51
|
Pibiri M. Liver regeneration in aged mice: new insights. Aging (Albany NY) 2019; 10:1801-1824. [PMID: 30157472 PMCID: PMC6128415 DOI: 10.18632/aging.101524] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
The regenerative capacity of the liver after resection is reduced with aging. Recent studies on rodents revealed that both intracellular and extracellular factors are involved in the impairment of liver mass recovery during aging. Among the intracellular factors, age-dependent decrease of BubR1 (budding uninhibited by benzimidazole-related 1), YAP (Yes-associated protein) and SIRT1 (Sirtuin-1) have been associated to dampening of tissue reconstitution and inhibition of cell cycle genes following partial hepatectomy. Extra-cellular factors, such as age-dependent changes in hepatic stellate cells affect liver regeneration through inhibition of progenitor cells and reduction of liver perfusion. Furthermore, chronic release of pro-inflammatory proteins by senescent cells (SASP) affects cell proliferation suggesting that senescent cell clearance might improve tissue regeneration. Accordingly, young plasma restores liver regeneration in aged animals through autophagy re-establishment. This review will discuss how intracellular and extracellular factors cooperate to guarantee a proper liver regeneration and the possible causes of its impairment during aging. The possibility that an improvement of the liver regenerative capacity in elderly might be achieved through elimination of senescent cells via autophagy or by administration of direct mitogenic agents devoid of cytotoxicity will also be entertained.
Collapse
Affiliation(s)
- Monica Pibiri
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
52
|
Triastuti E, Nugroho AB, Zi M, Prehar S, Kohar YS, Bui TA, Stafford N, Cartwright EJ, Abraham S, Oceandy D. Pharmacological inhibition of Hippo pathway, with the novel kinase inhibitor XMU-MP-1, protects the heart against adverse effects during pressure overload. Br J Pharmacol 2019; 176:3956-3971. [PMID: 31328787 PMCID: PMC6811740 DOI: 10.1111/bph.14795] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/13/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The Hippo pathway has emerged as a potential therapeutic target to control pathological cardiac remodelling. The core components of the Hippo pathway, mammalian Ste-20 like kinase 1 (Mst1) and mammalian Ste-20 like kinase 2 (Mst2), modulate cardiac hypertrophy, apoptosis, and fibrosis. Here, we study the effects of pharmacological inhibition of Mst1/2 using a novel inhibitor XMU-MP-1 in controlling the adverse effects of pressure overload-induced hypertrophy. EXPERIMENTAL APPROACH We used cultured neonatal rat cardiomyocytes (NRCM) and C57Bl/6 mice with transverse aortic constriction (TAC) as in vitro and in vivo models, respectively, to test the effects of XMU-MP-1 treatment. We used luciferase reporter assays, western blots and immunofluorescence assays in vitro, with echocardiography, qRT-PCR and immunohistochemical methods in vivo. KEY RESULTS XMU-MP-1 treatment significantly increased activity of the Hippo pathway effector yes-associated protein and inhibited phenylephrine-induced hypertrophy in NRCM. XMU-MP-1 improved cardiomyocyte survival and reduced apoptosis following oxidative stress. In vivo, mice 3 weeks after TAC, were treated with XMU-MP-1 (1 mg·kg-1 ) every alternate day for 10 further days. XMU-MP-1-treated mice showed better cardiac contractility than vehicle-treated mice. Cardiomyocyte cross-sectional size and expression of the hypertrophic marker, brain natriuretic peptide, were reduced in XMU-MP-1-treated mice. Improved heart function in XMU-MP-1-treated mice with TAC, was accompanied by fewer TUNEL positive cardiomyocytes and lower levels of fibrosis, suggesting inhibition of cardiomyocyte apoptosis and decreased fibrosis. CONCLUSIONS AND IMPLICATIONS The Hippo pathway inhibitor, XMU-MP-1, reduced cellular hypertrophy and improved survival in cultured cardiomyocytes and, in vivo, preserved cardiac function following pressure overload.
Collapse
Affiliation(s)
- Efta Triastuti
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
- Department of Pharmacy, Faculty of MedicineUniversitas BrawijayaMalangIndonesia
| | - Ardiansah Bayu Nugroho
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Min Zi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Yulia Suciati Kohar
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
- Department of Biochemistry, Faculty of MedicineYARSI UniversityJakartaIndonesia
| | - Thuy Anh Bui
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Nicholas Stafford
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Elizabeth J. Cartwright
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Sabu Abraham
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
53
|
Ikeda S, Mukai R, Mizushima W, Zhai P, Oka SI, Nakamura M, Del Re DP, Sciarretta S, Hsu CP, Shimokawa H, Sadoshima J. Yes-Associated Protein (YAP) Facilitates Pressure Overload-Induced Dysfunction in the Diabetic Heart. JACC Basic Transl Sci 2019; 4:611-622. [PMID: 31768477 PMCID: PMC6872826 DOI: 10.1016/j.jacbts.2019.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023]
Abstract
Patients with diabetes are more prone to developing heart failure in the presence of high blood pressure than those without diabetes. Yes-associated protein (YAP), a key effector of the Hippo signaling pathway, is persistently activated in diabetic hearts, and YAP plays an essential role in mediating the exacerbation of heart failure in response to pressure overload in the hearts of mice fed a high-fat diet. YAP induced dedifferentiation of cardiomyocytes through activation of transcriptional enhancer factor 1 (TEAD1), a transcription factor. Thus, YAP and TEAD1 are promising therapeutic targets for diabetic patients with high blood pressure to prevent the development of heart failure.
Collapse
Key Words
- HF, heart failure
- HFD, high-fat diet
- Hippo pathway
- LV, left ventricular
- Lats2, large tumor suppressor kinase 2
- Mst1, mammalian sterile 20-like 1
- ND, normal diet
- OSM, oncostatin M
- PO, pressure overload
- Runx1, runt-related transcription factor 1
- TAC, transverse aortic constriction
- TAZ, transcriptional coactivator with PDZ-binding motif
- TEAD, transcriptional enhancer factor
- YAP, Yes-associated protein
- diabetes
- diabetic cardiomyopathy
- pressure overload
Collapse
Affiliation(s)
- Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey.,Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Risa Mukai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Wataru Mizushima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Shin-Ichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Istituto Di Ricovero e Cura a Carattere Scientifico Neuromed, Pozzilli, Italy
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
54
|
Affiliation(s)
- Dominic P Del Re
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark.
| |
Collapse
|
55
|
Fu Y, Sun S, Sun H, Peng J, Ma X, Bao L, Ji R, Luo C, Gao C, Zhang X, Jin Y. Scutellarin exerts protective effects against atherosclerosis in rats by regulating the Hippo-FOXO3A and PI3K/AKT signaling pathways. J Cell Physiol 2019; 234:18131-18145. [PMID: 30891776 DOI: 10.1002/jcp.28446] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS), a progressive disorder, is one of the tough challenges in the clinic. Scutellarin, an extract from Herba Erigerontis, is found to have oxygen-free radicals scavenging effects and antioxidant effects. In this study, we aimed to investigate the anti-AS effects of scutellarin is related to controlling the Hippo-FOXO3A and PI3K/AKT signal pathway. To establish an AS model, the rats in the scutellarin and model groups were intraperitoneally injected with vitamin D 3 and then fed a high-fat diet for 12 weeks. In addition, in vitro angiotensin II-induced apoptosis of human aortic endothelial cells (HAECs) were used to establish models. Scutellarin significantly reduced blood lipid levels and increased antioxidase levels in both models. Additionally, scutellarin inhibited reactive oxygen species generation and apoptosis in HAECs. The impaired vascular barrier function was restored by using scutellarin in AS rats and in HAECs cells characterized by inhibiting mammalian sterile-20-like kinases 1 (Mst1) phosphorylation, Yes-associated protein (YAP) phosphorylation, forkhead box O3A (FOXO3A) phosphorylation at serine 207, nuclear translocation of FOXO3A, and upregulating protein expression of AKT and FOXO3A phosphorylation at serine 253. Scutellarin significantly reduced Bcl-2 interacting mediator of cell death (Bim), caspase-3, APO-1, CD95 (Fas), and Bax: Bcl-2-associated X (Bax) levels and activated Bcl-2: B-cell lymphoma-2 (Bcl-2). Scutellarin also significantly inhibited the expression of Mst1, YAP, FOXO3A at the messenger RNA level. When Mst1 was overexpressed or phosphoinositide 3-kinases suppressed, the effects of scutellarin were significantly blocked. In conclusion, the results of the present study suggest that scutellarin exerts protective effects against AS by inhibiting endothelial cell injury and apoptosis by regulating the Hippo-FOXO3A and PI3K/AKT signal pathways.
