51
|
He Y, Zhang D, Zeng Y, Ma J, Wang J, Guo H, Zhang J, Wang M, Zhang W, Gong N. Bone Marrow-Derived Mesenchymal Stem Cells Protect Islet Grafts Against Endoplasmic Reticulum Stress-Induced Apoptosis During the Early Stage After Transplantation. Stem Cells 2018; 36:1045-1061. [PMID: 29569832 DOI: 10.1002/stem.2823] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/13/2018] [Accepted: 02/18/2018] [Indexed: 12/16/2022]
Abstract
Early loss of grafted islets is the main obstacle to achieve favorable outcomes of islet transplantation. Mesenchymal stem cells are known to have a protective effect; however, its mechanism remains unclear. We hypothesized that bone marrow-derived mesenchymal stem cells (BMSCs) can protect grafted islets against endoplasmic reticulum stress (ERS)-induced apoptosis. In syngeneic streptozocin-induced diabetic BALB/c mice, islet grafts decreased blood glucose levels; however, the effect was not fully functional from the immediate post-transplant phase. β-Cell apoptosis was proven on days 1 and 3 after transplantation. Ultra-structural evidence of ERS was observed along with increased expressions of marker protein BIP and apoptosis-related protein CHOP. In contrast, BMSC co-transplantation maintained glucose hemostasis, inhibited apoptosis and alleviated ERS. In ex vivo culture, BMSCs improved viability of islets and decreased apoptosis. Increased ERS were observed in cultured islets exposed to hypoxia, but not in the islets cocultured with BMSCs. Furthermore, cocultured BMSCs protected islets against ERS-induced apoptosis as well as improved their insulin secretion, and BMSCs alleviated ERS by improving Myc expression through both stromal cell-derived factor 1 signal and contact effect. In conclusion, BMSCs protected the grafted islets against ERS-induced apoptosis during the early stage after transplantation. This study opens a new arena for ERS-targeted therapy to improve outcomes of islet transplantation. Stem Cells 2018;36:1045-1061.
Collapse
Affiliation(s)
- Ying He
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zeng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junlei Ma
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Guo
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Zhang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengqin Wang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Zhang
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Key Laboratory of the Ministry of Health and the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
52
|
Zhou YX, Zhou KM, Liu Q, Wang H, Wang W, Shi Y, Ma YQ. The effect of Glut1 and c-myc on prognosis in esophageal squamous cell carcinoma of Kazakh and Han patients. Future Oncol 2018; 14:1801-1815. [PMID: 29629851 DOI: 10.2217/fon-2017-0734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Glucose transporter type 1 (Glut1) plays a crucial role in cancer-specific metabolism. We explored the expression of Glut1 and c-myc, the relationship between them and the effect of Glut1, c-myc on prognosis in esophageal squamous cell carcinoma. MATERIALS & METHODS Immunohistochemistry was used to examine the expression of Glut1 and c-myc. χ2 test analyzes the relationship between c-myc, Glut1 and pathological parameters. Spearman correlation analyzes the relationship between c-myc and Glut1. Survival analysis was used to investigate the effect of Glut1 and c-myc on prognosis. RESULTS Glut1 positivity was associated with tumor size (p < 0.01), depth of invasion (p = 0.021), Tumor, Node, Metastasis stage (IA+IB,II+IIB,IIIA+IIIB,IVA+IVB; p = 0.004), lymph node metastasis (p = 0.002) and nerve invasion (p = 0.050). C-myc positivity was associated with tumor location (p = 0.015), depth of invasion (p = 0.022) and lymph node metastasis (p = 0.035). There was a positive correlation between c-myc and Glut1 (r = 0.321). Patients with Glut1 c-myc co-expression had poorer prognosis. CONCLUSION Inhibiting Glut1 c-myc co-expression may improve the prognosis of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ya-Xing Zhou
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Ke-Ming Zhou
- Hypertension Center of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang Uygur Autonomous Region, Urumuqi, Xinjiang, PR China
| | - Qian Liu
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Hui Wang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Wen Wang
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Yi Shi
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Yu-Qing Ma
- Department of Pathology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| |
Collapse
|
53
|
Wen S, Wang X, Wang Y, Shen J, Pu J, Liang H, Chen C, Liu L, Dai P. Nucleoside diphosphate kinase 2 confers acquired 5-fluorouracil resistance in colorectal cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:896-905. [DOI: 10.1080/21691401.2018.1439835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shaojia Wen
- College of Life Science, Northwest University, Xi’an, PR China
| | - Xun Wang
- College of Life Science, Northwest University, Xi’an, PR China
| | - Yamin Wang
- College of Life Science, Northwest University, Xi’an, PR China
| | - Jianfeng Shen
- College of Life Science, Northwest University, Xi’an, PR China
| | - Junyi Pu
- College of Life Science, Northwest University, Xi’an, PR China
| | - Hui Liang
- College of Life Science, Northwest University, Xi’an, PR China
| | - Chao Chen
- College of Life Science, Northwest University, Xi’an, PR China
| | - Linna Liu
- Pharmacy Department, Tangdu Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Penggao Dai
- College of Life Science, Northwest University, Xi’an, PR China
| |
Collapse
|
54
|
Qiu H, Li J, Clark LH, Jackson AL, Zhang L, Guo H, Kilgore JE, Gehrig PA, Zhou C, Bae-Jump VL. JQ1 suppresses tumor growth via PTEN/PI3K/AKT pathway in endometrial cancer. Oncotarget 2018; 7:66809-66821. [PMID: 27572308 PMCID: PMC5341839 DOI: 10.18632/oncotarget.11631] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 01/16/2023] Open
Abstract
Overexpression of c-Myc is associated with worse outcomes in endometrial cancer, indicating that c-Myc may be a promising target for endometrial cancer therapy. A novel small molecule, JQ1, has been shown to block BRD4 resulting in inhibition of c-Myc expression and tumor growth. Thus, we investigated whether JQ1 can inhibit endometrial cancer growth in cell culture and xenograft models. In PTEN-positive endometrial cancer cells, JQ1 significantly suppressed cell proliferation via induction of G1 phase arrest and apoptosis in a dose-dependent manner, accompanied by a sharp decline in cyclin D1 and CDK4 protein expression. However, PTEN-negative endometrial cancer cells exhibited intrinsic resistance to JQ1, despite significant c-Myc inhibition. Moreover, we found that PTEN and its downstream PI3K/AKT signaling targets were modulated by JQ1, as evidenced by microarray analysis. Silencing of PTEN in PTEN-positive endometrial cancer cells resulted in resistance to JQ1, while upregulation of PTEN in PTEN-negative endometrial cancer cells increased sensitivity to JQ1. In xenografts models of PTEN-positive and PTEN-knock-in endometrial cancer, JQ1 significantly upregulated the expression of PTEN, blocked the PI3K/AKT signaling pathway and suppressed tumor growth. These effects were attenuated in PTEN-negative and PTEN-knockdown xenograft models. Thus, JQ1 resistance appears to be highly associated with the status of PTEN expression in endometrial cancer. Our findings suggest that targeting BRD4 using JQ1 might serve as a novel therapeutic strategy in PTEN-positive endometrial cancers.
Collapse
Affiliation(s)
- Haifeng Qiu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leslie H Clark
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda L Jackson
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lu Zhang
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Hui Guo
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Joshua E Kilgore
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paola A Gehrig
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria L Bae-Jump
- Division of Gynecological Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
55
|
Liu PY, Sokolowski N, Guo ST, Siddiqi F, Atmadibrata B, Telfer TJ, Sun Y, Zhang L, Yu D, Mccarroll J, Liu B, Yang RH, Guo XY, Tee AE, Itoh K, Wang J, Kavallaris M, Haber M, Norris MD, Cheung BB, Byrne JA, Ziegler DS, Marshall GM, Dinger ME, Codd R, Zhang XD, Liu T. The BET bromodomain inhibitor exerts the most potent synergistic anticancer effects with quinone-containing compounds and anti-microtubule drugs. Oncotarget 2018; 7:79217-79232. [PMID: 27764794 PMCID: PMC5346709 DOI: 10.18632/oncotarget.12640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/28/2016] [Indexed: 11/25/2022] Open
Abstract
BET bromodomain inhibitors are very promising novel anticancer agents, however, single therapy does not cause tumor regression in mice, suggesting the need for combination therapy. After screening a library of 2697 small molecule compounds, we found that two classes of compounds, the quinone-containing compounds such as nanaomycin and anti-microtubule drugs such as vincristine, exerted the best synergistic anticancer effects with the BET bromodomain inhibitor JQ1 in neuroblastoma cells. Mechanistically, the quinone-containing compound nanaomycin induced neuroblastoma cell death but also activated the Nrf2-antioxidant signaling pathway, and the BET bromodomain proteins BRD3 and BRD4 formed a protein complex with Nrf2. Treatment with JQ1 blocked the recruitment of Nrf2 to the antioxidant responsive elements at Nrf2 target gene promoters, and JQ1 exerted synergistic anticancer effects with nanaomycin by blocking the Nrf2-antioxidant signaling pathway. JQ1 and vincristine synergistically induced neuroblastoma cell cycle arrest at the G2/M phase, aberrant mitotic spindle assembly formation and apoptosis, but showed no effect on cell survival in normal non-malignant cells. Importantly, co-treatment with JQ1 and vincristine synergistically suppressed tumor progression in neuroblastoma-bearing mice. These results strongly suggest that patients treated with BET bromodomain inhibitors in clinical trials should be co-treated with vincristine.
