51
|
Liu Y, Suarez-Arnedo A, Caston EL, Riley L, Schneider M, Segura T. Exploring the Role of Spatial Confinement in Immune Cell Recruitment and Regeneration of Skin Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304049. [PMID: 37721722 PMCID: PMC10874253 DOI: 10.1002/adma.202304049] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows the authors to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, the immune cell profile within confined and unconfined biomaterials is studied using small (40 µm), medium (70 µm), and large (130 µm) diameter spherical microgels, respectively. This work uncovered that MAP scaffolds impart regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds made with large microgels promote a balanced pro-regenerative macrophage response, resulting in enhanced wound healing with mature collagen regeneration and reduced inflammation levels.
Collapse
Affiliation(s)
- Yining Liu
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Alejandra Suarez-Arnedo
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Eleanor L.P. Caston
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Lindsay Riley
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
| | - Michelle Schneider
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, 101 Science Drive Campus Box 90281, Durham, NC 27708, USA
- Clinical Science Departments of Neurology and Dermatology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
52
|
Li S, Niu D, Fang H, Chen Y, Li J, Zhang K, Yin J, Fu P. Tissue adhesive, ROS scavenging and injectable PRP-based 'plasticine' for promoting cartilage repair. Regen Biomater 2023; 11:rbad104. [PMID: 38235061 PMCID: PMC10793072 DOI: 10.1093/rb/rbad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 01/19/2024] Open
Abstract
Platelet-rich plasma (PRP) that has various growth factors has been used clinically in cartilage repair. However, the short residence time and release time at the injury site limit its therapeutic effect. The present study fabricated a granular hydrogel that was assembled from gelatin microspheres and tannic acid through their abundant hydrogen bonding. Gelatin microspheres with the gelatin concentration of 10 wt% and the diameter distribution of 1-10 μm were used to assemble by tannic acid to form the granular hydrogel, which exhibited elasticity under low shear strain, but flowability under higher shear strain. The viscosity decreased with the increase in shear rate. Meanwhile, the granular hydrogel exhibited self-healing feature during rheology test. Thus, granular hydrogel carrying PRP not only exhibited well-performed injectability but also performed like a 'plasticine' that possessed good plasticity. The granular hydrogel showed tissue adhesion ability and reactive oxygen species scavenging ability. Granular hydrogel carrying PRP transplanted to full-thickness articular cartilage defects could integrate well with native cartilage, resulting in newly formed cartilage articular fully filled in defects and well-integrated with the native cartilage and subchondral bone. The unique features of the present granular hydrogel, including injectability, plasticity, porous structure, tissue adhesion and reactive oxygen species scavenging provided an ideal PRP carrier toward cartilage tissue engineering.
Collapse
Affiliation(s)
- Shiao Li
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Dawei Niu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Yancheng Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jinyan Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Peiliang Fu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
53
|
Seymour AJ, Kilian D, Navarro RS, Hull SM, Heilshorn SC. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels. Biomater Sci 2023; 11:7598-7615. [PMID: 37824082 PMCID: PMC10842430 DOI: 10.1039/d3bm00721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Microgel-based biomaterials have inherent porosity and are often extrudable, making them well-suited for 3D bioprinting applications. Cells are commonly introduced into these granular inks post-printing using cell infiltration. However, due to slow cell migration speeds, this strategy struggles to achieve depth-independent cell distributions within thick 3D printed geometries. To address this, we leverage granular ink modularity by combining two microgels with distinct functions: (1) structural, UV-crosslinkable microgels made from gelatin methacryloyl (GelMA) and (2) sacrificial, cell-laden microgels made from oxidized alginate (AlgOx). We hypothesize that encapsulating cells within sacrificial AlgOx microgels would enable the simultaneous introduction of void space and release of cells at depths unachievable through cell infiltration alone. Blending the microgels in different ratios produces a family of highly printable GelMA : AlgOx microgel inks with void fractions ranging from 0.03 to 0.35. As expected, void fraction influences the morphology of human umbilical vein endothelial cells (HUVEC) within GelMA : AlgOx inks. Crucially, void fraction does not alter the ideal HUVEC distribution seen throughout the depth of 3D printed samples. This work presents a strategy for fabricating constructs with tunable porosity and depth-independent cell distribution, highlighting the promise of microgel-based inks for 3D bioprinting.
Collapse
Affiliation(s)
- Alexis J Seymour
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - David Kilian
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Renato S Navarro
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
54
|
Morley CD, Ding EA, Carvalho EM, Kumar S. A Balance between Inter- and Intra-Microgel Mechanics Governs Stem Cell Viability in Injectable Dynamic Granular Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304212. [PMID: 37653580 PMCID: PMC10841739 DOI: 10.1002/adma.202304212] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Injectable hydrogels are increasingly explored for the delivery of cells to tissue. These materials exhibit both liquid-like properties, protecting cells from mechanical stress during injection, and solid-like properties, providing a stable 3D engraftment niche. Many strategies for modulating injectable hydrogels tune liquid- and solid-like material properties simultaneously, such that formulation changes designed to improve injectability can reduce stability at the delivery site. The ability to independently tune liquid- and solid-like properties would greatly facilitate formulation development. Here, such a strategy is presented in which cells are ensconced in the pores between microscopic granular hyaluronic acid (HA) hydrogels (microgels), where elasticity is tuned with static covalent intra-microgel crosslinks and flowability with mechanosensitive adamantane-cyclodextrin (AC) inter-microgel crosslinks. Using the same AC-free microgels as a 3D printing support bath, the location of each cell is preserved as it exits the needle, allowing identification of the mechanism driving mechanical trauma-induced cell death. The microgel AC concentration is varied to find the threshold from microgel yielding- to AC interaction-dominated injectability, and this threshold is exploited to fabricate a microgel with better injection-protecting performance. This delivery strategy, and the balance between intra- and inter-microgel properties it reveals, may facilitate the development of new cell injection formulations.
Collapse
Affiliation(s)
- Cameron D Morley
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
55
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
56
|
Liu Y, Suarez-Arnedo A, Riley L, Miley T, Xia J, Segura T. Spatial Confinement Modulates Macrophage Response in Microporous Annealed Particle (MAP) Scaffolds. Adv Healthc Mater 2023; 12:e2300823. [PMID: 37165945 PMCID: PMC10592513 DOI: 10.1002/adhm.202300823] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Macrophages are essential in the initiation, maintenance, and transition of inflammatory processes such as foreign body response and wound healing. Mounting evidence suggests that physical factors also modulate macrophage activation. 2D in vitro systems demonstrate that constraining macrophages to small areas or channels modulates their phenotypes and changes their responses to known inflammatory agents such as lipopolysaccharide. However, how dimensionality and pore size affect macrophage phenotype is less explored. In this work, the change in macrophage M1/M2 polarization when confined in microporous annealed particle (MAP) scaffolds is studied. Particles sizes (40, 70, and 130 µm) are selected using outputs from software LOVAMAP that analyzes the characteristics of 3D pores in MAP gels. As the size of building block particle correlates with pore size inside the scaffolds, the three types of scaffold allow us to study how the degree of spatial confinement modulates the behavior of embedded macrophages. Spatially confining macrophages in scaffolds with pore size on the scale of cells leads to a reduced level of the inflammatory response, which is correlated with a change in cell morphology and motility.
Collapse
Affiliation(s)
- Yining Liu
- Department of Biomedical Engineering, Duke University
| | | | - Lindsay Riley
- Department of Biomedical Engineering, Duke University
| | - Tasman Miley
- Department of Biomedical Engineering, Duke University
| | - Jingyi Xia
- Department of Biomedical Engineering, Duke University
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University
- Clinical Science Departments of Neurology and Dermatology, Duke University
| |
Collapse
|
57
|
Xia W, Wang Q, Liu M, Lu S, Yu H, Yin H, You M, Chen Q, Wang B, Lin F. Antifouling and Injectable Granular Hydrogel for the Prevention of Postoperative Intrauterine Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44676-44688. [PMID: 37721504 DOI: 10.1021/acsami.3c07846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Postoperative intrauterine adhesion (IUA), caused by endometrial basal layer injury, is one of the main causes of female infertility. The excessive deposition of fibrin as well as fibroblast is considered the root cause of IUA. However, few clinical strategies are effective in preventing extracellular matrix (ECM) deposition at endometrial wounds that include protein and cell deposits. Herein, the injectable granular poly(N-(2-hydroxyethyl) acrylamide) (PHEAA) hydrogel (granular PHEAA gel), which presents excellent antifouling properties and remarkably prevents protein and cell adhesions, is used to prevent postoperative IUA. The granular PHEAA gel with a jammed network structure exhibits outstanding injectability and superior stability. Compared with the IUA group, the granular PHEAA gel can promote regeneration of the endometrium while reducing the area of endometrial fibrosis. Immunohistochemical staining experiments indicate that the granular PHEAA gel can improve the proliferation of the endometrium, promote vascularization, and enhance anti-inflammatory effect in IUA rats. And the granular PHEAA gel can effectively slow down the fibrosis of uterine tissue. Importantly, the number of embryos is significantly increased after injecting granular PHEAA gel, inferring that there is an obvious reproductive function recovery of injured endometrium.