Collapse
Affiliation(s)
- Yufeng Fu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shuangyong Sun
- Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co Ltd, Tianjin, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaoxue Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
56
|
Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death Differ 2019; 27:1036-1051. [PMID: 31367011 DOI: 10.1038/s41418-019-0396-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 11/08/2022] Open
Abstract
Mitochondria are highly dynamic organelles and respond to stress by changing their fission-fusion cycle, undergoing mitophagy, or releasing apoptotic proteins to initiate cell death. The molecular mechanisms that sense different stresses and coordinate distinct effectors still await full characterization. Here, we show that PGAM5, which exists in an equilibrium between dimeric and multimeric states, dephosphorylates BCL-xL to inhibit apoptosis or FUNDC1 to activate mitofission and mitophagy in response to distinct stresses. In vinblastine-treated cells, PGAM5 dephosphorylates BCL-xL at Ser62 to restore BCL-xL sequestration of BAX and BAK and thereby resistance to apoptosis. Selenite-induced oxidative stress increases the multimerization of PGAM5, resulting in its dissociation from BCL-xL, which causes increased BCL-xL phosphorylation and apoptosis. Once freed, the more multimeric and active PGAM5 dephosphorylates FUNDC1 to initiate mitofission and mitophagy. The reciprocal interaction of PGAM5 with FUNDC1 and BCL-xL, controlled by PGAM5 multimerization, serves as a molecular switch between mitofission/mitophagy and apoptosis.
Collapse
|
57
|
Francisco J, Byun J, Zhang Y, Kalloo OB, Mizushima W, Oka S, Zhai P, Sadoshima J, Del Re DP. The tumor suppressor RASSF1A modulates inflammation and injury in the reperfused murine myocardium. J Biol Chem 2019; 294:13131-13144. [PMID: 31311858 DOI: 10.1074/jbc.ra119.008970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/11/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammation is a central feature of cardiovascular disease, including myocardial infarction and heart failure. Reperfusion of the ischemic myocardium triggers a complex inflammatory response that can exacerbate injury and worsen heart function, as well as prevent myocardial rupture and mediate wound healing. Therefore, a more complete understanding of this process could contribute to interventions that properly balance inflammatory responses for improved outcomes. In this study, we leveraged several approaches, including global and regional ischemia/reperfusion (I/R), genetically modified mice, and primary cell culture, to investigate the cell type-specific function of the tumor suppressor Ras association domain family member 1 isoform A (RASSF1A) in cardiac inflammation. Our results revealed that genetic inhibition of RASSF1A in cardiomyocytes affords cardioprotection, whereas myeloid-specific deletion of RASSF1A exacerbates inflammation and injury caused by I/R in mice. Cell-based studies revealed that RASSF1A negatively regulates NF-κB and thereby attenuates inflammatory cytokine expression. These findings indicate that myeloid RASSF1A antagonizes I/R-induced myocardial inflammation and suggest that RASSF1A may be a promising target in immunomodulatory therapy for the management of acute heart injury.
Collapse
Affiliation(s)
- Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Jaemin Byun
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Olivia Berman Kalloo
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Wataru Mizushima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103.
| |
Collapse
|
58
|
Wang S, Zhao Z, Fan Y, Zhang M, Feng X, Lin J, Hu J, Cheng Z, Sun C, Liu T, Xiong Z, Yang Z, Wang H, Sun D. Mst1 inhibits Sirt3 expression and contributes to diabetic cardiomyopathy through inhibiting Parkin-dependent mitophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1905-1914. [DOI: 10.1016/j.bbadis.2018.04.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
|
59
|
Wang L, Mai Z, Zhao M, Wang B, Yu S, Wang X, Chen T. Aspirin induces oncosis in tumor cells. Apoptosis 2019; 24:758-772. [PMID: 31243598 DOI: 10.1007/s10495-019-01555-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
60
|
Kim Y, Jang HH. Role of Cytosolic 2-Cys Prx1 and Prx2 in Redox Signaling. Antioxidants (Basel) 2019; 8:antiox8060169. [PMID: 31185618 PMCID: PMC6616918 DOI: 10.3390/antiox8060169] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Peroxiredoxins (Prxs), a family of peroxidases, are reactive oxygen species scavengers that hydrolyze H2O2 through catalytic cysteine. Mammalian Prxs comprise six isoforms (typical 2-Cys Prxs; Prx1–4, atypical 2-Cys Prx; Prx5, and 1-Cys Prx; Prx6) that are distributed over various cellular compartments as they are classified according to the position and number of conserved cysteine. 2-Cys Prx1 and Prx2 are abundant proteins that are ubiquitously expressed mainly in the cytosol, and over 90% of their amino acid sequences are homologous. Prx1 and Prx2 protect cells from ROS-mediated oxidative stress through the elimination of H2O2 and regulate cellular signaling through redox-dependent mechanism. In addition, Prx1 and Prx2 are able to bind to a diversity of interaction partners to regulate other various cellular processes in cancer (i.e., regulation of the protein redox status, cell growth, apoptosis, and tumorigenesis). Thus, Prx1 and Prx2 can be potential therapeutic targets and it is particularly important to control their level or activity. This review focuses on cytosolic 2-Cys Prx1 and Prx2 and their role in the regulation of redox signaling based on protein-protein interaction.
Collapse
Affiliation(s)
- Yosup Kim
- Department of Health Sciences and Technology, Graduate School of Medicine, Gachon University, Incheon 21999, Korea.
| | - Ho Hee Jang
- Department of Health Sciences and Technology, Graduate School of Medicine, Gachon University, Incheon 21999, Korea.
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea.
| |
Collapse
|
61
|
Liu R, Jagannathan R, Li F, Lee J, Balasubramanyam N, Kim BS, Yang P, Yechoor VK, Moulik M. Tead1 is required for perinatal cardiomyocyte proliferation. PLoS One 2019; 14:e0212017. [PMID: 30811446 PMCID: PMC6392249 DOI: 10.1371/journal.pone.0212017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/25/2019] [Indexed: 01/05/2023] Open
Abstract
Adult heart size is determined predominantly by the cardiomyocyte number and size. The cardiomyocyte number is determined primarily in the embryonic and perinatal period, as adult cardiomyocyte proliferation is restricted in comparison to that seen during the perinatal period. Recent evidence has implicated the mammalian Hippo kinase pathway as being critical in cardiomyocyte proliferation. Though the transcription factor, Tead1, is the canonical downstream transcriptional factor of the hippo kinase pathway in cardiomyocytes, the specific role of Tead1 in cardiomyocyte proliferation in the perinatal period has not been determined. Here, we report the generation of a cardiomyocyte specific perinatal deletion of Tead1, using Myh6-Cre deletor mice (Tead1-cKO). Perinatal Tead1 deletion was lethal by postnatal day 9 in Tead1-cKO mice due to dilated cardiomyopathy. Tead1-deficient cardiomyocytes have significantly decreased proliferation during the immediate postnatal period, when proliferation rate is normally high. Deletion of Tead1 in HL-1 cardiac cell line confirmed that cell-autonomous Tead1 function is required for normal cardiomyocyte proliferation. This was secondary to significant decrease in levels of many proteins, in vivo, that normally promote cell cycle in cardiomyocytes. Taken together this demonstrates the non-redundant critical requirement for Tead1 in regulating cell cycle proteins and proliferation in cardiomyocytes in the perinatal heart.