Collapse
Affiliation(s)
- Pei Y Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Nicholas Sokolowski
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Su T Guo
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Faraz Siddiqi
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Bernard Atmadibrata
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Thomas J Telfer
- School of Medical Sciences (Pharmacology) and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Yuting Sun
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Lihong Zhang
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Denise Yu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Joshua Mccarroll
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Bing Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Rui H Yang
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Affiliated Hospital of Shanxi Medical University, Shanxi, China
| | - Xiang Y Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Affiliated Hospital of Shanxi Medical University, Shanxi, China
| | - Andrew E Tee
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Jenny Wang
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia.,Centre for Childhood Cancer Research, University of New South Wales Medicine, University of New South Wales Australia, Sydney, Australia
| | - Maria Kavallaris
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia.,Centre for Childhood Cancer Research, University of New South Wales Medicine, University of New South Wales Australia, Sydney, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Jennifer A Byrne
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, Australia
| | - David S Ziegler
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales Australia, Darlinghurst, Australia
| | - Rachel Codd
- School of Medical Sciences (Pharmacology) and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Xu D Zhang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Affiliated Hospital of Shanxi Medical University, Shanxi, China
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia.,Centre for Childhood Cancer Research, University of New South Wales Medicine, University of New South Wales Australia, Sydney, Australia
| |
Collapse
|
56
|
MYCN amplified neuroblastoma requires the mRNA translation regulator eEF2 kinase to adapt to nutrient deprivation. Cell Death Differ 2017; 24:1564-1576. [PMID: 28574509 DOI: 10.1038/cdd.2017.79] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 01/01/2023] Open
Abstract
MYC family proteins are implicated in many human cancers, but their therapeutic targeting has proven challenging. MYCN amplification in childhood neuroblastoma (NB) is associated with aggressive disease and high mortality. Novel and effective therapeutic strategies are therefore urgently needed for these tumors. MYC-driven oncogenic transformation impairs cell survival under nutrient deprivation (ND), a characteristic stress condition within the tumor microenvironment. We recently identified eukaryotic Elongation Factor 2 Kinase (eEF2K) as a pivotal mediator of the adaptive response of tumor cells to ND. We therefore hypothesized that eEF2K facilitates the adaptation of MYCN amplified NB to ND, and that inhibiting this pathway can impair MYCN-driven NB progression. To test our hypothesis, we first analyzed publicly available genomic databases and tissue microarrays for eEF2K expression in NB, and for links between eEF2K, MYCN, and clinical outcome in NB. Effects of eEF2K inhibition were evaluated on survival of MYCN amplified versus non-amplified NB cell lines under ND. Finally, NB xenograft mouse models were used to confirm in vitro observations. Our results indicate that high eEF2K expression and activity are strongly predictive of poor outcome in NB, and correlates significantly with MYCN amplification. Inhibition of eEF2K markedly decreases survival of MYCN amplified NB cell lines in vitro under ND. Growth of MYCN amplified NB xenografts is markedly impaired by eEF2K knockdown, particularly under caloric restriction. In summary, eEF2K protects MYCN overexpressing NB cells from ND in vitro and in vivo, highlighting this kinase as a critical mediator of the adaptive response of MYCN amplified NB cells to metabolic stress.
Collapse
|
57
|
Abstract
How can we treat cancer more effectively? Traditionally, tumours from the same anatomical site are treated as one tumour entity. This concept has been challenged by recent breakthroughs in cancer genomics and translational research that have enabled molecular tumour profiling. The identification and validation of cancer drivers that are shared between different tumour types, spurred the new paradigm to target driver pathways across anatomical sites by off-label drug use, or within so-called basket or umbrella trials which are designed to test whether molecular alterations in one tumour entity can be extrapolated to all others. However, recent clinical and preclinical studies suggest that there are tissue- and cell type-specific differences in tumorigenesis and the organization of oncogenic signalling pathways. In this Opinion article, we focus on the molecular, cellular, systemic and environmental determinants of organ-specific tumorigenesis and the mechanisms of context-specific oncogenic signalling outputs. Investigation, recognition and in-depth biological understanding of these differences will be vital for the design of next-generation clinical trials and the implementation of molecularly guided cancer therapies in the future.
Collapse
Affiliation(s)
- Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marc Schmidt-Supprian
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
58
|
Small molecule selectively suppresses MYC transcription in cancer cells. Proc Natl Acad Sci U S A 2017; 114:3497-3502. [PMID: 28292893 DOI: 10.1073/pnas.1702663114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stauprimide is a staurosporine analog that promotes embryonic stem cell (ESC) differentiation by inhibiting nuclear localization of the MYC transcription factor NME2, which in turn results in down-regulation of MYC transcription. Given the critical role the oncogene MYC plays in tumor initiation and maintenance, we explored the potential of stauprimide as an anticancer agent. Here we report that stauprimide suppresses MYC transcription in cancer cell lines derived from distinct tissues. Using renal cancer cells, we confirmed that stauprimide inhibits NME2 nuclear localization. Gene expression analysis also confirmed the selective down-regulation of MYC target genes by stauprimide. Consistent with this activity, administration of stauprimide inhibited tumor growth in rodent xenograft models. Our study provides a unique strategy for selectively targeting MYC transcription by pharmacological means as a potential treatment for MYC-dependent tumors.
Collapse
|
59
|
Stefan E, Bister K. MYC and RAF: Key Effectors in Cellular Signaling and Major Drivers in Human Cancer. Curr Top Microbiol Immunol 2017; 407:117-151. [PMID: 28466200 DOI: 10.1007/82_2017_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prototypes of the human MYC and RAF gene families are orthologs of animal proto-oncogenes that were originally identified as transduced alleles in the genomes of highly oncogenic retroviruses. MYC and RAF genes are now established as key regulatory elements in normal cellular physiology, but also as major cancer driver genes. Although the predominantly nuclear MYC proteins and the cytoplasmic RAF proteins have different biochemical functions, they are functionally linked in pivotal signaling cascades and circuits. The MYC protein is a transcription factor and together with its dimerization partner MAX holds a central position in a regulatory network of bHLH-LZ proteins. MYC regulates transcription conducted by all RNA polymerases and controls virtually the entire transcriptome. Fundamental cellular processes including distinct catabolic and anabolic branches of metabolism, cell cycle regulation, cell growth and proliferation, differentiation, stem cell regulation, and apoptosis are under MYC control. Deregulation of MYC expression by rearrangement or amplification of the MYC locus or by defects in kinase-mediated upstream signaling, accompanied by loss of apoptotic checkpoints, leads to tumorigenesis and is a hallmark of most human cancers. The critically controlled serine/threonine RAF kinases are central nodes of the cytoplasmic MAPK signaling cascade transducing converted extracellular signals to the nucleus for reshaping transcription factor controlled gene expression profiles. Specific mutations of RAF kinases, such as the prevalent BRAF(V600E) mutation in melanoma, or defects in upstream signaling or feedback loops cause decoupled kinase activities which lead to tumorigenesis. Different strategies for pharmacological interference with MYC- or RAF-induced tumorigenesis are being developed and several RAF kinase inhibitors are already in clinical use.
Collapse
Affiliation(s)
- Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
60
|
Preclinical activity of CPI-0610, a novel small-molecule bromodomain and extra-terminal protein inhibitor in the therapy of multiple myeloma. Leukemia 2016; 31:1760-1769. [PMID: 27890933 DOI: 10.1038/leu.2016.355] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023]
Abstract
Inhibition of the bromodomain and extra-terminal (BET) proteins is a promising therapeutic strategy for various hematologic cancers. Previous studies suggest that BET inhibitors constrain tumor cell proliferation and survival mainly through the suppression of MYC transcription and activity. However, suppression of the transcription of additional genes also contributes to the antitumor activity of BET inhibitors but is less well understood. Here we examined the therapeutic potential of CPI-0610, a potent BET inhibitor currently undergoing phase I clinical testing, in multiple myeloma (MM). CPI-0610 displays potent cytotoxicity against MM cell lines and patient-derived MM cells through G1 cell cycle arrest and caspase-dependent apoptosis. CPI-0610-mediated BET inhibition overcomes the protective effects conferred by cytokines and bone marrow stromal cells. We also confirmed the in vivo efficacy of CPI-0610 in a MM xenograft mouse model. Our study found IKZF1 and IRF4 to be among the primary targets of CPI-0610, along with MYC. Given that immunomodulatory drugs (IMiDs) stabilize cereblon and facilitate Ikaros degradation in MM cells, we combined it with CPI-0610. Combination studies of CPI-0610 with IMiDs show in vitro synergism, in part due to concomitant suppression of IKZF1, IRF4 and MYC, providing a rationale for clinical testing of this drug combination in MM patients.
Collapse
|
61
|
Vaughan L, Clarke PA, Barker K, Chanthery Y, Gustafson CW, Tucker E, Renshaw J, Raynaud F, Li X, Burke R, Jamin Y, Robinson SP, Pearson A, Maira M, Weiss WA, Workman P, Chesler L. Inhibition of mTOR-kinase destabilizes MYCN and is a potential therapy for MYCN-dependent tumors. Oncotarget 2016; 7:57525-57544. [PMID: 27438153 PMCID: PMC5295370 DOI: 10.18632/oncotarget.10544] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
MYC oncoproteins deliver a potent oncogenic stimulus in several human cancers, making them major targets for drug development, but efforts to deliver clinically practical therapeutics have not yet been realized. In childhood cancer, aberrant expression of MYC and MYCN genes delineates a group of aggressive tumours responsible for a major proportion of pediatric cancer deaths. We designed a chemical-genetic screen that identifies compounds capable of enhancing proteasomal elimination of MYCN oncoprotein. We isolated several classes of compound that selectively kill MYCN expressing cells and we focus on inhibitors of PI3K/mTOR pathway in this study. We show that PI3K/mTOR inhibitors selectively killed MYCN-expressing neuroblastoma tumor cells, and induced significant apoptosis of transgenic MYCN-driven neuroblastoma tumors concomitant with elimination of MYCN protein in vivo. Mechanistically, the ability of these compounds to degrade MYCN requires complete blockade of mTOR but not PI3 kinase activity and we highlight NVP-BEZ235 as a PI3K/mTOR inhibitor with an ideal activity profile. These data establish that MYCN expression is a marker indicative of likely clinical sensitivity to mTOR inhibition, and provide a rationale for the selection of clinical candidate MYCN-destabilizers likely to be useful for the treatment of MYCN-driven cancers.
