51
|
Ryu H, Baek SW, Moon JY, Jo IS, Kim N, Lee HJ. C-C motif chemokine receptors in gastric cancer. Mol Clin Oncol 2018; 8:3-8. [PMID: 29285394 PMCID: PMC5738695 DOI: 10.3892/mco.2017.1470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer-associated mortality worldwide. Despite recent advances in molecular and clinical research, patients with gastric cancer at an advanced stage have a dismal prognosis and poor survival rates, and systemic treatment relies predominantly on traditional cytotoxic chemotherapy. To improve patients' quality of life and survival, an improved understanding of the complex molecular mechanisms involved in gastric cancer progression and treatment resistance, and of its clinical application in the development of novel targeted therapies, is urgently required. Chemokines are a group of small chemotactic cytokines that interact with seven-transmembrane G-protein-coupled receptors, and this interaction serves a crucial role in various physiological processes, including organ development and the host immune response, to recruit cells to specific sites in the body. There is also accumulating evidence that chemokines and chemokine receptors (CCRs) contribute to tumor development and progression, as well as metastasis. However, research regarding the functional roles of chemokines and their receptors in cancer is dynamic and context-dependent, and much remains to be elucidated, although various aspects have been explored extensively. In gastric cancer, C-C motif CCRs are involved in the biological behavior of tumor cells, including the processes of growth, invasion and survival, as well as the epithelial-mesenchymal transition. In the present review, attention is given to the clinical relevance of C-C motif CCRs in the development, progression, and metastasis of gastric cancer, particularly CCR7 and CCR5, which have been investigated extensively, as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Hyewon Ryu
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Seung Woo Baek
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ji Young Moon
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - In-Sook Jo
- Department of Medical Science, School of Medicine Chungnam National University and Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Nayoung Kim
- Department of Medical Science, School of Medicine Chungnam National University and Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, School of Medicine Chungnam National University and Chungnam National University Hospital, Daejeon 35015, Republic of Korea
- Cancer Research Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
52
|
Jiang GM, Xu W, Du J, Zhang KS, Zhang QG, Wang XW, Liu ZG, Liu SQ, Xie WY, Liu HF, Liu JS, Wu BP. The application of the fibroblast activation protein α-targeted immunotherapy strategy. Oncotarget 2017; 7:33472-82. [PMID: 26985769 PMCID: PMC5078111 DOI: 10.18632/oncotarget.8098] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/28/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Guan-Min Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun-Shui Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiu-Gui Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Wei Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhi-Gang Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuang-Quan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Wan-Ying Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui-Fang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing-Shi Liu
- Department of Anesthesia, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bai-Ping Wu
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
53
|
Liu X, Kang L, Liu W, Lou B, Wu C, Jiang L. Molecular characterization and expression analysis of the large yellow croaker (Larimichthys crocea) chemokine receptors CXCR2, CXCR3, and CXCR4 after bacterial and poly I:C challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 70:228-239. [PMID: 28870858 DOI: 10.1016/j.fsi.2017.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/19/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
The large yellow croaker (Larimichthys crocea) has a well-developed innate immune system. We studied a component of this system, chemokine receptor CXCR family. In this study, we report the full-length open reading frames, as well as the identification and characterization of the chemokine receptor genes CXCR2 (LycCXCR2), CXCR3 (LycCXCR3), and CXCR4 (LycCXCR4) of large yellow croaker. We report that LycCXCR3 and LycCXCR4 are evolving neutrally according to PAML analyses. Quantitative real-time PCR analysis revealed that CXCR transcripts were expressed in all examined tissues. The expression of chemokine receptors LycCXCR2, LycCXCR3, and LycCXCR4 was elevated in the kidney, spleen, and particularly the liver of the large yellow croaker after challenge with Vibrio anguillarum and polyinosinic:polycytidylic acid (poly I:C). These results suggest that LycCXCR2, LycCXCR3, and LycCXCR4 may be important immune-related genes, playing crucial roles in immune defence against bacterial infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Fish Diseases/immunology
- Fish Proteins/chemistry
- Fish Proteins/genetics
- Fish Proteins/immunology
- Gene Expression Profiling/veterinary
- Gene Expression Regulation/immunology
- Immunity, Innate/genetics
- Perciformes/genetics
- Perciformes/immunology
- Phylogeny
- Poly I-C/pharmacology
- Receptors, CXCR3/chemistry
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/genetics
- Receptors, CXCR4/immunology
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Receptors, Interleukin-8B/chemistry
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/immunology
- Sequence Alignment/veterinary
- Vibrio/physiology
- Vibrio Infections/immunology
Collapse
Affiliation(s)
- Xiaoxu Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Lisen Kang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Wei Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Bao Lou
- Marine Fishery Institute of Zhejiang Province, Key Laboratory of Mariculturre and Enhancement of Zhejiang Province, Zhoushan, Zhejiang Province, 316021, China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China
| | - Lihua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, No. 1 Haida South Road, Dinghai District, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
54
|
Kistner L, Doll D, Holtorf A, Nitsche U, Janssen KP. Interferon-inducible CXC-chemokines are crucial immune modulators and survival predictors in colorectal cancer. Oncotarget 2017; 8:89998-90012. [PMID: 29163806 PMCID: PMC5685727 DOI: 10.18632/oncotarget.21286] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
Tumor-infiltrating T-cells are strongly associated with prognosis in colorectal cancer, but the mechanisms governing intratumoral lymphocyte recruitment are unclear. We investigated the clinical relevance and functional contribution of interferon-regulated CXC-chemokines CXCL9, CXCL10, and CXCL11, described as T-cells attractants. Their expression was significantly elevated in tumors as compared to normal colon in 163 patients with colon cancer, represented an independent positive predictor of post-operative survival, and was highly significantly correlated with the presence of tumor-infiltrating cytotoxic CD8+ T-cells and CD4+ TH1-effector cells. The regulation of chemokine expression was investigated in established cell lines and in tissue explants from resected tumor specimen (n=22). All colorectal cancer cell lines tested, as well as stroma or endothelial cells, produced CXC-chemokines in response to cytokine stimulation. Moreover, resected tumor explants could be stimulated to produce CXC-chemokines, even in cases with initially low CXC-levels. Lastly, a causative role of chemokine expression was evaluated with an orthotopic mouse model, based on isogenic rectal CT26 cancer cells, engineered to express CXCL10. The orthotopic model demonstrated a protective and anti-metastatic role of intratumoral CXCL10 expression, mediated mainly by adaptive immunity.
Collapse
Affiliation(s)
- Larissa Kistner
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Dietrich Doll
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany.,Current/Present Address: St. Marienhospital Vechta, Vechta, Germany
| | - Anne Holtorf
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany
| | | |
Collapse
|
55
|
Wang D, Sun H, Wei J, Cen B, DuBois RN. CXCL1 Is Critical for Premetastatic Niche Formation and Metastasis in Colorectal Cancer. Cancer Res 2017; 77:3655-3665. [PMID: 28455419 PMCID: PMC5877403 DOI: 10.1158/0008-5472.can-16-3199] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/10/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022]
Abstract
Emerging evidence suggests that the primary tumor influences the development of supportive metastatic microenvironments, referred to as premetastatic niches, in certain distant organs before arrival of metastatic cells. However, the mechanisms underlying the contributions of the primary tumor to premetastatic niche formation are not fully understood. Here, we demonstrate that colorectal carcinoma cells secrete VEGFA, which stimulates tumor-associated macrophages to produce CXCL1 in the primary tumor. Elevation of CXCL1 in premetastatic liver tissue recruited CXCR2-positive myeloid-derived suppressor cells (MDSC) to form a premetastatic niche that ultimately promoted liver metastases. Importantly, premetastatic liver-infiltrating MDSCs induced tumor cell survival without involvement of innate or adaptive immune responses. Our study provides the first evidence that primary malignant cell-secreted VEGFA stimulates tumor-associated macrophages to produce CXCL1, which recruits CXCR2-positive MDSCs to form a premetastatic niche to promote liver metastases. Our findings not only shed light on how the tumor microenvironment contributes to premetastatic niche formation at distant sites, but they also provide comprehensive insights into how MDSCs are recruited to other organs where they contribute to metastatic spread of disease. Moreover, our work also provides a rationale for development of CXCR2 antagonists to inhibit or prevent metastatic spread of disease. Cancer Res; 77(13); 3655-65. ©2017 AACR.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Haiyan Sun
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, Arizona
| | - Jie Wei
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Bo Cen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
- Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, Arizona
| |
Collapse
|
56
|
Jin JJ, Dai FX, Long ZW, Cai H, Liu XW, Zhou Y, Hong Q, Dong QZ, Wang YN, Huang H. CXCR6 predicts poor prognosis in gastric cancer and promotes tumor metastasis through epithelial-mesenchymal transition. Oncol Rep 2017; 37:3279-3286. [PMID: 28440473 DOI: 10.3892/or.2017.5598] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/10/2016] [Indexed: 11/05/2022] Open
Abstract
Chemokines and their receptors have been confirmed to be involved in several types of cancer. However, little is known concerning the role of CXCL16 and its receptor CXCR6 in gastric cancer (GC) progression and metastasis. In the present study, expression of CXCL16 and CXCR6 in GC tumor and peritumoral tissues was detected by immunohistochemistry (IHC) in a cohort of 352 GC patients who underwent gastrectomy, and the correlation between CXCL16/CXCR6 expression and clinicopathological characteristics was further analyzed. To evaluate the function of CXCR6, we overexpressed and knocked down CXCR6 in GC cell lines. Results showed that expression of CXCR6, but not CXCL16, was significantly upregulated in GC tumor tissues, and was significantly correlated with lymph node and distant metastases, and advanced clinical stage in the GC patients. Survival analysis showed that large tumor size (>5 cm), elevated preoperative serum carcinoembryonic antigen (CEA) level, advanced TNM stage and high CXCR6 expression indicated worse overall survival (OS) and disease-free survival (DFS) in GC, and CXCR6 was an independent predictor for both OS and DFS in GC. In vitro experiments showed that CXCR6 overexpression induced cell migration and invasion ability, and promoted epithelial-mesenchymal transition of GC cells by upregulation of mesenchymal markers and inhibition of epithelial markers. In contrast, knockdown of CXCR6 in GC cells resulted in inhibition of cell proliferation, migration and invasion ability, and reversal of epithelial-mesenchymal transition (EMT) phenomenon. Our results demonstrated that CXCR6 is an independent prognostic factor for poor survival in GC patients, and may promote GC metastasis through EMT.