Collapse
Affiliation(s)
- Ruya Liu
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rajaganapathi Jagannathan
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Feng Li
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jeongkyung Lee
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nikhil Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Byung S. Kim
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ping Yang
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vijay K. Yechoor
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Pediatrics, UTHealth McGovern Medical School, Houston, Texas, United States of America
| |
Collapse
|
62
|
The MEK-ERK-MST1 Axis Potentiates the Activation of the Extrinsic Apoptotic Pathway during GDC-0941 Treatment in Jurkat T Cells. Cells 2019; 8:cells8020191. [PMID: 30795621 PMCID: PMC6406719 DOI: 10.3390/cells8020191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023] Open
Abstract
The discrete activation of individual caspases is essential during T-cell development, activation, and apoptosis. Humans carrying nonfunctional caspase-8 and caspase-8 conditional knockout mice exhibit several defects in the progression of naive CD4+ T cells to the effector stage. MST1, a key kinase of the Hippo signaling pathway, is often presented as a substrate of caspases, and its cleavage by caspases potentiates its activity. Several studies have focused on the involvement of MST1 in caspase activation and also reported several defects in the immune system function caused by MST1 deficiency. Here, we show the rapid activation of the MEK-ERK-MST1 axis together with the cleavage and activation of caspase-3, -6, -7, -8, and -9 after PI3K signaling blockade by the selective inhibitor GDC-0941 in Jurkat T cells. We determined the phosphorylation pattern of MST1 using a phosphoproteomic approach and identified two amino acid residues phosphorylated in an ERK-dependent manner after GDC-0941 treatment together with a novel phosphorylation site at S21 residue, which was extensively phosphorylated in an ERK-independent manner during PI3K signaling blockade. Using caspase inhibitors and the inhibition of MST1 expression using siRNA, we identified an exclusive role of the MEK-ERK-MST1 axis in the activation of initiator caspase-8, which in turn activates executive caspase-3/-7 that finally potentiate MST1 proteolytic cleavage. This mechanism forms a positive feed-back loop that amplifies the activation of MST1 together with apoptotic response in Jurkat T cells during PI3K inhibition. Altogether, we propose a novel MEK-ERK-MST1-CASP8-CASP3/7 apoptotic pathway in Jurkat T cells and believe that the regulation of this pathway can open novel possibilities in systemic and cancer therapies.
Collapse
|
63
|
A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis. Nat Commun 2019; 10:838. [PMID: 30783090 PMCID: PMC6381131 DOI: 10.1038/s41467-019-08773-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
Hypoxia is a main driver of sprouting angiogenesis, but how tip endothelial cells are directed to hypoxic regions remains poorly understood. Here, we show that an endothelial MST1–FOXO1 cascade is essential for directional migration of tip cells towards hypoxic regions. In mice, endothelial‐specific deletion of either MST1 or FOXO1 leads to the loss of tip cell polarity and subsequent impairment of sprouting angiogenesis. Mechanistically, MST1 is activated by reactive oxygen species (ROS) produced in mitochondria in response to hypoxia, and activated MST1 promotes the nuclear import of FOXO1, thus augmenting its transcriptional regulation of polarity and migration‐associated genes. Furthermore, endothelial MST1‐FOXO1 cascade is required for revascularization and neovascularization in the oxygen-induced retinopathy model. Together, the results of our study delineate a crucial coupling between extracellular hypoxia and an intracellular ROS‐MST1‐FOXO1 cascade in establishing endothelial tip cell polarity during sprouting angiogenesis. Angiogenesis is driven by the directed migration of tip endothelial cells towards hypoxic tissues. Here, Kim et al. show that the generation of reactive oxygen species in endothelial cells upon hypoxia activates MST1, which subsequently promotes the nuclear translocation of FOXO1, and thus activates a pro-migratory transcriptional programme in endothelial tip cells.
Collapse
|
64
|
Yu L, Liu Y, Jin Y, Cao X, Chen J, Jin J, Gu Y, Bao X, Ren Z, Xu Y, Zhu X. Lentivirus-Mediated HDAC3 Inhibition Attenuates Oxidative Stress in APPswe/PS1dE9 Mice. J Alzheimers Dis 2019; 61:1411-1424. [PMID: 29376873 DOI: 10.3233/jad-170844] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amyloid-β (Aβ) induces a burst of oxidative stress and plays a critical role in the pathogenesis of Alzheimer's disease (AD). Our previous results have shown that histone deacetylase 3 (HDAC3) inhibition ameliorates spatial memory deficits and decreases the Aβ burden in the brains of 9-month-old APPswe/PS1dE9 (APP/PS1) mice. In this study, we investigated the role of HDAC3 inhibition in oxidative stress in vivo and in vitro models of AD. HDAC3 was detected mainly in the neurons, and HDAC3 inhibition significantly decreased reactive oxygen species generation and improved primary cortical neuron viability. In addition, HDAC3 inhibition attenuated spatial memory dysfunction in 6-month-old APP/PS1 mice, and decreased the apoptotic rate in the hippocampi as demonstrated by TUNEL staining. HDAC3 inhibition also reduced markers of lipid peroxidation, protein oxidation, and DNA/RNA oxidation in the hippocampi of APP/PS1 mice. Moreover, HDAC3 inhibition inactivated the c-Abl/MST1/YAP signaling pathway in the hippocampi of APP/PS1 mice. In conclusion, our data show that HDAC3 inhibition can attenuate spatial memory deficits and inhibit oxidative stress in APP/PS1 mice; these results indicate a potential strategy for AD treatment.
Collapse
Affiliation(s)
- Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Zhuoying Ren
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| |
Collapse
|
65
|
Li D, Ni H, Rui Q, Gao R, Chen G. Mst1: Function and Mechanism in Brain and Myocardial Ischemia Reperfusion Injury. Curr Neuropharmacol 2018; 16:1358-1364. [PMID: 29766810 PMCID: PMC6251045 DOI: 10.2174/1570159x16666180516095949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/14/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Mammalian STE20-like kinase-1 (Mst1) is a generally expressed apoptosis-promoting kinase and a key bridgebuilder of apoptotic signaling in the etiology of tissue injury. Despite the fact that the biological function of Mst1 and its role in the cell's signalling network have yet to be determined, however, there is a lot of evidence that Mst1 plays an important role in cell death which results from tissue injury. Previous studies have shown that Mst1 is not only a target for some apoptosis- related molecules such as caspase 3 and P53, but also act as an activator of these proteinases to magnify apoptosis signal pathways. This article reviews the role of Mst1 in the signaling pathways which is related with the neuronal cell apoptosis or microglia activation following myocardial and brain injury. Therefore, this work contributes to better understanding of the pathological process of myocardial and brain injury.