Collapse
Affiliation(s)
- Lynsey Vaughan
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Karen Barker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yvan Chanthery
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Clay W. Gustafson
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Elizabeth Tucker
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Jane Renshaw
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Clinical Pharmacology and Trials Team, Sutton, Surrey, UK
| | - Xiaodun Li
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Present address: MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Target Selection and Hit Discovery Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Yann Jamin
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Simon P. Robinson
- Cancer Research UK & Engineering and Physical Sciences Research Council Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Andrew Pearson
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Michel Maira
- Novartis Pharma AG, Basel, Switzerland
- Present address: Basilea Pharmaceutica International AG, Basel, Switzerland
| | - William A. Weiss
- Department of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Signal Transduction and Molecular Pharmacology Team, The Institute of Cancer Research, Sutton, Surrey, UK
- The Royal Marsden NHS Trust, Children and Young People's Unit, Sutton, Surrey, UK
| |
Collapse
|
62
|
Burén S, Gomes AL, Teijeiro A, Fawal MA, Yilmaz M, Tummala KS, Perez M, Rodriguez-Justo M, Campos-Olivas R, Megías D, Djouder N. Regulation of OGT by URI in Response to Glucose Confers c-MYC-Dependent Survival Mechanisms. Cancer Cell 2016; 30:290-307. [PMID: 27505673 DOI: 10.1016/j.ccell.2016.06.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 08/01/2015] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Cancer cells can adapt and survive under low nutrient conditions, but underlying mechanisms remain poorly explored. We demonstrate here that glucose maintains a functional complex between the co-chaperone URI, PP1γ, and OGT, the enzyme catalyzing O-GlcNAcylation. Glucose deprivation induces the activation of PKA, which phosphorylates URI at Ser-371, resulting in PP1γ release and URI-mediated OGT inhibition. Low OGT activity reduces O-GlcNAcylation and promotes c-MYC degradation to maintain cell survival. In the presence of glucose, PP1γ-bound URI increases OGT and c-MYC levels. Accordingly, mice expressing non-phosphorylatable URI (S371A) in hepatocytes exhibit high OGT activity and c-MYC stabilization, accelerating liver tumorigenesis in agreement with c-MYC oncogenic functions. Our work uncovers that URI-regulated OGT confers c-MYC-dependent survival functions in response to glucose fluctuations.
Collapse
Affiliation(s)
- Stefan Burén
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana L Gomes
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana Teijeiro
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Mohamad-Ali Fawal
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Mahmut Yilmaz
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Krishna S Tummala
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Manuel Perez
- Biotechnology Programme, Confocal Microscopy Core Unit, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Manuel Rodriguez-Justo
- Department of Research Pathology, Cancer Institute, University College London, London WC1E 6JJ, UK
| | - Ramón Campos-Olivas
- Structural Biology and Biocomputing Programme, Spectroscopy and Nuclear Magnetic Resonance Unit, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Diego Megías
- Biotechnology Programme, Confocal Microscopy Core Unit, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain.
| |
Collapse
|
63
|
Genetic Abnormalities in Biliary Brush Samples for Distinguishing Cholangiocarcinoma from Benign Strictures in Primary Sclerosing Cholangitis. Gastroenterol Res Pract 2016; 2016:4381513. [PMID: 27127503 PMCID: PMC4834158 DOI: 10.1155/2016/4381513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022] Open
Abstract
Background. Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease and is strongly associated with cholangiocarcinoma (CCA). The lack of efficient diagnostic methods for CCA is a major problem. Testing for genetic abnormalities may increase the diagnostic value of cytology. Methods. We assessed genetic abnormalities for CDKN2A, TP53, ERBB2, 20q, MYC, and chromosomes 7 and 17 and measures of genetic clonal diversity in brush samples from 29 PSC patients with benign biliary strictures and 12 patients with sporadic CCA or PSC-associated CCA. Diagnostic performance of cytology alone and in combination with genetic markers was evaluated by sensitivity, specificity, and area under the curve analysis. Results. The presence of MYC gain and CDKN2A loss as well as a higher clonal diversity was significantly associated with malignancy. MYC gain increased the sensitivity of cytology from 50% to 83%. However, the specificity decreased from 97% to 76%. The diagnostic accuracy of the best performing measures of clonal diversity was similar to the combination of cytology and MYC. Adding CDKN2A loss to the panel had no additional benefit. Conclusion. Evaluation of MYC abnormalities and measures of clonal diversity in brush cytology specimens may be of clinical value in distinguishing CCA from benign biliary strictures in PSC.
Collapse
|
64
|
Critical B-lymphoid cell intrinsic role of endogenous MCL-1 in c-MYC-induced lymphomagenesis. Cell Death Dis 2016; 7:e2132. [PMID: 26962682 PMCID: PMC4823944 DOI: 10.1038/cddis.2016.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 02/02/2023]
Abstract
Evasion of apoptosis is critical for tumorigenesis, and sustained survival of nascent neoplastic cells may depend upon the endogenous levels of pro-survival BCL-2 family members. Indeed, previous studies using gene-targeted mice revealed that BCL-XL, but surprisingly not BCL-2, is critical for the development of c-MYC-induced pre-B/B lymphomas. However, it remains unclear whether another pro-survival BCL-2 relative contributes to their development. MCL-1 is an intriguing candidate, because it is required for cell survival during early B-lymphocyte differentiation. It is expressed abnormally high in several types of human B-cell lymphomas and is implicated in their resistance to chemotherapy. To test the B-cell intrinsic requirement for endogenous MCL-1 in lymphoma development, we conditionally deleted Mcl-1 in B-lymphoid cells of Eμ-Myc transgenic mice. We found that MCL-1 loss in early B-lymphoid progenitors delayed MYC-driven lymphomagenesis. Moreover, the lymphomas that arose when MCL-1 levels were diminished appeared to have been selected for reduced levels of BIM and/or increased levels of BCL-XL. These results underscore the importance of MCL-1 in lymphoma development and show that alterations in the levels of other cell death regulators can compensate for deficiencies in MCL-1 expression.
Collapse
|
65
|
Grabow S, Delbridge ARD, Aubrey BJ, Vandenberg CJ, Strasser A. Loss of a Single Mcl-1 Allele Inhibits MYC-Driven Lymphomagenesis by Sensitizing Pro-B Cells to Apoptosis. Cell Rep 2016; 14:2337-47. [PMID: 26947081 DOI: 10.1016/j.celrep.2016.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 01/19/2023] Open
Abstract
MCL-1 is critical for progenitor cell survival during emergency hematopoiesis, but its role in sustaining cells undergoing transformation and in lymphomagenesis is only poorly understood. We investigated the importance of MCL-1 in the survival of B lymphoid progenitors undergoing MYC-driven transformation and its functional interactions with pro-apoptotic BIM and PUMA and the tumor suppressor p53 in lymphoma development. Loss of one Mcl-1 allele almost abrogated MYC-driven-lymphoma development owing to a reduction in lymphoma initiating pre-B cells. Although loss of the p53 target PUMA had minor impact, loss of one p53 allele substantially accelerated lymphoma development when MCL-1 was limiting, most likely because p53 loss also causes defects in non-apoptotic tumor suppressive processes. Remarkably, loss of BIM restored the survival of lymphoma initiating cells and rate of tumor development. Thus, MCL-1 has a major role in lymphoma initiating pro-B cells to oppose BIM, which is upregulated in response to oncogenic stress.
Collapse
Affiliation(s)
- Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Alex R D Delbridge
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Brandon J Aubrey
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia; Department of Clinical Haematology and Bone Marrow Transplant Service, the Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Cassandra J Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
66
|
Shah M, Rennoll SA, Raup-Konsavage WM, Yochum GS. A dynamic exchange of TCF3 and TCF4 transcription factors controls MYC expression in colorectal cancer cells. Cell Cycle 2015; 14:323-32. [PMID: 25659031 DOI: 10.4161/15384101.2014.980643] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Deregulated Wnt/β-catenin signaling promotes colorectal cancer (CRC) by activating expression of the c-MYC proto-oncogene (MYC). In the nucleus, the β-catenin transcriptional co-activator binds T-cell factor (TCF) transcription factors, and together TCF/β-catenin complexes activate MYC expression through Wnt responsive DNA regulatory elements (WREs). The MYC 3' WRE maps 1.4-kb downstream from the MYC transcription stop site and binds TCF4/β-catenin transcription complexes to activate MYC. However, the underlying mechanisms for how this element operates are not fully understood. Here, we report that the TCF family member, TCF3, plays an important role in regulating MYC expression in CRCs. We demonstrate that TCF3 binds the MYC 3' WRE to repress MYC. When TCF3 is depleted using shRNAs, the MYC 3' WRE is more available to bind TCF4/β-catenin complexes. Stimulating downstream Wnt/β-catenin signaling by inhibiting GSK3β causes an exchange of TCF3 with TCF4/β-catenin complexes to activate MYC. Finally, this transcription factor switch at the MYC 3' WRE controls MYC expression as quiescent cells re-enter the cell cycle and progress to S phase. These results indicate that a dynamic interplay of TCF transcription factors governs MYC gene expression in CRCs.
Collapse
Key Words
- APC, adenomatous polyposis coli
- CRC, colorectal cancer
- ChIP, chromatin immunoprecipitation
- GSK3β, glycogen synthase kinase 3 β
- HDAC, histone deacetylase
- Lef, Lymphoid enhancer-binding factor
- LiCl, lithium chloride
- MYC
- MYC, myelocytomatosis
- RT, reverse transcription
- TCF, T-cell factor
- TCF3
- TCF4
- TLE, Transducin-like enhancer of split
- WRE
- WRE, Wnt responsive DNA element
- colorectal cancer
- qPCR, quantitative PCR
- transcription
- β-catenin
Collapse
Affiliation(s)
- Meera Shah
- a Department of Biochemistry and Molecular Biology ; The Pennsylvania State University College of Medicine ; Hershey , PA USA
| | | | | | | |
Collapse
|
67
|
Cai Q, Medeiros LJ, Xu X, Young KH. MYC-driven aggressive B-cell lymphomas: biology, entity, differential diagnosis and clinical management. Oncotarget 2015; 6:38591-38616. [PMID: 26416427 PMCID: PMC4770723 DOI: 10.18632/oncotarget.5774] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
MYC, a potent oncogene located at chromosome locus 8q24.21, was identified initially by its involvement in Burkitt lymphoma with t(8;14)(q24;q32). MYC encodes a helix-loop-helix transcription factor that accentuates many cellular functions including proliferation, growth and apoptosis. MYC alterations also have been identified in other mature B-cell neoplasms and are associated with aggressive clinical behavior. There are several regulatory factors and dysregulated signaling that lead to MYC up-regulation in B-cell lymphomas. One typical example is the failure of physiological repressors such as Bcl6 or BLIMP1 to suppress MYC over-expression. In addition, MYC alterations are often developed concurrently with other genetic alterations that counteract the proapoptotic function of MYC. In this review, we discuss the physiologic function of MYC and the role that MYC likely plays in the pathogenesis of B-cell lymphomas. We also summarize the role MYC plays in the diagnosis, prognostication and various strategies to detect MYC rearrangement and expression.