Collapse
Affiliation(s)
- Jie-Jie Jin
- Gastric Surgery Department, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fa-Xiang Dai
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zi-Wen Long
- Gastric Surgery Department, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hong Cai
- Gastric Surgery Department, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiao-Wen Liu
- Gastric Surgery Department, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Ye Zhou
- Gastric Surgery Department, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Qi Hong
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Qiong-Zhu Dong
- Institutes of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Ya-Nong Wang
- Gastric Surgery Department, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hua Huang
- Gastric Surgery Department, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
57
|
Zhao J, Ou B, Feng H, Wang P, Yin S, Zhu C, Wang S, Chen C, Zheng M, Zong Y, Sun J, Lu A. Overexpression of CXCR2 predicts poor prognosis in patients with colorectal cancer. Oncotarget 2017; 8:28442-28454. [PMID: 28415702 PMCID: PMC5438662 DOI: 10.18632/oncotarget.16086] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer is a heterogeneous disease. Although many risk factors are used to predict colorectal cancer patients' prognosis after surgical resection, new prognostic factors are still needed to be defined to promote predictive efficacy of prognosis and further guide therapies. Herein, we identified the prognostic significance of CXCR2 in colorectal cancer patients. We retrospectively analysed 134 patients with colorectal cancer who underwent minimally invasive surgery between 2010 and 2011. The overall cohort was divided into a training set (n = 78) and a validation set (n = 56). We detected CXCR2 expression using immunohistochemical staining and defined the cut-off value using X-tile program. Next, we analysed the association between CXCR2 expression and clinicopathologic features in training and validation sets. High expression of CXCR2 was associated with Dukes stage (P = 0.018), tumor invasion (P = 0.018) and liver metastasis (P = 0.047). Multivariate COX regression analyses confirmed that high CXCR2 level was an independent prognostic risk factor for both overall survival and disease free survival. Kaplan-Meier survival analysis demonstrated that patients with high expression of CXCR2 had a poor overall survival and disease free survival even in low-risk group (I + II). This indicated that CXCR2 can help to refine individual risk stratification. In addition, we established Nomograms of all significant factors to predict 3- or 5-years overall survival and disease free survival. Moreover, we found the combination of CXCR2 and its ligand CXCL5 had more significant value in predicting the prognosis than single CXCR2 factor.
Collapse
Affiliation(s)
- Jingkun Zhao
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
- Shanghai Institute of Digestive Surgery, Shanghai, PR China
- Department of General, Visceral, Transplantation, and Vascular Thoracic Surgery, Hospital of University of LMU Munich, Munich, Germany
| | - Baochi Ou
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
- Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Hao Feng
- Department of General, Visceral, Transplantation, and Vascular Thoracic Surgery, Hospital of University of LMU Munich, Munich, Germany
| | - Puxiongzhi Wang
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Shuai Yin
- Department of General, Visceral, Transplantation, and Vascular Thoracic Surgery, Hospital of University of LMU Munich, Munich, Germany
| | - Congcong Zhu
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
- Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Shenjie Wang
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Chun Chen
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
- Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Minhua Zheng
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yaping Zong
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jing Sun
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Aiguo Lu
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| |
Collapse
|
58
|
Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways. Mol Cancer 2017; 16:70. [PMID: 28356111 PMCID: PMC5372323 DOI: 10.1186/s12943-017-0629-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Metastasis is a major cause of death in human colorectal cancer patients. However, the contribution of chemokines in the tumor microenvironment to tumor metastasis is not fully understood. Methods Herein, we examinined several chemokines in colorectal cancer patients using chemokine ELISA array. Immunohistochemistry was used to detect expression of CXCL5 in colorectal cancer patients tissues. Human HCT116 and SW480 cell lines stably transfected with CXCL5, shCXCL5 and shCXCR2 lentivirus plasmids were used in our in vitro study. Immunoblot, immunofluorescence and transwell assay were used to examine the molecular biology and morphological changes in these cells. In addition, we used nude mice to detect the influence of CXCL5 on tumor metastasis in vivo. Results We found that CXCL5 was overexpressed in tumor tissues and associated with advanced tumor stage as well as poor prognosis in colorectal cancer patients. We also demonstrated that CXCL5 was primarily expressed in the tumor cell cytoplasm and cell membranes, which may indicate that the CXCL5 was predominantly produced by cancer epithelial cells instead of fibroblasts in the tumor mesenchyme. Additionally, overexpression of CXCL5 enhanced the migration and invasion of colorectal cancer cells by inducing the epithelial-mesenchymal transition (EMT) through activation of the ERK/Elk-1/Snail pathway and the AKT/GSK3β/β-catenin pathway in a CXCR2-dependent manner. The silencing of Snail and β-catenin attenuated CXCL5/CXCR2-enhanced cell migration and invasion in vitro. The elevated expression of CXCL5 can also potentiate the metastasis of colorectal cancer cells to the liver in vivo in nude mice intrasplenic injection model. Conclusion In conclusion, our findings support CXCL5 as a promoter of colorectal cancer metastasis and a predictor of poor clinical outcomes in colorectal cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0629-4) contains supplementary material, which is available to authorized users.
Collapse
|
59
|
Won YH, Lee MY, Choi YC, Ha Y, Kim H, Kim DY, Kim MS, Yu JH, Seo JH, Kim M, Cho SR, Kang SW. Elucidation of Relevant Neuroinflammation Mechanisms Using Gene Expression Profiling in Patients with Amyotrophic Lateral Sclerosis. PLoS One 2016; 11:e0165290. [PMID: 27812125 PMCID: PMC5094695 DOI: 10.1371/journal.pone.0165290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by damage of motor neurons. Recent reports indicate that inflammatory responses occurring within the central nervous system contribute to the pathogenesis of ALS. We aimed to investigate disease-specific gene expression associated with neuroinflammation by conducting transcriptome analysis on fibroblasts from three patients with sporadic ALS and three normal controls. Several pathways were found to be upregulated in patients with ALS, among which the toll-like receptor (TLR) and NOD-like receptor (NLR) signaling pathways are related to the immune response. Genes—toll-interacting protein (TOLLIP), mitogen-activated protein kinase 9 (MAPK9), interleukin-1β (IL-1β), interleukin-8 (IL-8), and chemokine (C-X-C motif) ligand 1 (CXCL1)—related to these two pathways were validated using western blotting. This study validated the genes that are associated with TLR and NLR signaling pathways from different types of patient-derived cells. Not only fibroblasts but also induced pluripotent stem cells (iPSCs) and neural rosettes from the same origins showed similar expression patterns. Furthermore, expression of TOLLIP, a regulator of TLR signaling pathway, decreased with cellular aging as judged by changes in its expression through multiple passages. TOLLIP expression was downregulated in ALS cells under conditions of inflammation induced by lipopolysaccharide. Our data suggest that the TLR and NLR signaling pathways are involved in pathological innate immunity and neuroinflammation associated with ALS and that TOLLIP, MAPK9, IL-1β, IL-8, and CXCL1 play a role in ALS-specific immune responses. Moreover, changes of TOLLIP expression might be associated with progression of ALS.
Collapse
Affiliation(s)
- Yu Hui Won
- Department of Physical Medicine and Rehabilitation, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
- Department of Medicine, the Graduate School of Yonsei University, Seoul, Korea
| | - Min-Young Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University, Seoul, Korea
| | - Hyongbum Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Do-Young Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Myung-Sun Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - MinGi Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- * E-mail: (SWK); (SRC)
| | - Seong-Woong Kang
- Department of Rehabilitation Medicine, Gangnam Severance Hospital, Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea
- Department of Medicine, the Graduate School of Yonsei University, Seoul, Korea
- * E-mail: (SWK); (SRC)
| |
Collapse
|
60
|
Han KQ, Han H, He XQ, Wang L, Guo XD, Zhang XM, Chen J, Zhu QG, Nian H, Zhai XF, Jiang MW. Chemokine CXCL1 may serve as a potential molecular target for hepatocellular carcinoma. Cancer Med 2016; 5:2861-2871. [PMID: 27682863 PMCID: PMC5083740 DOI: 10.1002/cam4.843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to screen for changes in chemokine and chemokine‐related genes that are expressed in hepatocellular carcinoma (HCC) as potential markers of HCC progression. Total RNA was extracted from tumor and peritumor tissues from mice with HCC and analyzed using a PCR microarray comprising 98 genes. Changes in gene expression of threefold or more were screened and subsequently confirmed by immunohistochemical analyses and western blotting. Furthermore, whether chemokine knockdown by RNA interference (RNAi) could significantly suppress tumor growth in vivo was also evaluated. Finally, total serum samples were collected from HCC patients with HBV/cirrhosis (n = 16) or liver cirrhosis (n = 16) and from healthy controls (n = 16). The serum mRNA and protein expression levels of CXCL1 in primary liver cancer patients were detected by qRT‐PCR and western blot analysis, respectively. Several genes were up‐regulated in tumor tissues during the progression period, including CXCL1, CXCL2, CXCL3, and IL‐1β, while CXCR1 expression was down‐regulated. CBRH‐7919 cells carrying CXCL1 siRNA resulted in decreased tumor growth in nude mice. The differences in serum CXCL1 mRNA and protein levels among the HCC, hepatic sclerosis (HS), and control groups were significant (P < 0.001). The mRNA and protein levels of CXCL1 in the HCC group were up‐regulated compared with the HS group or the control group (P < 0.001). Several chemokine genes were identified that might play important roles in the tumor microenvironment of HCC. These results provide new insights into human HCC and may ultimately facilitate early HCC diagnosis and lead to the discovery of innovative therapeutic approaches for HCC.
