51
|
Tian N, Wu H, Zhang H, Yang D, Lv L, Yang Z, Zhang T, Quan D, Zhou L, Xie Y, Xu Y, Wei N, Zhang J, Chen M, Schmitz JC, Tian Y, Wu S. Discovery of [1,2,4]triazolo[4,3-a]pyridines as potent Smoothened inhibitors targeting the Hedgehog pathway with improved antitumor activity in vivo. Bioorg Med Chem 2020; 28:115584. [DOI: 10.1016/j.bmc.2020.115584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
|
52
|
Wang C, Zuo G, Wang X, Kim HY, Zhao S, Sun W, Tong S, Lim SS. Retention mechanism of pH-peak-focusing in countercurrent chromatographic separation of baicalin and wogonoside from Scutellaria baicalensis Georgi. J Sep Sci 2020; 43:3806-3815. [PMID: 32729149 DOI: 10.1002/jssc.202000455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
An efficient and target-oriented pH-peak-focusing countercurrent chromatographic method was established for large-scale separation of baicalin and wogonoside from the crude exact of traditional Chinese medicinal herb Scutellaria baicalensis Georgi. An optimized two-phase solvent system composed of n-butanol-ethyl acetate-methanol-water (1:4:0.5:5, v/v) was selected. Trifluoroacetic acid (10 mmol/L) was added to the upper organic phase, used as the stationary phase. One liter of the aqueous lower phase was used as the mobile phase for 0-350 min, and then 10 mmol/L ammonia was added to remaining 1 L of the aqueous lower phase and used as the mobile phase for 350-600 min. In total, 493.2 mg of baicalin with 98.6% purity and 88.6 mg of wogonoside with 98.9% purity were obtained from 1.0 g of crude exact of S. baicalensis by countercurrent chromatography in a single run. The acid dissociation constant (pKa) and oil-water partition coefficient values of two components were measured to better understand the mechanism of separation. Results showed that pH-peak-focusing countercurrent chromatography with a polar solvent system added with trifluoroacetic acid could be an efficient method for large-scale isolation of organic acids, which are difficult to separate with conventional countercurrent chromatography due to their poor solubility in non-polar solvents.
Collapse
Affiliation(s)
- Chaoyue Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Xiang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Hyun Yong Kim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Shanshan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Wenyu Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Republic of Korea.,Institute of Korean Nutrition, Hallym University, Chuncheon, Republic of Korea.,Institute of Natural Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
53
|
Yan Y, Yao L, Sun H, Pang S, Kong X, Zhao S, Xu S. Effects of wogonoside on invasion and migration of lung cancer A549 cells and angiogenesis in xenograft tumors of nude mice. J Thorac Dis 2020; 12:1552-1560. [PMID: 32395292 PMCID: PMC7212121 DOI: 10.21037/jtd-20-1555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Lung cancer is the most prevalent and deadly tumors around the world. Here we aimed to investigate the effect of wogonoside (also called baicalin) on the invasion and migration of lung cancer A549 cells and angiogenesis in xenograft tumors in nude mice. Methods A549 cells of lung cancer were treated with different doses of wogonoside. After 24 h, CCK8 was used to detect the survival rate of cells. The non-toxic doses of wogonoside (0, 10, 25, and 50 µM) were selected for subsequent experiments. Transwell and scratch assays were used to detect invasion and migration. The number of microtubule nodules was detected by microtubule formation experiment, and the expressions of VEGF, E-cadherin, N-cadherin, and Vimentin were detected by Western blotting. BALB/c nude mice were subcutaneously injected with lung cancer A549 cells to establish the xenograft model, followed by intraperitoneal injection of 80 mg/kg of wogonoside. After 30 days, tumor volume was measured, and the levels of VEGF and vimentin were detected with immunohistochemistry. The level of CD34 was determined by flow sorting. Results A549 cell survival decreased in a concentration-dependent manner, with the survival rate significantly reduced when the concentration of wogonoside exceeded 100 µM (P<0.05). A549 cell invasion and the number of microtubule nodules were significantly lower in the wogonoside 20 µM and the wogonoside 50 µM groups (P<0.05) compared with the wogonoside 0 µM group, while the rate of scratch closure and the protein levels of VEGF, N-cadherin, and Vimentin were all significantly reduced (P<0.05), and the expression level of E-cadherin was significantly increased (P<0.05). Compared with the control group, the tumor volumes of wogonoside (80 mg/kg) treated mice were significantly reduced after 30 days (P<0.05), and the levels of VEGF and vimentin positive cells were significantly reduced (P<0.05), as was the level of CD34 (P<0.05). Conclusions Wogonoside can inhibit the invasion and migration of lung cancer A549 cells and angiogenesis of xenograft tumors in nude mice.