Collapse
Affiliation(s)
- Qingqing Cai
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaolu Xu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
68
|
Fleenor CJ, Higa K, Weil MM, DeGregori J. Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies. Radiat Res 2015; 184:341-51. [PMID: 26414506 DOI: 10.1667/rr14147.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human exposure to ionizing radiation is highly associated with adverse health effects, including reduced hematopoietic cell function and increased risk of carcinogenesis. The hematopoietic deficits manifest across blood cell types and persist for years after radiation exposure, suggesting a long-lived and multi-potent cellular reservoir for radiation-induced effects. As such, research has focused on identifying both the immediate and latent hematopoietic stem cell responses to radiation exposure. Radiation-associated effects on hematopoietic function and malignancy development have generally been attributed to the direct induction of mutations resulting from radiation-induced DNA damage. Other studies have illuminated the role of cellular programs that both limit and enhance radiation-induced tissue phenotypes and carcinogenesis. In this review, distinct but collaborative cellular responses to genotoxic insults are highlighted, with an emphasis on how these programmed responses impact hematopoietic cellular fitness and competition. These radiation-induced cellular programs include apoptosis, senescence and impaired self-renewal within the hematopoietic stem cell (HSC) pool. In the context of sporadic DNA damage to a cell, these cellular responses act in concert to restore tissue function and prevent selection for adaptive oncogenic mutations. But in the contexts of whole-tissue exposure or whole-body exposure to genotoxins, such as radiotherapy or chemotherapy, we propose that these programs can contribute to long-lasting tissue impairment and increased carcinogenesis.
Collapse
Affiliation(s)
| | | | - Michael M Weil
- d Department of Environmental and Radiological Health Sciences, Colorado State University; Fort Collins, Colorado
| | - James DeGregori
- Departments of a Immunology.,b Biochemistry and Molecular Genetics and.,c Medicine, School of Medicine, University of Colorado, Aurora, Colorado; and
| |
Collapse
|
69
|
Knudsen ES, McClendon AK, Franco J, Ertel A, Fortina P, Witkiewicz AK. RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer. Cell Cycle 2015; 14:109-22. [PMID: 25602521 DOI: 10.4161/15384101.2014.967118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by multiple genetic events occurring in concert to drive pathogenic features of the disease. Here we interrogated the coordinate impact of p53, RB, and MYC in a genetic model of TNBC, in parallel with the analysis of clinical specimens. Primary mouse mammary epithelial cells (mMEC) with defined genetic features were used to delineate the combined action of RB and/or p53 in the genesis of TNBC. In this context, the deletion of either RB or p53 alone and in combination increased the proliferation of mMEC; however, the cells did not have the capacity to invade in matrigel. Gene expression profiling revealed that loss of each tumor suppressor has effects related to proliferation, but RB loss in particular leads to alterations in gene expression associated with the epithelial-to-mesenchymal transition. The overexpression of MYC in combination with p53 loss or combined RB/p53 loss drove rapid cell growth. While the effects of MYC overexpression had a dominant impact on gene expression, loss of RB further enhanced the deregulation of a gene expression signature associated with invasion. Specific RB loss lead to enhanced invasion in boyden chambers assays and gave rise to tumors with minimal epithelial characteristics relative to RB-proficient models. Therapeutic screening revealed that RB-deficient cells were particularly resistant to agents targeting PI3K and MEK pathway. Consistent with the aggressive behavior of the preclinical models of MYC overexpression and RB loss, human TNBC tumors that express high levels of MYC and are devoid of RB have a particularly poor outcome. Together these results underscore the potency of tumor suppressor pathways in specifying the biology of breast cancer. Further, they demonstrate that MYC overexpression in concert with RB can promote a particularly aggressive form of TNBC.
Collapse
Affiliation(s)
- Erik S Knudsen
- a Simmons Cancer Center; UT Southwestern ; Dallas , TX USA
| | | | | | | | | | | |
Collapse
|
70
|
Oral lichen planus patients exhibit consistent chromosomal numerical aberrations: A follow-up analysis. Head Neck 2015; 38 Suppl 1:E741-6. [DOI: 10.1002/hed.24086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/12/2014] [Accepted: 04/14/2015] [Indexed: 11/07/2022] Open
|
71
|
Stratikopoulos EE, Dendy M, Szabolcs M, Khaykin AJ, Lefebvre C, Zhou MM, Parsons R. Kinase and BET Inhibitors Together Clamp Inhibition of PI3K Signaling and Overcome Resistance to Therapy. Cancer Cell 2015; 27:837-51. [PMID: 26058079 PMCID: PMC4918409 DOI: 10.1016/j.ccell.2015.05.006] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
Unsustained enzyme inhibition is a barrier to targeted therapy for cancer. Here, resistance to a class I PI3K inhibitor in a model of metastatic breast cancer driven by PI3K and MYC was associated with feedback activation of tyrosine kinase receptors (RTKs), AKT, mTOR, and MYC. Inhibitors of bromodomain and extra terminal domain (BET) proteins also failed to affect tumor growth. Interestingly, BET inhibitors lowered PI3K signaling and dissociated BRD4 from chromatin at regulatory regions of insulin receptor and EGFR family RTKs to reduce their expression. Combined PI3K and BET inhibition induced cell death, tumor regression, and clamped inhibition of PI3K signaling in a broad range of tumor cell lines to provide a strategy to overcome resistance to kinase inhibitor therapy.
Collapse
Affiliation(s)
- Elias E Stratikopoulos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Meaghan Dendy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Matthias Szabolcs
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | - Alan J Khaykin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Celine Lefebvre
- Inserm U981, Institut Gustave Roussy, 94805 Villejuif, France
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
72
|
Yang J, AlTahan AM, Hu D, Wang Y, Cheng PH, Morton CL, Qu C, Nathwani AC, Shohet JM, Fotsis T, Koster J, Versteeg R, Okada H, Harris AL, Davidoff AM. The role of histone demethylase KDM4B in Myc signaling in neuroblastoma. J Natl Cancer Inst 2015; 107:djv080. [PMID: 25925418 PMCID: PMC4555638 DOI: 10.1093/jnci/djv080] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epigenetic alterations, such as histone methylation, modulate Myc signaling, a pathway central to oncogenesis. We investigated the role of the histone demethylase KDM4B in N-Myc-mediated neuroblastoma pathogenesis. METHODS Spearman correlation was performed to correlate MYCN and KDM4B expression. RNA interference, microarray analysis, gene set enrichment analysis, and real-time polymerase chain reaction were used to define the functions of KDM4B. Immunoprecipitation and immunofluorescence were used to assess protein-protein interactions between N-Myc and KDM4B. Chromatin immunoprecipitation was used to assess the binding of Myc targets. Constitutive and inducible lentiviral-mediated KDM4B knockdown with shRNA was used to assess the effects on tumor growth. Kaplan-Meier survival analysis was used to assess the prognostic value of KDM4B expression. All statistical tests were two-sided. RESULTS KDM4B and MYCN expression were found to be statistically significantly correlated in a variety of cancers, including neuroblastoma (R = 0.396, P < .001). Functional studies demonstrated that KDM4B regulates the Myc pathway. N-Myc was found to physically interact with and recruit KDM4B. KDM4B was found to regulate neuroblastoma cell proliferation and differentiation in vitro and xenograft growth in vivo (5 mice/group, two-tailed t test, P ≤ 0.001). Finally, together with MYCN amplification, KDM4B was found to stratify a subgroup of poor-prognosis patients (122 case patients, P < .001). CONCLUSIONS Our findings provide insight into the epigenetic regulation of Myc via histone demethylation and proof-of-concept for inhibition of histone demethylases to target Myc signaling in cancers such as neuroblastoma.
Collapse
Affiliation(s)
- Jun Yang
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Alaa M AlTahan
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Dongli Hu
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Yingdi Wang
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Pei-Hsin Cheng
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Christopher L Morton
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Chunxu Qu
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Amit C Nathwani
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Jason M Shohet
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Theodore Fotsis
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Jan Koster
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Rogier Versteeg
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Hitoshi Okada
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Adrian L Harris
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH)
| | - Andrew M Davidoff
- Department of Surgery (JY, AMA, DH, PHC, CLM, AMD) and Department of Bioinformatics (CQ), St. Jude Children's Research Hospital, Memphis, TN; Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT (YW); Department of Oncology, University College London Cancer Institute, London, UK (ACN); Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (JMS); Division of Biomedical Research, Foundation of Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Ioannina, Greece (TF); Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece (TF); Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands (JK, RV); Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan (HO); Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK (ALH).
| |
Collapse
|
73
|
Delbridge ARD, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 2015; 22:1071-80. [PMID: 25952548 DOI: 10.1038/cdd.2015.50] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022] Open
Abstract
Escape from apoptosis is a key attribute of tumour cells and facilitates chemo-resistance. The 'BCL-2-regulated' or 'intrinsic' apoptotic pathway integrates stress and survival signalling to govern whether a cancer cell will live or die. Indeed, many pro-apoptotic members of the BCL-2 family have demonstrated tumour-suppression activity in mouse models of cancer and are lost or repressed in certain human cancers. Conversely, overexpression of pro-survival BCL-2 family members promotes tumorigenesis in humans and in mouse models. Many of the drugs currently used in the clinic mediate their therapeutic effects (at least in part) through the activation of the BCL-2-regulated apoptotic pathway. However, initiators of this apoptotic pathway, such as p53, are mutated, lost or silenced in many human cancers rendering them refractory to treatment. To counter such resistance mechanisms, a novel class of therapeutics, 'BH3-mimetics', has been developed. These drugs directly activate apoptosis by binding and inhibiting select antiapoptotic BCL-2 family members and thereby bypass the requirement for upstream initiators, such as p53. In this review, we discuss the role of the BCL-2 protein family in the development and treatment of cancer, with an emphasis on mechanistic studies using well-established mouse models of cancer, before describing the development and already recognised potential of the BH3-mimetic compounds.