Collapse
Affiliation(s)
- Ke-Qi Han
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hui Han
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xue-Qun He
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Lei Wang
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiao-Dong Guo
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xue-Ming Zhang
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jie Chen
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Quan-Gang Zhu
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Nian
- Department of Oncology and Pharmacy, Shanghai Yueyang Hosptail of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiao-Feng Zhai
- Department of Traditional Chinese Medicine, Changhai Hosptail of Second Military Medical University, Shanghai, 200433, China
| | - Ma-Wei Jiang
- Department of Oncology, Xin-Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
61
|
Bellamkonda K, Chandrashekar NK, Osman J, Selvanesan BC, Savari S, Sjölander A. The eicosanoids leukotriene D4 and prostaglandin E2 promote the tumorigenicity of colon cancer-initiating cells in a xenograft mouse model. BMC Cancer 2016; 16:425. [PMID: 27388564 PMCID: PMC4937611 DOI: 10.1186/s12885-016-2466-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer is one of the most common types of cancers worldwide. Recent studies have identified cancer-initiating cells (CICs) as a subgroup of replication-competent cells in the development of colorectal cancer. Although it is understood that an inflammation-rich tumor microenvironment presumably supports CIC functions, the contributory factors are not very well defined. The present study advances our understanding of the role of the eicosanoids leukotriene D4 (LTD4) and prostaglandin E2 (PGE2) in the tumorigenic ability of CICs and investigates the consequential changes occurring in the tumor environment that might support tumor growth. Methods In this study we used human HCT-116 colon cancer ALDH+ cells in a nude mouse xenograft model. Protein expression and immune cell was determined in tumor-dispersed cells by flow cytometry and in tumor sections by immunohistochemistry. mRNA expressions were quantified using RT-q-PCR and plasma cytokine levels by Multiplex ELISA. Results We observed that LTD4 and PGE2 treatment augmented CIC-induced tumor growth. LTD4-and PGE2-treated xenograft tumors revealed a robust increase in ALDH and Dclk1 protein expression, coupled with activated β-catenin signaling and COX-2 up-regulation. Furthermore, LTD4 or PGE2 accentuated the accumulation of CD45 expressing cells within xenograft tumors. Further analysis revealed that these infiltrating immune cells consisted of neutrophils (LY6G) and M2 type macrophages (CD206+). In addition, LTD4 and PGE2 treatment significantly elevated the plasma levels of cysteinyl leukotrienes and PGE2, as well as levels of IL-1β, IL-2, IL-6, TNF-α and CXCL1/KC/GRO. In addition, increased mRNA expression of IL-1β, IL-6 and IL-10 were detected in tumors from mice that had been treated with LTD4 or PGE2. Conclusion Our data suggest that both LTD4 and PGE2 promote CICs in initiating tumor growth by allowing modifications in the tumor environment. Our data indicate that new therapeutic strategies targeting eicosanoids, specifically LTD4 and PGE2, could be tested for better therapeutic management of colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2466-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kishan Bellamkonda
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Naveen Kumar Chandrashekar
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Janina Osman
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Benson Chellakkan Selvanesan
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Sayeh Savari
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Center, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| |
Collapse
|
62
|
Lian S, Zhai X, Wang X, Zhu H, Zhang S, Wang W, Wang Z, Huang J. Elevated expression of growth-regulated oncogene-alpha in tumor and stromal cells predicts unfavorable prognosis in pancreatic cancer. Medicine (Baltimore) 2016; 95:e4328. [PMID: 27472713 PMCID: PMC5265850 DOI: 10.1097/md.0000000000004328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Growth-regulated oncogene-alpha (GRO-α) has been reported to be over-expressed in a series of human cancers including colorectal cancer, melanoma, gastric cancer, hepatocellular carcinoma, and ovarian cancer and was known to regulate multiple biologic activities associated with tumor progression. But the role in human pancreatic cancer remains unclear. To examine the expression of GRO-α and its clinical significance in pancreatic cancer (PC), a total of 12 fresh PC specimens and 12 surrounding normal tissues to detect GRO-α mRNA expression were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical analysis of GRO-α protein was performed in 160 formalin-fixed, paraffin-embedded PC tissue samples and 68 control specimens, including 37 matched normal surgical margins and 31 benign pancreatic lesions. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of PC patients.Expression of GRO-α mRNA in PC tissues was significantly compared with that in adjacent normal tissues (1.399 ± 0.165 vs. 0.870 ± 0.103 t = 1.75, P = 0.012), GRO-α protein expression in cytoplasm of cancer cells and stroma was detected in 41.88% and 40.63% PC specimens, respectively, and was significantly higher than that in corresponding normal tissues (P = 0.008, P = 0.002, respectively). High GRO-α expression in the cytoplasm of cancer cells was related to tumor location (P = 0.047), tumor status (T classification; P = 0.001), distant metastasis (P < 0.001), and tumor node metastasis (TNM) stage (P < 0.001). High GRO-α expression in the stroma correlated with perineural invasion (P = 0.010), T classification (P = 0.006) and TNM stage (P = 0.004), and was marginally associated with metastasis (P = 0.056). Elevated expression of GRO-α in cytoplasm of cancer cells (hazard ratio [HR] = 5.730, P = 0.007) and stroma (HR = 3.120, P = 0.022) were independent prognostic factors of pancreatic cancer. T classification (HR = 2.130, P = 0.023), lymphatic metastasis (HR = 4.211, P = 0.009) and TNM classification (HR = 0.481, P = 0.031) were also prognostic predictors in PC patients.GRO-α expression was elevated in pancreatic cancer tissues and might be a potential therapeutic target and prognostic marker in patients with pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Correspondence: Zhiwei Wang, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China (e-mail: ); Jianfei Huang, Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China (e-mail: )
| | - Jianfei Huang
- Department of Pathology
- Correspondence: Zhiwei Wang, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China (e-mail: ); Jianfei Huang, Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China (e-mail: )
| |
Collapse
|
63
|
Wu Z, Huang X, Han X, Li Z, Zhu Q, Yan J, Yu S, Jin Z, Wang Z, Zheng Q, Wang Y. The chemokine CXCL9 expression is associated with better prognosis for colorectal carcinoma patients. Biomed Pharmacother 2016; 78:8-13. [PMID: 26898419 DOI: 10.1016/j.biopha.2015.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 01/25/2023] Open
Abstract
The chemokine CXCL9 has been demonstrated to play an important role in the development of human malignancies. However, its prognostic significance in cancer patients remains unclear and less is known about its role in colonrectal carcinoma (CRC) patients. In this study, we found that the relative mRNA expression level of CXCL9 in primary colorectal tumor tissues was significantly higher than that in corresponding normal colon tissues. CXCL9 protein expression was also detected in 102 of 130 primary CRC patients by immunochemistry. Thus, CXCL9 might play a vital role in the progression of colorectal cancer. By analyzing the correlation between clinicopathological factors of patients and expression of CXCL9 protein, we showed that the expression of CXCL9 was significantly associated with tumor differentiation, tumor invasion, lymph node metastasis, distant metastasis, and vascular invasion, but not with other factors of CRC patients including age, gender, tumor location and tumor size. Furthermore, by performing Kaplan-Meier method as well as Cox's univariate and multivariate hazard regression model, we found that the higher the CXCL9 expression, the higher overall survival rate was observed, and CXCL9 expression was a significant independent prognostic factor for CRC patients. Therefore, CXCL9 is a useful predictor of better clinical outcome in CRC patients.
Collapse
Affiliation(s)
- Zhenqian Wu
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Xiuyan Huang
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Xiaodong Han
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Zhongnan Li
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Qinchao Zhu
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Jun Yan
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Song Yu
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Zhiming Jin
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Zhigang Wang
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Qi Zheng
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Yu Wang
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China.
| |
Collapse
|
64
|
A synthetic chalcone derivative, 2-hydroxy-3′,5,5′-trimethoxychalcone (DK-139), suppresses the TNFα-induced invasive capability of MDA-MB-231 human breast cancer cells by inhibiting NF-κB-mediated GROα expression. Bioorg Med Chem Lett 2016; 26:203-8. [DOI: 10.1016/j.bmcl.2015.10.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/22/2023]
|
65
|
Wang J, Wang Y, Wang S, Cai J, Shi J, Sui X, Cao Y, Huang W, Chen X, Cai Z, Li H, Bardeesi ASA, Zhang B, Liu M, Song W, Wang M, Xiang AP. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget 2015; 6:42825-37. [PMID: 26517517 PMCID: PMC4767474 DOI: 10.18632/oncotarget.5739] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have recently been shown to home to tumors and contribute to the formation of the tumor-associated stroma. In addition, MSCs can secrete paracrine factors to facilitate tumor progression. However, the involvement of MSC-derived cytokines in colorectal cancer (CRC) angiogenesis and growth has not been clearly addressed. In this study, we report that interleukin-8 (IL-8) was the most highly upregulated pro-angiogenic factor in MSCs co-cultured with CRC cells and was expressed at substantially higher levels in MSCs than CRC cells. To evaluate the effect of MSC-derived IL-8 on CRC angiogenesis and growth, we used MSCs that expressed small hairpin (interfering) RNAs (shRNA) targeting IL-8 (shIL-8-MSCs). We found that MSC-secreted IL-8 promoted human umbilical vein endothelial cell (HUVEC) proliferation and migration, tube-formation ability and CRC cell proliferation. Additionally, in vivo studies showed that MSCs promoted tumor angiogenesis partially through IL-8. Taken together, these findings suggest that IL-8 secreted by MSCs promotes CRC angiogenesis and growth and can therefore serve as a potential novel therapeutic target.
Collapse
Affiliation(s)
- Jiancheng Wang
- The Biotherapy Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingnan Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shaochuan Wang
- Department of Gastrointestinal-Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianye Cai
- The Biotherapy Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianqiang Shi
- Department of Radiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xin Sui
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University Medical College, Xi'an, Shaanxi, China
| | - Yong Cao
- The Cardiovascular Center, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zijie Cai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Adham Sameer A. Bardeesi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bin Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Muyun Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wu Song
- Department of Gastrointestinal-Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Maosheng Wang
- The Cardiovascular Center, Gaozhou People's Hospital, Maoming, Guangdong, China
| | - Andy Peng Xiang
- The Biotherapy Center, The Third Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
66
|
Management of resectable colorectal lung metastases. Clin Exp Metastasis 2015; 33:285-96. [DOI: 10.1007/s10585-015-9774-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
|
67
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
68
|
Metabolic exchanges within tumor microenvironment. Cancer Lett 2015; 380:272-80. [PMID: 26546872 DOI: 10.1016/j.canlet.2015.10.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022]
Abstract
Tumor progression toward malignancy often requires a metabolic rewiring of cancer cells to meet changes in metabolic demand to forefront nutrient and oxygen withdrawal, together with strong anabolic requests to match high proliferation rate. Tumor microenvironment highly contributes to metabolic rewiring of cancer cells, fostering complete nutrient exploitation, favoring OXPHOS of lipids and glutamine at the expense of glycolysis and enhancing exchanges via extracellular microvesicles or exosomes of proteins, lipids and small RNAs among tumor and stromal cells. Noteworthy, the same molecular drivers of metabolic reprogramming within tumor and stroma are also able to elicit motility, survival and self-renewal on cancer cells, thereby sustaining successful escaping strategies to circumvent the hostile hypoxic, acidic and inflammatory environment. This review highlights the emerging role of nutrients and vesicle-mediated exchanges among tumor and stromal cells, defining their molecular pathways and offering new perspectives to develop treatments targeting this complex metabolic rewiring.
Collapse
|
69
|
The role of interleukin-8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116. Med Oncol 2015; 32:258. [PMID: 26519257 DOI: 10.1007/s12032-015-0703-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022]
Abstract
Colorectal cancer is one of the most common malignant diseases and is a leading cause of cancer mortality in the Western world. Primary or acquired resistance to chemotherapeutic drugs is a common phenomenon which causes a failure in cancer treatment. A diverse range of molecular mechanisms has been implicated in drug resistance: DNA damage repair, alterations in drug metabolism, mutation of drug targets, increased rates of drug efflux, and activation of survival signaling pathways. The aim of this study was to investigate the expression of CXCL8-CXCR1/2 pathway, its impact on cell proliferation and cytokine expression in human colorectal carcinoma HCT116 cells, and their chemotherapy-resistant subline. We found that IL-1 alpha stimulates the production of CXCL8 through IL-1 receptor signaling. Our data indicate that CXCL8 is upregulated in chemoresistant subline of colorectal cancer cells HCT116, and modulation of CXCR2 pathway can be a target for proliferation inhibition of chemoresistant colorectal cancer cells.
Collapse
|
70
|
Burnier A, Shimizu Y, Dai Y, Nakashima M, Matsui Y, Ogawa O, Rosser CJ, Furuya H. CXCL1 is elevated in the urine of bladder cancer patients. SPRINGERPLUS 2015; 4:610. [PMID: 26543745 PMCID: PMC4628002 DOI: 10.1186/s40064-015-1393-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022]
Abstract
Chemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), regulate tumor epithelial-stromal interactions that facilitate tumor growth and invasion. Recently, several studies have linked CXCL1 expression to bladder cancer (BCa). In this study, we aimed to determine if increased levels of urinary CXCL1 were found in BCa patients. Voided urines from 86 subjects, cancer subjects (n = 43), non-cancer subjects (n = 43) were analyzed. The protein concentration of CXCL1 was assessed by enzyme-linked immunosorbent assay (ELISA). CXCL1 concentration level was normalized using urinary protein and urinary creatinine concentrations. We used the area under the curve of a receiver operating characteristic (AUROC) to investigate the performance of CXCL1 in detecting BCa. Mean urinary concentrations of CXCL1 were significantly higher in subjects with BCa compared to subjects without BCa (179.8 ± 371.7 pg/mg of creatinine vs. 28.2 ± 71.9 pg/mg, respectively p = 0.0009). Urinary CXCL1 possessed a sensitivity of 55.81 %, specificity of 83.72 %, positive predictive value of 77.42 %, negative predictive value of 65.46 %, and an overall accuracy of 69.77 % (AUROC: 0.7015, 95 % CI 0.5903-0.8126). These results indicate that CXCL1 is elevated in BCa when compared to non-cancer subjects, but lacks robustness as a standalone urinary biomarker. Additional studies into CXCL1 may shed more light on the role of CXCL1 in BCa tumorigenesis as well as ramifications of therapeutically targeting CXCL1.