Collapse
Affiliation(s)
- Di Li
- Department of Neurosurgery and Translational Medicine Center, The First People `s Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Haibo Ni
- Department of Neurosurgery, The First People `s Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Qin Rui
- Clinical laboratory,The First People`s Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Rong Gao
- Department of Neurosurgery, The First People `s Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
66
|
Liu X, Liu K, Li C, Cai J, Huang L, Chen H, Wang H, Zou J, Liu M, Wang K, Tan S, Zhang H. Heat-shock protein B1 upholds the cytoplasm reduced state to inhibit activation of the Hippo pathway in H9c2 cells. J Cell Physiol 2018; 234:5117-5133. [PMID: 30256412 DOI: 10.1002/jcp.27322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
Heat-shock protein B1 (HSPB1) is a multifunctional protein that protects against oxidative stress; however, its function in antioxidant pathways remains largely unknown. Here, we sought to determine the roles of HSPB1 in H9c2 cells subjected to oxidative stress. Using nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis, we found that increased HSPB1 expression promoted the reduced states of glutathione reductase (GR), peroxiredoxin 1 (Prx1), and thioredoxin 1, whereas knockdown of HSPB1 attenuated these responses following oxidative stress. Increased HSPB1 expression promoted the activation of GR and thioredoxin reductase. Conversely, knockdown of HSPB1 attenuated these responses following oxidative stress. Importantly, overexpression of HSPB1 promoted the complex formation between HSPB1 and oxidized Prx1, leading to dephosphorylation of STE-mammalian STE20-like kinase 1 (MST1) in H9c2 cells exposed to H2 O 2 , whereas downregulation of HSPB1 induced the opposite results. Mechanistically, HSPB1 regulated the Hippo pathway by enhancing the dephosphorylation of MST1, resulting in reduced phosphorylation of LATS1 and Yes-associated protein (YAP). Moreover, HSPB1 regulated YAP-dependent gene expression. Thus, HSPB1 promoted the reduced state of endogenous antioxidant pathways following oxidative stress in H9c2 cells and improved the redox state of the cytoplasm via modulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Xiehong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Caiyan Li
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Jiaodi Cai
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Li Huang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Huan Chen
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Hao Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Jiang Zou
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Kangkai Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China
| |
Collapse
|
67
|
Hu J, Wang S, Xiong Z, Cheng Z, Yang Z, Lin J, Wang T, Feng X, Gao E, Wang H, Sun D. Exosomal Mst1 transfer from cardiac microvascular endothelial cells to cardiomyocytes deteriorates diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3639-3649. [PMID: 30251683 DOI: 10.1016/j.bbadis.2018.08.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 01/28/2023]
Abstract
Diabetic cardiomyopathy (DCM) is characterized by cardiac microvascular endothelial cells (CMECs) injury and cardiomyocyte (CM) dysfunction. Exosomes mediated cellular communication between CMECs and CM has emerging roles in the pathogenesis of DCM, but the underlining mechanisms are unclear. Mammalian sterile 20-like kinase 1 (Mst1), a key component in Hippo pathway which participates in regulating organ size, apoptosis and autophagy, is involved in the development of DCM. We generated the endothelial-specific Mst1 transgenic mice (Tg-Mst1EC) and constructed diabetic model with streptozotocin (STZ). Interestingly, Tg-Mst1EC mice suffered from worse cardiac function and aggravated insulin resistance compared with non-transgenic (NTg) diabetic mice. The content of Mst1 protein was increased, while Mst1 mRNA had no significant change in CM isolated from diabetic Tg-Mst1EC mice. In vitro, CMECs-derived exosomes were taken up by CM and increased Mst1 protein content which inhibited autophagy, as well as enhanced apoptosis in high glucose (HG) cultured CM as evidenced by immunofluorescence and western blot analysis. In addition, Mst1 inhibited glucose uptake under diabetic condition by disrupting the glucose transporter type 4 (GLUT4) membrane translocation through decreasing the interaction between Daxx and GLUT4, as well as enhancing the association of Mst1 and Daxx. Our study exemplifies pleiotropic effects of Mst1-enriched exosomes released from CMECs on inhibiting autophagy, promoting apoptosis and suppressing the glucose metabolism in CM.
Collapse
Affiliation(s)
- Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanjie Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenyu Xiong
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
68
|
Abdanipour A, Deheshjo F, Sohrabi D, Jafari Anarkooli I, Nejatbakhsh R. Neuroprotective effect of lovastatin through down-regulation of pro-apoptotic Mst1 gene expression in rat model pilocarpine epilepsy. Neurol Res 2018; 40:874-882. [PMID: 30048231 DOI: 10.1080/01616412.2018.1497252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Statins as inhibitors of HMG-CoA reductase have been recently recognized as anti-inflammatory and neuroprotective drugs. In this paper, we studied anti-apoptotic and regulatory effects of lovastatin using Pilocarpine rat model through downregulation of Mst1 (Mammalian sterile 20-like kinase 1) as a novel pro-apoptotic gene. METHODS The rats were divided into four groups: non-treated epileptic rats, lovastatin treated, and two vehicle groups. Racine scale was used for behavioral assessment and animals with a score of 4-5 were selected for the study. After 3 days, epileptic rats received intraperitoneal injections of lovastatin, followed by treating for 14 days. Next, they were sacrificed (28 post-first seizure) and prepared for histopathological analysis and Real-time RT-PCR. RESULTS The results showed that lovastatin protects Pilocarpine-induced cell death via a regulatory effect on pro-apoptotic and anti-apoptotic gene expression. The real-time PCR results showed that in the epileptic lovastatin treated group, the expression level of Mst1 significantly decreased while Nrf2 and Bcl-2 genes increased. Furthermore, histological analysis of neurodegeneration in the brain sections showed that the number of hippocampal apoptotic cells significantly decreased in the treatment groups. The results showed that the numerical density of neurons per area was significantly higher in the treated than the untreated group. CONCLUSION Overall, the results of this study showed that lovastatin attenuates hippocampal cell death in Pilocarpine-induced status epilepticus rat model through downregulation of the pro-apoptotic Mst1 gene. ABBREVIATIONS Mst1: Mammalian sterile 20-like kinase 1; Nrf2: nuclear factor erythroid 2-related factor 2; Bcl-2: B-cell lymphoma 2; HMG-CoA: 3-hydroxy-3-methylglutaryl-coenzyme A; RT-PCR: reverse transcription-polymerase chain reaction; TLE: Temporal Lobe Epilepsy; SE: status epilepticus.
Collapse
Affiliation(s)
- Alireza Abdanipour
- a Department of Anatomy, School of Medicine , Zanjan University of Medical Sciences (ZUMS) , Zanjan , Iran
| | - Fatemeh Deheshjo
- a Department of Anatomy, School of Medicine , Zanjan University of Medical Sciences (ZUMS) , Zanjan , Iran
| | - Davood Sohrabi
- a Department of Anatomy, School of Medicine , Zanjan University of Medical Sciences (ZUMS) , Zanjan , Iran
| | - Iraj Jafari Anarkooli
- a Department of Anatomy, School of Medicine , Zanjan University of Medical Sciences (ZUMS) , Zanjan , Iran
| | - Reza Nejatbakhsh
- a Department of Anatomy, School of Medicine , Zanjan University of Medical Sciences (ZUMS) , Zanjan , Iran
| |
Collapse
|
69
|
Abstract
Ras oncoproteins can promote or suppress cellular apoptosis, but the mechanisms underlying these varied responses remain incompletely understood. Ras is linked to the Hippo tumor suppressor pathway, a highly conserved signaling cassette that regulates organ size in animals ranging from flies to humans. The proximal members of this pathway, Mammalian Ste20-like kinases (Msts) -1 and -2, self-associate in homodimers and also form heterodimers with other proteins. Formation of such complexes is known to regulate Mst kinase activity and thus, the Hippo pathway. In a manuscript that recently appeared in Current Biology, we showed that activated Hras promotes the formation of Mst1/Mst2 heterodimers, that activation of Erk was required for this event, and that these heterodimers were much less active than Mst1/Mst1 or Mst2/Mst2 homodimers. Interestingly, the formation of such heterodimers was required to deactivate the Hippo pathway and to enable transformation by Hras. In this Commentary, we discuss the background for this study and surprising implications thereof.
Collapse
|
70
|
Schmidt ML, Hobbing KR, Donninger H, Clark GJ. RASSF1A Deficiency Enhances RAS-Driven Lung Tumorigenesis. Cancer Res 2018; 78:2614-2623. [PMID: 29735543 DOI: 10.1158/0008-5472.can-17-2466] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/26/2018] [Accepted: 03/01/2018] [Indexed: 12/30/2022]
Abstract
Mutant K-RAS has been shown to have both tumor-promoting and -suppressing functions, and growing evidence suggests that the RASSF family of tumor suppressors can act as RAS apoptosis and senescence effectors. It has been hypothesized that inactivation of the RASSF1A tumor suppressor facilitates K-RAS-mediated transformation by uncoupling it from apoptotic pathways such as the Hippo pathway. In human lung tumors, combined activation of K-RAS and inactivation of RASSF1A is closely associated with the development of the most aggressive and worst prognosis tumors. Here, we describe the first transgenic mouse model for activation of K-RAS in the lung in a RASSF1A-defective background. RASSF1A deficiency profoundly enhanced the development of K-RAS-driven lung tumors in vivo Analysis of these tumors showed loss of RASSF1A-uncoupled RAS from the proapoptotic Hippo pathway as expected. We also observed an upregulation of AKT and RALGEF signaling in the RASSF1A- tumors. Heterozygosity of RASSF1A alone mimicked many of the effects of RAS activation on mitogenic signaling in lung tissue, yet no tumors developed, indicating that nonstandard Ras signaling pathways may be playing a key role in tumor formation in vivo In addition, we observed a marked increase in inflammation and IL6 production in RASSF1A-deficient tumors. Thus, RASSF1A loss profoundly affects RAS-driven lung tumorigenesis and mitogenic signaling in vivo Deregulation of inflammatory pathways due to loss of RASSF1A may be essential for RAS-mediated tumorigenesis. These results may have considerable ramifications for future targeted therapy against RAS+/RASSF1A- tumors.Significance: A transgenic mouse model shows that suppression of RASSF1A dramatically enhances Ras-driven tumorigenesis and alters Ras signaling pathway activity.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/10/2614/F1.large.jpg Cancer Res; 78(10); 2614-23. ©2018 AACR.