Collapse
Affiliation(s)
- A R D Delbridge
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A Strasser
- 1] The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
74
|
Jackstadt R, Hermeking H. MicroRNAs as regulators and mediators of c-MYC function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:544-53. [DOI: 10.1016/j.bbagrm.2014.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 12/19/2022]
|
75
|
Jung KY, Wang H, Teriete P, Yap JL, Chen L, Lanning ME, Hu A, Lambert LJ, Holien T, Sundan A, Cosford N, Prochownik EV, Fletcher S. Perturbation of the c-Myc-Max protein-protein interaction via synthetic α-helix mimetics. J Med Chem 2015; 58:3002-24. [PMID: 25734936 PMCID: PMC4955407 DOI: 10.1021/jm501440q] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rational design of inhibitors of the bHLH-ZIP oncoprotein c-Myc is hampered by a lack of structure in its monomeric state. We describe herein the design of novel, low-molecular-weight, synthetic α-helix mimetics that recognize helical c-Myc in its transcriptionally active coiled-coil structure in association with its obligate bHLH-ZIP partner Max. These compounds perturb the heterodimer's binding to its canonical E-box DNA sequence without causing protein-protein dissociation, heralding a new mechanistic class of "direct" c-Myc inhibitors. In addition to electrophoretic mobility shift assays, this model was corroborated by further biophysical methods, including NMR spectroscopy and surface plasmon resonance. Several compounds demonstrated a 2-fold or greater selectivity for c-Myc-Max heterodimers over Max-Max homodimers with IC50 values as low as 5.6 μM. Finally, these compounds inhibited the proliferation of c-Myc-expressing cell lines in a concentration-dependent manner that correlated with the loss of expression of a c-Myc-dependent reporter plasmid despite the fact that c-Myc-Max heterodimers remained intact.
Collapse
Affiliation(s)
- Kwan-Young Jung
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Huabo Wang
- Section of Hematology/Oncology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC Pittsburgh, PA 15224
| | - Peter Teriete
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeremy L. Yap
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Lijia Chen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Maryanna E. Lanning
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Angela Hu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
| | - Lester J. Lambert
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Toril Holien
- KG Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Sundan
- KG Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nicholas Cosford
- Cell Death and Survival Networks Research Program, NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Edward V. Prochownik
- Section of Hematology/Oncology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC Pittsburgh, PA 15224
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201
- University of Maryland Greenebaum Cancer Center, Baltimore, MD 21201
| |
Collapse
|
76
|
Wang P, Alvarez-Perez JC, Felsenfeld DP, Liu H, Sivendran S, Bender A, Kumar A, Sanchez R, Scott DK, Garcia-Ocaña A, Stewart AF. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med 2015; 21:383-8. [PMID: 25751815 PMCID: PMC4690535 DOI: 10.1038/nm.3820] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Types 1 and 2 diabetes affect some 380 million people worldwide. Both ultimately result from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with a peak percentage (∼2%) engaged in the cell cycle in the first year of life. In embryonic life and after early childhood, beta cell replication is barely detectable. Whereas beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts. Hence, there remains an urgent need for antidiabetic therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, using a high-throughput small-molecule screen (HTS), we find that analogs of the small molecule harmine function as a new class of human beta cell mitogenic compounds. We also define dual-specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine and the nuclear factors of activated T cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation and differentiation. Using three different mouse and human islet in vivo-based models, we show that harmine is able to induce beta cell proliferation, increase islet mass and improve glycemic control. These observations suggest that harmine analogs may have unique therapeutic promise for human diabetes therapy. Enhancing the potency and beta cell specificity of these compounds are important future challenges.
Collapse
Affiliation(s)
- Peng Wang
- The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Juan-Carlos Alvarez-Perez
- The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Dan P. Felsenfeld
- The Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Integrated Screening Core, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Hongtao Liu
- The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Sharmila Sivendran
- The Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Integrated Screening Core, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Aaron Bender
- The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Anil Kumar
- The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Roberto Sanchez
- The Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Donald K. Scott
- The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Adolfo Garcia-Ocaña
- The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
| | - Andrew F. Stewart
- The Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, NY, NY USA
- The Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, NY, NY USA
| |
Collapse
|
77
|
Wang P, Fiaschi-Taesch NM, Vasavada RC, Scott DK, García-Ocaña A, Stewart AF. Diabetes mellitus--advances and challenges in human β-cell proliferation. Nat Rev Endocrinol 2015; 11:201-12. [PMID: 25687999 DOI: 10.1038/nrendo.2015.9] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The treatment of diabetes mellitus represents one of the greatest medical challenges of our era. Diabetes results from a deficiency or functional impairment of insulin-producing β cells, alone or in combination with insulin resistance. It logically follows that the replacement or regeneration of β cells should reverse the progression of diabetes and, indeed, this seems to be the case in humans and rodents. This concept has prompted attempts in many laboratories to create new human β cells using stem-cell strategies to transdifferentiate or reprogramme non-β cells into β cells or to discover small molecules or other compounds that can induce proliferation of human β cells. This latter approach has shown promise, but has also proven particularly challenging to implement. In this Review, we discuss the physiology of normal human β-cell replication, the molecular mechanisms that regulate the cell cycle in human β cells, the upstream intracellular signalling pathways that connect them to cell surface receptors on β cells, the epigenetic mechanisms that control human β-cell proliferation and unbiased approaches for discovering novel molecules that can drive human β-cell proliferation. Finally, we discuss the potential and challenges of implementing strategies that replace or regenerate β cells.
Collapse
Affiliation(s)
- Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Nathalie M Fiaschi-Taesch
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Rupangi C Vasavada
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Adolfo García-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, Atran 5, Box 1152, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
78
|
Pan XN, Chen JJ, Wang LX, Xiao RZ, Liu LL, Fang ZG, Liu Q, Long ZJ, Lin DJ. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation. PLoS One 2014; 9:e105381. [PMID: 25127121 PMCID: PMC4134294 DOI: 10.1371/journal.pone.0105381] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/22/2014] [Indexed: 01/04/2023] Open
Abstract
Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML) treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA). Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.
Collapse
Affiliation(s)
- Xiao-Na Pan
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jie Chen
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Le-Xun Wang
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Ruo-Zhi Xiao
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Ling-Ling Liu
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Gang Fang
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Quentin Liu
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Guangzhou, China
| | - Zi-Jie Long
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Guangzhou, China
- * E-mail: (ZL); (DL)
| | - Dong-Jun Lin
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen Institute of Hematology, Sun Yat-sen University, Guangzhou, China
- * E-mail: (ZL); (DL)
| |
Collapse
|
79
|
Chauhan J, Wang H, Yap JL, Sabato PE, Hu A, Prochownik EV, Fletcher S. Discovery of methyl 4'-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1'-biphenyl]-3-carboxylate, an improved small-molecule inhibitor of c-Myc-max dimerization. ChemMedChem 2014; 9:2274-2285. [PMID: 24976143 DOI: 10.1002/cmdc.201402189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Indexed: 01/28/2023]
Abstract
c-Myc is a basic helix-loop-helix-leucine zipper (bHLH-ZIP) transcription factor that is responsible for the transcription of a wide range of target genes involved in many cancer-related cellular processes. Over-expression of c-Myc has been observed in, and directly contributes to, a variety of human cancers including those of the hematopoietic system, lung, prostate and colon. To become transcriptionally active, c-Myc must first dimerize with Myc-associated factor X (Max) via its own bHLH-ZIP domain. A proven strategy towards the inhibition of c-Myc oncogenic activity is to interfere with the structural integrity of the c-Myc-Max heterodimer. The small molecule 10074-G5 is an inhibitor of c-Myc-Max dimerization (IC50 =146 μM) that operates by binding and stabilizing c-Myc in its monomeric form. We have identified a congener of 10074-G5, termed 3jc48-3 (methyl 4'-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1'-biphenyl]-3-carboxylate), that is about five times as potent (IC50 =34 μM) at inhibiting c-Myc-Max dimerization as the parent compound. 3jc48-3 exhibited an approximate twofold selectivity for c-Myc-Max heterodimers over Max-Max homodimers, suggesting that its mode of action is through binding c-Myc. 3jc48-3 inhibited the proliferation of c-Myc-over-expressing HL60 and Daudi cells with single-digit micromolar IC50 values by causing growth arrest at the G0 /G1 phase. Co-immunoprecipitation studies indicated that 3jc48-3 inhibits c-Myc-Max dimerization in cells, which was further substantiated by the specific silencing of a c-Myc-driven luciferase reporter gene. Finally, 3jc48-3's intracellular half-life was >17 h. Collectively, these data demonstrate 3jc48-3 to be one of the most potent, cellularly active and stable c-Myc inhibitors reported to date.
Collapse
Affiliation(s)
- Jay Chauhan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St, Baltimore, MD 21201, USA
| | - Huabo Wang
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Jeremy L Yap
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St, Baltimore, MD 21201, USA
| | - Philip E Sabato
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St, Baltimore, MD 21201, USA
| | - Angela Hu
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Edward V Prochownik
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine St, Baltimore, MD 21201, USA
| |
Collapse
|
80
|
Müller I, Larsson K, Frenzel A, Oliynyk G, Zirath H, Prochownik EV, Westwood NJ, Henriksson MA. Targeting of the MYCN protein with small molecule c-MYC inhibitors. PLoS One 2014; 9:e97285. [PMID: 24859015 PMCID: PMC4032254 DOI: 10.1371/journal.pone.0097285] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 04/17/2014] [Indexed: 12/27/2022] Open
Abstract
Members of the MYC family are the most frequently deregulated oncogenes in human cancer and are often correlated with aggressive disease and/or poorly differentiated tumors. Since patients with MYCN-amplified neuroblastoma have a poor prognosis, targeting MYCN using small molecule inhibitors could represent a promising therapeutic approach. We have previously demonstrated that the small molecule 10058-F4, known to bind to the c-MYC bHLHZip dimerization domain and inhibiting the c-MYC/MAX interaction, also interferes with the MYCN/MAX dimerization in vitro and imparts anti-tumorigenic effects in neuroblastoma tumor models with MYCN overexpression. Our previous work also revealed that MYCN-inhibition leads to mitochondrial dysfunction resulting in accumulation of lipid droplets in neuroblastoma cells. To expand our understanding of how small molecules interfere with MYCN, we have now analyzed the direct binding of 10058-F4, as well as three of its analogs; #474, #764 and 10058-F4(7RH), one metabolite C-m/z 232, and a structurally unrelated c-MYC inhibitor 10074-G5, to the bHLHZip domain of MYCN. We also assessed their ability to induce apoptosis, neurite outgrowth and lipid accumulation in neuroblastoma cells. Interestingly, all c-MYC binding molecules tested also bind MYCN as assayed by surface plasmon resonance. Using a proximity ligation assay, we found reduced interaction between MYCN and MAX after treatment with all molecules except for the 10058-F4 metabolite C-m/z 232 and the non-binder 10058-F4(7RH). Importantly, 10074-G5 and 10058-F4 were the most efficient in inducing neuronal differentiation and lipid accumulation in MYCN-amplified neuroblastoma cells. Together our data demonstrate MYCN-binding properties for a selection of small molecules, and provide functional information that could be of importance for future development of targeted therapies against MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Inga Müller
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Frenzel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ganna Oliynyk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Zirath
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Edward V. Prochownik
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania, United States of America
| | - Nicholas J. Westwood
- School of Chemistry and Biomedical Sciences Research Complex, University of St. Andrews and EaStCHEM, St. Andrews, Fife, Scotland, United Kingdom
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
81
|
Barathidasan R, Pawaiya RS, Rai RB, Dhama K. Upregulated Myc expression in N-methyl nitrosourea (MNU)- induced rat mammary tumours. Asian Pac J Cancer Prev 2014; 14:4883-9. [PMID: 24083763 DOI: 10.7314/apjcp.2013.14.8.4883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most common incident cancer and cause of cancer-related deaths in women is breast cancer. The Myc gene is upregulated in many cancer types including breast cancer, and it is considered as a potential anti-cancer drug target. The present study was conducted to evaluate the Myc (gene and protein) expression pattern in an experimental mammary tumour model in rats. MATERIALS AND METHODS Thirty six Sprague Dawley rats were divided into: Experimental group (26 animals), which received the chemical carcinogen N-methyl nitrosourea (MNU) and a control group (10 animals), which received vehicle only. c-Myc oncoprotein and its mRNA expression pattern were evaluated using immunohistochemistry (IHC) and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively, in normal rat mammary tissue and mammary tumours. The rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as internal control for semi-quantitative RT-PCR. RESULTS Histopathological examination of mammary tissues and tumours from MNU treated animals revealed the presence of premalignant lesions, benign tumours, in situ carcinomas and invasive carcinomas. Immunohistochemical evaluation of tumour tissues showed upregulation and heterogeneous cellular localization of c-Myc oncoprotein. The expression levels of c-Myc oncoprotein were significantly elevated (75- 91%) in all the tumours. Semi-quantitative RT-PCR revealed increased expression of c-Myc mRNA in mammary tumours compared to normal mammary tissues. CONCLUSIONS Further large-scale investigation study is needed to adopt this experimental rat mammary tumour model as an in vivo model to study anti-cancer strategies directed against Myc or its downstream partners at the transcriptional or post-transcriptional level.