Collapse
Affiliation(s)
| | - Qilin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | | | - Shaoping Lu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Hui Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Haiyan Yin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Min You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Bujun Wang
- Department of Obstetrics, Pingyang People's Hospital of Wenzhou Medical University, Wenzhou 325499, China
| | | |
Collapse
|
58
|
Ribezzi D, Gueye M, Florczak S, Dusi F, de Vos D, Manente F, Hierholzer A, Fussenegger M, Caiazzo M, Blunk T, Malda J, Levato R. Shaping Synthetic Multicellular and Complex Multimaterial Tissues via Embedded Extrusion-Volumetric Printing of Microgels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301673. [PMID: 37269532 DOI: 10.1002/adma.202301673] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Indexed: 06/05/2023]
Abstract
In living tissues, cells express their functions following complex signals from their surrounding microenvironment. Capturing both hierarchical architectures at the micro- and macroscale, and anisotropic cell patterning remains a major challenge in bioprinting, and a bottleneck toward creating physiologically-relevant models. Addressing this limitation, a novel technique is introduced, termed Embedded Extrusion-Volumetric Printing (EmVP), converging extrusion-bioprinting and layer-less, ultra-fast volumetric bioprinting, allowing spatially pattern multiple inks/cell types. Light-responsive microgels are developed for the first time as bioresins (µResins) for light-based volumetric bioprinting, providing a microporous environment permissive for cell homing and self-organization. Tuning the mechanical and optical properties of gelatin-based microparticles enables their use as support bath for suspended extrusion printing, in which features containing high cell densities can be easily introduced. µResins can be sculpted within seconds with tomographic light projections into centimeter-scale, granular hydrogel-based, convoluted constructs. Interstitial microvoids enhanced differentiation of multiple stem/progenitor cells (vascular, mesenchymal, neural), otherwise not possible with conventional bulk hydrogels. As proof-of-concept, EmVP is applied to create complex synthetic biology-inspired intercellular communication models, where adipocyte differentiation is regulated by optogenetic-engineered pancreatic cells. Overall, EmVP offers new avenues for producing regenerative grafts with biological functionality, and for developing engineered living systems and (metabolic) disease models.
Collapse
Affiliation(s)
- Davide Ribezzi
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Marième Gueye
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Franziska Dusi
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Dieuwke de Vos
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
| | - Francesca Manente
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy
| | - Andreas Hierholzer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, Naples, 80131, Italy
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
59
|
Widener AE, Roberts A, Phelps EA. Single versus dual microgel species for forming guest-host microporous annealed particle PEG-MAL hydrogel. J Biomed Mater Res A 2023; 111:1379-1389. [PMID: 37010360 PMCID: PMC10909382 DOI: 10.1002/jbm.a.37540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
Inter-particle secondary crosslinks allow microporous annealed particle (MAP) hydrogels to be formed. Methods to introduce secondary crosslinking networks in MAP hydrogels include particle jamming, annealing with covalent bonds, and reversible noncovalent interactions. Here, we investigate the effect of two different approaches to secondary crosslinking of polyethylene glycol (PEG) microgels via reversible guest-host interactions. We generated a dual-particle MAP-PEG hydrogel using two species of PEG microgels, one functionalized with the guest molecule, adamantane, and the other with the host molecule, β-cyclodextrin (Inter-MAP-PEG). In a different approach, a mono-particle MAP-PEG hydrogel was generated using one species of microgel functionalized with both guest and host molecules (Intra-MAP-PEG). The Intra-MAP-PEG formed a homogenous distribution due to the single type of microgels used. We then compared the mechanical properties of these two types of MAP-PEG hydrogels and found that Intra-MAP-PEG resulted in significantly softer gels with lower yield stress. We investigated the effect of intra-particle guest-host interactions through titrated weight percentage and the concentration of functional groups added to the hydrogel. We found that there was an ideal concentration of guest-host molecules that enables intra- and inter-particle guest-host interactions with sufficient covalent crosslinking. Based on these studies, Intra-MAP-PEG provides a homogeneous guest-host hydrogel that is shear-thinning with reversible secondary crosslinking.
Collapse
Affiliation(s)
- Adrienne E. Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
60
|
Reynolds DS, de Lázaro I, Blache ML, Liu Y, Jeffreys NC, Doolittle RM, Grandidier E, Olszewski J, Dacus MT, Mooney DJ, Lewis JA. Microporogen-Structured Collagen Matrices for Embedded Bioprinting of Tumor Models for Immuno-Oncology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210748. [PMID: 37163476 DOI: 10.1002/adma.202210748] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Embedded bioprinting enables the rapid design and fabrication of complex tissues that recapitulate in vivo microenvironments. However, few biological matrices enable good print fidelity, while simultaneously facilitate cell viability, proliferation, and migration. Here, a new microporogen-structured (µPOROS) matrix for embedded bioprinting is introduced, in which matrix rheology, printing behavior, and porosity are tailored by adding sacrificial microparticles composed of a gelatin-chitosan complex to a prepolymer collagen solution. To demonstrate its utility, a 3D tumor model is created via embedded printing of a murine melanoma cell ink within the µPOROS collagen matrix at 4 °C. The collagen matrix is subsequently crosslinked around the microparticles upon warming to 21 °C, followed by their melting and removal at 37 °C. This process results in a µPOROS matrix with a fibrillar collagen type-I network akin to that observed in vivo. Printed tumor cells remain viable and proliferate, while antigen-specific cytotoxic T cells incorporated in the matrix migrate to the tumor site, where they induce cell death. The integration of the µPOROS matrix with embedded bioprinting opens new avenues for creating complex tissue microenvironments in vitro that may find widespread use in drug discovery, disease modeling, and tissue engineering for therapeutic use.
Collapse
Affiliation(s)
- Daniel S Reynolds
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Manon L Blache
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Nicholas C Jeffreys
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Ramsey M Doolittle
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Estée Grandidier
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
- École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Jason Olszewski
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mason T Dacus
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
61
|
Ryoo H, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539608. [PMID: 37214995 PMCID: PMC10197534 DOI: 10.1101/2023.05.05.539608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Non-alcoholic fatty liver disease affects 30% of the United States population and its progression can lead to non-alcoholic steatohepatitis (NASH), which can result in cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically-relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, we have demonstrated the use of stiffness-variable, ECM protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation. We further employed these microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions. In particular, 6 kPa fibronectin microgels were shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. We envision this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
62
|
Liu Y, Suarez-Arnedo A, Caston E, Riley L, Schneider M, Segura T. Exploring the Role of Spatial Confinement in Immune Cell Recruitment and Regeneration of Skin Wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538879. [PMID: 37162980 PMCID: PMC10168413 DOI: 10.1101/2023.04.30.538879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are injectable granular materials comprised of micron sized hydrogel particles (microgels). The diameter of these microgels directly determines the size of the interconnected void space between particles where infiltrating or encapsulated cells reside. This tunable porosity allows us to use MAP scaffolds to study the impact of spatial confinement (SC) on both cellular behaviors and the host response to biomaterials. Despite previous studies showing that pore size and SC influence cellular phenotypes, including mitigating the macrophage inflammatory response, there is still a gap in knowledge regarding how SC within a biomaterial modulates immune cell recruitment in vivo in wounds and implants. Thus, we studied the immune cell profile within confined and unconfined biomaterials using small (40 μm), medium (70 μm), and large (130 μm) diameter spherical microgels, respectively. We discovered that MAP scaffolds imparted regenerative wound healing with an IgG1-biased Th2 response. MAP scaffolds generated from 130 μm diameter microgels have a median pore size that can accommodate ∼40 µm diameter spheres induced a more balanced pro-regenerative macrophage response and better wound healing outcomes with more mature collagen regeneration and reduced levels of inflammation.
