geistlinger M, Goulis DG, Guppy F, Webborn N, Yildiz BO, Miller M, Singleton P, Pitsiladis YP. Integrating Transwomen and Female Athletes with Differences of Sex Development (DSD) into Elite Competition: The FIMS 2021 Consensus Statement. Sports Med 2021; 51:1401-1415. [PMID: 33761127 PMCID: PMC7988249 DOI: 10.1007/s40279-021-01451-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 01/06/2023]
Abstract
Sport is historically designated by the binary categorization of male and female that conflicts with modern society. Sport’s governing bodies should consider reviewing rules determining the eligibility of athletes in the female category as there may be lasting advantages of previously high testosterone concentrations for transwomen athletes and currently high testosterone concentrations in differences in sex development (DSD) athletes. The use of serum testosterone concentrations to regulate the inclusion of such athletes into the elite female category is currently the objective biomarker that is supported by most available scientific literature, but it has limitations due to the lack of sports performance data before, during or after testosterone suppression. Innovative research studies are needed to identify other biomarkers of testosterone sensitivity/responsiveness, including molecular tools to determine the functional status of androgen receptors. The scientific community also needs to conduct longitudinal studies with specific control groups to generate the biological and sports performance data for individual sports to inform the fair inclusion or exclusion of these athletes. Eligibility of each athlete to a sport-specific policy needs to be based on peer-reviewed scientific evidence made available to policymakers from all scientific communities. However, even the most evidence-based regulations are unlikely to eliminate all differences in performance between cisgender women with and without DSD and transwomen athletes. Any remaining advantage held by transwomen or DSD women could be considered as part of the athlete’s unique makeup.
Collapse
Affiliation(s)
- Blair R Hamilton
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
- The Gender Identity Clinic Tavistock and Portman NHS Foundation Trust, London, UK
| | - Giscard Lima
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - James Barrett
- The Gender Identity Clinic Tavistock and Portman NHS Foundation Trust, London, UK
| | - Leighton Seal
- The Gender Identity Clinic Tavistock and Portman NHS Foundation Trust, London, UK
| | | | - Guan Wang
- Sport and Exercise Science and Sports Medicine Research and Enterprise Group, University of Brighton, Brighton, UK
| | - Antonia Karanikolou
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
| | - Xavier Bigard
- Union Cycliste Internationale (UCI), Aigle, Switzerland
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| | - Herbert Löllgen
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
| | - Petra Zupet
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
| | - Anca Ionescu
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
| | - Andre Debruyne
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| | - Nigel Jones
- British Association Sport and Exercise Medicine, Doncaster, UK
- British Cycling and University of Liverpool, Liverpool, UK
| | - Karin Vonbank
- Department of Pneumology, Pulmonary Function Laboratory, Medicine Clinic (KIMII), University of Vienna, Vienna, Austria
| | - Federica Fagnani
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Rome, Italy
| | - Maurizio Casasco
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Italian Federation of Sports Medicine (FMSI), Rome, Italy
| | - Demitri Constantinou
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Centre for Exercise Science and Sports Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Bernd Wolfarth
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Sports Medicine, Humboldt University and Charité University School of Medicine, Berlin, Germany
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University Heart Centre, University of Zurich, Zurich, Switzerland
| | - Andrew Bosch
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Borja Muniz-Pardos
- GENUD Research Group, FIMS Collaborating Center of Sports Medicine, Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain
| | - José Antonio Casajus
- GENUD Research Group, FIMS Collaborating Center of Sports Medicine, Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain
| | - Christian Schneider
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Orthopaedic Center Theresie, Munich, Germany
| | - Sigmund Loland
- Department of Sport and Social Sciences, Norwegian School of Sport Sciences, Oslo, Norway
| | - Michele Verroken
- Centre of Research and Innovation for Sport, Technology and Law (CRISTAL), De Montfort University, Leicester, UK
- Sporting Integrity Ltd, Stoke Mandeville, UK
| | - Pedro Manonelles Marqueta