Collapse
Affiliation(s)
- Rajamani Barathidasan
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, India E-mail :
| | | | | | | |
Collapse
|
82
|
Zhang N, Ichikawa W, Faiola F, Lo SY, Liu X, Martinez E. MYC interacts with the human STAGA coactivator complex via multivalent contacts with the GCN5 and TRRAP subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:395-405. [DOI: 10.1016/j.bbagrm.2014.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 11/24/2022]
|
83
|
Ramkumar C, Cui H, Kong Y, Jones SN, Gerstein RM, Zhang H. Smurf2 suppresses B-cell proliferation and lymphomagenesis by mediating ubiquitination and degradation of YY1. Nat Commun 2014; 4:2598. [PMID: 24121673 PMCID: PMC3801104 DOI: 10.1038/ncomms3598] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 09/12/2013] [Indexed: 12/28/2022] Open
Abstract
About half of patients with diffuse large B-cell lymphoma (DLBCL) do not respond to or relapse soon after the standard chemotherapy, indicating a critical need to better understand the specific pathways perturbed in DLBCL for developing effective therapeutic approaches. Mice deficient in the E3 ubiquitin ligase Smurf2 spontaneously develop B-cell lymphomas that resemble human DLBCL with molecular features of germinal center or post-germinal center B cells. Here we show that Smurf2 mediates ubiquitination and degradation of YY1, a key germinal center transcription factor. Smurf2 deficiency enhances YY1-mediated transactivation of c-Myc and B-cell proliferation. Furthermore, Smurf2 expression is significantly decreased in primary human DLBCL samples, and low levels of Smurf2 expression correlate with inferior survival in DLBCL patients. The Smurf2-YY1-c-Myc regulatory axis represents a novel pathway perturbed in DLBCL that suppresses B-cell proliferation and lymphomagenesis, suggesting pharmaceutical targeting of Smurf2 as a new therapeutic paradigm for DLBCL.
Collapse
Affiliation(s)
- Charusheila Ramkumar
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
84
|
Huang X, Spencer GJ, Lynch JT, Ciceri F, Somerville TDD, Somervaille TCP. Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells. Leukemia 2014; 28:1081-91. [PMID: 24166297 PMCID: PMC3998875 DOI: 10.1038/leu.2013.316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/30/2013] [Accepted: 10/22/2013] [Indexed: 01/21/2023]
Abstract
Through a targeted knockdown (KD) screen of chromatin regulatory genes, we identified the EP400 complex components EPC1 and EPC2 as critical oncogenic cofactors in acute myeloid leukemia (AML). EPC1 and EPC2 were required for the clonogenic potential of human AML cells of multiple molecular subtypes. Focusing on MLL-mutated AML as an exemplar, Epc1 or Epc2 KD-induced apoptosis of murine MLL-AF9 AML cells and abolished leukemia stem cell potential. By contrast, normal hematopoietic stem and progenitor cells (HSPC) were spared. Similar selectivity was observed for human primary AML cells versus normal CD34(+) HSPC. In keeping with these distinct functional consequences, Epc1 or Epc2 KD-induced divergent transcriptional consequences in murine MLL-AF9 granulocyte-macrophage progenitor-like (GMP) cells versus normal GMP, with a signature of increased MYC activity in leukemic but not normal cells. This was caused by accumulation of MYC protein and was also observed following KD of other EP400 complex genes. Pharmacological inhibition of MYC:MAX dimerization, or concomitant MYC KD, reduced apoptosis following EPC1 KD, linking the accumulation of MYC to cell death. Therefore, EPC1 and EPC2 are components of a complex that directly or indirectly serves to prevent MYC accumulation and AML cell apoptosis, thus sustaining oncogenic potential.
Collapse
Affiliation(s)
- Xu Huang
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - James T Lynch
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Filippo Ciceri
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim D D Somerville
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4BX, United Kingdom
| |
Collapse
|
85
|
The Myc world within reach. Methods Mol Biol 2014; 1012:1-6. [PMID: 24006054 DOI: 10.1007/978-1-62703-429-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Myc is a transcriptional coordinator of a wide range of intracellular and extracellular processes required for cell proliferation. These processes are tightly regulated in physiological conditions but hijacked when Myc is oncogenically activated. In fact, aberrantly elevated and/or deregulated activity of Myc is associated with the majority of human cancers. Several switchable mouse transgenic models have been developed and provided insights on the role of Myc in maintaining multiple aspects of the tumor phenotype, indicating that Myc inhibition would constitute an effective and broadly applicable anticancer therapeutic strategy. This issue of "The Myc gene: Methods and Protocols" provides a rich collection of techniques developed or routinely used by Myc investigators and serves as an invaluable resource for exploring the pleiotropic and still puzzling Myc biological functions.
Collapse
|
86
|
Lu Y, Wu Y, Feng X, Shen R, Wang JH, Fallahi M, Li W, Yang C, Hankey W, Zhao W, Ganju RK, Li MO, Cleveland JL, Zou X. CDK4 deficiency promotes genomic instability and enhances Myc-driven lymphomagenesis. J Clin Invest 2014; 124:1672-84. [PMID: 24614102 DOI: 10.1172/jci63139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 01/10/2014] [Indexed: 12/13/2022] Open
Abstract
The G1 kinase CDK4 is amplified or overexpressed in some human tumors and promotes tumorigenesis by inhibiting known tumor suppressors. Here, we report that CDK4 deficiency markedly accelerated lymphoma development in the Eμ-Myc transgenic mouse model of B lymphoma and that silencing or loss of CDK4 augmented the tumorigenic potential of Myc-driven mouse and human B cell lymphoma in transplant models. Accelerated disease in CDK4-deficient Eμ-Myc transgenic mice was associated with rampant genomic instability that was provoked by dysregulation of a FOXO1/RAG1/RAG2 pathway. Specifically, CDK4 phosphorylated and inactivated FOXO1, which prevented FOXO1-dependent induction of Rag1 and Rag2 transcription. CDK4-deficient Eμ-Myc B cells had high levels of the active form of FOXO1 and elevated RAG1 and RAG2. Furthermore, overexpression of RAG1 and RAG2 accelerated lymphoma development in a transplant model, with RAG1/2-expressing tumors exhibiting hallmarks of genomic instability. Evaluation of human tumor samples revealed that CDK4 expression was markedly suppressed, while FOXO1 expression was elevated, in several subtypes of human non-Hodgkin B cell lymphoma. Collectively, these findings establish a context-specific tumor suppressor function for CDK4 that prevents genomic instability, which contributes to B cell lymphoma. Furthermore, our data suggest that targeting CDK4 may increase the risk for the development and/or progression of lymphoma.
Collapse
|
87
|
Tarasenko N, Cutts SM, Phillips DR, Berkovitch-Luria G, Bardugo-Nissim E, Weitman M, Nudelman A, Rephaeli A. A novel valproic acid prodrug as an anticancer agent that enhances doxorubicin anticancer activity and protects normal cells against its toxicity in vitro and in vivo. Biochem Pharmacol 2014; 88:158-68. [DOI: 10.1016/j.bcp.2014.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/16/2022]
|
88
|
ELFN1-AS1: a novel primate gene with possible microRNA function expressed predominantly in human tumors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:398097. [PMID: 24707484 PMCID: PMC3953637 DOI: 10.1155/2014/398097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 01/11/2023]
Abstract
Human gene LOC100505644 uncharacterized LOC100505644 [Homo sapiens] (Entrez Gene ID 100505644) is abundantly expressed in tumors but weakly expressed in few normal tissues. Till now the function of this gene remains unknown. Here we identified the chromosomal borders of the transcribed region and the major splice form of the LOC100505644-specific transcript. We characterised the major regulatory motifs of the gene and its splice sites. Analysis of the secondary structure of the major transcript variant revealed a hairpin-like structure characteristic for precursor microRNAs. Comparative genomic analysis of the locus showed that it originated in primates de novo. Taken together, our data indicate that human gene LOC100505644 encodes some non-protein coding RNA, likely a microRNA. It was assigned a gene symbol ELFN1-AS1 (ELFN1 antisense RNA 1 (non-protein coding)). This gene combines features of evolutionary novelty and predominant expression in tumors.
