51
|
Teng C, Shi Z, Yao Y, Ren G. Structural Characterization of Quinoa Polysaccharide and Its Inhibitory Effects on 3T3-L1 Adipocyte Differentiation. Foods 2020; 9:E1511. [PMID: 33096874 PMCID: PMC7589720 DOI: 10.3390/foods9101511] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Quinoa is a kind of nutritious food crop with anti-obesity activity, however, the mechanism is not unclear. In this study, we separated and purified bioactive polysaccharide from quinoa (denoted SQWP-2). The chemical structural was characterized and its effect on 3T3-L1 pre-adipocyte differentiation was evaluated. The molecular weight of SQWP-2 was found to be 7.49 × 103 Da, and the polysaccharide consisted of fructose and glucose. The Glc-(1→, Fru-(2→, →4)-Glcp-(1→, and →4,6)-Glcp-(1→ glycosidic linkages were identified in SQWP-2 through gas chromatography-mass spectrometry. Nuclear magnetic resonance confirmed the monosaccharide composition and glycosidic linkage content, and a suggestion of the structural formula is provided. In Western Blotting and RT-PCR assays, treatment with SQWP-2 significantly inhibited 3T3-L1 differentiation by suppressing PPARγ, C/EBPα, C/EBPβ, C/EBPδ, SREBP1C and AP2 expression. Quinoa polysaccharide isolated here could represent an anti-obesity agent once the structures and differentiation inhibition are definitively characterized.
Collapse
Affiliation(s)
- Cong Teng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.T.); (Z.S.); (G.R.)
| | - Zhenxing Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.T.); (Z.S.); (G.R.)
- Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.T.); (Z.S.); (G.R.)
| | - Guixing Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.T.); (Z.S.); (G.R.)
| |
Collapse
|
52
|
Fernández-López J, Viuda-Martos M, Sayas-Barberá ME, Navarro-Rodríguez de Vera C, Lucas-González R, Roldán-Verdú A, Botella-Martínez C, Pérez-Alvarez JA. Chia, Quinoa, and Their Coproducts as Potential Antioxidants for the Meat Industry. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1359. [PMID: 33066505 PMCID: PMC7602150 DOI: 10.3390/plants9101359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
Chia and quinoa have gained popularity among consumers worldwide due to the wide variety of nutrients but also to the bioactive compounds that they contain. Lately, their processing has generated different coproducts (non-commercial grains, flour, partially deoiled flour, rich-fiber fraction, and oil, among others), which could be reincorporated to the food chain with important technological properties, antioxidant activity included. Both sets of ingredients have been revealed a great technological potential for meat product development and innovation, taking into account that oxidation is one of the main reactions responsible for their deterioration and shelf life reduction. This review focuses on the antioxidant compounds of chia and quinoa coproducts and on the strategies used to add them to meat products highlighting their effect on the lipid oxidation control. Apart from the different ways in which quinoa and chia can be incorporated into meat products and their antioxidant properties, innovative approaches for increasing this antioxidant effect and counteracting any negative alterations they may cause will be discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jose Angel Pérez-Alvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312-Alicante, Spain; (J.F.-L.); (M.V.-M.); (M.E.S.-B.); (C.N.-R.d.V.); (R.L.-G.); (A.R.-V.); (C.B.-M.)