Collapse
Affiliation(s)
- Andre Burnier
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813 USA
| | - Yoshiko Shimizu
- Clinical and Translational Research Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI 96813 USA ; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822 USA
| | - Yunfeng Dai
- Department of Biostatistics, The University of Florida, Gainesville, FL 32610 USA
| | - Masakazu Nakashima
- Department of Urology, Kansai Electric Power Hospital, Osaka, Japan ; Department of Urology, Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshiyuki Matsui
- Department of Urology, Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Charles J Rosser
- Clinical and Translational Research Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI 96813 USA
| | - Hideki Furuya
- Clinical and Translational Research Program, University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, HI 96813 USA
| |
Collapse
|
71
|
Han KQ, He XQ, Ma MY, Guo XD, Zhang XM, Chen J, Han H, Zhang WW, Zhu QG, Zhao WZ. Targeted silencing of CXCL1 by siRNA inhibits tumor growth and apoptosis in hepatocellular carcinoma. Int J Oncol 2015; 47:2131-40. [PMID: 26499374 DOI: 10.3892/ijo.2015.3203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive malignancy and a major cause of cancer-related mortality worldwide. Our previous study shows that chemokine (C-X-C motif) ligand 1 (CXCL1) was upregulated and CXCR1 was downregulated in tumor tissues as compared to peritumor tissues by chemotaxis assay. As the status of CXCL subgroups and their receptors affect progression of HCC, we evaluated potential mechanisms of CXCL1 associated with anticancer effects in HCC based on our previous study. The effects of targeting CXCL1 by RNA interference (RNAi) on the proliferation and apoptosis of CBRH-7919 cells were observed in vitro and in vivo. Additionally, whether CXCL1 knockdown significantly reduce the activity of STAT3, NF-κB and HIF-1 or not were also estimated. RNAi of CXCL1 in the CBRH-7919 cells decreased the growth of tumors in nude mice by inhibited cells proliferation and induced apoptosis. In conclusion, these findings suggest that CXCL1 plays critical roles in the growth and apoptosis of HCC. RNAi of CXCL1 inhibits the growth and apoptosis of tumor cells, which indicates that CXCL1 may be a potential molecular target for use in HCC therapy.
Collapse
Affiliation(s)
- Ke-Qi Han
- Department of Oncology, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xue-Qun He
- Department of Oncology, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Meng-Yu Ma
- Department of Oncology, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xiao-Dong Guo
- Department of Oncology, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xue-Min Zhang
- Department of Oncology, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jie Chen
- Department of Oncology, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Hui Han
- Department of Oncology, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Wei-Wei Zhang
- Department of Oncology, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Quan-Gang Zhu
- Department of Pharmacy, Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Wen-Zhao Zhao
- Department of Surgery, Affiliated Hospital of Henan Science and Technology University, School of Medicine, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
72
|
Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents. Int J Mol Sci 2015; 16:12958-85. [PMID: 26062132 PMCID: PMC4490481 DOI: 10.3390/ijms160612958] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/03/2015] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.
Collapse
|
73
|
Van Raemdonck K, Van den Steen PE, Liekens S, Van Damme J, Struyf S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev 2015; 26:311-27. [DOI: 10.1016/j.cytogfr.2014.11.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022]
|
74
|
Bhome R, Bullock MD, Al Saihati HA, Goh RW, Primrose JN, Sayan AE, Mirnezami AH. A top-down view of the tumor microenvironment: structure, cells and signaling. Front Cell Dev Biol 2015; 3:33. [PMID: 26075202 PMCID: PMC4448519 DOI: 10.3389/fcell.2015.00033] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/08/2015] [Indexed: 12/11/2022] Open
Abstract
It is well established that the tumor microenvironment (TME) contributes to cancer progression. Stromal cells can be divided into mesenchymal, vascular, and immune. Signaling molecules secreted by the tumor corrupts these cells to create "activated" stroma. Equally, the extracellular matrix (ECM) contributes to tumor development and invasion by forming a biologically active scaffold. In this review we describe the key structural, cellular and signaling components of the TME with a perspective on stromal soluble factors and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Rahul Bhome
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
- University Surgery, University of Southampton, Southampton General HospitalSouthampton, UK
| | - Marc D. Bullock
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
- Department of Experimental Therapeutics, MD Anderson Cancer CenterHouston, TX, USA
| | - Hajir A. Al Saihati
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
| | - Rebecca W. Goh
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
| | - John N. Primrose
- University Surgery, University of Southampton, Southampton General HospitalSouthampton, UK
| | - A. Emre Sayan
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
| | - Alex H. Mirnezami
- Cancer Sciences, Faculty of Medicine, University of SouthamptonSouthampton, UK
- University Surgery, University of Southampton, Southampton General HospitalSouthampton, UK
| |
Collapse
|
75
|
Li Y, Fu LX, Zhu WL, Shi H, Chen LJ, Ye B. Blockade of CXCR6 reduces invasive potential of gastric cancer cells through inhibition of AKT signaling. Int J Immunopathol Pharmacol 2015; 28:194-200. [PMID: 25921630 DOI: 10.1177/0394632015584502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/31/2015] [Indexed: 12/26/2022] Open
Abstract
Chemokines and their receptors have been implicated in cell migration and metastasis of multiple malignant tumors. But the function of CXCR6 signaling in gastric cancer is not comprehensively understood. In the present study, we hypothesized that CXCR6 signaling might play an essential role in the progression of gastric cancer. The expression of CXCR6 was examined by immunohistochemical assay in human gastric cancer, and lentivirus-mediated CXCR6 knockdown by shRNA (Lv-shCXCR6) was used for investigating cell migration and invasion indicated by Wound-healing and Transwell assays. Consequently, the expression level of CXCR6 was increased in gastric cancer compared with the adjacent non-tumor tissues (54.2% vs. 27.1%, P = 0.006), and was closely associated with the metastatic lymph node in gastric cancer (P = 0.021). Furthermore, blockade of the CXCR6 signaling reduced the migration and invasion of gastric cancer cells followed by decreased expression of AKT, MMP-2, and MMP-9. In conclusion, these findings demonstrate that CXCR6 may promote the development of gastric cancer cells through regulation of AKT signaling.
Collapse
Affiliation(s)
- Ya Li
- Department of Gastroenterology, Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Li-Xia Fu
- Department of Gastroenterology, Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Wan-Lin Zhu
- Department of Gastroenterology, Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Hua Shi
- Department of Gastroenterology, Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Li-Jian Chen
- Department of Gastroenterology, Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Bin Ye
- Department of Gastroenterology, Lishui Central Hospital and the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| |
Collapse
|
76
|
Han KQ, He XQ, Ma MY, Guo XD, Zhang XM, Chen J, Han H, Zhang WW, Zhu QG, Nian H, Ma LJ. Inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma. World J Gastroenterol 2015; 21:4864-4874. [PMID: 25944999 PMCID: PMC4408458 DOI: 10.3748/wjg.v21.i16.4864] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/24/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma (HCC) in nude mice.
METHODS: CBRH-7919 HCC cells were injected into the subcutaneous region of nude mice. Beginning two weeks after the challenge, tumor growth was measured every week for six weeks. The stromal microenvironment and inflammatory cell infiltration was assessed by immunohistochemistry in paired tumor and adjacent peritumoral samples, and macrophage phenotype was assessed using double-stain immunohistochemistry incorporating expression of an intracellular enzyme. A chemokine PCR array, comprised of 98 genes, was used to screen differential gene expressions, which were validated by Western blotting. Additionally, expression of identified chemokines was knocked-down by RNA interference, and the effect on tumor growth was assessed.
RESULTS: Inflammatory cell infiltrates are a key feature of adjacent peritumoral tissues with increased macrophage, neutrophil, and T cell (specifically helper and activated subsets) infiltration. Macrophages within adjacent peritumoral tissues express inducible nitric oxide synthase, suggestive of a proinflammatory phenotype. Fifty-one genes were identified in tumor tissues during the progression period, including 50 that were overexpressed (including CXCL1, CXCL2 and CXCL3) and three that were underexpressed (CXCR1, Ifg and Actb). RNA interference of CXCL1 in the CBRH-7919 cells decreased the growth of tumors in nude mice and inhibited expression of CXCL2, CXCL3 and interleukin-1β protein.
CONCLUSION: These findings suggest that CXCL1 plays a critical role in tumor growth and may serve as a potential molecular target for use in HCC therapy.
Collapse
|
77
|
Zhao Y, Zhu L, Zhou T, Zhang Q, Shi S, Liu L, Lv J, Zhang H. Urinary CXCL1: a novel predictor of IgA nephropathy progression. PLoS One 2015; 10:e0119033. [PMID: 25816025 PMCID: PMC4376727 DOI: 10.1371/journal.pone.0119033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/09/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide. In recent years, consistent efforts have been made to develop new non-invasive biomarkers for IgAN progression. In our previous in vitro study we found mesangial derived CXCL1 as a contributor for kidney injury, and observed higher urinary CXCL1 levels in patients with IgAN. It implied that the urinary CXCL1 might be a potential biomarker. METHODS In the present study, we enrolled 425 IgAN patients with follow-up data and detected their urinary CXCL1 levels at the time of renal biopsy, to explore the predictive value of urinary CXCL1 in IgAN progression. Urinary CXCL1 levels were measured using enzyme-linked immunosorbent assay. RESULTS Urinary CXCL1 levels were associated with presently well established predictors of IgAN progression, including SBP (r = 0.138, p = 0.004), DBP (r = 0.114, p = 0.019), proteinuria (r = 0.155, p = 0.001), eGFR (r = -0.259, p<0.001) and tubular atrophy and interstitial fibrosis (r = 0.181, p<0.001). After adjusted for them, higher levels of urinary CXCL1 were independently associated with a greater risk of deterioration in renal function (HR, per s.d. increment of natural log-transformed CXCL1: 1.748; 95% CI: 1.222-2.499, P = 0.002). Furthermore, time-dependent receiver operating characteristic (ROC) curve showed that urinary CXCL1, when combined with proteinuria and eGFR, could enhance the prognostic value of these traditional predictors for IgAN progression. CONCLUSIONS The results in our present study suggested urinary CXCL1 as a new non-invasive predictor of IgAN progression.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Li Zhu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
- * E-mail:
| | - Tong Zhou
- Renal Division, Department of Medicine, The First People’s Hospital of Aksu District, Xinjiang, China
| | - Qingxian Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Sufang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Lijun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Jicheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
78
|
Desurmont T, Skrypek N, Duhamel A, Jonckheere N, Millet G, Leteurtre E, Gosset P, Duchene B, Ramdane N, Hebbar M, Van Seuningen I, Pruvot FR, Huet G, Truant S. Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival. Cancer Sci 2015; 106:262-9. [PMID: 25580640 PMCID: PMC4376434 DOI: 10.1111/cas.12603] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/18/2014] [Accepted: 12/24/2014] [Indexed: 12/21/2022] Open
Abstract
Our aim was to analyze the potential role of chemokine receptors CXCR2 and CXCR4 signalling pathways in liver metastatic colorectal cancer (CRC) relapse. CXCR2, CXCR4, and their chemokine ligands were evaluated in liver metastases of colorectal cancer in order to study their correlation with overall and disease-free survival of patients having received, or not received, a neoadjuvant chemotherapy regimen. Quantitative RT-PCR and CXCR2 immunohistochemical staining were carried out using CRC liver metastasis samples. Expression levels of CXCR2, CXCR4, and their ligands were statistically analyzed according to treatment with neoadjuvant chemotherapy and patients’ outcome. CXCR2 and CXCL7 overexpression are correlated to shorter overall and disease-free survival. By multivariate analysis, CXCR2 and CXCL7 expressions are independent factors of overall and disease-free survival. Neoadjuvant chemotherapy increases significantly the expression of CXCR2: treated group 1.89 (0.02–50.92) vs 0.55 (0.07–3.22), P = 0.016. CXCL7 was overexpressed close to significance, 0.40 (0.00–7.85) vs 0.15 (0.01–7.88), P = 0.12. We show the involvement of CXCL7/CXCR2 signalling pathways as a predictive factor of poor outcome in metastatic CRC. 5-Fluorouracil-based chemotherapy regimens increase the expression of these genes in liver metastasis, providing one explanation for aggressiveness of relapsed drug-resistant tumors. Selective blockage of CXCR2/CXCL7 signalling pathways could provide new potential therapeutic opportunities.