Collapse
|
89
|
Giancotti FG. Deregulation of cell signaling in cancer. FEBS Lett 2014; 588:2558-70. [PMID: 24561200 DOI: 10.1016/j.febslet.2014.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations disrupt the regulatory circuits that govern cell function, enabling tumor cells to undergo de-regulated mitogenesis, to resist to pro-apoptotic insults, and to invade through tissue boundaries. Cancer cell biology has played a crucial role in elucidating the signaling mechanisms by which oncogenic mutations sustain these malignant behaviors and thereby in identifying rational targets for cancer drugs. The efficacy of such targeted therapies illustrate the power of a reductionist approach to the study of cancer.
Collapse
Affiliation(s)
- Filippo G Giancotti
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
90
|
Paredes S, Villanova L, Chua KF. Molecular pathways: emerging roles of mammalian Sirtuin SIRT7 in cancer. Clin Cancer Res 2014; 20:1741-6. [PMID: 24536059 DOI: 10.1158/1078-0432.ccr-13-1547] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIRT7 belongs to the Sirtuin family of NAD-dependent enzymes, the members of which play diverse roles in aging, metabolism, and disease biology. Increased SIRT7 expression is observed in human cancers and growing evidence suggests important SIRT7 functions in fundamental cellular programs with an impact on oncogenic transformation and tumor biology. SIRT7 associates with chromatin, where it catalyzes selective deacetylation of lysine 18 on histone H3 (H3K18), an emerging epigenetic biomarker of aggressive tumors and poor clinical outcome in patients with cancer. Through H3K18 deacetylation at specific promoters, SIRT7 controls a tumor-suppressive gene expression program that stabilizes the transformed state of cancer cells. SIRT7 also orchestrates several molecular processes, including rRNA and tRNA synthesis, which ultimately promote the increased ribosome biogenesis necessary for tumor cell growth and proliferation. Remarkably, inactivation of SIRT7 can reverse the transformed phenotype of cancer cells and reduce their tumorigenicity in vivo. These findings place SIRT7 at the crossroads of chromatin signaling, metabolic, and tumor-regulatory pathways. Thus, SIRT7 is a promising pharmacologic target for epigenetic cancer therapy. The development of SIRT7 modulators may allow new therapeutic strategies that control tumor progression by reprogramming the chromatin landscape and biosynthetic machinery of cancer cells.
Collapse
Affiliation(s)
- Silvana Paredes
- Authors' Affiliations: Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, School of Medicine, Stanford University, Stanford; Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California; and Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | | |
Collapse
|
91
|
Menendez JA, Alarcón T, Joven J. Gerometabolites: the pseudohypoxic aging side of cancer oncometabolites. Cell Cycle 2014; 13:699-709. [PMID: 24526120 DOI: 10.4161/cc.28079] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncometabolites are defined as small-molecule components (or enantiomers) of normal metabolism whose accumulation causes signaling dysregulation to establish a milieu that initiates carcinogenesis. In a similar manner, we propose the term "gerometabolites" to refer to small-molecule components of normal metabolism whose depletion causes signaling dysregulation to establish a milieu that drives aging. In an investigation of the pathogenic activities of the currently recognized oncometabolites R(-)-2-hydroxyglutarate (2-HG), fumarate, and succinate, which accumulate due to mutations in isocitrate dehydrogenases (IDH), fumarate hydratase (FH), and succinate dehydrogenase (SDH), respectively, we illustrate the fact that metabolic pseudohypoxia, the accumulation of hypoxia-inducible factor (HIFα) under normoxic conditions, and the subsequent Warburg-like reprogramming that shifts glucose metabolism from the oxidative pathway to aerobic glycolysis are the same mechanisms through which the decline of the "gerometabolite" nicotinamide adenine dinucleotide (NAD)(+) reversibly disrupts nuclear-mitochondrial communication and contributes to the decline in mitochondrial function with age. From an evolutionary perspective, it is reasonable to view NAD(+)-driven mitochondrial homeostasis as a conserved response to changes in energy supplies and oxygen levels. Similarly, the natural ability of 2-HG to significantly alter epigenetics might reflect an evolutionarily ancient role of certain metabolites to signal for elevated glutamine/glutamate metabolism and/or oxygen deficiency. However, when chronically altered, these responses become conserved causes of aging and cancer. Because HIFα-driven pseudohypoxia might drive the overproduction of 2-HG, the intriguing possibility exists that the decline of gerometabolites such as NAD(+) could promote the chronic accumulation of oncometabolites in normal cells during aging. If the sole activation of a Warburg-like metabolic reprogramming in normal tissues might be able to significantly increase the endogenous production of bona fide etiological determinants in cancer, such as oncometabolites, this undesirable trade-off between mitochondrial dysfunction and activation of oncometabolites production might then pave the way for the epigenetic initiation of carcinogenesis in a strictly metabolic-dependent manner. Perhaps it is time to definitely adopt the view that aging and aging diseases including cancer are governed by a pivotal regulatory role of metabolic reprogramming in cell fate decisions.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism & Cancer Group; Translational Research Laboratory; Catalan Institute of Oncology; Girona, Spain; Molecular Oncology Group; Girona Biomedical Research Institute (IDIBGI); Girona, Spain
| | - Tomás Alarcón
- Computational & Mathematical Biology Research Group; Centre de Recerca Matemàtica (CRM); Barcelona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB); Institut d'Investigació Sanitaria Pere i Virgili (IISPV); Universitat Rovira i Virgili; Reus, Spain
| |
Collapse
|
92
|
Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, Qiu X, Nabavi N, Mohrin M, Wojnoonski K, Li P, Cheng HL, Murphy AJ, Valenzuela DM, Luo H, Kapahi P, Krauss R, Mostoslavsky R, Yancopoulos GD, Alt FW, Chua KF, Chen D. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep 2013; 5:654-665. [PMID: 24210820 DOI: 10.1016/j.celrep.2013.10.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 12/31/2022] Open
Abstract
Nonalcoholic fatty liver disease is the most common chronic liver disorder in developed countries. Its pathogenesis is poorly understood, and therapeutic options are limited. Here, we show that SIRT7, an NAD(+)-dependent H3K18Ac deacetylase, functions at chromatin to suppress ER stress and prevent the development of fatty liver disease. SIRT7 is induced upon ER stress and is stabilized at the promoters of ribosomal proteins through its interaction with the transcription factor Myc to silence gene expression and to relieve ER stress. SIRT7-deficient mice develop chronic hepatosteatosis resembling human fatty liver disease. Myc inactivation or pharmacological suppression of ER stress alleviates fatty liver caused by SIRT7 deficiency. Importantly, SIRT7 suppresses ER stress and reverts the fatty liver disease in diet-induced obese mice. Our study identifies SIRT7 as a cofactor of Myc for transcriptional repression and delineates a druggable regulatory branch of the ER stress response that prevents and reverts fatty liver disease.
Collapse
Affiliation(s)
- Jiyung Shin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Ming He
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA.,Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufei Liu
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Silvana Paredes
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305, USA.,Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lidia Villanova
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305, USA.,Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.,Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Katharine Brown
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Xiaolei Qiu
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Noushin Nabavi
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Mary Mohrin
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Kathleen Wojnoonski
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Patrick Li
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Hwei-Ling Cheng
- Howard Hughes Medical Institute, The Children's Hospital, CBR Institute for Biomedical Research, Harvard University Medical School, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - David M Valenzuela
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Hanzhi Luo
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Ronald Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, The Children's Hospital, CBR Institute for Biomedical Research, Harvard University Medical School, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katrin F Chua
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA 94305, USA.,Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Danica Chen
- Program in Metabolic Biology, Nutritional Sciences & Toxicology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
93
|
Myc is required for β-catenin-mediated mammary stem cell amplification and tumorigenesis. Mol Cancer 2013; 12:132. [PMID: 24171719 PMCID: PMC4176121 DOI: 10.1186/1476-4598-12-132] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Basal-like breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Recent studies have linked activation of the Wnt/β-catenin pathway, and its downstream target, Myc, to basal-like breast cancer. Transgenic mice K5ΔNβcat previously generated by our team present a constitutive activation of Wnt/β-catenin signaling in the basal myoepithelial cell layer, resulting in focal mammary hyperplasias that progress to invasive carcinomas. Mammary lesions developed by K5ΔNβcat mice consist essentially of basal epithelial cells that, in contrast to mammary myoepithelium, do not express smooth muscle markers. METHODS Microarray analysis was used to compare K5ΔNβcat mouse tumors to human breast tumors, mammary cancer cell lines and the tumors developed in other mouse models. Cre-Lox approach was employed to delete Myc from the mammary basal cell layer of K5ΔNβcat mice. Stem cell amplification in K5ΔNβcat mouse mammary epithelium was assessed with 3D-culture and transplantation assays. RESULTS Histological and microarray analyses of the mammary lesions of K5ΔNβcat females revealed their high similarity to a subset of basal-like human breast tumors with squamous differentiation. As in human basal-like carcinomas, the Myc pathway appeared to be activated in the mammary lesions of K5ΔNβcat mice. We found that a basal cell population with stem/progenitor characteristics was amplified in K5ΔNβcat mouse preneoplastic glands. Finally, the deletion of Myc from the mammary basal layer of K5ΔNβcat mice not only abolished the regenerative capacity of basal epithelial cells, but, in addition, completely prevented the tumorigenesis. CONCLUSIONS These results strongly indicate that β-catenin-induced stem cell amplification and tumorigenesis rely ultimately on the Myc pathway activation and reinforce the hypothesis that basal stem/progenitor cells may be at the origin of a subset of basal-like breast tumors.
Collapse
|
94
|
The roles of HLH transcription factors in epithelial mesenchymal transition and multiple molecular mechanisms. Clin Exp Metastasis 2013; 31:367-77. [PMID: 24158354 DOI: 10.1007/s10585-013-9621-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is presently recognized as an important event and the initiating stage for tumor invasion and metastasis. Several EMT inducers have been identified, among which the big family of helix-loop-helix (HLH) transcription factors are rising as a novel and promising family of proteins in EMT mediation, such as Twist1, Twist2, E47, and HIFs, etc. Due to the variety and complexities of HLH members, the pathways and mechanisms they employ to promote EMT are also complex and characteristic. In this review, we will discuss the roles of various HLH proteins in the regulation and sustenance of the EMT and multiple cellular mechanisms, attempting to provide a novel and broadened view towards the link between HLH proteins and EMT.