Collapse
Affiliation(s)
- M Lee Schmidt
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Katharine R Hobbing
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Howard Donninger
- Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Geoffrey J Clark
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
71
|
|
72
|
Micro-Economics of Apoptosis in Cancer: ncRNAs Modulation of BCL-2 Family Members. Int J Mol Sci 2018; 19:ijms19040958. [PMID: 29570632 PMCID: PMC5979352 DOI: 10.3390/ijms19040958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology.
Collapse
|
73
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, et alGalluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Show More Authors] [Citation(s) in RCA: 4417] [Impact Index Per Article: 631.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
74
|
Understanding the role of mammalian sterile 20-like kinase 1 (MST1) in cardiovascular disorders. J Mol Cell Cardiol 2018; 114:141-149. [DOI: 10.1016/j.yjmcc.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022]
|
75
|
Wang EW, Han YY, Jia XS. PAFR-deficiency alleviates myocardial ischemia/reperfusion injury in mice via suppressing inflammation, oxidative stress and apoptosis. Biochem Biophys Res Commun 2018; 495:2475-2481. [DOI: 10.1016/j.bbrc.2017.12.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 02/02/2023]
|
76
|
Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC, Segura A, Willerson JT, Martin JF. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 2017; 550:260-264. [PMID: 28976966 PMCID: PMC5729743 DOI: 10.1038/nature24045] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
Abstract
Mammalian organs vary widely in regenerative capacity. Poorly regenerative organs, such as the heart are particularly vulnerable to organ failure. Once established, heart failure (HF) commonly results in mortality1. The Hippo pathway, a kinase cascade that prevents adult cardiomyocyte proliferation and regeneration2, is upregulated in human HF. We show that deletion of the Hippo pathway component Salvador (Salv) in mouse hearts with established ischemic HF after myocardial infarction (MI) induced a reparative genetic program with increased scar border vascularity, reduced fibrosis, and recovery of pumping function compared to controls. Using TRAP (translating ribosomal affinity purification), we isolated cardiomyocyte specific translating mRNA. Hippo deficient cardiomyocytes had increased expression of proliferative genes and stress response genes, such as the mitochondrial quality control (MQC) gene, Park2. Genetic studies indicated that Park2 was essential for heart repair suggesting a requirement for MQC in regenerating myocardium. Gene therapy with a virus encoding Salv shRNA improved heart function when delivered at the time of infarct or after ischemic HF post-MI was established. Our findings indicate that the failing heart has a previously unrecognized reparative capacity involving more than cardiomyocyte renewal.
Collapse
Affiliation(s)
- John P Leach
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Todd Heallen
- The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
| | - Min Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Shanghai Children's Medical Center, Shanghai 200127, China
| | - Mahdis Rahmani
- The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
| | - Yuka Morikawa
- The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Ana Segura
- The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
| | - James T Willerson
- The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
77
|
Loforese G, Malinka T, Keogh A, Baier F, Simillion C, Montani M, Halazonetis TD, Candinas D, Stroka D. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Mol Med 2017; 9:46-60. [PMID: 27940445 PMCID: PMC5210079 DOI: 10.15252/emmm.201506089] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The liver has an intrinsic capacity to regenerate in response to injury or surgical resection. Nevertheless, circumstances in which hepatocytes are unresponsive to proliferative signals result in impaired regeneration and hepatic failure. As the Hippo pathway has a canonical role in the maintenance of liver size, we investigated whether it could serve as a therapeutic target to support regeneration. Using a standard two‐thirds partial hepatectomy (PH) model in young and aged mice, we demonstrate that the Hippo pathway is modulated across the phases of liver regeneration. The activity of the core kinases MST1 and LATS1 increased during the early hypertrophic phase and returned to steady state levels in the proliferative phase, coinciding with activation of YAP1 target genes and hepatocyte proliferation. Moreover, following PH in aged mice, we demonstrate that Hippo signaling is anomalous in non‐regenerating livers. We provide pre‐clinical evidence that silencing the Hippo core kinases MST1 and MST2 with siRNA provokes hepatocyte proliferation in quiescent livers and rescues liver regeneration in aged mice following PH. Our data suggest that targeting the Hippo core kinases MST1/2 has therapeutic potential to improve regeneration in non‐regenerative disorders.
Collapse
Affiliation(s)
- Giulio Loforese
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Thomas Malinka
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Adrian Keogh
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Felix Baier
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Daniel Candinas
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
78
|
Zhang M, Tao W, Yuan Z, Liu Y. Mst-1 deficiency promotes post-traumatic spinal motor neuron survival via enhancement of autophagy flux. J Neurochem 2017; 143:244-256. [PMID: 28833175 DOI: 10.1111/jnc.14154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
Abstract
The mammalian Ste20-like kinase 1 (Mst-1) is a serine-threonine kinase and a component of the Hippo tumor suppressor pathway, which reacts to pathologically relevant stress and regulates cell death. However, little is known about its role in spinal cord injury. Here, we found that p-Mst-1, the activated form of Mst-1, was induced in the post-traumatic spinal motor neurons. In vivo evidence demonstrated that Mst-1 deficiency promoted post-traumatic spinal motor neuron survival, Basso mouse scale scores, and synapse survival. Moreover, we found that autophagosome formation and autolysosome degradation enhanced by Mst-1 deficiency were crucial to attenuate the death of injured spinal motor neurons. Taken together, our findings demonstrate that Mst-1 deficiency promotes post-traumatic spinal motor neuron survival via enhancement of autophagy flux.
