51
|
Smith CA, Toth M, Bhattacharya M, Frase H, Vakulenko SB. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1561-71. [PMID: 24914967 PMCID: PMC4051501 DOI: 10.1107/s1399004714005331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/07/2014] [Indexed: 01/04/2023]
Abstract
The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.
Collapse
Affiliation(s)
- Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Monolekha Bhattacharya
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hilary Frase
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
52
|
Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med Chem 2014; 5:1285-309. [PMID: 23859208 DOI: 10.4155/fmc.13.80] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new AGs that are unaffected by AMEs; developing inhibitors of AMEs to be co-delivered with AGs; or regulating AME expression. Modern high-throughput methods as well as drug combinations and repurposing are highlighted as recent drug-discovery efforts towards fighting the increasing antibiotic resistance crisis.
Collapse
|
53
|
Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. Antibiotic resistance-the need for global solutions. THE LANCET. INFECTIOUS DISEASES 2013; 13:1057-98. [PMID: 24252483 DOI: 10.1016/s1473-3099(13)70318-9] [Citation(s) in RCA: 2717] [Impact Index Per Article: 226.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.
Collapse
Affiliation(s)
- Ramanan Laxminarayan
- Center for Disease Dynamics, Economics and Policy, Washington, DC, USA; Princeton University, Princeton NJ, USA; Public Health Foundation of India, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Biochem J 2013; 454:191-200. [PMID: 23758273 DOI: 10.1042/bj20130317] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activity of the aminoglycoside phosphotransferase APH(3')-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. We demonstrated previously that ePK (eukaryotic protein kinase) inhibitors could inhibit APH enzymes, owing to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. In addition, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. In the present study, we structurally and functionally characterize inhibition of APH(3')-Ia by three diverse chemical scaffolds, anthrapyrazolone, 4-anilinoquinazoline and PP (pyrazolopyrimidine), and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3')-Ia compared with ePKs. Using this observation, we identify PP derivatives that select against ePKs, attenuate APH(3')-Ia activity and rescue aminoglycoside antibiotic activity against a resistant Escherichia coli strain. The structures described in the present paper and the inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance.
Collapse
|
55
|
Shi K, Caldwell SJ, Fong DH, Berghuis AM. Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance. Front Cell Infect Microbiol 2013; 3:22. [PMID: 23805415 PMCID: PMC3691515 DOI: 10.3389/fcimb.2013.00022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/04/2013] [Indexed: 01/10/2023] Open
Abstract
Aminoglycosides are a class of antibiotics with a broad spectrum of antimicrobial activity. Unfortunately, resistance in clinical isolates is pervasive, rendering many aminoglycosides ineffective. The most widely disseminated means of resistance to this class of antibiotics is inactivation of the drug by aminoglycoside-modifying enzymes (AMEs). There are two principal strategies to overcoming the effects of AMEs. The first approach involves the design of novel aminoglycosides that can evade modification. Although this strategy has yielded a number of superior aminoglycoside variants, their efficacy cannot be sustained in the long term. The second approach entails the development of molecules that interfere with the mechanism of AMEs such that the activity of aminoglycosides is preserved. Although such a molecule has yet to enter clinical development, the search for AME inhibitors has been greatly facilitated by the wealth of structural information amassed in recent years. In particular, aminoglycoside phosphotransferases or kinases (APHs) have been studied extensively and crystal structures of a number of APHs with diverse regiospecificity and substrate specificity have been elucidated. In this review, we present a comprehensive overview of the available APH structures and recent progress in APH inhibitor development, with a focus on the structure-guided strategies.