Collapse
Affiliation(s)
- Yubo Yan
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin 150000, China
| | - Lei Yao
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin 150000, China
| | - Haobo Sun
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin 150000, China
| | - Sainan Pang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin 150000, China
| | - Xianglong Kong
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin 150000, China
| | - Su Zhao
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin 150000, China
| | - Shidong Xu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Harbin Medical University, Harbin 150000, China
| |
Collapse
|
54
|
Chen S, Wu Z, Ke Y, Shu P, Chen C, Lin R, Shi Q. Wogonoside inhibits tumor growth and metastasis in endometrial cancer via ER stress-Hippo signaling axis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1096-1105. [PMID: 31696210 DOI: 10.1093/abbs/gmz109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Wogonoside, a bioactive flavonoid component derived from Scutellaria baicalensis Georgi, has been reported to inhibit tumor growth in mice bearing various types of cancer cells such as breast cancer, lung cancer, and leukemia cells. However, whether wogonoside could inhibit tumor growth of endometrial cancer has not been elucidated. In this study, we explored the function of wogonoside on tumor growth and the underlying mechanism on endometrial cancer. Firstly, we investigated the effect of wogonoside on endometrial cancer cells and found that wogonoside could significantly decrease cell proliferation and metastasis. Mechanistically, wogonoside could aggravate the extent of ER stress and upregulate the phosphorylation level of Mammalian Ste20-like kinase 1, leading to the activation of the Hippo signaling pathway. Taken together, in vitro and in vivo data demonstrated that wogonoside could be a potent inducer of ER stress and could be further developed into a promising therapy for endometrial cancer.
Collapse
Affiliation(s)
- Shaorong Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Zhuna Wu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Yumin Ke
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Pingping Shu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Caihong Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Ruying Lin
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| | - Qirong Shi
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
55
|
Guo P, Cai C, Wu X, Fan X, Huang W, Zhou J, Wu Q, Huang Y, Zhao W, Zhang F, Wang Q, Zhang Y, Fang J. An Insight Into the Molecular Mechanism of Berberine Towards Multiple Cancer Types Through Systems Pharmacology. Front Pharmacol 2019; 10:857. [PMID: 31447670 PMCID: PMC6691338 DOI: 10.3389/fphar.2019.00857] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past several decades, natural products with poly-pharmacological profiles have demonstrated promise as novel therapeutics for various complex diseases, including cancer. Berberine (PubChem CID: 2353), a soliloquies quaternary alkaloid, has been validated to exert powerful effects in many cancers. However, the underlying molecular mechanism is not yet fully elucidated. In this study, we summarized the molecular effects of berberine against multiple cancers based on current available literatures. Furthermore, a systems pharmacology infrastructure was developed to discover new cancer indications of berberine and explore their molecular mechanisms. Specifically, we incorporated 289 high-quality protein targets of berberine by integrating experimental drug-target interactions (DTIs) extracted from literatures and computationally predicted DTIs inferred by network-based inference approach. Statistical network models were developed for identification of new cancer indications of berberine through integration of DTIs and curated cancer significantly mutated genes (SMGs). High accuracy was yielded for our statistical models. We further discussed three typical cancer indications (hepatocarcinoma, lung adenocarcinoma, and bladder carcinoma) of berberine with new mechanisms of actions (MOAs) based on our systems pharmacology framework. In summary, this study systematically provides a powerful strategy to identify potential anti-cancer effects of berberine with novel mechanisms from a systems pharmacology perspective.
Collapse
Affiliation(s)
- Pengfei Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuipu Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqin Wu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Xiude Fan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Wei Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingwei Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qihui Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongbin Zhang
- Laboratory of Experimental Animal, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|