Collapse
|
63
|
Muir VG, Weintraub S, Dhand AP, Fallahi H, Han L, Burdick JA. Influence of Microgel and Interstitial Matrix Compositions on Granular Hydrogel Composite Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206117. [PMID: 36717272 PMCID: PMC10074081 DOI: 10.1002/advs.202206117] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Indexed: 06/18/2023]
Abstract
Granular hydrogels are an emerging class of biomaterials formed by jamming hydrogel microparticles (i.e., microgels). These materials have many advantageous properties that can be tailored through microgel design and extent of packing. To enhance the range of properties, granular composites can be formed with a hydrogel interstitial matrix between the packed microgels, allowing for material flow and then stabilization after crosslinking. This approach allows for distinct compartments (i.e., microgels and interstitial space) with varied properties to engineer complex material behaviors. However, a thorough investigation of how the compositions and ratios of microgels and interstitial matrices influence material properties has not been performed. Herein, granular hydrogel composites are fabricated by combining fragmented hyaluronic acid (HA) microgels with interstitial matrices consisting of photocrosslinkable HA. Microgels of varying compressive moduli (10-70 kPa) are combined with interstitial matrices (0-30 vol.%) with compressive moduli varying from 2-120 kPa. Granular composite structure (confocal imaging), mechanics (local and bulk), flow behavior (rheology), and printability are thoroughly assessed. Lastly, variations in the interstitial matrix chemistry (covalent vs guest-host) and microgel degradability are investigated. Overall, this study describes the influence of granular composite composition on structure and mechanical properties of granular hydrogels towards informed designs for future applications.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Shoshana Weintraub
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Abhishek P. Dhand
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Hooman Fallahi
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Lin Han
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Jason A. Burdick
- Department of BioengineeringSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPA19104USA
- BioFrontiers InstituteUniversity of Colorado BoulderBoulderCO80303USA
- Department of Chemical and Biological EngineeringCollege of Engineering and Applied ScienceUniversity of Colorado BoulderBoulderCO80303USA
| |
Collapse
|
64
|
An C, Li H, Zhao Y, Zhang S, Zhao Y, Zhang Y, Yang J, Zhang L, Ren C, Zhang Y, Liu J, Wang H. Hyaluronic acid-based multifunctional carriers for applications in regenerative medicine: A review. Int J Biol Macromol 2023; 231:123307. [PMID: 36652984 DOI: 10.1016/j.ijbiomac.2023.123307] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is an important type of naturally derived carbohydrate polymer with specific polysaccharide macromolecular structures and multifaceted biological functions, including biocompatibility, low immunogenicity, biodegradability, and bioactivity. Specifically, HA hydrogels in a microscopic scale have been widely used for biomedical applications, such as drug delivery, tissue engineering, and medical cosmetology, considering their superior properties outperforming the more conventional monolithic hydrogels in network homogeneity, degradation profile, permeability, and injectability. Herein, we reviewed the recent progress in the preparation and applications of HA microgels in biomedical fields. We first summarized the fabrication of HA microgels by focusing on the different crosslinking/polymerization schemes for HA gelation and the miniaturized fabrication techniques for producing HA-based microparticles. We then highlighted the use of HA-based microgels for different applications in regenerative medicine, including cartilage repair, bioactive delivery, diagnostic imaging, modular tissue engineering. Finally, we discussed the challenges and future perspectives in bridging the translational gap in the utilization of HA-based microgels in regenerative medicine.
Collapse
Affiliation(s)
- Chuanfeng An
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518060, PR China; State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China; Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen.
| | - Hanting Li
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yanqiu Zhao
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuan Zhao
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yujie Zhang
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Jianhua Yang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024, PR China
| | - Changle Ren
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian 116044, PR China
| | - Yang Zhang
- School of Dentistry, Shenzhen University, Shenzhen 518060, PR China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen.
| | - Huanan Wang
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
65
|
Zhang S, Pan Y, Mao Z, Zhang J, Zhang K, Yin J, Wang C. Hyaluronic acid- g-lipoic acid granular gel for promoting diabetic wound healing. Bioeng Transl Med 2023; 8:e10402. [PMID: 36925704 PMCID: PMC10013829 DOI: 10.1002/btm2.10402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Diabetic patients are prone to developing chronic inflammation after trauma and have persistent nonhealing wounds. Reactive oxygen species (ROS) and recurrent bacterial infections at the site of long-term wounds also further delay skin wound healing and tissue regeneration. In this study, a granular gel (which exhibits ROS scavenging and antibacterial properties) is fabricated based on hyaluronic acid-g-lipoic acid (HA-LA). Briefly, HA-LA is synthesized to fabricate HA-LA microgels, which are further assembled by Ag+ via its coordination effect with disulfide in dithiolane to form a granular gel. The extrudable bulk granular gel possesses a shear-thinning feature and is immediately restored to a solid state after extrusion, and this can be easily applied to the whole wound area. Therefore, the grafted LA not only allows for the construction of the granular gel but also removes excess ROS from the microenvironment. Additionally, the presence of Ag+ realizes the assembly of microgels and has antibacterial effects. In vivo experiments show that the HA-LA granular gel eliminates excessive ROS at the wound site and up-regulates the secretion of reparative growth factors, thus, accelerating common and diabetic wound healing significantly. Therefore, the ROS-scavenging granular gel that can be applied to the wound surface with chronic inflammation demonstrates strong clinical utility.
Collapse
Affiliation(s)
- Shixi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yuqing Pan
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople's Republic of China
| | - Zhiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Jiahui Zhang
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople's Republic of China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople's Republic of China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| |
Collapse
|
66
|
An C, Zhou R, Zhang H, Zhang Y, Liu W, Liu J, Bao B, Sun K, Ren C, Zhang Y, Lin Q, Zhang L, Cheng F, Song J, Zhu L, Wang H. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration. Acta Biomater 2023; 157:91-107. [PMID: 36427687 DOI: 10.1016/j.actbio.2022.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Injectable granular gels consisting of densely packed microgels serving as scaffolding biomaterial have recently shown great potential for applications in tissue regeneration, which allow administration via minimally invasive surgery, on-target cargo delivery, and high efficiency in nutrient/waste exchange. However, limitations such as insufficient mechanical strength, structural integrity, and uncontrollable differentiation of the encapsulated cells in the scaffolds hamper their further applications in the biomedical field. Herein, we developed a new class of granular gels via bottom-up assembly of cell-laden microgels via photo-triggered imine-crosslinking (PIC) chemistry based on the microfluidic technique. The particulate nature of the granular gels rendered them with shear-thinning and self-healing behavior, thereby functioning as an injectable and adaptable cellularized scaffold for bone tissue regeneration. Specifically, single cell-laden, monodisperse microgels composed of methacrylate- and o-nitrobenzene-functionalized hyaluronic acid and gelatin were prepared using a high-throughput microfluidic technique with a production rate up to 3.7 × 108 microgels/hr, wherein the PIC chemistry alleviated the oxygen inhibition on free-radical polymerization and facilitated enhanced fabrication accuracy, accelerated gelation rate, and improved network strength. Further in vitro and in vivo studies demonstrated that the microgels can serve as carriers to support the activity of the encapsulated mesenchymal stem cells; these cell-laden microgels can also be used as cellularized bone fillers to induce the regeneration of bone tissues as evidenced by the in vivo experiment using the rat femoral condyle defect model. In general, these results represent a significant step toward the precise fabrication of engineered tissue mimics with single-cell resolution and high cell-density and can potentially offer a powerful tool for the design and applications of a next generation of tissue engineering strategy. STATEMENT OF SIGNIFICANCE: Using microfluidic droplet-based technology, we hereby developed a new class of injectable and moldable granular gels via bottom-up assembly of cell-laden microgels as a versatile platform for tissue regeneration. Phototriggered imine-crosslinking chemistry was introduced for microgel cross-linkage, which allowed for the fabrication of microgels with improved matrix homogeneity, accelerated gelation process, and enhanced mechanical strength. We demonstrated that the microgel building blocks within the granular gels facilitated the proliferation and differentiation of the encapsulated mesenchymal stem cells, which can further serve as a cellularized scaffold for the treatment of bone defects.
Collapse
Affiliation(s)
- Chuanfeng An
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; Central Laboratory, Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Renjie Zhou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haoyue Zhang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yujie Zhang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Weijian Liu
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian 116044, PR China
| | - Jia Liu
- Central Laboratory, Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Bingkun Bao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kai Sun
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Changle Ren
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian 116044, PR China; Faculty of Medicine, Dalian University of Technology,Dalian 116023, P. R. China
| | - Yang Zhang
- Central Laboratory, Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Qiuning Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian 116024, PR China
| | - Fang Cheng
- Key State Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China
| | - Jiankang Song
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Linyong Zhu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
67
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
68
|
Yazdani N, Willits RK. Mimicking the neural stem cell niche: An engineer’s view of cell: material interactions. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1086099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells have attracted attention in recent years to treat neurodegeneration. There are two neurogenic regions in the brain where neural stem cells reside, one of which is called the subventricular zone (SVZ). The SVZ niche is a complicated microenvironment providing cues to regulate self-renewal and differentiation while maintaining the neural stem cell’s pool. Many scientists have spent years understanding the cellular and structural characteristics of the SVZ niche, both in homeostasis and pathological conditions. On the other hand, engineers focus primarily on designing platforms using the knowledge they acquire to understand the effect of individual factors on neural stem cell fate decisions. This review provides a general overview of what we know about the components of the SVZ niche, including the residing cells, extracellular matrix (ECM), growth factors, their interactions, and SVZ niche changes during aging and neurodegenerative diseases. Furthermore, an overview will be given on the biomaterials used to mimic neurogenic niche microenvironments and the design considerations applied to add bioactivity while meeting the structural requirements. Finally, it will discuss the potential gaps in mimicking the microenvironment.