Collapse
Affiliation(s)
- Kun Shi
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill UniversityMontreal, QC, Canada
| | - Shane J. Caldwell
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill UniversityMontreal, QC, Canada
| | - Desiree H. Fong
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill UniversityMontreal, QC, Canada
| | - Albert M. Berghuis
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill UniversityMontreal, QC, Canada
- Department of Microbiology and Immunology, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
56
|
Zhang W, Chen Y, Liang Q, Li H, Jin H, Zhang L, Meng X, Li Z. Design, Synthesis, and Antibacterial Activities of Conformationally Constrained Kanamycin A Derivatives. J Org Chem 2012; 78:400-9. [DOI: 10.1021/jo302247x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wenxuan Zhang
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Ying Chen
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Qingzhao Liang
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Hui Li
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Hongwei Jin
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Liangren Zhang
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xiangbao Meng
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhongjun Li
- Department of Chemical Biology and ‡Department of
Medicinal Chemistry, School of Pharmaceutical Sciences,
The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
57
|
Elizarov SM, Alekseeva MG, Novikov FN, Chilov GG, Maslov DA, Shtil AA, Danilenko VN. Identification of phosphorylation sites in aminoglycoside phosphotransferase VIII from Streptomyces rimosus. BIOCHEMISTRY (MOSCOW) 2012; 77:1258-65. [DOI: 10.1134/s0006297912110041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
|
59
|
Characterization of a rifampin-inactivating glycosyltransferase from a screen of environmental actinomycetes. Antimicrob Agents Chemother 2012; 56:5061-9. [PMID: 22802246 DOI: 10.1128/aac.01166-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Identifying and understanding the collection of all antibiotic resistance determinants presented in the global microbiota, the antibiotic resistome, provides insight into the evolution of antibiotic resistance and critical information for the development of future antimicrobials. The rifamycins are broad-spectrum antibiotics that target bacterial transcription by inhibition of RNA polymerase. Although mutational alteration of the drug target is the predominant mechanism of resistance to this family of antibiotics in the clinic, a number of diverse inactivation mechanisms have also been reported. In this report, we investigate a subset of environmental rifampin-resistant actinomycete isolates and identify a diverse collection of rifampin inactivation mechanisms. We describe a single isolate, WAC1438, capable of inactivating rifampin by glycosylation. A draft genome sequence of WAC1438 (most closely related to Streptomyces speibonae, according to a 16S rRNA gene comparison) was assembled, and the associated rifampin glycosyltransferase open reading frame, rgt1438, was identified. The role of rgt1438 in rifampin resistance was confirmed by its disruption in the bacterial chromosome, resulting in a loss of antibiotic inactivation and a 4-fold decrease in MIC. Interestingly, examination of the RNA polymerase β-subunit sequence of WAC1438 suggests that it harbors a resistant target and thus possesses dual mechanisms of rifamycin resistance. Using an in vitro assay with purified enzyme, Rgt1438 could inactivate a variety of rifamycin antibiotics with comparable steady-state kinetics constants. Our results identify rgt1438 as a rifampin resistance determinant from WAC1438 capable of inactivating an assortment of rifamycins, adding a new element to the rifampin resistome.
Collapse
|
60
|
Auld D, Lea W, Davis MI, Simeonov A. Literature Search and Review. Assay Drug Dev Technol 2012. [DOI: 10.1089/adt.2012.1002.lr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Doug Auld
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
61
|
Shi K, Berghuis AM. Structural basis for dual nucleotide selectivity of aminoglycoside 2''-phosphotransferase IVa provides insight on determinants of nucleotide specificity of aminoglycoside kinases. J Biol Chem 2012; 287:13094-102. [PMID: 22371504 DOI: 10.1074/jbc.m112.349670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic phosphorylation through a family of enzymes called aminoglycoside O-phosphotransferases (APHs) is a major mechanism by which bacteria confer resistance to aminoglycoside antibiotics. Members of the APH(2″) subfamily are of particular clinical interest because of their prevalence in pathogenic strains and their broad substrate spectra. APH(2″) enzymes display differential preferences between ATP or GTP as the phosphate donor, with aminoglycoside 2″-phosphotransferase IVa (APH(2″)-IVa) being a member that utilizes both nucleotides at comparable efficiencies. We report here four crystal structures of APH(2″)-IVa, two of the wild type enzyme and two of single amino acid mutants, each in complex with either adenosine or guanosine. Together, these structures afford a detailed look at the nucleoside-binding site architecture for this enzyme and reveal key elements that confer dual nucleotide specificity, including a solvent network in the interior of the nucleoside-binding pocket and the conformation of an interdomain linker loop. Steady state kinetic studies, as well as sequence and structural comparisons with members of the APH(2″) subfamily and other aminoglycoside kinases, rationalize the different substrate preferences for these enzymes. Finally, despite poor overall sequence similarity and structural homology, analysis of the nucleoside-binding pocket of APH(2″)-IVa shows a striking resemblance to that of eukaryotic casein kinase 2 (CK2), which also exhibits dual nucleotide specificity. These results, in complement with the multitude of existing inhibitors against CK2, can serve as a structural basis for the design of nucleotide-competitive inhibitors against clinically relevant APH enzymes.
Collapse
Affiliation(s)
- Kun Shi
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada
| | | |
Collapse
|
62
|
Kreisberg J. Drug partners for antibiotics. Nat Biotechnol 2012. [DOI: 10.1038/nbt.2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|