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Sports Medicine, San Antonio Catholic University of Murcia, Murcia, Spain
| | - Francisco Arroyo
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- FIMS Collaborating Center of Sports Medicine, Guadalajara, Mexico
| | - André Pedrinelli
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Orthopaedics, University of São Paulo Medical School, São Paulo, Brazil
| | - Konstantinos Natsis
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Interbalkan Medical Center, FIMS Collaborating Center of Sports Medicine, Thessaloniki, Greece
- Department of Anatomy and Surgical Anatomy, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evert Verhagen
- Amsterdam Collaboration on Health and Safety in Sports, Department of Public and Occupational Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - William O Roberts
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, USA
| | - José Kawazoe Lazzoli
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Biomedical Institute, Fluminense Federal University Medical School, Niterói, Brazil
| | - Rogerio Friedman
- Universidade Federal do Rio Grande do Sul, Endocrine Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Ali Erdogan
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Gloria Sports Arena, FIMS Collaborating Centre of Sports Medicine, Antalya, Turkey
| | - Ana V Cintron
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Puerto Rico Sports Medicine Federation, San Juan, Puerto Rico
| | - Shu-Hang Patrick Yung
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Asian Federation of Sports Medicine (AFSM), Hong Kong Center of Sports Medicine and Sports Science, Hong Kong, China
| | | | - Dimakatso A Ramagole
- Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sandra Rozenstoka
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- FIMS Collaboration Centre of Sports Medicine, Sports laboratory, Riga, Latvia
| | - Felix Drummond
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- FIMS Collaboration Centre of Sports Medicine, Instituto de Medicina do Esporte, Porto Alegre, Brazil
| | - Theodora Papadopoulou
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, UK
| | - Paulette Y O Kumi
- Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK
| | - Richard Twycross-Lewis
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Joanna Harper
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | | | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Jane Seto
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kathryn North
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Siddhartha S Angadi
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | | | - Mats Borjesson
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Center for Health and Performance, Goteborg University, Göteborg, Sweden
- Sahlgrenska University Hospital/Ostra, Region of Western Sweden, Göteborg, Sweden
| | - Luigi Di Luigi
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Michiko Dohi
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Sport Medical Center, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Jeroen Swart
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- UCT Research Unit for Exercise Science and Sports Medicine, Cape Town, South Africa
| | - James Lee John Bilzon
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department for Health, University of Bath, Bath, UK
| | - Victoriya Badtieva
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
- Moscow Research and Practical Center for Medical Rehabilitation, Restorative and Sports Medicine, Moscow Healthcare Department, Moscow, Russian Federation
| | - Irina Zelenkova
- GENUD Research Group, FIMS Collaborating Center of Sports Medicine, Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain
| | - Juergen M Steinacker
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Division of Sports and Rehabilitation Medicine, Ulm University Hospital, Ulm, Germany
| | - Norbert Bachl
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Institute of Sports Science, University of Vienna, Vienna, Austria
- Austrian Institute of Sports Medicine, Vienna, Austria
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Rome, Italy
| | - Michael Geistlinger
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Unit of International Law, Department of Constitutional, International and European Law, University of Salzburg, Salzburg, Salzburg, Austria
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fergus Guppy
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Nick Webborn
- School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Bulent O Yildiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, 06100, Ankara, Turkey
| | - Mike Miller
- World Olympian Association, Lausanne, Switzerland
| | | | - Yannis P Pitsiladis
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Rome, Italy.
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK.
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland.
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland.