Collapse
|
69
|
Jammed microgels fabricated via various methods for biological studies. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
70
|
Xu X, Zhang Y, Ha P, Chen Y, Li C, Yen E, Bai Y, Chen R, Wu BM, Da Lio A, Ting K, Soo C, Zheng Z. A novel injectable fibromodulin-releasing granular hydrogel for tendon healing and functional recovery. Bioeng Transl Med 2023; 8:e10355. [PMID: 36684085 PMCID: PMC9842059 DOI: 10.1002/btm2.10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/25/2023] Open
Abstract
A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yulong Zhang
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Pin Ha
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Chen
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chenshuang Li
- Department of OrthodonticsSchool of Dental Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emily Yen
- Arcadia High SchoolArcadiaCaliforniaUSA
| | - Yuxing Bai
- Department of OrthodonticsBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Benjamin M. Wu
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Andrew Da Lio
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Kang Ting
- Forsyth Research InstituteHarvard UniversityCambridgeMassachusettsUSA
- Samueli School of EngineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic SurgeryThe Orthopaedic Hospital Research Center, University of CaliforniaLos AngelesCaliforniaUSA
| | - Zhong Zheng
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
71
|
Emiroglu DB, Bekcic A, Dranseikiene D, Zhang X, Zambelli T, deMello AJ, Tibbitt MW. Building block properties govern granular hydrogel mechanics through contact deformations. SCIENCE ADVANCES 2022; 8:eadd8570. [PMID: 36525484 PMCID: PMC9757745 DOI: 10.1126/sciadv.add8570] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Granular hydrogels have been increasingly exploited in biomedical applications, including wound healing and cardiac repair. Despite their utility, design guidelines for engineering their macroscale properties remain limited, as we do not understand how the properties of granular hydrogels emerge from collective interactions of their microgel building blocks. In this work, we related building block features (stiffness and size) to the macroscale properties of granular hydrogels using contact mechanics. We investigated the mechanics of the microgel packings through dynamic oscillatory rheology. In addition, we modeled the system as a collection of two-body interactions and applied the Zwanzig and Mountain formula to calculate the plateau modulus and viscosity of the granular hydrogels. The calculations agreed with the dynamic mechanical measurements and described how microgel properties and contact deformations define the rheology of granular hydrogels. These results support a rational design framework for improved engineering of this fascinating class of materials.
Collapse
Affiliation(s)
- Dilara Börte Emiroglu
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Aleksandar Bekcic
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Dalia Dranseikiene
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETHZurich, 8093 Zurich, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETHZurich, 8093 Zurich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
72
|
Soni SS, D'Elia AM, Alsasa A, Cho S, Tylek T, O'Brien EM, Whitaker R, Spiller KL, Rodell CB. Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomater Sci 2022; 10:6951-6967. [PMID: 36341688 PMCID: PMC9724601 DOI: 10.1039/d2bm01113a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels may be pre-formed through dynamic crosslinks, allowing for injection and subsequent retention in the tissue by shear-thinning and self-healing processes, respectively. These properties enable the site-specific delivery of encapsulated therapeutics; yet, the sustained release of small-molecule drugs and their cell-targeted delivery remains challenging due to their rapid diffusive release and non-specific cellular biodistribution. Herein, we develop an injectable hydrogel system composed of a macrophage-targeted nanoparticle (cyclodextrin nanoparticles, CDNPs) crosslinked by adamantane-modified hyaluronic acid (Ad-HA). The polymer-nanoparticle hydrogel uniquely leverages cyclodextrin's interaction with small molecule drugs to create a spatially discrete drug reservoir and with adamantane to yield dynamic, injectable hydrogels. Through an innovative two-step drug screening approach and examination of 45 immunomodulatory drugs with subsequent in-depth transcriptional profiling of both murine and human macrophages, we identify celastrol as a potent inhibitor of pro-inflammatory (M1-like) behavior that furthermore promotes a reparatory (M2-like) phenotype. Celastrol encapsulation within the polymer-nanoparticle hydrogels permitted shear-thinning injection and sustained release of drug-laden nanoparticles that targeted macrophages to modulate cell behavior for greater than two weeks in vitro. The modular hydrogel system is a promising approach to locally modulate cell-specific phenotype in a range of applications for immunoregenerative medicine.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Abdulrahman Alsasa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Sylvia Cho
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tina Tylek
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Erin M O'Brien
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Ricardo Whitaker
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
73
|
Weigel N, Li Y, Fery A, Thiele J. From microfluidics to hierarchical hydrogel materials. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
74
|
Krömmelbein C, Xie X, Seifert J, Konieczny R, Friebe S, Käs J, Riedel S, Mayr SG. Electron beam treated injectable agarose/alginate beads prepared by electrospraying. Carbohydr Polym 2022; 298:120024. [PMID: 36241257 DOI: 10.1016/j.carbpol.2022.120024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/26/2022]
|
75
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
76
|
Widener AE, Duraivel S, Angelini TE, Phelps EA. Injectable Microporous Annealed Particle Hydrogel Based on Guest-Host-Interlinked Polyethylene Glycol Maleimide Microgels. ADVANCED NANOBIOMED RESEARCH 2022; 2:2200030. [PMID: 36419640 PMCID: PMC9678130 DOI: 10.1002/anbr.202200030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microporous annealed particle (MAP) hydrogels have emerged as a versatile biomaterial platform for regenerative medicine. MAP hydrogels have been used for the delivery of cells and organoids but often require annealing post injection by an external source. We engineered an injectable, self-annealing MAP hydrogel with reversible interparticle linkages based on guest-host functionalized polyethylene glycol maleimide (PEG-MAL) microgels. We evaluated the effect of guest-host linkages on different types of microgels fabricated by either batch emulsion or mechanical fragmentation methods. Batch emulsion generated small spherical microgels with controllable 10-100 μm diameters and mechanical fragmentation generated irregular microgels with larger diameters (100-200 μm). Spherical microgels (15 μm) showed self-healing behavior and completely recovered from high strain while fragmented microgels (133 μm) did not recover. Guest-host interactions significantly contributed to the mechanical properties of spherical microgels but had no effect on fragmented microgels. Spherical microgels were superior to the fragmented microgels for co-injection of immune cells and pancreatic islets due to their lower force of injection, demonstrating more homogeneously distributed cells and greater cell viability after injection. Based on these studies, the spherical guest-host MAP hydrogels provide a controllable, injectable scaffold for engineered microenvironments and cell delivery applications.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Senthilkumar Duraivel
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Thomas E Angelini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
77
|
Ma Y, Wang X, Su T, Lu F, Chang Q, Gao J. Recent Advances in Macroporous Hydrogels for Cell Behavior and Tissue Engineering. Gels 2022; 8:606. [PMID: 36286107 PMCID: PMC9601978 DOI: 10.3390/gels8100606] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used as scaffolds in tissue engineering for cell adhesion, proliferation, migration, and differentiation because of their high-water content and biocompatibility similarity to the extracellular matrix. However, submicron or nanosized pore networks within hydrogels severely limit cell survival and tissue regeneration. In recent years, the application of macroporous hydrogels in tissue engineering has received considerable attention. The macroporous structure not only facilitates nutrient transportation and metabolite discharge but also provides more space for cell behavior and tissue formation. Several strategies for creating and functionalizing macroporous hydrogels have been reported. This review began with an overview of the advantages and challenges of macroporous hydrogels in the regulation of cellular behavior. In addition, advanced methods for the preparation of macroporous hydrogels to modulate cellular behavior were discussed. Finally, future research in related fields was discussed.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, China
| |
Collapse
|
78
|
Cunha AF, Matias AF, Dias C, Oliveira MB, Araújo NAM, Mano JF. Cell Response in Free-Packed Granular Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40469-40480. [PMID: 36044384 PMCID: PMC9773234 DOI: 10.1021/acsami.1c24095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The study of the interactions of living adherent cells with mechanically stable (visco)elastic materials enables understanding and exploitation of physiological phenomena mediated by cell-extracellular communication. Insights into the interaction of cells and surrounding objects with different stability patterns upon cell contact might unveil biological responses to engineer innovative applications. Here, we hypothesize that the efficiency of cell attachment, spreading, and movement across a free-packed granular bed of microparticles depends on the microparticle diameter, raising the possibility of a necessary minimum traction force for the reinforcement of cell-particle bonds and long-term cell adhesion. The results suggest that microparticles with diameters of 14-20 μm are prone to cell-mediated mobility, holding the potential of inducing early cell detachment, while objects with diameters from 38 to 85 μm enable long-lasting cell adhesion and proliferation. An in silico hybrid particle-based model that addresses the time-dependent biological mechanisms of cell adhesion is proposed, providing inspiration for engineering platforms to address healthcare-related challenges.