Collapse
Affiliation(s)
- Thibault Desurmont
- Inserm, U837, Team-5 (Mucins, Epithelial Differentiation, and Carcinogenesis), Jean-Pierre Aubert Research Centre, Université Lille, France; Department of Digestive and Visceral Surgery, GHICL, Saint-Vincent de Paul Hospital, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Xu JM, Weng MZ, Song FB, Chen JY, Zhang JY, Wu JY, Qin J, Jin T, Wang XL. Blockade of the CXCR6 signaling inhibits growth and invasion of hepatocellular carcinoma cells through inhibition of the VEGF expression. Int J Immunopathol Pharmacol 2015; 27:553-61. [PMID: 25572735 DOI: 10.1177/039463201402700411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chemokines have been shown to play a critical role in tumor development and progression. However, little is known about the function and molecular mechanisms of CXCR6 in multiple malignancies. In the present study, we aimed to investigate the role of CXCR6 in human hepatocellular carcinoma (HCC). The expression of CXCR6 was examined by immunohistochemical assay using a tissue microarray procedure. A loss-of-function experiment was performed to explore the effects of lentivirus-mediated CXCR6 shRNA (shCXCR6) on cell proliferation and invasive potential by MTT and Transwell assays in HCC cell line (SMMC-7721). It was found that the expression of CXCR6 protein was significantly increased in HCC tissues compared with that in adjacent non-cancerous tissues (ANCT) (63.04% vs 36.96%, P=0.019), and correlated with the lymph-vascular space invasion in HCC patients (P=0.038). Knockdown of CXCR6 repressed cell proliferation and invasion of HCC cells followed by the down-regulation of vascular endothelial growth factor (VEGF). Taken together, our findings show that high expression of CXCR6 is positively associated with distant invasion of HCC patients, and blockade of CXCR6 signaling suppresses the growth and invasion of HCC cells through inhibition of the VEGF expression, suggesting that CXCR6 may represent a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- J M Xu
- Department of General Surgery, Shanghai First Peoples Hospital, Shanghai Jiaotong University, Shanghai, China
| | - M Z Weng
- Department of General Surgery, Shanghai First Peoples Hospital, Shanghai Jiaotong University, Shanghai, China
| | - F B Song
- Department of General Surgery, Shanghai First Peoples Hospital, Shanghai Jiaotong University, Shanghai, China
| | - J Y Chen
- Department of General Surgery, Shanghai First Peoples Hospital, Shanghai Jiaotong University, Shanghai, China
| | - J Y Zhang
- Department of General Surgery, Shanghai First Peoples Hospital, Shanghai Jiaotong University, Shanghai, China
| | - J Y Wu
- Department of General Surgery, Shanghai First Peoples Hospital, Shanghai Jiaotong University, Shanghai, China
| | - J Qin
- Department of General Surgery, Shanghai First Peoples Hospital, Shanghai Jiaotong University, Shanghai, China
| | - T Jin
- Department of General Surgery, Shanghai First Peoples Hospital, Shanghai Jiaotong University, Shanghai, China
| | - X L Wang
- Department of General Surgery, Shanghai First Peoples Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
80
|
Lin CP, Kang KH, Lin TH, Wu MY, Liou HC, Chuang WJ, Sun WZ, Fu WM. Role of Spinal CXCL1 (GROα) in Opioid Tolerance. Anesthesiology 2015; 122:666-76. [DOI: 10.1097/aln.0000000000000523] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Background:
The pivotal role of glial activation and up-regulated inflammatory mediators in the opioid tolerance has been confirmed in rodents but not yet in humans. Here, the authors investigated the intraspinal cytokine and chemokine profiles of opioid-tolerant cancer patients; and to determine if up-regulated chemokines could modify opioid tolerance in rats.
Methods:
Cerebrospinal fluid samples from opioid-tolerant cancer patients and opioid-naive subjects were compared. The cerebrospinal fluid levels of tumor necrosis factor-alpha, CXCL1, CXCL10, CCL2, and CX3CL1 were assayed. The rat tail flick test was utilized to assess the effects of intrathecal CXCL1 on morphine-induced acute antinociception and analgesic tolerance.
Results:
CXCL1 level in cerebrospinal fluid was significantly up-regulated in the opioid-tolerant group (n = 30, 18.8 pg/ml vs. 13.2 pg/ml, P = 0.02) and was positively correlated (r2 = 0.49, P < 0.01) with opioid dosage. In rat experiment, after induction of tolerance by morphine infusion, the spinal cord CXCL1 messenger RNA was up-regulated to 32.5 ± 11.9-fold. Although CXCL1 infusion alone did not affect baseline tail-flick latency, the analgesic efficacy of a single intraperitoneal injection of morphine dropped significantly on day 1 to day 3 after intrathecal infusion of CXCL1. After establishing tolerance by intrathecal continuous infusion of morphine, its development was accelerated by coadministration of CXCL1 and attenuated by coadministration of CXCL1-neutralizing antibody or CXCR2 antagonist.
Conclusions:
CXCL1 is up-regulated in both opioid-tolerant patients and rodents. The onset and extent of opioid tolerance was affected by antagonizing intrathecal CXCL1/CXCR2 signaling. Therefore, the CXCL1/CXCR2 signal pathway may be a novel target for the treatment of opioid tolerance.
Collapse
Affiliation(s)
- Chih-Peng Lin
- From the Department of Anesthesiology (C.-P.L., W.-Z.S.) and Department of Oncology (C.-P.L.), National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology (C.-P.L., K.-H.K., T.-H.L., M.-Y.W., H.-C.L., W.-M.F.), College of Medicine, National Taiwan University, Taipei, Taiwan; and Institute of Basic Medical Sciences (W.-J.C.), College of Medicine, National Cheng Kung University,
| | - Kai-Hsiang Kang
- From the Department of Anesthesiology (C.-P.L., W.-Z.S.) and Department of Oncology (C.-P.L.), National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology (C.-P.L., K.-H.K., T.-H.L., M.-Y.W., H.-C.L., W.-M.F.), College of Medicine, National Taiwan University, Taipei, Taiwan; and Institute of Basic Medical Sciences (W.-J.C.), College of Medicine, National Cheng Kung University,
| | - Tzu-Hung Lin
- From the Department of Anesthesiology (C.-P.L., W.-Z.S.) and Department of Oncology (C.-P.L.), National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology (C.-P.L., K.-H.K., T.-H.L., M.-Y.W., H.-C.L., W.-M.F.), College of Medicine, National Taiwan University, Taipei, Taiwan; and Institute of Basic Medical Sciences (W.-J.C.), College of Medicine, National Cheng Kung University,
| | - Ming-Yueh Wu
- From the Department of Anesthesiology (C.-P.L., W.-Z.S.) and Department of Oncology (C.-P.L.), National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology (C.-P.L., K.-H.K., T.-H.L., M.-Y.W., H.-C.L., W.-M.F.), College of Medicine, National Taiwan University, Taipei, Taiwan; and Institute of Basic Medical Sciences (W.-J.C.), College of Medicine, National Cheng Kung University,
| | - Houng-Chi Liou
- From the Department of Anesthesiology (C.-P.L., W.-Z.S.) and Department of Oncology (C.-P.L.), National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology (C.-P.L., K.-H.K., T.-H.L., M.-Y.W., H.-C.L., W.-M.F.), College of Medicine, National Taiwan University, Taipei, Taiwan; and Institute of Basic Medical Sciences (W.-J.C.), College of Medicine, National Cheng Kung University,
| | - Woei-Jer Chuang
- From the Department of Anesthesiology (C.-P.L., W.-Z.S.) and Department of Oncology (C.-P.L.), National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology (C.-P.L., K.-H.K., T.-H.L., M.-Y.W., H.-C.L., W.-M.F.), College of Medicine, National Taiwan University, Taipei, Taiwan; and Institute of Basic Medical Sciences (W.-J.C.), College of Medicine, National Cheng Kung University,
| | - Wei-Zen Sun
- From the Department of Anesthesiology (C.-P.L., W.-Z.S.) and Department of Oncology (C.-P.L.), National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology (C.-P.L., K.-H.K., T.-H.L., M.-Y.W., H.-C.L., W.-M.F.), College of Medicine, National Taiwan University, Taipei, Taiwan; and Institute of Basic Medical Sciences (W.-J.C.), College of Medicine, National Cheng Kung University,
| | - Wen-Mei Fu
- From the Department of Anesthesiology (C.-P.L., W.-Z.S.) and Department of Oncology (C.-P.L.), National Taiwan University Hospital, Taipei, Taiwan; Department of Pharmacology (C.-P.L., K.-H.K., T.-H.L., M.-Y.W., H.-C.L., W.-M.F.), College of Medicine, National Taiwan University, Taipei, Taiwan; and Institute of Basic Medical Sciences (W.-J.C.), College of Medicine, National Cheng Kung University,
| |
Collapse
|
81
|
Leung SJ, Rice PS, Barton JK. In vivo molecular mapping of the tumor microenvironment in an azoxymethane-treated mouse model of colon carcinogenesis. Lasers Surg Med 2014; 47:40-9. [PMID: 25487746 DOI: 10.1002/lsm.22309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Development of miniaturized imaging systems with molecular probes enables examination of molecular changes leading to initiation and progression of colorectal cancer in an azoxymethane (AOM)-induced mouse model of the disease. Through improved and novel studies of animal disease models, more effective diagnostic and treatment strategies may be developed for clinical translation. We introduce use of a miniaturized multimodal endoscope with lavage-delivered fluorescent probes to examine dynamic microenvironment changes in an AOM-treated mouse model. STUDY DESIGN/MATERIALS AND METHODS The endoscope is equipped with optical coherence tomography (OCT) and laser induced fluorescence (LIF) imaging modalities. It is used with Cy5.5-conjugated antibodies to create time-resolved molecular maps of colon carcinogenesis. We monitored in vivo changes in molecular expression over a five month period for four biomarkers: epithelial growth factor receptor (EGFR), transferrin receptor (TfR), transforming growth factor beta 1 (TGFβ1), and chemokine (C-X-C motif) receptor 2 (CXCR2). In vivo OCT and LIF images were compared over multiple time points to correlate increases in biomarker expression with adenoma development. RESULTS This system is uniquely capable of tracking in vivo changes in molecular expression over time. Increased expression of the biomarker panel corresponded to sites of disease and offered predictive utility in highlighting sites of disease prior to detectable structural changes. Biomarker expression also tended to increase with higher tumor burden and growth rate in the colon. CONCLUSION We can use miniaturized dual modality endoscopes with fluorescent probes to study the tumor microenvironment in developmental animal models of cancer and supplement findings from biopsy and tissue harvesting.