Collapse
|
95
|
Regulation of the human thioredoxin gene promoter and its key substrates: a study of functional and putative regulatory elements. Biochim Biophys Acta Gen Subj 2013; 1840:303-14. [PMID: 24041992 DOI: 10.1016/j.bbagen.2013.09.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 07/26/2013] [Accepted: 09/06/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND The thioredoxin system maintains redox balance through the action of thioredoxin and thioredoxin reductase. Thioredoxin regulates the activity of various substrates, including those that function to counteract cellular oxidative stress. These include the peroxiredoxins, methionine sulfoxide reductase A and specific transcription factors. Of particular relevance is Redox Factor-1, which in turn activates other redox-regulated transcription factors. SCOPE OF REVIEW Experimentally defined transcription factor binding sites in the human thioredoxin and thioredoxin reductase gene promoters together with promoters of the major thioredoxin system substrates involved in regulating cellular redox status are discussed. An in silico approach was used to identify potential putative binding sites for these transcription factors in all of these promoters. MAJOR CONCLUSIONS Our analysis reveals that many redox gene promoters contain the same transcription factor binding sites. Several of these transcription factors are in turn redox regulated. The ARE is present in several of these promoters and is bound by Nrf2 during various oxidative stress stimuli to upregulate gene expression. Other transcription factors also bind to these promoters during the same oxidative stress stimuli, with this redundancy supporting the importance of the antioxidant response. Putative transcription factor sites were identified in silico, which in combination with specific regulatory knowledge for that gene promoter may inform future experiments. GENERAL SIGNIFICANCE Redox proteins are involved in many cellular signalling pathways and aberrant expression can lead to disease or other pathological conditions. Therefore understanding how their expression is regulated is relevant for developing therapeutic agents that target these pathways.
Collapse
|
96
|
Zhang Y, Peng L, Mumper RJ, Huang L. Combinational delivery of c-myc siRNA and nucleoside analogs in a single, synthetic nanocarrier for targeted cancer therapy. Biomaterials 2013; 34:8459-68. [PMID: 23932296 DOI: 10.1016/j.biomaterials.2013.07.050] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/15/2013] [Indexed: 12/12/2022]
Abstract
The treatment of aggressive non-small-cell lung cancer (NSCLC) depends on the creation of new therapeutic regimens in clinical settings. In this study, we developed a Lipid/Calcium/Phosphate (LCP) nanoparticle that combines chemotherapy with gene therapy. By encapsulating a chemodrug, gemcitabine monophosphate (GMP), and siRNA specific to the undruggable cMyc oncogene (cMyc siRNA) into a single nano-sized vesicle and systemically administering them to nude mice, we achieved potent anti-tumor activity in both subcutaneous and orthotopic models of NSCLC. The improvements in therapeutic response over either cMyc siRNA or GMP therapy alone, were demonstrated by the ability to effectively induce the apoptosis of tumor cells and the significant reduction of proliferation of tumor cells. The combination therapy led to dramatic inhibition of tumor growth, with little in vivo toxicity. Additionally, the current studies demonstrated the possibility of incorporating both nucleic acid molecules and phosphorylated small molecule drugs into the inner core of a single nanoparticle formulation. Co-encapsulation of an oncogene-modulating siRNA and a chemotherapeutic agent will allow simultaneous interruption of diverse anti-cancer pathways, leading to increased therapeutic efficacy and reduced toxicities.
Collapse
Affiliation(s)
- Yuan Zhang
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
97
|
Nagy P, Varga Á, Pircs K, Hegedűs K, Juhász G. Myc-driven overgrowth requires unfolded protein response-mediated induction of autophagy and antioxidant responses in Drosophila melanogaster. PLoS Genet 2013; 9:e1003664. [PMID: 23950728 PMCID: PMC3738540 DOI: 10.1371/journal.pgen.1003664] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/10/2013] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a lysosomal self-degradation and recycling pathway, plays dual roles in tumorigenesis. Autophagy deficiency predisposes to cancer, at least in part, through accumulation of the selective autophagy cargo p62, leading to activation of antioxidant responses and tumor formation. While cell growth and autophagy are inversely regulated in most cells, elevated levels of autophagy are observed in many established tumors, presumably mediating survival of cancer cells. Still, the relationship of autophagy and oncogenic signaling is poorly characterized. Here we show that the evolutionarily conserved transcription factor Myc (dm), a proto-oncogene involved in cell growth and proliferation, is also a physiological regulator of autophagy in Drosophila melanogaster. Loss of Myc activity in null mutants or in somatic clones of cells inhibits autophagy. Forced expression of Myc results in cell-autonomous increases in cell growth, autophagy induction, and p62 (Ref2P)-mediated activation of Nrf2 (cnc), a transcription factor promoting antioxidant responses. Mechanistically, Myc overexpression increases unfolded protein response (UPR), which leads to PERK-dependent autophagy induction and may be responsible for p62 accumulation. Genetic or pharmacological inhibition of UPR, autophagy or p62/Nrf2 signaling prevents Myc-induced overgrowth, while these pathways are dispensable for proper growth of control cells. In addition, we show that the autophagy and antioxidant pathways are required in parallel for excess cell growth driven by Myc. Deregulated expression of Myc drives tumor progression in most human cancers, and UPR and autophagy have been implicated in the survival of Myc-dependent cancer cells. Our data obtained in a complete animal show that UPR, autophagy and p62/Nrf2 signaling are required for Myc-dependent cell growth. These novel results give additional support for finding future approaches to specifically inhibit the growth of cancer cells addicted to oncogenic Myc. The evolutionarily conserved transcription factor Myc promotes protein synthesis, cell growth and cancer progression through incompletely understood mechanisms. In this work, we show that forced expression of Myc induces the accumulation of abnormal proteins leading to unfolded protein responses (UPR), presumably by overloading the protein synthetic capacity of cells in Drosophila. UPR then results in autophagy-mediated breakdown and recycling of cytoplasmic material, and at the same time, to activation of antioxidant responses in these cells. Blocking the UPR stress signaling, autophagy and antioxidant pathways genetically, or by feeding larvae an autophagy-inhibiting drug, prevents overgrowth of Myc-expressing cells, but these treatments do not affect the growth of control cells in the same tissues. These results, together with recent reports in mammalian cancer models, suggest that drugs targeting UPR, autophagy and antioxidant responses may specifically inhibit cancer cell proliferation driven by oncogenic Myc.
Collapse
Affiliation(s)
- Péter Nagy
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Ágnes Varga
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Karolina Pircs
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Krisztina Hegedűs
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
98
|
Fang X, Corrales J, Thornton C, Scheffler BE, Willett KL. Global and gene specific DNA methylation changes during zebrafish development. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:99-108. [PMID: 23876386 DOI: 10.1016/j.cbpb.2013.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Abstract
DNA methylation is dynamic through the life of an organism. Previous studies have primarily focused on DNA methylation changes during very early embryogenesis. In this study, global and gene specific DNA methylation in zebrafish (Danio rerio) embryos, larvae and adult livers were compared. The percent methylation of cytosines was low in 2 to 4.3h post fertilization (hpf) zebrafish embryos and was consistently higher in zebrafish older than 6 hpf. Furthermore, quantitative real-time PCR (qPCR) results showed relatively high DNA methyltransferase 1 (dnmt1) and low glycine N-methyltransferase (gnmt) mRNA expression in early embryogenesis. By studying methylation patterns and gene expression of five developmentally important genes, namely vasa, Ras-association domain family member 1 (rassf1), telomerase reverse transcriptase (tert), c-jun and c-myca, we found that the timing of changes in DNA methylation patterns was gene specific, and changes in gene expression were not necessarily correlated with the DNA methylation patterns.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | | | | | |
Collapse
|
99
|
Fang X, Thornton C, Scheffler BE, Willett KL. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:40-50. [PMID: 23542452 PMCID: PMC3654064 DOI: 10.1016/j.etap.2013.02.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/09/2013] [Indexed: 05/17/2023]
Abstract
DNA methylation is important for gene regulation and is vulnerable to early-life exposure to environmental contaminants. We found that direct waterborne benzo[a]pyrene (BaP) exposure at 24μg/L from 2.5 to 96hpf to zebrafish embryos significantly decreased global cytosine methylation by 44.8% and promoter methylation in vasa by 17%. Consequently, vasa expression was significantly increased by 33%. In contrast, BaP exposure at environmentally relevant concentrations did not change CpG island methylation or gene expression in cancer genes such as ras-association domain family member 1 (rassf1), telomerase reverse transcriptase (tert), c-jun, and c-myca. Similarly, BaP did not change gene expression of DNA methyltransferase 1 (dnmt1) and glycine N-methyltransferase (gnmt). While total DNMT activity was not affected, GNMT enzyme activity was moderately increased. In summary, BaP is an epigenetic modifier for global and gene specific DNA methylation status in zebrafish larvae.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Cammi Thornton
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677
| | - Brian E. Scheffler
- USDA-ARS Genomics and Bioinformatics Research Unit, Stoneville, MS 38776
| | - Kristine L. Willett
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677
- Corresponding author Box 1848, 303 Faser Hall Department of Pharmacology University of Mississippi University, MS, 38677 Tel: (662) 915-6691 Fax: (662) 915-5148
| |
Collapse
|
100
|
Adenovirus E1A oncogene induces rereplication of cellular DNA and alters DNA replication dynamics. J Virol 2013; 87:8767-78. [PMID: 23740993 DOI: 10.1128/jvi.00879-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic property of the adenovirus (Ad) transforming E1A protein is linked to its capacity to induce cellular DNA synthesis which occurs as a result of its interaction with several host proteins, including pRb and p300/CBP. While the proteins that contribute to the forced induction of cellular DNA synthesis have been intensively studied, the nature of the cellular DNA replication that is induced by E1A in quiescent cells is not well understood. Here we show that E1A expression in quiescent cells leads to massive cellular DNA rereplication in late S phase. Using a single-molecule DNA fiber assay, we studied the cellular DNA replication dynamics in E1A-expressing cells. Our studies show that the DNA replication pattern is dramatically altered in E1A-expressing cells, with increased replicon length, fork velocity, and interorigin distance. The interorigin distance increased by about 3-fold, suggesting that fewer DNA replication origins are used in E1A-expressing cells. These aberrant replication events led to replication stress, as evidenced by the activation of the DNA damage response. In earlier studies, we showed that E1A induces c-Myc as a result of E1A binding to p300. Using an antisense c-Myc to block c-Myc expression, our results indicate that induction of c-Myc in E1A-expressing cells contributes to the induction of host DNA replication. Together, our results suggest that the E1A oncogene-induced cellular DNA replication stress is due to dramatically altered cellular replication events and that E1A-induced c-Myc may contribute to these events.
Collapse
|