Collapse
Affiliation(s)
- Mengting Zhang
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| | - Wufan Tao
- Obstetrics & Gynecology Hospital and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zengqiang Yuan
- Brain Science Center at the Institute of Basic Medical Science, Haidian District, Beijing, China
| | - Yaobo Liu
- Institute of Neuroscience, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, China
| |
Collapse
|
79
|
Zhang M, Lin J, Wang S, Cheng Z, Hu J, Wang T, Man W, Yin T, Guo W, Gao E, Reiter RJ, Wang H, Sun D. Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. J Pineal Res 2017; 63. [PMID: 28480597 DOI: 10.1111/jpi.12418] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
This study investigated the effects of melatonin on diabetic cardiomyopathy (DCM) and determined the underlying mechanisms. Echocardiography indicated that melatonin notably mitigated the adverse left ventricle remodeling and alleviated cardiac dysfunction in DCM. The mechanisms were attributed to increased autophagy, reduced apoptosis, and alleviated mitochondrial dysfunction. Furthermore, melatonin inhibited Mst1 phosphorylation and promoted Sirt3 expression in DCM. These results indicated that melatonin may exert its effects through Mst1/Sirt3 signaling. To verify this hypothesis, a DCM model using Mst1 transgenic (Mst1 Tg) and Mst1 knockout (Mst1-/- ) mice was constructed. As expected, melatonin increased autophagy, reduced apoptosis and improved mitochondrial biogenesis in Mst1 Tg mice subjected to DCM injury, while it had no effects on Mst1-/- mice. In addition, cultured neonatal mouse cardiomyocytes were subjected to simulated diabetes to probe the mechanisms involved. Melatonin administration promoted autophagic flux as demonstrated by elevated LC3-II and lowered p62 expression in the presence of bafilomycin A1. The results suggest that melatonin alleviates cardiac remodeling and dysfunction in DCM by upregulating autophagy, limiting apoptosis, and modulating mitochondrial integrity and biogenesis. The mechanisms are associated with Mst1/Sirt3 signaling.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shanjie Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tao Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenyi Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
80
|
Shi L, Lei J, Xu H, Zheng J, Wang Y, Peng Y, Yu J, Zhang J. Hydrogen sulfide ameliorates subarachnoid hemorrhage-induced neuronal apoptosis via the ROS-MST1 pathway. Oncotarget 2017; 8:73547-73558. [PMID: 29088725 PMCID: PMC5650280 DOI: 10.18632/oncotarget.20569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/08/2017] [Indexed: 01/22/2023] Open
Abstract
Background Hydrogen sulfide (H2S) has shown a neuroprotective role in several cerebrovascular diseases. This study aimed to explore the underlying mechanisms of H2S in early brain injury after subarachnoid hemorrhage (SAH). Methods One hundred seventy-seven male Sprague-Dawley rats were employed in this study. Sodium hydrosulfide (NaHS), a donor of H2S, was injected intraperitoneally at 60 min after SAH was induced by endovascular perforation. Western blot analysis determined the expression of several proteins of interest, and an immunofluorescence assay was used to examine neuronal apoptosis. Results Exogenous NaHS markedly improved neurological scores, attenuated brain edema, and ameliorated neuronal apoptosis at 24 h after SAH induction. The underlying mechanisms of H2S in ameliorating neuronal apoptosis might be executed through inhibition of the activity of mammalian sterile 20-like kinase 1 (MST1) protein. Western blot analysis demonstrated that exogenous NaHS decreased cleaved MST1 (cl-MST1) while increasing full-length MST1 expression. This anti-apoptotic effect of H2S could be reversed by chelerythrine, which could activate MST1 via caspase-dependent cleavage. Conclusions Exogenous NaHS, as a donor of H2S, could ameliorate early brain injury after SAH by inhibiting neuronal apoptosis by reducing the activity of the MST1 protein.
Collapse
Affiliation(s)
- Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianwei Lei
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hangzhe Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
81
|
Xia J, Zeng M, Zhu H, Chen X, Weng Z, Li S. Emerging role of Hippo signalling pathway in bladder cancer. J Cell Mol Med 2017; 22:4-15. [PMID: 28782275 PMCID: PMC5742740 DOI: 10.1111/jcmm.13293] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling pathway is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co-effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development and progression of other cancers and may be exploited therapeutically.
Collapse
Affiliation(s)
- Jianling Xia
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ming Zeng
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Hospital of the University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hua Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangjian Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiliang Weng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
82
|
A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3920195. [PMID: 28751931 PMCID: PMC5511646 DOI: 10.1155/2017/3920195] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression. Here, we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling.
Collapse
|
83
|
Matsuda T, Jeong JI, Ikeda S, Yamamoto T, Gao S, Babu GJ, Zhai P, Del Re DP. H-Ras Isoform Mediates Protection Against Pressure Overload-Induced Cardiac Dysfunction in Part Through Activation of AKT. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.116.003658. [PMID: 28193718 DOI: 10.1161/circheartfailure.116.003658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/11/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND In general, Ras proteins are thought to promote cardiac hypertrophy, an important risk factor for cardiovascular disease and heart failure. However, the contribution of different Ras isoforms has not been investigated. The objective of this study was to define the role of H- and K-Ras in modulating stress-induced myocardial hypertrophy and failure. METHODS AND RESULTS We used H- and K-Ras gene knockout mice and subjected them to pressure overload to induce cardiac hypertrophy and dysfunction. We observed a worsened cardiac phenotype in Hras-/- mice, while outcomes were improved in Kras+/- mice. We also used a neonatal rat cardiomyocyte culture system to elucidate the mechanisms underlying these observations. Our findings demonstrate that H-Ras, but not K-Ras, promotes cardiomyocyte hypertrophy both in vivo and in vitro. This response was mediated in part through the phosphoinositide 3-kinase-AKT signaling pathway. Adeno-associated virus-mediated increase in AKT activation improved the cardiac function in pressure overloaded Hras null hearts in vivo. These findings further support engagement of the phosphoinositide 3-kinase-AKT signaling axis by H-Ras. CONCLUSIONS Taken together, these findings indicate that H- and K-Ras have divergent effects on cardiac hypertrophy and heart failure in response to pressure overload stress.
Collapse
Affiliation(s)
- Takahisa Matsuda
- From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ
| | - Jae Im Jeong
- From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ
| | - Shohei Ikeda
- From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ
| | - Takanobu Yamamoto
- From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ
| | - Shumin Gao
- From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ
| | - Gopal J Babu
- From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ
| | - Peiyong Zhai
- From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ
| | - Dominic P Del Re
- From the Cardiovascular Research Institute and the Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ.
| |
Collapse
|
84
|
Beaumatin F, El Dhaybi M, Bobo C, Verdier M, Priault M. Bcl-x L deamidation and cancer: Charting the fame trajectories of legitimate child and hidden siblings. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28645514 DOI: 10.1016/j.bbamcr.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bcl-2 family proteins control programmed cell death through a complex network of interactions within and outside of this family, that are modulated by post-translational modifications (PTM). Bcl-xL, an anti-apoptotic member of this family, is overexpressed in a number of cancers, plays an important role in tumorigenesis and is correlated with drug resistance. Bcl-xL is susceptible to a number of different PTMs. Here, we focus on deamidation. We will first provide an overview of protein deamidation. We will then review how the apoptotic and autophagic functions of Bcl-xL are modified by this PTM, and how this impacts on its oncogenic properties. Possible therapeutic outcomes will also be discussed. Finally, we will highlight how the specific case of Bcl-xL deamidation provides groundings to revisit some concepts related to protein deamidation in general.
Collapse
Affiliation(s)
- Florian Beaumatin
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Mohamad El Dhaybi
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; EA 3842, Homéostasie Cellulaire et Pathologies, Université de Limoges, 2, rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Claude Bobo
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | - Mireille Verdier
- EA 3842, Homéostasie Cellulaire et Pathologies, Université de Limoges, 2, rue du Docteur Marcland, 87025 Limoges Cedex, France
| | - Muriel Priault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et de Génétique Cellulaires, UMR5095, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France.
| |
Collapse
|
85
|
Min KW, Davila S, Zealy RW, Lloyd LT, Lee IY, Lee R, Roh KH, Jung A, Jemielity J, Choi EJ, Chang JH, Yoon JH. eIF4E phosphorylation by MST1 reduces translation of a subset of mRNAs, but increases lncRNA translation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:761-772. [PMID: 28487214 DOI: 10.1016/j.bbagrm.2017.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Post-transcriptional gene regulation is an important step in eukaryotic gene expression. The last step to govern production of nascent peptides is during the process of mRNA translation. mRNA translation is controlled by many translation initiation factors that are susceptible to post-translational modifications. Here we report that one of the translation initiation factors, eIF4E, is phosphorylated by Mammalian Ste20-like kinase (MST1). Upon phosphorylation, eIF4E weakly interacts with the 5' CAP to inhibit mRNA translation. Simultaneously, active polyribosome is more associated with long noncoding RNAs (lncRNAs). Moreover, the linc00689-derived micropeptide, STORM (Stress- and TNF-α-activated ORF Micropeptide), is triggered by TNF-α-induced and MST1-mediated eIF4E phosphorylation, which exhibits molecular mimicry of SRP19 and, thus, competes for 7SL RNA. Our findings have uncovered a novel function of MST1 in mRNA and lncRNA translation by direct phosphorylation of eIF4E. This novel signaling pathway will provide new platforms for regulation of mRNA translation via post-translational protein modification.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Davila
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Richard W Zealy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lawson T Lloyd
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - In Young Lee
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Rumi Lee
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyung Hye Roh
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ahjin Jung
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Eui-Ju Choi
- Laboratory of Cell Death and Human Diseases, Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
86
|
Wang Y, Yu A, Yu FX. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 2017; 8:349-359. [PMID: 28130761 PMCID: PMC5413598 DOI: 10.1007/s13238-017-0371-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
While several organs in mammals retain partial regenerative capability following tissue damage, the underlying mechanisms remain unclear. Recently, the Hippo signaling pathway, better known for its function in organ size control, has been shown to play a pivotal role in regulating tissue homeostasis and regeneration. Upon tissue injury, the activity of YAP, the major effector of the Hippo pathway, is transiently induced, which in turn promotes expansion of tissue-resident progenitors and facilitates tissue regeneration. In this review, with a general focus on the Hippo pathway, we will discuss its major components, functions in stem cell biology, involvement in tissue regeneration in different organs, and potential strategies for developing Hippo pathway-targeted regenerative medicines.