Collapse
Affiliation(s)
- Sarah J Leung
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
| | | | | |
Collapse
|
82
|
Cao Z, Fu B, Deng B, Zeng Y, Wan X, Qu L. Overexpression of Chemokine (C-X-C) ligand 1 (CXCL1) associated with tumor progression and poor prognosis in hepatocellular carcinoma. Cancer Cell Int 2014; 14:86. [PMID: 25298747 PMCID: PMC4189155 DOI: 10.1186/s12935-014-0086-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/12/2014] [Indexed: 02/07/2023] Open
Abstract
Background Many studies support that chemokine (C-X-C motif) ligand 1 (CXCL1) regulate tumor epithelial-stromal interactions involving in tumor growth and invasion. However, limited studies have been conducted on the expression and function of the CXCL1 gene in hepatocellular carcinoma (HCC). Methods The mRNA and protein level expression of CXCL1 was examined in HCC tissues and cell lines. The expression of CXCL1 was correlated with clinicopathological features and follow-up data. Overexpression approaches were used to evaluate the biological functions of CXCL1 by MTT and matrigel invasion assays. Protein expression levels of CXCL1 and P65 were determined by western blot analysis. Results In this study, we found that CXCL1 expression was markedly upregulated in HCC tissues. Ectopic expression of CXCL1 significantly promoted HCC cells proliferation and invasion. Furthermore, CXCL1 promote cell invasion through NF-kB-dependent pathway. CXCL1 expression in HCC associated with clinical stage (P = 0.034) and distant metastasis (P = 0.028). Moreover, Patients with high CXCL1 expression level had poorer overall survival (OS;P = 0.027) than those with low CXCL1 expression. Conclusions These data indicated that the CXCL1 upregulation may contribute to both the development and progression of HCC and this effect may be associated with increased proliferation and invasiveness mainly via regulating P65 expression.
Collapse
Affiliation(s)
- Zhongwei Cao
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China
| | - Biao Fu
- Department of geratology, Huangshi Central Hospital, 141 Tianjin Road, Huangshi, 435000 China
| | - Biao Deng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China
| | - Xinjian Wan
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China
| | - Lei Qu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080 China
| |
Collapse
|
83
|
Xu Q, Li R, Monte MM, Jiang Y, Nie P, Holland JW, Secombes CJ, Wang T. Sequence and expression analysis of rainbow trout CXCR2, CXCR3a and CXCR3b aids interpretation of lineage-specific conversion, loss and expansion of these receptors during vertebrate evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:201-213. [PMID: 24613851 PMCID: PMC4052464 DOI: 10.1016/j.dci.2014.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/02/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
The chemokine receptors CXCR1-3 bind to 11 chemokines (CXCL1-11) that are clustered on the same chromosome in mammals but are largely missing in ray-finned fish. A second CXCR1/2, and a CXCR3a and CXCR3b gene have been cloned in rainbow trout. Analysis of CXCR1-R3 genes in lobe-finned fish, ray-finned fish and tetrapod genomes revealed that the teleostomian ancestor likely possessed loci containing both CXCR1 and CXCR2, and CXCR3a and CXCR3b. Based on this synteny analysis the first trout CXCR1/2 gene was renamed CXCR1, and the new gene CXCR2. The CXCR1/R2 locus was shown to have further expanded in ray-finned fish. In relation to CXCR3, mammals appear to have lost CXCR3b and birds both CXCR3a and CXCR3b during evolution. Trout CXCR1-R3 have distinct tissue expression patterns and are differentially modulated by PAMPs, proinflammatory cytokines and infections. They are highly expressed in macrophages and neutrophils, with CXCR1 and CXCR2 also expressed in B-cells.
Collapse
Affiliation(s)
- Qiaoqing Xu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; School of Animal Science, Yangtze University, Jingzhou, Hubei Province 434020, China
| | - Ronggai Li
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Milena M Monte
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Yousheng Jiang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
84
|
Dimberg J, Skarstedt M, Löfgren S, Zar N, Matussek A. Protein expression and gene polymorphism of CXCL10 in patients with colorectal cancer. Biomed Rep 2014; 2:340-343. [PMID: 24748971 PMCID: PMC3990219 DOI: 10.3892/br.2014.255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/04/2014] [Indexed: 12/30/2022] Open
Abstract
Chemokines (chemotactic cytokines) promote leukocyte attraction to sites of inflammation and cancer. Certain chemokines promote and regulate neoplastic progression, including metastasis and angiogenesis. One such chemokine, CXCL10, was found to be expressed in colorectal cancer (CRC) tissue. To gain insight into the prognostic significance of CXCL10, we investigated whether the levels of this chemokine were altered in the colorectal tissue or plasma of CRC patients. Using Luminex technology for protein analyses, we observed a significantly higher CXCL10 protein level in cancer tissue compared to that in paired normal tissue. Moreover, significantly higher plasma levels of CXCL10 were detected in patients compared to those in control subjects and the plasma levels of CXCL10 in disseminated disease were found to be significantly higher compared to those in localized disease. The single-nucleotide polymorphism rs8878, which has been described in exon 4 in the 3′-untranslated region of the CXCL10 gene, was investigated using a TaqMan system. There were significant differences in genotype distribution and allelic frequencies between CRC patients and control subjects. In conclusion, altered CXCL10 protein concentrations in CRC tissues or plasma and the rs8878 genotype variant of CXCL10 may contribute to the prediction of clinical outcome.
Collapse
Affiliation(s)
- Jan Dimberg
- Department of Natural Science and Biomedicine, University College of Health Sciences, Jönköping, Småland SE-55111, Ryhov County Hospital, Jönköping, Småland SE-55185, Sweden
| | - Marita Skarstedt
- Department of Clinical Microbiology, Ryhov County Hospital, Jönköping, Småland SE-55185, Sweden
| | - Sture Löfgren
- Department of Clinical Microbiology, Ryhov County Hospital, Jönköping, Småland SE-55185, Sweden
| | - Niklas Zar
- Department of Surgery, Ryhov County Hospital, Jönköping, Småland SE-55185, Sweden
| | - Andreas Matussek
- Department of Laboratory Services, Ryhov County Hospital, Jönköping, Småland SE-55185, Sweden
| |
Collapse
|
85
|
Lee HJ, Song IC, Yun HJ, Jo DY, Kim S. CXC chemokines and chemokine receptors in gastric cancer: from basic findings towards therapeutic targeting. World J Gastroenterol 2014; 20:1681-1693. [PMID: 24587647 PMCID: PMC3930968 DOI: 10.3748/wjg.v20.i7.1681] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/01/2013] [Accepted: 11/12/2013] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the fourth most common cancer, and the second-highest cause of cancer-related deaths worldwide. Despite extensive research to identify novel diagnostic and therapeutic agents, patients with advanced gastric cancer suffer from a poor quality of life and poor prognosis, and treatment is dependent mainly on conventional cytotoxic chemotherapy. To improve the quality of life and survival of gastric cancer patients, a better understanding of the underlying molecular pathologies, and their application towards the development of novel targeted therapies, is urgently needed. Chemokines are a group of small proteins associated with cytoskeletal rearrangements, the directional migration of several cell types during development and physiology, and the host immune response via interactions with G-protein coupled receptors. There is also growing evidence to suggest that chemokines not only play a role in the immune system, but are also involved in the development and progression of tumors. In gastric cancer, CXC chemokines and chemokine receptors regulate the trafficking of cells in and out of the tumor microenvironment. CXC chemokines and their receptors can also directly influence tumorigenesis by modulating tumor transformation, survival, growth, invasion and metastasis, as well as indirectly by regulating angiogenesis, and tumor-leukocyte interactions. In this review, we will focus on the roles of CXC chemokines and their receptors in the development, progression, and metastasis of gastric tumors, and discuss their therapeutic potential for gastric cancer.
Collapse
|
86
|
Miyake M, Lawton A, Goodison S, Urquidi V, Rosser CJ. Chemokine (C-X-C motif) ligand 1 (CXCL1) protein expression is increased in high-grade prostate cancer. Pathol Res Pract 2014; 210:74-8. [DOI: 10.1016/j.prp.2013.08.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 11/29/2022]
|
87
|
Burkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM, Huang RP. Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta Rev Cancer 2014; 1845:182-201. [PMID: 24440852 DOI: 10.1016/j.bbcan.2014.01.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/14/2022]
Abstract
Until recently, the intrinsically high level of cross-talk between immune cells, the complexity of immune cell development, and the pleiotropic nature of cytokine signaling have hampered progress in understanding the mechanisms of immunosuppression by which tumor cells circumvent native and adaptive immune responses. One technology that has helped to shed light on this complex signaling network is the cytokine antibody array, which facilitates simultaneous screening of dozens to hundreds of secreted signal proteins in complex biological samples. The combined applications of traditional methods of molecular and cell biology with the high-content, high-throughput screening capabilities of cytokine antibody arrays and other multiplexed immunoassays have revealed a complex mechanism that involves multiple cytokine signals contributed not just by tumor cells but by stromal cells and a wide spectrum of immune cell types. This review will summarize the interactions among cancerous and immune cell types, as well as the key cytokine signals that are required for tumors to survive immunoediting in a dormant state or to grow and spread by escaping it. Additionally, it will present examples of how probing secreted cell-cell signal networks in the tumor microenvironment (TME) with cytokine screens have contributed to our current understanding of these processes and discuss the implications of this understanding to antitumor therapies.