| |
Collapse
|
96
|
The Impact of Polyamine Precursors, Polyamines, and Steroid Hormones on Temporal Messenger RNA Abundance in Bovine Satellite Cells Induced to Differentiate. Animals (Basel) 2021; 11:ani11030764. [PMID: 33801966 PMCID: PMC8001141 DOI: 10.3390/ani11030764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In the U.S., approximately 90% of all cattle on feed receive an anabolic implant at some point during production. Despite the widespread use, how they operate to increase growth of cattle remains unknown. Polyamines are amino acid derivatives, which are potent growth stimulants, produced through the polyamine biosynthetic pathway. Emerging research suggests that the hormones in anabolic implants interact with the polyamine biosynthetic pathway. The purpose of this research was to investigate the effects of steroidal hormones, polyamine precursors, and polyamines on mRNA abundance of bovine satellite cells, muscle precursor cells. The results from this study suggest that polyamine precursors and polyamines alter transcription factors involved in induction of differentiation of bovine satellite cells and the polyamine biosynthetic pathway, while the hormones in anabolic implants alter genes involved in the polyamine biosynthetic pathway. These results mean that polyamines may impact differentiation of bovine satellite cells, ultimately affecting growth of cattle. Abstract Emerging research suggests that hormones found in anabolic implants interact with polyamine biosynthesis. The objective of this study was to determine the effects of steroidal hormones, polyamines and polyamine precursors on bovine satellite cell (BSC) differentiation and polyamine biosynthesis temporally. Primary BSCs were induced to differentiate in 3% horse serum (CON) and treated with 10 nM trenbolone acetate (TBA), 10 nM estradiol (E2), 10 nM TBA and 10 nM E2, 10 mM methionine, 8 mM ornithine, 2 mM putrescine, 1.5 mM spermidine, or 0.5 mM spermine. Total mRNA was isolated 0, 2, 4, 8, 12, 24, and 48 h post-treatment. Abundance of mRNA for genes associated with induction of BSC differentiation: paired box transcription factor 7, myogenic factor 5, and myogenic differentiation factor 1 and genes in the polyamine biosynthesis pathway: ornithine decarboxylase and S-adenosylmethionine—were analyzed. Overall, steroidal hormones did not impact (p > 0.05) mRNA abundance of genes involved in BSC differentiation, but did alter (p = 0.04) abundance of genes involved in polyamine biosynthesis. Polyamine precursors influenced (p < 0.05) mRNA of genes involved in BSC differentiation. These results indicate that polyamine precursors and polyamines impact BSC differentiation and abundance of mRNA involved in polyamine biosynthesis, while steroidal hormones altered the mRNA involved in polyamine biosynthesis.
Collapse
|
97
|
Roque-Jiménez JA, Rosa-Velázquez M, Pinos-Rodríguez JM, Vicente-Martínez JG, Mendoza-Cervantes G, Flores-Primo A, Lee-Rangel HA, Relling AE. Role of Long Chain Fatty Acids in Developmental Programming in Ruminants. Animals (Basel) 2021; 11:ani11030762. [PMID: 33801880 PMCID: PMC8001802 DOI: 10.3390/ani11030762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The objective of the current review is to provide a broad perspective on developmental program aspects of dietary n-3 FA supplementation in ruminants during pre-conception, conception, pregnancy, early life, including its effects on production, lipid metabolism, and health of the offspring. Offspring growth and metabolism could change depending on the FA profile and the stage of gestation when the dam is supplemented. Despite this extended review we are highlighting areas that we consider that there is a lack of information. Abstract Nutrition plays a critical role in developmental programs. These effects can be during gametogenesis, gestation, or early life. Omega-3 polyunsaturated fatty acids (PUFA) are essential for normal physiological functioning and for the health of humans and all domestic species. Recent studies have demonstrated the importance of n-3 PUFA in ruminant diets during gestation and its effects on pre-and postnatal offspring growth and health indices. In addition, different types of fatty acids have different metabolic functions, which affects the developmental program differently depending on when they are supplemented. This review provides a broad perspective of the effect of fatty acid supplementation on the developmental program in ruminants, highlighting the areas of a developmental program that are better known and the areas that more research may be needed.
Collapse
Affiliation(s)
- José Alejandro Roque-Jiménez
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Milca Rosa-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Juan Manuel Pinos-Rodríguez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Jorge Genaro Vicente-Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | | | - Argel Flores-Primo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz 91710, Mexico; (M.R.-V.); (J.M.P.-R.); (J.G.V.-M.); (A.F.-P.)
| | - Héctor Aarón Lee-Rangel
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (H.A.L.-R.)