| |
Collapse
|
53
|
Karimian J, Abedi S, Shirinbakhshmasoleh M, Moodi F, Moodi V, Ghavami A. The effects of quinoa seed supplementation on cardiovascular risk factors: A systematic review and meta‐analysis of controlled clinical trials. Phytother Res 2020; 35:1688-1696. [DOI: 10.1002/ptr.6901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/09/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jahangir Karimian
- Department of General Courses, School of Management and Medical Information Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Sajjad Abedi
- Department of Pharmacy Tehran University of Medical Sciences Tehran Iran
| | | | - Farzan Moodi
- School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Vihan Moodi
- Students' Scientific Research Center (SSRC) Tehran University of Medical Sciences (TUMS) Tehran Iran
- School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Abed Ghavami
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
54
|
Carrasco-Sandoval J, Rebolledo P, Peterssen-Fonseca D, Fischer S, Wilckens R, Aranda M, Henríquez-Aedo K. A fast and selective method to determine phenolic compounds in quinoa (Chenopodium quinoa Will) seeds applying ultrasound-assisted extraction and high-performance liquid chromatography. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01313-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
55
|
Cao Y, Zou L, Li W, Song Y, Zhao G, Hu Y. Dietary quinoa (Chenopodium quinoa Willd.) polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. Int J Biol Macromol 2020; 163:55-65. [PMID: 32615219 DOI: 10.1016/j.ijbiomac.2020.06.241] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
As the high nutritional and functional values of quinoa acknowledged, the increasing researches focus on the bioactivities and related mechanisms of its abundant carbohydrates. Herein, the beneficial effects of the soluble polysaccharide fraction from quinoa was investigated to lower the serum lipid of rats treated by high-fat diet (HFD) and call the disordered gut microbiota back. The polysaccharide faction was firstly extracted by ultrasonic-assisted extraction technology (yield of 9.65%) and characterized of the monosaccharide composition with glucose and arabinose (1.17:1, molar ratio). And then, the oral administration of quinoa polysaccharide of 300 mg·kg-1·day-1 and 600 mg·kg-1·day-1 for 8 weeks remarkably alleviated dyslipidemia by decreasing the levels of serum total triglyceride (TG), low density lipoprotein cholesterol (LDL-C), malondialdehyde (MDA), total glutamic pyruvic transaminase (ALT) and glutamic oxaloacetic transaminase (AST) in rats fed with HFD, as well as the reduced hepatic lipid accumulation. Meanwhile, the relative abundance of gut microbiota could be disordered by the long term of HFD. Nevertheless, dietary supplementation of quinoa polysaccharide could enhance species richness and regulate the gut microbiota community structure, reducing the ratio of Firmicutes and Bacteroides, the relative abundance of Proteobacteria. Meanwhile, Sequencing of 16S rRNA gene revealed that intake of quinoa polysaccharide decreased the relative abundances of Desulfovibrio and Allobaculum, which were positively correlated with serum lipid profiles and beneficial to lessen intestinal inflammation. Taken together, the present study demonstrated that quinoa polysaccharide supplementation could ameliorate the hyperlipidemia induced by HFD in association with modulating gut microbiota in a positive way.
Collapse
Affiliation(s)
- Yanan Cao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, People's Republic of China
| | - Wei Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yu Song
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, People's Republic of China.
| |
Collapse
|
56
|
Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol 2020; 137:111178. [PMID: 32035214 DOI: 10.1016/j.fct.2020.111178] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, consumers are more conscious of the environmental and nutritional benefits of foods. Pseudocereals grains, edible seeds belonging to dicotyledonous plant species, are becoming a current trend in human diets as gluten-free (GF) grains with excellent nutritional and nutraceutical value. Pseudocereals are a good source of starch, fiber, proteins, minerals, vitamins, and phytochemicals such as saponins, polyphenols, phytosterols, phytosteroids, and betalains with potential health benefits. The present review aims to summarize the nutritional quality and phytochemical profile of the three main pseudocereal grains: quinoa, amaranth and buckwheat. In addition, current evidence about their health benefits in animal models and human studies is also provided in detail. Based on the accumulating research supporting the inclusion of pseudocereals grains in the diet of celiac persons, this review discusses the recent advances in their application for the development of new GF products. Future directions for a wider cultivation and commercial exploitation of these crops are also highlighted.