Collapse
Affiliation(s)
- Ana F. Cunha
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - André F.
V. Matias
- Centro
de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento
de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Cristóvão
S. Dias
- Centro
de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento
de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mariana B. Oliveira
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nuno A. M. Araújo
- Centro
de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento
de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João F. Mano
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
79
|
Zhu Y, Sun Y, Rui B, Lin J, Shen J, Xiao H, Liu X, Chai Y, Xu J, Yang Y. A Photoannealed Granular Hydrogel Facilitating Hyaline Cartilage Regeneration via Improving Chondrogenic Phenotype. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40674-40687. [PMID: 36052731 DOI: 10.1021/acsami.2c11956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogel-based chondrocyte implantation presents a promising tissue engineering strategy for cartilage repair. However, the widely used elastic hydrogels usually restrict cell volume expansion and induce the dedifferentiation of encapsulated chondrocytes. To address this limitation, a photoannealed granular hydrogel (GH) composed of hyaluronic acid, polyethylene glycol, and gelatin was formulated for cartilage regeneration in this study. The unannealed GH prepared by Diels-Alder cross-linked microgels could be mixed with chondrocytes and delivered to cartilage defects by injection, after which light was introduced to anneal the scaffold, leading to the formation of a stable and microporous chondrocyte deploying scaffold. The in vitro studies showed that GH could promote the volume expansion and morphology recovery of chondrocytes and significantly improve their chondrogenic phenotype compared to the nongranular hydrogel (nGH) with similar compositions. Further in vivo studies of subcutaneous culture and the rat full-thickness cartilage defect model proved that chondrocyte loaded GH could significantly stimulate hyaline cartilage matrix deposition and connection, therefore facilitating hyaline-like cartilage regeneration. Finally, the mechanistic study revealed that GH might improve chondrogenic phenotype via activating the AMP-activated protein kinase/glycolysis axis. This study proves the great feasibility of GHs as in situ chondrocyte deploying scaffolds for cartilage regeneration and brings new insights in designing hydrogel scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Biyu Rui
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Junqing Lin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Huimin Xiao
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| | - Yunlong Yang
- Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
80
|
Zhu S, Li Y, He Z, Ji L, Zhang W, Tong Y, Luo J, Yu D, Zhang Q, Bi Q. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2022; 10:954501. [PMID: 36159703 PMCID: PMC9493100 DOI: 10.3389/fbioe.2022.954501] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 01/10/2023] Open
Abstract
The rapid development of tissue engineering makes it an effective strategy for repairing cartilage defects. The significant advantages of injectable hydrogels for cartilage injury include the properties of natural extracellular matrix (ECM), good biocompatibility, and strong plasticity to adapt to irregular cartilage defect surfaces. These inherent properties make injectable hydrogels a promising tool for cartilage tissue engineering. This paper reviews the research progress on advanced injectable hydrogels. The cross-linking method and structure of injectable hydrogels are thoroughly discussed. Furthermore, polymers, cells, and stimulators commonly used in the preparation of injectable hydrogels are thoroughly reviewed. Finally, we summarize the research progress of the latest advanced hydrogels for cartilage repair and the future challenges for injectable hydrogels.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Li
- Zhejiang University of Technology, Hangzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Dongsheng Yu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qiong Zhang
- Center for Operating Room, Department of Nursing, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
81
|
Muir VG, Qazi TH, Weintraub S, Torres Maldonado BO, Arratia PE, Burdick JA. Sticking Together: Injectable Granular Hydrogels with Increased Functionality via Dynamic Covalent Inter-Particle Crosslinking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201115. [PMID: 35315233 PMCID: PMC9463088 DOI: 10.1002/smll.202201115] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/03/2022] [Indexed: 05/14/2023]
Abstract
Granular hydrogels are an exciting class of microporous and injectable biomaterials that are being explored for many biomedical applications, including regenerative medicine, 3D printing, and drug delivery. Granular hydrogels often possess low mechanical moduli and lack structural integrity due to weak physical interactions between microgels. This has been addressed through covalent inter-particle crosslinking; however, covalent crosslinking often occurs through temporal enzymatic methods or photoinitiated reactions, which may limit injectability and material processing. To address this, a hyaluronic acid (HA) granular hydrogel is developed with dynamic covalent (hydrazone) inter-particle crosslinks. Extrusion fragmentation is used to fabricate microgels from photocrosslinkable norbornene-modified HA, additionally modified with either aldehyde or hydrazide groups. Aldehyde and hydrazide-containing microgels are mixed and jammed to form adhesive granular hydrogels. These granular hydrogels possess enhanced mechanical integrity and shape stability over controls due to the covalent inter-particle bonds, while maintaining injectability due to the dynamic hydrazone bonds. The adhesive granular hydrogels are applied to 3D printing, which allows the printing of structures that are stable without any further post-processing. Additionally, the authors demonstrate that adhesive granular hydrogels allow for cell invasion in vitro. Overall, this work demonstrates the use of dynamic covalent inter-particle crosslinking to enhance injectable granular hydrogels.
Collapse
Affiliation(s)
- Victoria G Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Taimoor H Qazi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shoshana Weintraub
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bryan O Torres Maldonado
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
82
|
Coronel MM, Martin KE, Hunckler MD, Kalelkar P, Shah RM, García AJ. Hydrolytically Degradable Microgels with Tunable Mechanical Properties Modulate the Host Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106896. [PMID: 35274457 PMCID: PMC10288386 DOI: 10.1002/smll.202106896] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Hydrogel microparticles (microgels) are an attractive approach for therapeutic delivery because of their modularity, injectability, and enhanced integration with the host tissue. Multiple microgel fabrication strategies and chemistries have been implemented, yet manipulation of microgel degradability and its effect on in vivo tissue responses remains underexplored. Here, the authors report a facile method to synthesize microgels crosslinked with ester-containing junctions to afford tunable degradation kinetics. Monodisperse microgels of maleimide-functionalized poly(ethylene-glycol) are generated using droplet microfluidics crosslinked with thiol-terminated, ester-containing molecules. Tunable mechanics are achievable based on the ratio of degradable to nondegradable crosslinkers in the continuous phase. Degradation in an aqueous medium leads to microgel deformation based on swelling and a decrease in elastic modulus. Furthermore, degradation byproducts are cytocompatible and do not cause monocytic cell activation under noninflammatory conditions. These injectable microgels possess time-dependent degradation on the order of weeks in vivo. Lastly, the evaluation of tissue responses in a subcutaneous dorsal pocket shows a dynamic type-1 like immune response to the synthetic microgels, driven by interferon gamma (IFN-γ ) expression, which can be moderated by tuning the degradation properties. Collectively, this study demonstrates the development of a hydrolytic microgel platform that can be adapted to desired host tissue immune responses.
Collapse
Affiliation(s)
- María M Coronel
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Karen E Martin
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael D Hunckler
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Pranav Kalelkar
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rahul M Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
83
|
Kajtez J, Wesseler MF, Birtele M, Khorasgani FR, Rylander Ottosson D, Heiskanen A, Kamperman T, Leijten J, Martínez‐Serrano A, Larsen NB, Angelini TE, Parmar M, Lind JU, Emnéus J. Embedded 3D Printing in Self-Healing Annealable Composites for Precise Patterning of Functionally Mature Human Neural Constructs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201392. [PMID: 35712780 PMCID: PMC9443452 DOI: 10.1002/advs.202201392] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/14/2022] [Indexed: 05/02/2023]
Abstract
Human in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials. Therefore, there has been a need for novel materials that take advantage of versatile biomimicry of bulk hydrogels while providing high-fidelity support for embedded printing akin to granular gels. To address this need, Authors present a modular platform for bioengineering of neuronal networks via direct embedded 3D printing of human stem cells inside Self-Healing Annealable Particle-Extracellular matrix (SHAPE) composites. SHAPE composites consist of soft microgels immersed in viscous extracellular-matrix solution to enable precise and programmable patterning of human stem cells and consequent generation mature subtype-specific neurons that extend projections into the volume of the annealed support. The developed approach further allows multi-ink deposition, live spatial and temporal monitoring of oxygen levels, as well as creation of vascular-like channels. Due to its modularity and versatility, SHAPE biomanufacturing toolbox has potential to be used in applications beyond functional modeling of mechanically sensitive neural constructs.