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
- Correspondence: ; Tel.: +1-330-263-3900
| |
Collapse
|
98
|
Kim H, Jeong JH, Fendereski M, Lee HS, Kang DY, Hur SS, Amirian J, Kim Y, Pham NT, Suh N, Hwang NSY, Ryu S, Yoon JK, Hwang Y. Heparin-Mimicking Polymer-Based In Vitro Platform Recapitulates In Vivo Muscle Atrophy Phenotypes. Int J Mol Sci 2021; 22:ijms22052488. [PMID: 33801235 PMCID: PMC7957884 DOI: 10.3390/ijms22052488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The cell–cell/cell–matrix interactions between myoblasts and their extracellular microenvironment have been shown to play a crucial role in the regulation of in vitro myogenic differentiation and in vivo skeletal muscle regeneration. In this study, by harnessing the heparin-mimicking polymer, poly(sodium-4-styrenesulfonate) (PSS), which has a negatively charged surface, we engineered an in vitro cell culture platform for the purpose of recapitulating in vivo muscle atrophy-like phenotypes. Our initial findings showed that heparin-mimicking moieties inhibited the fusion of mononucleated myoblasts into multinucleated myotubes, as indicated by the decreased gene and protein expression levels of myogenic factors, myotube fusion-related markers, and focal adhesion kinase (FAK). We further elucidated the underlying molecular mechanism via transcriptome analyses, observing that the insulin/PI3K/mTOR and Wnt signaling pathways were significantly downregulated by heparin-mimicking moieties through the inhibition of FAK/Cav3. Taken together, the easy-to-adapt heparin-mimicking polymer-based in vitro cell culture platform could be an attractive platform for potential applications in drug screening, providing clear readouts of changes in insulin/PI3K/mTOR and Wnt signaling pathways.
Collapse
Affiliation(s)
- Hyunbum Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea;
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Mona Fendereski
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Hyo-Shin Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Da Yeon Kang
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan-si 31538, Korea; (D.Y.K.); (N.S.)
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
| | - Jhaleh Amirian
- Institute of Tissue Regeneration, Soonchunhyang University, Asan-si 31538, Korea;
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Nghia Thi Pham
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan-si 31538, Korea; (D.Y.K.); (N.S.)
| | - Nathaniel Suk-Yeon Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea;
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
- Correspondence: (J.K.Y.); (Y.H.); Tel.: +82-41-413-5016 (J.K.Y.); +82-41-413-5017 (Y.H.)
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
- Correspondence: (J.K.Y.); (Y.H.); Tel.: +82-41-413-5016 (J.K.Y.); +82-41-413-5017 (Y.H.)
| |
Collapse
|
99
|
Boufroura FZ, Tomkiewicz-Raulet C, Poindessous V, Castille J, Vilotte JL, Bastin J, Mouillet-Richard S, Djouadi F. Cellular prion protein dysfunction in a prototypical inherited metabolic myopathy. Cell Mol Life Sci 2021; 78:2157-2167. [PMID: 32875355 PMCID: PMC11073170 DOI: 10.1007/s00018-020-03624-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Inherited fatty acid oxidation diseases in their mild forms often present as metabolic myopathies. Carnitine Palmitoyl Transferase 2 (CPT2) deficiency, one such prototypical disorder is associated with compromised myotube differentiation. Here, we show that CPT2-deficient myotubes exhibit defects in focal adhesions and redox balance, exemplified by increased SOD2 expression. We document unprecedented alterations in the cellular prion protein PrPC, which directly arise from the failure in CPT2 enzymatic activity. We also demonstrate that the loss of PrPC function in normal myotubes recapitulates the defects in focal adhesion, redox balance and differentiation hallmarks monitored in CPT2-deficient cells. These results are further corroborated by studies performed in muscles from Prnp-/- mice. Altogether, our results unveil a molecular scenario, whereby PrPC dysfunction governed by faulty CPT2 activity may drive aberrant focal adhesion turnover and hinder proper myotube differentiation. Our study adds a novel facet to the involvement of PrPC in diverse physiopathological situations.
Collapse
Affiliation(s)
- Fatima-Zohra Boufroura
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France
| | - Céline Tomkiewicz-Raulet
- Centre Universitaire des Saints Pères, INSERM U1124, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Virginie Poindessous
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France
| | - Johan Castille
- Université Paris-Saclay, INRAE AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France
| | - Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France.
| | - Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, 15, rue de L'Ecole de Médecine, 75006, Paris, France.
| |
Collapse
|
100
|
Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. GeroScience 2021; 43:85-110. [PMID: 33528828 PMCID: PMC8050140 DOI: 10.1007/s11357-021-00322-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| |
Collapse
|