Collapse
Affiliation(s)
- Brett Burkholder
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA
| | | | - Rob Burgess
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA
| | - Shuhong Luo
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA; RayBiotech, Inc., Guangzhou 510600, China
| | | | | | | | | | | | | | - Ruo-Pan Huang
- RayBiotech, Inc., 3607 Parkway Lane, Suite 100, Norcross, GA 30092, USA; RayBiotech, Inc., Guangzhou 510600, China; South China Biochip Research Center, Guangzhou 510630, China.
| |
Collapse
|
88
|
Circulating galectins -2, -4 and -8 in cancer patients make important contributions to the increased circulation of several cytokines and chemokines that promote angiogenesis and metastasis. Br J Cancer 2014; 110:741-52. [PMID: 24384681 PMCID: PMC3915140 DOI: 10.1038/bjc.2013.793] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/17/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022] Open
Abstract
Background: Circulating concentrations of the cytokines interleukin-6 (IL-6), granulocyte colony-stimulating factor (G-CSF) and chemokines monocyte chemotatic protein 1 (MCP-1)/CCL2 and growth-regulator oncogene α (GROα)/chemokine C-X-C motif ligand 1 are commonly increased in cancer patients and they are increasingly recognised as important promoters, via divergent mechanisms, of cancer progression and metastasis. Methods: The effect of galectins-2, -4 and -8, whose circulating levels are highly increased in cancer patients, on endothelial secretion of cytokines was assessed in vitro by cytokine array and in mice. The relationship between serum levels of galectins and cytokines was analysed in colon and breast cancer patients. Results: Galectins-2, -4 and -8 at pathological concentrations induce secretion of G-CSF, IL-6, MCP-1 and GROα from the blood vascular endothelial cells in vitro and in mice. Multiple regression analysis indicates that increased circulation of these galectins accounts for 41∼83% of the variance of these cytokines in the sera of colon and breast cancer patients. The galectin-induced secretion of these cytokines/chemokines is shown to enhance the expression of endothelial cell surface adhesion molecules, causing increased cancer-endothelial adhesion and increased endothelial tubule formation. Conclusion: The increased circulation of galectins -2, -4 and -8 in cancer patients contributes substantially to the increased circulation of G-CSF, IL-6 and MCP-1 by interaction with the blood vascular endothelium. These cytokines and chemokines in turn enhance endothelial cell activities in angiogenesis and metastasis.
Collapse
|
89
|
Sukkurwala AQ, Martins I, Wang Y, Schlemmer F, Ruckenstuhl C, Durchschlag M, Michaud M, Senovilla L, Sistigu A, Ma Y, Vacchelli E, Sulpice E, Gidrol X, Zitvogel L, Madeo F, Galluzzi L, Kepp O, Kroemer G. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 2014; 21:59-68. [PMID: 23787997 PMCID: PMC3857625 DOI: 10.1038/cdd.2013.73] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022] Open
Abstract
The exposure of calreticulin (CRT) on the surface of stressed and dying cancer cells facilitates their uptake by dendritic cells and the subsequent presentation of tumor-associated antigens to T lymphocytes, hence stimulating an anticancer immune response. The chemotherapeutic agent mitoxantrone (MTX) can stimulate the peripheral relocation of CRT in both human and yeast cells, suggesting that the CRT exposure pathway is phylogenetically conserved. Here, we show that pheromones can act as physiological inducers of CRT exposure in yeast cells, thereby facilitating the formation of mating conjugates, and that a large-spectrum inhibitor of G protein-coupled receptors (which resemble the yeast pheromone receptor) prevents CRT exposure in human cancer cells exposed to MTX. An RNA interference screen as well as transcriptome analyses revealed that chemokines, in particular human CXCL8 (best known as interleukin-8) and its mouse ortholog Cxcl2, are involved in the immunogenic translocation of CRT to the outer leaflet of the plasma membrane. MTX stimulated the production of CXCL8 by human cancer cells in vitro and that of Cxcl2 by murine tumors in vivo. The knockdown of CXCL8/Cxcl2 receptors (CXCR1/Cxcr1 and Cxcr2) reduced MTX-induced CRT exposure in both human and murine cancer cells, as well as the capacity of the latter-on exposure to MTX-to elicit an anticancer immune response in vivo. Conversely, the addition of exogenous Cxcl2 increased the immunogenicity of dying cells in a CRT-dependent manner. Altogether, these results identify autocrine and paracrine chemokine signaling circuitries that modulate CRT exposure and the immunogenicity of cell death.
Collapse
Affiliation(s)
- A Q Sukkurwala
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - I Martins
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - Y Wang
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - F Schlemmer
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - C Ruckenstuhl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - M Durchschlag
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - M Michaud
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - L Senovilla
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
- INSERM, U1015 Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | - A Sistigu
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
- INSERM, U1015 Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
| | - Y Ma
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - E Vacchelli
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - E Sulpice
- Laboratoire Biologie à Grande Echelle, CEA, Grenoble, France
- INSERM, U1038, Université Joseph Fourier, Grenoble, France
| | - X Gidrol
- Laboratoire Biologie à Grande Echelle, CEA, Grenoble, France
- INSERM, U1038, Université Joseph Fourier, Grenoble, France
| | - L Zitvogel
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
- INSERM, U1015 Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France
- Centre d'Investigation Clinique Biothérapie CICBT507, Institut Gustave Roussy, Villejuif, France
| | - F Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - L Galluzzi
- INSERM, U848, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - O Kepp
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin Bicêtre, France
| | - G Kroemer
- INSERM, U848, Villejuif, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
90
|
Langenes V, Svensson H, Börjesson L, Gustavsson B, Bemark M, Sjöling Å, Quiding-Järbrink M. Expression of the chemokine decoy receptor D6 is decreased in colon adenocarcinomas. Cancer Immunol Immunother 2013; 62:1687-95. [PMID: 24013383 PMCID: PMC11028942 DOI: 10.1007/s00262-013-1472-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 08/23/2013] [Indexed: 01/23/2023]
Abstract
Recruitment of immune cells to tumors is a complex process crucial for both inflammation-driven tumor progression and specific anti-tumor cytotoxicity. Chemokines control the directed migration of immune cells, and their actions are partly controlled by nonsignaling chemokine decoy receptors. The role of the receptors such as D6, Duffy antigen receptor for chemokines and ChemoCentryx chemokine receptor in immunity to tumors is still unclear. Using real-time PCR, we detected significantly decreased expression of D6 mRNA in colon tumors compared to unaffected mucosa. D6 protein was expressed by lymphatic endothelium and mononuclear cells in the colon lamina propria and detected by immunohistochemistry in two out of six tissue samples containing high D6 mRNA levels, whereas no staining was observed in any tissue samples expressing low mRNA levels. When examining the density of lymphatic vessels in colon tumors, we detected a marked increase in vessels identified by the lymphatic endothelial marker Lyve-1, excluding passive regulation of D6 due to decreased lymphatic vessel density. In parallel, the Treg-recruiting chemokine CCL22, which is sequestered by D6, was threefold increased in tumor tissue. Furthermore, we could show that low D6 expression correlated to more invasive tumors and that tumor location influences D6 expression, which is lower in the more distal parts of the colon. The data support that regulation of D6 by colon tumors results in altered levels of proinflammatory CC chemokines, thereby shaping the local chemokine network to favor tumor survival. This may have implications for the design of future immunotherapy for colon cancer.
Collapse
Affiliation(s)
- Veronica Langenes
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Box 435, 405 30, Göteborg, Sweden,
| | | | | | | | | | | | | |
Collapse
|
91
|
Shin SY, Lee JM, Lim Y, Lee YH. Transcriptional regulation of the growth-regulated oncogene α gene by early growth response protein-1 in response to tumor necrosis factor α stimulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1066-74. [PMID: 23872552 DOI: 10.1016/j.bbagrm.2013.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 12/15/2022]
Abstract
Growth-regulated oncogene α (GROα) plays an important role in a wide range of normal and pathological conditions, including inflammation, angiogenesis, wound healing, tumor invasion, and metastasis. Egr-1 is a member of the zinc-finger transcription factor family induced by diverse stimuli, including TNFα. However, the role of Egr-1 in GROα expression was previously unknown. This study shows that Egr-1 directly binds to the GROα promoter and transactivates the GROα gene. Silencing of Egr-1 by expression of Egr-1 siRNA abrogated TNFα-induced GROα transcription. We also found that Egr-1 mediates ERK and JNK MAPK-dependent GROα transcription upon TNFα stimulation. Our findings suggest that Egr-1 may play an important role in tumor development through transactivation of the GROα gene in response to TNFα within the tumor microenvironment.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biological Sciences, College of Biological Science and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea; Cancer and Metabolism Institute, Konkuk University, Seoul 143-701, Republic of Korea.
| | | | | | | |
Collapse
|
92
|
Scheinman EJ, Rostoker R, Leroith D. Cholesterol affects gene expression of the Jun family in colon carcinoma cells using different signaling pathways. Mol Cell Endocrinol 2013; 374:101-7. [PMID: 23643895 DOI: 10.1016/j.mce.2013.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
Hyperlipidemia and hypercholesterolemia have been found to be important factors in cancer development and metastasis. However, the metabolic mechanism and downstream cellular processes following cholesterol stimulation are still unknown. Here we tested the effect of cholesterol on MC-38 colon cancer cells. Using Illumina gene array technology we found a number of genes that were differentially expressed following short term (20-40 min) and longer term (between 2 and 5h) cholesterol stimulation. Three genes were consistently increased at these time points; c-Jun, Jun-B and the chemokine CXCL-1. We have previously shown that cholesterol stimulation leads to PI3K/Akt phosphorylation, and now demonstrated that cholesterol inhibits ERK1/2 phosphorylation; both effects reversed when cholesterol is depleted from lipid rafts using methyl-β-cyclodextrin (MBCD). In addition, vanadate, an inhibitor of phosphatases, reversed the cholesterol inhibition of ERK1/2 phosphorylation. Specific inhibition of p-Akt by wortmannin did not affect cholesterol's stimulation of the expression of c-Jun and Jun-B, however the vanadate effect of increasing p-ERK1/2, inhibited c-Jun expression, specifically, and the MBCD effect of increasing p-ERK and inhibiting p-Akt reduced c-Jun expression. In contrast MBCD and vanadate both enhanced Jun-B gene expression in the presence of cholesterol and elevation of ERK phosphorylation. Thus there is apparently, a differential signaling pathway whereby cholesterol enhances gene expression of the Jun family members.
Collapse
Affiliation(s)
- Eyal J Scheinman
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Haifa, Israel
| | | | | |
Collapse
|
93
|
Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front Physiol 2013; 4:159. [PMID: 23847541 PMCID: PMC3701799 DOI: 10.3389/fphys.2013.00159] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence attests to the important roles of both macrophages and chemokines in angiogenesis. Tumor-associated macrophages or TAMS constitute the major fraction of tumor-infiltrating leukocytes and are recruited by a number of chemoattractants that are produced by the tumor and tumor-associated stroma. This heterogeneous cell population is activated by a variety of stimuli and becomes polarized to result in functionally different phenotypes regarding tumor progression. As opposed to classically activated or M1 macrophages that exhibit anti-tumor functions, most TAMS are considered to be of the alternatively activated or M2 phenotype, and express multiple cytokines, proteases, and chemokines that promote tumor angiogenesis. Chemokines also have disparate effects on angiogenesis regulation, as several members of the CXC and CC chemokine families are potent inducers of angiogenesis, while a subset of CXC chemokines are angiostatic. This review summarizes the current literature regarding the roles and modes of action of macrophage-derived chemokines as mediators of angiogenesis.