Collapse
Affiliation(s)
- Janko Kajtez
- Department of Experimental Medical SciencesWallenberg Neuroscience CenterDivision of Neurobiology and Lund Stem Cell CenterLund UniversityLundS‐221 84Sweden
- Department of Biotechnology and Biomedicine (DTU Bioengineering)Technical University of DenmarkKongens Lyngby2800Denmark
| | - Milan Finn Wesseler
- Department of Health Technology (DTU Health Tech)Technical University of DenmarkKongens Lyngby2800Denmark
| | - Marcella Birtele
- Department of Experimental Medical SciencesWallenberg Neuroscience CenterDivision of Neurobiology and Lund Stem Cell CenterLund UniversityLundS‐221 84Sweden
| | - Farinaz Riyahi Khorasgani
- Department of Biotechnology and Biomedicine (DTU Bioengineering)Technical University of DenmarkKongens Lyngby2800Denmark
| | - Daniella Rylander Ottosson
- Department of Experimental Medical SciencesWallenberg Neuroscience CenterDivision of Neurobiology and Lund Stem Cell CenterLund UniversityLundS‐221 84Sweden
| | - Arto Heiskanen
- Department of Biotechnology and Biomedicine (DTU Bioengineering)Technical University of DenmarkKongens Lyngby2800Denmark
| | - Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteEnschede7522The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteEnschede7522The Netherlands
| | - Alberto Martínez‐Serrano
- Department of Molecular BiologyUniversidad Autónoma de Madridand Division of HomeostasisCenter of Molecular Biology Severo Ochoa (UAM‐CSIC)Madrid28049Spain
| | - Niels B. Larsen
- Department of Health Technology (DTU Health Tech)Technical University of DenmarkKongens Lyngby2800Denmark
| | - Thomas E. Angelini
- Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainsvilleFL32611USA
| | - Malin Parmar
- Department of Experimental Medical SciencesWallenberg Neuroscience CenterDivision of Neurobiology and Lund Stem Cell CenterLund UniversityLundS‐221 84Sweden
| | - Johan U. Lind
- Department of Health Technology (DTU Health Tech)Technical University of DenmarkKongens Lyngby2800Denmark
| | - Jenny Emnéus
- Department of Biotechnology and Biomedicine (DTU Bioengineering)Technical University of DenmarkKongens Lyngby2800Denmark
| |
Collapse
|
84
|
Zhang J, Qin Y, Ou Y, Shen Y, Tang B, Zhang X, Yu Z. Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural Colored Objects. Angew Chem Int Ed Engl 2022; 61:e202206339. [DOI: 10.1002/anie.202206339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Yipeng Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
- Cambridge University-Nanjing Centre of Technology and Innovation 126 Dingshan Street Nanjing 210046 P. R. China
| | - Yangteng Ou
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yu Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Xiaoyun Zhang
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| |
Collapse
|
85
|
Wilson KL, Pérez SCL, Naffaa MM, Kelly SH, Segura T. Stoichiometric Post-Modification of Hydrogel Microparticles Dictates Neural Stem Cell Fate in Microporous Annealed Particle Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201921. [PMID: 35731241 PMCID: PMC9645378 DOI: 10.1002/adma.202201921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/07/2022] [Indexed: 05/16/2023]
Abstract
Microporous annealed particle (MAP) scaffolds are generated from assembled hydrogel microparticles (microgels). It has been previously demonstrated that MAP scaffold are porous, biocompatible, and recruit neural progenitor cells (NPCs) to the stroke cavity after injection into the stroke core. Here, the goal is to study NPC fate inside MAP scaffolds in vitro. To create plain microgels that can later be converted to contain different types of bioactivities, the inverse electron-demand Diels-Alder reaction between tetrazine and norbornene is utilized, which allows the post-modification of plain microgels stoichiometrically. As a result of adhesive peptide attachment, NPC spreading leads to contractile force generation which can be recorded by tracking microgel displacement. Alternatively, non-adhesive peptide integration results in neurosphere formation that grows within the void space of MAP scaffolds. Although the formed neurospheres do not impose a contractile force on the scaffolds, they are seen to continuously transverse the scaffolds. It is concluded that MAP scaffolds can be engineered to either promote neurogenesis or enhance stemness depending on the chosen post-modifications of the microgels, which can be key in modulating their phenotypes in various applications in vivo.
Collapse
Affiliation(s)
- Katrina L Wilson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Sasha Cai Lesher Pérez
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 28, 2800 Plymouth Rd, Ann Arbor, MI, 48109-2800, USA
| | - Moawiah M Naffaa
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27708, USA
| | - Sean H Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708-0281, USA
- Department of Neurology, Duke University, Durham, NC, 27708-0281, USA
- Department of Dermatology, Duke University, Durham, NC, 27708-0281, USA
| |
Collapse
|
86
|
Zhang J, Qin Y, Ou Y, Shen Y, Tang B, Zhang X, Yu Z. Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural Colored Objects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yipeng Qin
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yangteng Ou
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - Yu Shen
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Bao Tang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Xiaoyun Zhang
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - Ziyi Yu
- University of Cambridge Department of Chemistry Lensfield road Cambridge UNITED KINGDOM
| |
Collapse
|
87
|
Mahdieh Z, Cherne MD, Fredrikson JP, Sidar B, Sanchez HS, Chang CB, Bimczok D, Wilking JN. Granular Matrigel: restructuring a trusted extracellular matrix material for improved permeability. Biomed Mater 2022; 17:045020. [PMID: 35609584 DOI: 10.1088/1748-605x/ac7306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Matrigel is a polymeric extracellular matrix material produced by mouse cancer cells. Over the past four decades, Matrigel has been shown to support a wide variety of two- and three-dimensional cell and tissue culture applications including organoids. Despite widespread use, transport of molecules, cells, and colloidal particles through Matrigel can be limited. These limitations restrict cell growth, viability, and function and limit Matrigel applications. A strategy to improve transport through a hydrogel without modifying the chemistry or composition of the gel is to physically restructure the material into microscopic microgels and then pack them together to form a porous material. These 'granular' hydrogels have been created using a variety of synthetic hydrogels, but granular hydrogels composed of Matrigel have not yet been reported. Here we present a drop-based microfluidics approach for structuring Matrigel into a three-dimensional, mesoporous material composed of packed Matrigel microgels, which we call granular Matrigel. We show that restructuring Matrigel in this manner enhances the transport of colloidal particles and human dendritic cells (DCs) through the gel while providing sufficient mechanical support for culture of human gastric organoids (HGOs) and co-culture of human DCs with HGOs.
Collapse
Affiliation(s)
- Zahra Mahdieh
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Michelle D Cherne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - Jacob P Fredrikson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Barkan Sidar
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Humberto S Sanchez
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States of America
| | - James N Wilking
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, United States of America
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States of America
| |
Collapse
|
88
|
Mohammadi S, Ravanbakhsh H, Taheri S, Bao G, Mongeau L. Immunomodulatory Microgels Support Proregenerative Macrophage Activation and Attenuate Fibroblast Collagen Synthesis. Adv Healthc Mater 2022; 11:e2102366. [PMID: 35122412 DOI: 10.1002/adhm.202102366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Indexed: 11/05/2022]
Abstract
Scars composed of fibrous connective tissues are natural consequences of injury upon incisional wound healing in soft tissues. Hydrogels that feature a sustained presentation of immunomodulatory cytokines are known to modulate wound healing. However, existing immunomodulatory hydrogels lack interconnected micropores to promote cell ingrowth. Other limitations include invasive delivery procedures and harsh synthesis conditions that are incompatible with drug molecules. Here, hybrid nanocomposite microgels containing interleukin-10 (IL-10) are reported to modulate tissue macrophage phenotype during wound healing. The intercalation of laponite nanoparticles in the polymer network yields microgels with tissue-mimetic elasticity (Young's modulus in the range of 2-6 kPa) and allows the sustained release of IL-10 to promote the differentiation of macrophages toward proregenerative phenotypes. The porous interstitial spaces between microgels promote fibroblast proliferation and fast trafficking (an average speed of ≈14.4 µm h-1 ). The incorporation of hyaluronic acid further enhances macrophage infiltration. The coculture of macrophages and fibroblasts treated with transforming growth factor-beta 1 resulted in a twofold reduction in collagen-I production for microgels releasing IL-10 compared to the IL-10 free group. The new microgels show potential toward regenerative healing by harnessing the antifibrotic behavior of host macrophages.