Collapse
Affiliation(s)
- Yu Wang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Aijuan Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
87
|
Zhang Y, Del Re DP. A growing role for the Hippo signaling pathway in the heart. J Mol Med (Berl) 2017; 95:465-472. [PMID: 28280861 DOI: 10.1007/s00109-017-1525-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/18/2023]
Abstract
Heart disease is a major cause of clinical morbidity and mortality, and a significant health and economic burden worldwide. The loss of functional cardiomyocytes, often a result of myocardial infarction, leads to impaired cardiac output and ultimately heart failure. Therefore, efforts to improve cardiomyocyte viability and stimulate cardiomyocyte proliferation remain attractive therapeutic goals. Originally identified in Drosophila, the Hippo signaling pathway is highly conserved from flies to humans and regulates organ size through modulation of both cell survival and proliferation. This is particularly relevant to the heart, an organ with limited regenerative ability. Recent work has demonstrated a critical role for this signaling cascade in determining heart development, homeostasis, injury and the potential for regeneration. Here we review the function of canonical and non-canonical Hippo signaling in cardiomyocytes, with a particular focus on proliferation and survival, and how this impacts the stressed adult heart.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103-2714, USA
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ, 07103-2714, USA.
| |
Collapse
|
88
|
Robertson A, Mohamed TMA, El Maadawi Z, Stafford N, Bui T, Lim DS, Cartwright EJ, Oceandy D. Genetic ablation of the mammalian sterile-20 like kinase 1 (Mst1) improves cell reprogramming efficiency and increases induced pluripotent stem cell proliferation and survival. Stem Cell Res 2017; 20:42-49. [PMID: 28257933 PMCID: PMC5376382 DOI: 10.1016/j.scr.2017.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 11/26/2022] Open
Abstract
Adult fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSC) for use in various applications. However, there are challenges in iPSC generation including low reprogramming efficiency, yield, cell survival and viability. Since the Hippo signalling pathway is a key pathway involved in regulating cell proliferation and survival, we here test whether modification of the Hippo pathway will enhance the efficiency of iPSC generation and improve their survival. The Hippo pathway was modified by genetic ablation of the mammalian sterile-20 like kinase 1 (Mst1), a major component of the pathway. Using adult skin fibroblasts isolated from Mst1 knockout mice (Mst1−/−) as a source of iPSC we found that genetic ablation of Mst1 leads to significantly increased reprogramming efficiency by 43.8%. Moreover, Mst1−/− iPSC displayed increase proliferation by 12% as well as an increase in cell viability by 20% when treated with a chemical hypoxic inducer. Mechanistically, we found higher activity of YAP, the main downstream effector of the Hippo pathway, in iPSC lacking Mst1. In conclusion, our data suggests that Mst1 can be targeted to improve the efficiency of adult somatic cell reprogramming as well as to enhance iPSC proliferation and survival. Genetic deletion of Mst1 increases the efficiency of cell reprogramming. iPSC lacking Mst1 displays higher proliferation rate than WT iPSC. In response to chemical hypoxia Mst1−/− iPSC demonstrates higher survival.
Collapse
Affiliation(s)
- Abigail Robertson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Tamer M A Mohamed
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; J. David Gladstone Research Institutes, San Francisco, CA, USA; Faculty of Pharmacy, Zagazig University, Egypt
| | - Zeinab El Maadawi
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom; Department of Histology and Cell Biology, Faculty of Medicine, Cairo University, Egypt
| | - Nicholas Stafford
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Thuy Bui
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Dae-Sik Lim
- Department of Biological Sciences, KAIST, Daejon, Republic of Korea
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.
| |
Collapse
|
89
|
Wang PF, Xu DY, Zhang Y, Liu XB, Xia Y, Zhou PY, Fu QG, Xu SG. Deletion of mammalian sterile 20-like kinase 1 attenuates neuronal loss and improves locomotor function in a mouse model of spinal cord trauma. Mol Cell Biochem 2017; 431:11-20. [PMID: 28210902 DOI: 10.1007/s11010-017-2969-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/02/2017] [Indexed: 11/25/2022]
Abstract
Neuronal cell death following spinal cord injury (SCI) is an important contributor to neurological deficits. The purpose of our work was to delineate the function of mammalian sterile 20-like kinase 1 (Mst1), a pro-apoptotic kinase and key mediator of apoptotic signaling, in the pathogenesis of an experimental mouse model of SCI. Male mice received a mid-thoracic spinal contusion injury, and it was found that phosphorylation of Mst1 at the injured site was enhanced significantly following SCI. Furthermore, when compared to the wild-type controls, Mst1-deficient mice displayed improved locomotor function by increased Basso mouse scale score. Deletion of Mst1 in mice attenuated loss of motor neurons and suppressed microglial and glial activation following SCI. Deletion of Mst1 in mice reduced apoptosis via suppressing cytochrome c release and caspase-3 activation following SCI. Deletion of Mst1 attenuated mitochondrial dysfunction and increased ATP formation following SCI. Deletion of Mst1 in mice inhibited local inflammation following SCI, evidenced by reduced activities of myeloperoxidase and protein levels of TNF-α, IL-1β, and IL-6. In conclusion, the present study demonstrated that deletion of Mst1 attenuated neuronal loss and improved locomotor function in a mouse model of SCI, via preserving mitochondrial function, attenuating mitochondria-mediated apoptotic pathway, and suppressing inflammation, at least in part.
Collapse
Affiliation(s)
- Pan-Feng Wang
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Da-Yuan Xu
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yuntong Zhang
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiao-Bin Liu
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Xia
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Pan-Yu Zhou
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Qing-Ge Fu
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Shuo-Gui Xu
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
90
|
Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, Wang Y, Su H, Jia A, Hu Y, Han L, Zhang J, Li S, Tao W, Liu G. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun 2017; 8:14275. [PMID: 28145433 PMCID: PMC5296641 DOI: 10.1038/ncomms14275] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022] Open
Abstract
Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. The differentiation of Th17 cells is central to infection and autoimmunity. Here, the authors show that expression of MST1 by dendritic cells limits IL-6 production and thereby controls Th17 differentiation in immunity to fungal infection and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Chunxiao Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qing Yu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yu Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huilin Su
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Anna Jia
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ying Hu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Linian Han
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jiangyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Simin Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China.,Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
91
|
Signaling Pathways in Cardiac Myocyte Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9583268. [PMID: 28101515 PMCID: PMC5215135 DOI: 10.1155/2016/9583268] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation.