Collapse
Affiliation(s)
- Jennifer L Owen
- Department of Infectious Diseases and Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida Gainesville, FL, USA
| | | |
Collapse
|
94
|
Miyake M, Lawton A, Goodison S, Urquidi V, Gomes-Giacoia E, Zhang G, Ross S, Kim J, Rosser CJ. Chemokine (C-X-C) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers. BMC Cancer 2013; 13:322. [PMID: 23815949 PMCID: PMC3708804 DOI: 10.1186/1471-2407-13-322] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/12/2013] [Indexed: 12/14/2022] Open
Abstract
Background Chemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), may regulate tumor epithelial-stromal interactions that facilitate tumor growth and invasion. Studies have linked CXCL1 expression to gastric, colon and skin cancers, but limited studies to date have described CXCL1 protein expression in human bladder cancer (BCa). Methods CXCL1 protein expression was examined in 152 bladder tissue specimens (142 BCa) by immunohistochemical staining. The expression of CXCL1 was scored by assigning a combined score based on the proportion of cells staining and intensity of staining. CXCL1 expression patterns were correlated with clinicopathological features and follow-up data. Results CXCL1 protein expression was present in cancerous tissues, but was entirely absent in benign tissue. CXCL1 combined immunostaining score was significantly higher in high-grade tumors relative to low-grade tumors (p = 0.012). Similarly, CXCL1 combined immunostaining score was higher in high stage tumors (T2-T4) than in low stage tumors (Ta-T1) (p < 0.0001). An increase in the combined immunostaining score of CXCL1 was also associated with reduced disease-specific survival. Conclusion To date, this is the largest study describing increased CXCL1 protein expression in more aggressive phenotypes in human BCa. Further studies are warranted to define the role CXCL1 plays in bladder carcinogenesis and progression.
Collapse
Affiliation(s)
- Makito Miyake
- Cancer Research Institute, Orlando Health, Orlando, FL 32827, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Liu F, Zhang Y, Tang H, Zhou X, Wu Z, Tang D, Zhao T. CXC chemokine ligand 16, inversely correlated with CD99 expression in Hodgkin Reed-Sternberg cells, is widely expressed in diverse types of lymphomas. Oncol Rep 2013; 30:783-92. [PMID: 23743627 DOI: 10.3892/or.2013.2522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/20/2013] [Indexed: 11/06/2022] Open
Abstract
The present study examined a correlation between CXC chemokine ligand 16 (CXCL16) and cell differentiation antigen 99 (CD99) expression and investigated the role of CXCL16 in human lymphoma cell lines and clinical samples. Cytokine antibody arrays were used to measure the differentially expressed cytokines in tumor tissues. The expression of CXCL16 and CD99 was analyzed by quantitative PCR (qPCR) and western blotting, while the pathways involved were assessed by western blotting and enzyme-linked immunosorbent assay (ELISA). The expression of CXCL16 was investigated in 9 lymphoma cell lines (L428, RPMI-8226, KM3, Jurkat, OCI-Ly1, OCI-Ly8, OCI-Ly10, Karpass299 and Raji) as well as in clinical lymphoma samples using qPCR, western blotting and immunochemistry. Soluble CXCL16 (sCXCL16) levels were measured by ELISA and proliferation was analyzed by CCK‑8 proliferation assays. CXCL16 was one of the upregulated chemokines when lymphoma cells where transferred from in vitro to in vivo conditions. The increased expression and secretion of CXCL16 paralleled with a decrease of mCD99L2 and was accompanied by NF-κB pathway activation and vice versa. CXCL16 was expressed in all 9 lymphoma cell lines with the highest levels in the Hodgkin lymphoma (HL) cell line L428, the plasma cell-derived cell lines RPMI‑8226 and KM3 and the T leukemia-derived cell line Jurkat. Higher levels of sCXCL16 were secreted by L428 cells, the diffuse large B-cell lymphoma (DLBCL)-derived cell lines (OCI-Ly1, OCI-Ly8 and OCI-Ly10) and Jurkat cells. CXCL16 was widely expressed in clinical samples of lymphoma patients with higher levels in HL compared to non-Hodgkin lymphoma. Human recombinant CXCL16 had no significant effect on L428 cell proliferation, but was able to stimulate CD4+ T lymphocytes to proliferate. CXCL16, inversely correlated with CD99 expression in Hodgkin Reed-Sternberg (H/RS) cells, is widely expressed in diverse types of lymphomas.
Collapse
Affiliation(s)
- Fang Liu
- Department of Basic Medical Sciences, Medical School, Foshan University, Foshan, Guangdong 528000, PR China
| | | | | | | | | | | | | |
Collapse
|
96
|
Tintinger GR, Anderson R, Feldman C. Pharmacological approaches to regulate neutrophil activity. Semin Immunopathol 2013; 35:395-409. [PMID: 23494251 DOI: 10.1007/s00281-013-0366-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
Although indispensable in host defense against microbial pathogens, misdirected hyperacute and chronic activation of neutrophils presents the potential hazard of tissue damage, organ dysfunction, and carcinogenesis. In many clinical settings, particularly inflammatory disorders of the airways, over-reactivity of neutrophils is exacerbated by their relative resistance to conventional, pharmacological anti-inflammatory therapies, including, but not limited to, corticosteroids. Notwithstanding their sheer numbers, which can increase rapidly and dramatically during inflammatory responses, these cells are not only pre-programmed to release reactive oxygen species, proteinases, and eicosanoids/prostanoids immediately on exposure to pro-inflammatory stimuli but may also subsequently undergo the process of netosis, thereby enhancing and protracting their inflammatory potential. All of these mechanisms are likely to underpin the resistance of neutrophils to pharmacological control and have triggered the search for alternatives to corticosteroids. In addition to macrolides and adenosine 3',5'-cyclic adenosine monophospate-elevating agents, more recent innovations in the control of neutrophilic inflammation include activators of histone deacetylases and antagonists of chemokine receptors, as well as monoclonal antibodies which target neutrophil-activating cytokines and their receptors. These and other neutrophil-targeted strategies represent the focus of the current review.
Collapse
Affiliation(s)
- G R Tintinger
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | | | | |
Collapse
|
97
|
Guillemot E, Karimdjee-Soilihi B, Pradelli E, Benchetrit M, Goguet-Surmenian E, Millet MA, Larbret F, Michiels JF, Birnbaum D, Alemanno P, Schmid-Antomarchi H, Schmid-Alliana A. CXCR7 receptors facilitate the progression of colon carcinoma within lung not within liver. Br J Cancer 2012; 107:1944-9. [PMID: 23169289 PMCID: PMC3516689 DOI: 10.1038/bjc.2012.503] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Liver and lung metastases are the predominant cause of colorectal cancer (CRC)-related mortality. Chemokine-receptor pairs have a critical role in determining the metastatic progression of tumours. Our hypothesis was that disruption of CXCR7/CXCR7 ligands axis could lead to a decrease in CRC metastases. Methods: Primary tumours and metastatic tissues from patients with CRC were tested for the expression of CXCR7 and its ligands. Relevance of CXCR7/CXCR7 ligands for CRC metastasis was then investigated in mice using small pharmacological CXCR7 antagonists and CRC cell lines of human and murine origins, which – injected into mice – enable the development of lung and liver metastases. Results: Following injection of CRC cells, mice treated daily with CXCR7 antagonists exhibited a significant reduction in lung metastases. However, CXCR7 antagonists failed to reduce the extent of liver metastasis. Moreover, there were subtle differences in the expression of CXCR7 and its ligands between lung and liver metastases. Conclusion: Our study suggests that the activation of CXCR7 on tumour blood vessels by its ligands may facilitate the progression of CRC within lung but not within liver. Moreover, we provide evidence that targeting the CXCR7 axis may be beneficial to limit metastasis from colon cancer within the lungs.
Collapse
Affiliation(s)
- E Guillemot
- Université de Nice Sophia-Antipolis, UFR Sciences, Nice 06108, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Zhang J, Liu J. Tumor stroma as targets for cancer therapy. Pharmacol Ther 2012; 137:200-15. [PMID: 23064233 DOI: 10.1016/j.pharmthera.2012.10.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/16/2022]
Abstract
Cancer is not only composed malignant epithelial component but also stromal components such as fibroblasts, endothelial cells, and inflammatory cells, by which an appropriate tumor microenvironment (TME) is formed to promote tumorigenesis, progression, and metastasis. As the most abundant component in the TME, cancer-associated fibroblasts (CAFs) are involved in multifaceted mechanistic details including remodeling the extracellular matrix, suppressing immune responses, and secreting growth factors and cytokines that mediate signaling pathways to extensively affect tumor cell growth and invasiveness, differentiation, angiogenesis, and chronic inflammatory milieu. Today, more and more therapeutic strategies are purposefully designed to target the TME as well as tumor cells. This review will focus on the role of CAFs in tumor development and the novel strategies to target this component to inhibit the tumor growth.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, State Key Laboratory of Tumor Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | | |
Collapse
|
99
|
Cicek MS, Cunningham JM, Fridley BL, Serie DJ, Bamlet WR, Diergaarde B, Haile RW, Le Marchand L, Krontiris TG, Younghusband HB, Gallinger S, Newcomb PA, Hopper JL, Jenkins MA, Casey G, Schumacher F, Chen Z, DeRycke MS, Templeton AS, Winship I, Green RC, Green JS, Macrae FA, Parry S, Young GP, Young JP, Buchanan D, Thomas DC, Bishop DT, Lindor NM, Thibodeau SN, Potter JD, Goode EL. Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22. PLoS One 2012; 7:e38175. [PMID: 22675446 PMCID: PMC3364975 DOI: 10.1371/journal.pone.0038175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/01/2012] [Indexed: 12/19/2022] Open
Abstract
A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated.
Collapse
Affiliation(s)
- Mine S. Cicek
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Julie M. Cunningham
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Brooke L. Fridley
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Daniel J. Serie
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - William R. Bamlet
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Brenda Diergaarde
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert W. Haile
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Theodore G. Krontiris
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | | | - Steven Gallinger
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Polly A. Newcomb
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John L. Hopper
- Departments of Public Health and Medicine, University of Melbourne, Victoria, Australia
| | - Mark A. Jenkins
- Departments of Public Health and Medicine, University of Melbourne, Victoria, Australia
| | - Graham Casey
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Fredrick Schumacher
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhu Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Melissa S. DeRycke
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Allyson S. Templeton
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ingrid Winship
- Departments of Public Health and Medicine, University of Melbourne, Victoria, Australia
| | - Roger C. Green
- Faculty of Medicine, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada
| | - Jane S. Green
- Faculty of Medicine, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada
| | - Finlay A. Macrae
- Colorectal Medicine and Genetics and Department of Medicine, University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia
| | - Susan Parry
- New Zealand Familial GI Cancer Registry, Auckland City Hospital, Auckland, New Zealand
- Department of Gastroenterology, Middlemore Hospital, Auckland, New Zealand
| | - Graeme P. Young
- Flinders Centre for Cancer Prevention and Control, Flinders University, Adelaide, Australia
| | - Joanne P. Young
- Familial Cancer Laboratory, Queensland Institute of Medical Research, Queensland, Australia
| | - Daniel Buchanan
- Familial Cancer Laboratory, Queensland Institute of Medical Research, Queensland, Australia
| | - Duncan C. Thomas
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - D. Timothy Bishop
- University of Leeds, Leeds Institute of Molecular Medicine, Leeds, United Kingdom
| | - Noralane M. Lindor
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Stephen N. Thibodeau
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - John D. Potter
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Ellen L. Goode
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| | | |
Collapse
|