Collapse
Affiliation(s)
- Sepideh Mohammadi
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Hossein Ravanbakhsh
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Sareh Taheri
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Guangyu Bao
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Luc Mongeau
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| |
Collapse
|
89
|
In silico optimization of heparin microislands in microporous annealed particle (MAP) hydrogel for endothelial cell migration. Acta Biomater 2022; 148:171-180. [PMID: 35660016 DOI: 10.1016/j.actbio.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Biomaterials capable of generating growth factor gradients have shown success in guiding tissue regeneration, as growth factor gradients are a physiologic driver of cell migration. Of particular importance, a focus on promoting endothelial cell migration is vital to angiogenesis and new tissue formation. Microporous Annealed Particle (MAP) scaffolds represent a unique niche in the field of regenerative biomaterials research as an injectable biomaterial with an open porosity that allows cells to freely migrate independent of material degradation. Recently, we have used the MAP platform to heterogeneously include spatially isolated heparin-modified microgels (heparin microislands) which can sequester growth factors and guide cell migration. In in vitro sprouting angiogenesis assays, we observed a parabolic relationship between the percentage of heparin microislands and cell migration, where 10% heparin microislands had more endothelial cell migration compared to 1% and 100%. Due to the low number of heparin microisland ratios tested, we hypothesize the spacing between microgels can be further optimized. Rather than use purely empirical methods, which are both expensive and time intensive, we believe this challenge represents an opportunity to use computational modeling. Here we present the first agent-based model of a MAP scaffold to optimize the ratio of heparin microislands. Specifically, we develop a two-dimensional model in Hybrid Automata Library (HAL) of endothelial cell migration within the unique MAP scaffold geometry. Finally, we present how our model can accurately predict cell migration trends in vitro, and these studies provide insight on how computational modeling can be used to design particle-based biomaterials. STATEMENT OF SIGNIFICANCE: : While the combination of experimental and computational approaches is increasingly being used to gain a better understanding of cellular processes, their combination in biomaterials development has been relatively limited. Heparin microislands are spatially isolated heparin microgels; when located within a microporous annealed particle (MAP) scaffold, they can sequester and release growth factors. Importantly, we present the first agent-based model of MAP scaffolds to optimize the ratio of heparin microislands within the scaffold to promote endothelial cell migration. We demonstrate this model can accurately predict trends in vitro, thus opening a new avenue of research to aid in the design of MAP scaffolds.
Collapse
|
90
|
Muir VG, Prendergast ME, Burdick JA. Fragmenting Bulk Hydrogels and Processing into Granular Hydrogels for Biomedical Applications. J Vis Exp 2022:10.3791/63867. [PMID: 35662235 PMCID: PMC11022187 DOI: 10.3791/63867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Granular hydrogels are jammed assemblies of hydrogel microparticles (i.e., "microgels"). In the field of biomaterials, granular hydrogels have many advantageous properties, including injectability, microscale porosity, and tunability by mixing multiple microgel populations. Methods to fabricate microgels often rely on water-in-oil emulsions (e.g., microfluidics, batch emulsions, electrospraying) or photolithography, which may present high demands in terms of resources and costs, and may not be compatible with many hydrogels. This work details simple yet highly effective methods to fabricate microgels using extrusion fragmentation and to process them into granular hydrogels useful for biomedical applications (e.g., 3D printing inks). First, bulk hydrogels (using photocrosslinkable hyaluronic acid (HA) as an example) are extruded through a series of needles with sequentially smaller diameters to form fragmented microgels. This microgel fabrication technique is rapid, low-cost, and highly scalable. Methods to jam microgels into granular hydrogels by centrifugation and vacuum-driven filtration are described, with optional post-crosslinking for hydrogel stabilization. Lastly, granular hydrogels fabricated from fragmented microgels are demonstrated as extrusion printing inks. While the examples described herein use photocrosslinkable HA for 3D printing, the methods are easily adaptable for a wide variety of hydrogel types and biomedical applications.
Collapse
Affiliation(s)
- Victoria G Muir
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
| | - Margaret E Prendergast
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania; BioFrontiers Institute, University of Colorado Boulder; Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder;
| |
Collapse
|
91
|
Suhar RA, Doulames VM, Liu Y, Hefferon ME, Figueroa O, Buabbas H, Heilshorn SC. Hyaluronan and elastin-like protein (HELP) gels significantly improve microsphere retention in the myocardium. Biomater Sci 2022; 10:2590-2608. [PMID: 35411353 PMCID: PMC9123900 DOI: 10.1039/d1bm01890f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Heart disease is the leading cause of death globally, and delivery of therapeutic cargo (e.g., particles loaded with proteins, drugs, or genes and cells) through direct injection into the myocardium is a promising clinical intervention. However, retention of deliverables to the contracting myocardium is low, with as much as 60-90% of payload being lost within 24 hr. Commercially-available injectable hydrogels, including Matrigel, have been hypothesized to increase payload retention but have not yielded significant improvements in quantified analyses. Here, we assess a recombinant hydrogel composed of chemically modified hyaluronan and elastin-like protein (HELP) as an alternative injectable carrier to increase cargo retention. HELP is crosslinked using dynamic covalent bonds, and tuning the hyaluronan chemistry significantly alters hydrogel mechanical properties including stiffness, stress relaxation rate, and ease of injectability through a needle or catheter. These materials can be injected even after complete crosslinking, extending the time window for surgical delivery. We show that HELP gels significantly improve in vivo retention of microsphere cargo compared to Matrigel, both 1 day and 7 days post-injection directly into the rat myocardium. These data suggest that HELP gels may assist with the clinical translation of therapeutic cargo designed for delivery into the contracting myocardium by preventing acute cargo loss.
Collapse
Affiliation(s)
- Riley A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| | - Vanessa M Doulames
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yueming Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| | - Meghan E Hefferon
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Hana Buabbas
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
92
|
Chen Y, Sun W, Tang H, Li Y, Li C, Wang L, Chen J, Lin W, Li S, Fan Z, Cheng Y, Chen C. Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Front Bioeng Biotechnol 2022; 10:820940. [PMID: 35646833 PMCID: PMC9140325 DOI: 10.3389/fbioe.2022.820940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The foreign body response (FBR) caused by biomaterials can essentially be understood as the interaction between the immune microenvironment and biomaterials, which has severely impeded the application of biomaterials in tissue repair. This concrete interaction occurs via cells and bioactive substances, such as proteins and nucleic acids. These cellular and molecular interactions provide important cues for determining which element to incorporate into immunomodulatory biomaterials (IMBs), and IMBs can thus be endowed with the ability to modulate the FBR and repair damaged tissue. In terms of cellular, IMBs are modified to modulate functions of immune cells, such as macrophages and mast cells. In terms of bioactive substances, proteins and nucleic acids are delivered to influence the immune microenvironment. Meanwhile, IMBs are designed with high affinity for spatial targets and the ability to self-adapt over time, which allows for more efficient and intelligent tissue repair. Hence, IMB may achieve the perfect functional integration in the host, representing a breakthrough in tissue repair and regeneration medicine.
Collapse
Affiliation(s)
- Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yingze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shenghui Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yu Cheng
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
93
|
Teng C, Tong Z, He Q, Zhu H, Wang L, Zhang X, Wei W. Mesenchymal Stem Cells–Hydrogel Microspheres System for Bone Regeneration in Calvarial Defects. Gels 2022; 8:gels8050275. [PMID: 35621573 PMCID: PMC9141522 DOI: 10.3390/gels8050275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
The repair of large bone defects in clinic is a challenge and urgently needs to be solved. Tissue engineering is a promising therapeutic strategy for bone defect repair. In this study, hydrogel microspheres (HMs) were fabricated to act as carriers for bone marrow mesenchymal stem cells (BMSCs) to adhere and proliferate. The HMs were produced by a microfluidic system based on light-induced gelatin of gelatin methacrylate (GelMA). The HMs were demonstrated to be biocompatible and non-cytotoxic to stem cells. More importantly, the HMs promoted the osteogenic differentiation of stem cells. In vivo, the ability of bone regeneration was studied by way of implanting a BMSC/HM system in the cranial defect of rats for 8 weeks. The results confirmed that the BMSC/HM system can induce superior bone regeneration compared with both the HMs alone group and the untreated control group. This study provides a simple and effective research idea for bone defect repair, and the subsequent optimization study of HMs will provide a carrier material with application prospects for tissue engineering in the future.