Collapse
|
57
|
Ahmed J, Thomas L. Changes in structural, functional and antioxidant properties induced by high pressure on quinoa flour. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00302-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Combined Use of Deep Eutectic Solvents, Macroporous Resins, and Preparative Liquid Chromatography for the Isolation and Purification of Flavonoids and 20-Hydroxyecdysone from Chenopodium quinoa Willd. Biomolecules 2019; 9:biom9120776. [PMID: 31775374 PMCID: PMC6995548 DOI: 10.3390/biom9120776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 02/04/2023] Open
Abstract
: Deep eutectic solvents (DESs) were used in combination with macroporous resins to isolate and purify flavonoids and 20-hydroxyecdysone from Chenopodium quinoa Willd by preparative high-performance liquid chromatography (HPLC). The extraction performances of six DESs and the adsorption/desorption performances of five resins (AB-8, D101, HPD 400, HPD 600, and NKA-9) were investigated using the total flavonoid and 20-hydroxyecdysone extraction yields as the evaluation criteria, and the best-performing DES (choline chloride/urea, DES-6) and macroporous resin (D101) were further employed for phytochemical extraction and DES removal, respectively. The purified extract was subjected to preparative HPLC, and the five collected fractions were purified in a successive round of preparative HPLC to isolate three flavonoids and 20-hydroxyecdysone, which were identified by spectroscopic techniques. The use of a DES in this study significantly facilitated the preparative-scale isolation and purification of polar phytochemicals from complex plant systems.
Collapse
|
59
|
Ding L, Kang Y, Dai HB, Wang FZ, Zhou H, Gao Q, Xiong XQ, Zhang F, Song TR, Yuan Y, Liu M, Zhu GQ, Zhou YB. Adipose afferent reflex is enhanced by TNFα in paraventricular nucleus through NADPH oxidase-dependent ROS generation in obesity-related hypertensive rats. J Transl Med 2019; 17:256. [PMID: 31391086 PMCID: PMC6686415 DOI: 10.1186/s12967-019-2006-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The adipose afferent reflex (AAR), a sympatho-excitatory reflex, can promote the elevation of sympathetic nerve activity (SNA) and blood pressure (BP). Inflammation in the paraventricular nucleus (PVN) involves sympathetic abnormality in some cardiovascular diseases such as hypertension. This study was designed to explore the effects of tumor necrosis factor alpha (TNFα) in the PVN on the AAR and SNA in rats with obesity-related hypertension (OH) induced by a high-fat diet for 12 weeks. METHODS Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were continuously recorded in anesthetized rats, and their responses to capsaicin (CAP) stimulation of the right inguinal white adipose tissue were used to evaluate the AAR. RESULTS Compared to the control rats, the systolic blood pressure (SBP), plasma norepinephrine (NE, indicating SNA) and TNFα levels, TNFα mRNA and protein levels, reactive oxygen species (ROS) content and NADPH oxidase activity in the PVN were significantly elevated in rats with OH. TNFα in the PVN markedly enhanced sympathoexcitation and AAR. Moreover, the enhancement of AAR caused by TNFα can be significantly strengthened by the pretreatment of diethyldithiocarbamate (DETC), a superoxide dismutase inhibitor, but attenuated by TNF-α receptor antagonist R-7050, superoxide scavenger PEG-SOD and NADPH oxidase inhibitor apocynin (Apo) in rats with OH. Acute microinjection of TNF-α into the PVN significantly increased the activity of NADPH oxidase and ROS levels in rats with OH, which were effectively blocked by R-7050. Furthermore, our results also showed that the increased levels of ROS, TNFα and NADPH oxidase subunits mRNA and protein in the PVN of rats with OH were significantly reversed by pentoxifylline (PTX, 30 mg/kg daily ip; in 10% ethanol) application, a cytokine blocker, for a period of 5 weeks. PTX administration also significantly decreased SBP, AAR and plasma NE levels in rats with OH. CONCLUSIONS TNFα in the PVN modulates AAR and contributes to sympathoexcitation in OH possibly through NADPH oxidase-dependent ROS generation. TNFα blockade attenuates AAR and sympathoexcitation that unveils TNFα in the PVN may be a possible therapeutic target for the intervention of OH.
Collapse
Affiliation(s)
- Lei Ding
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China.,Department of Pathophysiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Kang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Hang-Bing Dai
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Fang-Zheng Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Hong Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Qing Gao
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Feng Zhang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Tian-Run Song
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Yan Yuan
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Ming Liu
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, China.
| |
Collapse
|
60
|
Gardner M, Maliro MFA, Goldberger JR, Murphy KM. Assessing the Potential Adoption of Quinoa for Human Consumption in Central Malawi. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|