Collapse
Affiliation(s)
- Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Qiulin He
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huangrong Zhu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Lu Wang
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China;
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (X.Z.); (W.W.)
| | - Wei Wei
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
- Correspondence: (X.Z.); (W.W.)
| |
Collapse
|
94
|
Kessler M, Nassisi Q, Amstad E. Does the Size of Microgels Influence the Toughness of Microgel-Reinforced Hydrogels? Macromol Rapid Commun 2022; 43:e2200196. [PMID: 35467048 DOI: 10.1002/marc.202200196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Rapid advances in the biomedical field increasingly often demand soft materials that can be processed into complex 3D shapes while being able to reliably bear significant loads. Granular hydrogels have the potential to serve as artificial tissues because they can be 3D printed into complex 3D shapes and their composition can be tuned over short length scales. Unfortunately, granular hydrogels are typically soft such that they cannot be used for load-bearing applications. To address this shortcoming, individual microgels can be connected through a percolating network, such that they introduce the double network toughening mechanism into granular hydrogels. However, the influence of the microgel size and concentration on the processing and toughness of microgel-reinforced hydrogels (MRHs) remains to be elucidated. Here, we demonstrate that processing and toughness depend on the inter-microgel connectivity, while the stress at break is solely dependent on the microgel size. These findings offer an in-depth understanding of how liquid- and paste-like precursors containing soft, deformable microgels can be processed into bulk microstructured soft materials and the effect of the size and concentration of these microgels on the mechanical properties of microgel reinforced hydrogels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michael Kessler
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Quentin Nassisi
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
95
|
Qazi TH, Muir VG, Burdick JA. Methods to Characterize Granular Hydrogel Rheological Properties, Porosity, and Cell Invasion. ACS Biomater Sci Eng 2022; 8:1427-1442. [PMID: 35330993 PMCID: PMC10994272 DOI: 10.1021/acsbiomaterials.1c01440] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Granular hydrogels are formed through the packing of hydrogel microparticles and are emerging for various biomedical applications, including as inks for 3D printing, substrates to study cell-matrix interactions, and injectable scaffolds for tissue repair. Granular hydrogels are suited for these applications because of their unique properties including inherent porosity, shear-thinning and self-healing behavior, and tunable design. The characterization of their material properties and biological response involves technical considerations that are unique to modular systems like granular hydrogels. Here, we describe detailed methods that can be used to quantitatively characterize the rheological behavior and porosity of granular hydrogels using reagents, tools, and equipment that are typically available in biomedical engineering laboratories. In addition, we detail methods for 3D cell invasion assays using multicellular spheroids embedded within granular hydrogels and describe steps to quantify features of cell outgrowth (e.g., endothelial cell sprouting) using standard image processing software. To illustrate these methods, we provide examples where features of granular hydrogels such as the size of hydrogel microparticles and their extent of packing during granular hydrogel formation are modulated. Our intent with this resource is to increase accessibility to granular hydrogel technology and to facilitate the investigation of granular hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Victoria G Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
96
|
Feng Q, Li D, Li Q, Li H, Wang Z, Zhu S, Lin Z, Cao X, Dong H. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15653-15666. [PMID: 35344348 DOI: 10.1021/acsami.2c01295] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extrusion bioprinting has been widely used to fabricate complicated and heterogeneous constructs for tissue engineering and regenerative medicine. Despite the remarkable progress acquired so far, the exploration of qualified bioinks is still challenging, mainly due to the conflicting requirements on the printability/shape-fidelity and cell viability. Herein, a new strategy is proposed to formulate a dynamic cross-linked microgel assembly (DC-MA) bioink, which can achieve both high printability/shape-fidelity and high cell viability by strengthening intermicrogel interactions through dynamic covalent bonds while still maintaining the relatively low mechanical modulus of microgels. As a proof-of-concept, microgels are prepared by cross-linking hyaluronic acid modified with methacrylate and phenylboric acid groups (HAMA-PBA) and methacrylated gelatin (GelMA) via droplet-based microfluidics, followed by assembling into DC-MA bioink with a dynamic cross-linker (dopamine-modified hyaluronic acid, HA-DA). As a result, 2D and 3D constructs with high shape-fidelity can be printed without post-treatment, and the encapsulated L929 cells exhibit high cell viability after extrusion. Moreover, the addition of the dynamic cross-linker (HA-DA) also improves the microporosity, tissue-adhesion, and self-healing of the DC-MA bioink, which is very beneficial for tissue engineering and regenerative medicine applications including wound healing. We believe the present work sheds a new light on designing new bioinks for extrusion bioprinting.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Dingguo Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haofei Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Zetao Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuangli Zhu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
97
|
Ding A, Jeon O, Cleveland D, Gasvoda KL, Wells D, Lee SJ, Alsberg E. Jammed Micro-Flake Hydrogel for Four-Dimensional Living Cell Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109394. [PMID: 35065000 PMCID: PMC9012690 DOI: 10.1002/adma.202109394] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Indexed: 05/12/2023]
Abstract
4D bioprinting is promising to build cell-laden constructs (bioconstructs) with complex geometries and functions for tissue/organ regeneration applications. The development of hydrogel-based 4D bioinks, especially those allowing living cell printing, with easy preparation, defined composition, and controlled physical properties is critically important for 4D bioprinting. Here, a single-component jammed micro-flake hydrogel (MFH) system with heterogeneous size distribution, which differs from the conventional granular microgel, has been developed as a new cell-laden bioink for 4D bioprinting. This jammed cytocompatible MFH features scalable production and straightforward composition with shear-thinning, shear-yielding, and rapid self-healing properties. As such, it can be smoothly printed into stable 3D bioconstructs, which can be further cross-linked to form a gradient in cross-linking density when a photoinitiator and a UV absorber are incorporated. After being subject to shape morphing, a variety of complex bioconstructs with well-defined configurations and high cell viability are obtained. Based on this system, 4D cartilage-like tissue formation is demonstrated as a proof-of-concept. The establishment of this versatile new 4D bioink system may open up a number of applications in tissue engineering.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Oju Jeon
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - David Cleveland
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kaelyn L Gasvoda
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Derrick Wells
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sang Jin Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Departments of Mechanical & Industrial Engineering, Orthopaedics, and Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
98
|
Echeverría C, Mijangos C. Rheology Applied to Microgels: Brief (Revision of the) State of the Art. Polymers (Basel) 2022; 14:1279. [PMID: 35406152 PMCID: PMC9003433 DOI: 10.3390/polym14071279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
The ability of polymer microgels to rapidly respond to external stimuli is of great interest in sensors, lubricants, and biomedical applications, among others. In most of their uses, microgels are subjected to shear, deformation, and compression forces or a combination of them, leading to variations in their rheological properties. This review article mainly refers to the rheology of microgels, from the hard sphere versus soft particles' model. It clearly describes the scaling theories and fractal structure formation, in particular, the Shih et al. and Wu and Morbidelli models as a tool to determine the interactions among microgel particles and, thus, the viscoelastic properties. Additionally, the most recent advances on the characterization of microgels' single-particle interactions are also described. The review starts with the definition of microgels, and a brief introduction addresses the preparation and applications of microgels and hybrid microgels.
Collapse
Affiliation(s)
- Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | | |
Collapse
|
99
|
Charlet A, Bono F, Amstad E. Mechanical reinforcement of granular hydrogels. Chem Sci 2022; 13:3082-3093. [PMID: 35414870 PMCID: PMC8926196 DOI: 10.1039/d1sc06231j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Granular hydrogels are composed of hydrogel-based microparticles, so-called microgels, that are densely packed to form an ink that can be 3D printed, injected or cast into macroscopic structures. They are frequently used as tissue engineering scaffolds because microgels can be made biocompatible and the porosity of the granular hydrogels enables a fast exchange of reagents, waste products, and if properly designed even the infiltration of cells. Most of these granular hydrogels can be shaped into appropriate macroscopic structures, yet, these structures are mechanically rather weak. The poor mechanical properties prevent the use of these structures as load-bearing materials and hence, limit their field of applications. The mechanical properties of granular hydrogels depend on the composition of microgels and the interparticle interactions. In this review, we discuss different strategies to assemble microparticles into granular hydrogels and highlight the influence of inter-particle connections on the stiffness and toughness of the resulting materials. Mechanically strong and tough granular hydrogels have the potential to open up new fields of their use and thereby to contribute to fast advances in these fields. In particular, we envisage them to be well-suited as soft actuators and robots, tissue replacements, and adaptive sensors.
Collapse
Affiliation(s)
- Alvaro Charlet
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Francesca Bono
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne Lausanne 1015 Switzerland
| |
Collapse
|
100
|
Bjørge IM, Correia CR, Mano JF. Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. MATERIALS HORIZONS 2022; 9:908-933. [PMID: 34908074 DOI: 10.1039/d1mh01694f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structure and organisation are key aspects of the native tissue environment, which ultimately condition cell fate via a myriad of processes, including the activation of mechanotransduction pathways. By modulating the formation of integrin-mediated adhesions and consequently impacting cell contractility, engineered geometrical and topographical cues may be introduced to activate downstream signalling and ultimately control cell morphology, proliferation, and differentiation. Microcarriers appear as attractive vehicles for cell-based tissue engineering strategies aiming to modulate this 3D environment, but also as vehicles for cell-free applications, given the ease in tuning their chemical and physical properties. In this review, geometry and topography are highlighted as two preponderant features in actively regulating interactions between cells and the extracellular matrix. While most studies focus on the 2D environment, we focus on how the incorporation of these strategies in 3D systems could be beneficial. The techniques applied to design 3D microcarriers with unique geometries and surface topographical cues are covered, as well as specific tissue engineering approaches employing these microcarriers. In fact, successfully achieving a functional histoarchitecture may depend on a combination of fine-tuned geometrically shaped microcarriers presenting intricately tailored topographical cues. Lastly, we pinpoint microcarrier geometry as a key player in cell-free biomaterial-based strategies, and its impact on drug release kinetics, the production of steerable microcarriers to target tumour cells, and as protein or antibody biosensors.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|