Collapse
|
92
|
Mia MM, Chelakkot-Govindalayathil AL, Singh MK. Targeting NF2-Hippo/Yap signaling pathway for cardioprotection after ischemia/reperfusion injury. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:545. [PMID: 28149906 DOI: 10.21037/atm.2016.11.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Masum M Mia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857, Singapore
| | | | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore 169857, Singapore; ; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609, Singapore
| |
Collapse
|
93
|
Zhang M, Zhang L, Hu J, Lin J, Wang T, Duan Y, Man W, Feng J, Sun L, Jia H, Li C, Zhang R, Wang H, Sun D. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia 2016; 59:2435-2447. [PMID: 27510910 DOI: 10.1007/s00125-016-4070-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Diabetic cardiomyopathy (DCM) is associated with suppressed autophagy and augmented apoptosis in the heart although the interplay between the two remains elusive. The ability of mammalian sterile 20-like kinase 1 to regulate both autophagy and apoptosis prompted us to investigate it as a possible candidate in the progression of DCM. METHODS Wild-type, Mst1 (also known as Stk4) transgenic and Mst1-knockout mice were challenged with streptozotocin to induce experimental diabetes. In addition, cultured neonatal mouse cardiomyocytes were subjected to simulated diabetes to probe mechanisms. RESULTS Mst1 knockout alleviated while Mst1 overexpression aggravated cardiac dysfunction in diabetes. Diabetic Mst1 transgenic mice exhibited decreased LC3 expression and enhanced protein aggregation. In contrast, typical autophagosomes were observed in diabetic Mst1-knockout mice with increased LC3 expression and reduced protein aggregation. Mst1 downregulation promoted autophagic flux as demonstrated by increased LC3-II and decreased p62 expression in the presence of bafilomycin A1. Furthermore, Mst1 overexpression increased, while Mst1 knockout decreased, cardiomyocyte apoptosis both in vivo and in vitro. Co-immunoprecipitation assays showed that Mst1 overexpression promoted Beclin1 binding to B cell lymphoma 2 (Bcl-2) and induced dissociation of Bcl-2 from Bax in diabetic mice. Conversely, Mst1 knockout disrupted the Beclin1-Bcl-2 complex and enhanced the interaction between Bcl-2 and Bax. CONCLUSIONS/INTERPRETATION Mst1 knockout restores autophagy and protects against apoptosis in cardiomyocytes, en route to the rescue against DCM.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jianqiang Hu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie Lin
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu Duan
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wanrong Man
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jiaxu Feng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lei Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Hongbing Jia
- Department of Cadre's Ward, PLA 323 Hospital, Xi'an, People's Republic of China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rongqing Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China.
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Dongdong Sun
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, Shaanxi, 710038, People's Republic of China.
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
94
|
Abstract
The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a unique helical structure called a SARAH domain; this segment allows MST1/MST2 to homodimerize and to heterodimerize with the other polypeptides that contain SARAH domains, the noncatalytic polypeptides RASSF1-6 and Sav1/WW45. Early studies emphasized the potent ability of MST1/MST2 to induce apoptosis upon being overexpressed, as well as the conversion of the endogenous MST1/MST2 polypeptides to constitutively active, caspase-cleaved catalytic fragments during apoptosis initiated by any stimulus. Later, the cleaved, constitutively active form of MST1 was identified in nonapoptotic, quiescent adult hepatocytes as well as in cells undergoing terminal differentiation, where its presence is necessary to maintain those cellular states. The physiologic regulation of full length MST1/MST2 is controlled by the availability of its noncatalytic SARAH domain partners. Interaction with Sav1/WW45 recruits MST1/MST2 into a tumor suppressor pathway, wherein it phosphorylates and activates the Sav1-bound protein kinases Lats1/Lats2, potent inhibitors of the Yap1 and TAZ oncogenic transcriptional regulators. A constitutive interaction with the Rap1-GTP binding protein RASSF5B (Nore1B/RAPL) in T cells recruits MST1 (especially) and MST2 as an effector of Rap1's control of T cell adhesion and migration, a program crucial to immune surveillance and response; loss of function mutation in human MST1 results in profound immunodeficiency. MST1 and MST2 are also regulated by other protein kinases, positively by TAO1 and negatively by Par1, SIK2/3, Akt, and cRaf1. The growing list of candidate MST1/MST2 substrates suggests that the full range of MST1/MST2's physiologic programs and contributions to pathophysiology remains to be elucidated.
Collapse
Affiliation(s)
- Jacob A. Galan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
95
|
Boucherat O, Bonnet S, Paulin R. The HIPPO-Thesis of Pulmonary HYPERtension. Am J Respir Crit Care Med 2016; 194:787-789. [PMID: 27689705 DOI: 10.1164/rccm.201604-0741ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Olivier Boucherat
- 1 Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec Universite Laval Quebec, Quebec, Canada
| | - Sebastien Bonnet
- 1 Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec Universite Laval Quebec, Quebec, Canada
| | - Roxane Paulin
- 1 Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec Universite Laval Quebec, Quebec, Canada
| |
Collapse
|
96
|
Abstract
Apoptosis is a form of programmed cell death that is critical for basic human development and physiology. One of the more important surprises in cell biology in the last two decades is the extent to which mitochondria represent a physical point of convergence for many apoptosis-inducing signals in mammalian cells. Mitochondria not only adjudicate the decision of whether or not to commit to cell death, but also release toxic proteins culminating in widespread proteolysis, nucleolysis, and cell engulfment. Interactions among BCL-2 family proteins at the mitochondrial outer membrane control the release of these toxic proteins and, by extension, control cellular commitment to apoptosis. This pathway is particularly relevant to cancer treatment, as most cancer chemotherapies trigger mitochondrial-mediated apoptosis. In this Review, we discuss recent advances in the BCL-2 family interactions, their control by upstream factors, and how the mitochondria itself alters these interactions. We also highlight recent clinical insights into mitochondrial-mediated apoptosis and novel cancer therapies that exploit this pathway.
Collapse
Affiliation(s)
- Patrick D Bhola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anthony Letai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
97
|
Matsuda T, Zhai P, Sciarretta S, Zhang Y, Jeong JI, Ikeda S, Park J, Hsu CP, Tian B, Pan D, Sadoshima J, Del Re DP. NF2 Activates Hippo Signaling and Promotes Ischemia/Reperfusion Injury in the Heart. Circ Res 2016; 119:596-606. [PMID: 27402866 DOI: 10.1161/circresaha.116.308586] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/08/2016] [Indexed: 01/07/2023]
Abstract
RATIONALE NF2 (neurofibromin 2) is an established tumor suppressor that promotes apoptosis and inhibits growth in a variety of cell types, yet its function in cardiomyocytes remains largely unknown. OBJECTIVE We sought to determine the role of NF2 in cardiomyocyte apoptosis and ischemia/reperfusion (I/R) injury in the heart. METHODS AND RESULTS We investigated the function of NF2 in isolated cardiomyocytes and mouse myocardium at baseline and in response to oxidative stress. NF2 was activated in cardiomyocytes subjected to H2O2 and in murine hearts subjected to I/R. Increased NF2 expression promoted the activation of Mst1 (mammalian sterile 20-like kinase 1) and the inhibition of Yap (Yes-associated protein), whereas knockdown of NF2 attenuated these responses after oxidative stress. NF2 increased the apoptosis of cardiomyocytes that appeared dependent on Mst1 activity. Mice deficient for NF2 in cardiomyocytes, NF2 cardiomyocyte-specific knockout (CKO), were protected against global I/R ex vivo and showed improved cardiac functional recovery. Moreover, NF2 cardiomyocyte-specific knockout mice were protected against I/R injury in vivo and showed the upregulation of Yap target gene expression. Mechanistically, we observed nuclear association between NF2 and its activator MYPT-1 (myosin phosphatase target subunit 1) in cardiomyocytes, and a subpopulation of stress-induced nuclear Mst1 was diminished in NF2 CKO hearts. Finally, mice deficient for both NF2 and Yap failed to show protection against I/R indicating that Yap is an important target of NF2 in the adult heart. CONCLUSIONS NF2 is activated by oxidative stress in cardiomyocytes and mouse myocardium and facilitates apoptosis. NF2 promotes I/R injury through the activation of Mst1 and inhibition of Yap, thereby regulating Hippo signaling in the adult heart.
Collapse
Affiliation(s)
- Takahisa Matsuda
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Sebastiano Sciarretta
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Yu Zhang
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Jae Im Jeong
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Shohei Ikeda
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Jiyeon Park
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Chiao-Po Hsu
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Bin Tian
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Duojia Pan
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.)
| | - Dominic P Del Re
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers, New Jersey Medical School, Newark (T.M., P.Z., Y.Z., J.I.J., S.I., J.S., D.P.D.R.); Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, New Jersey Medical School, Newark (J.P., B.T.); Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli (IS) (S.S.) and the Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina, Italy (S.S.); Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.); and Howard Hughes Medical Institute and Department of Physiology, UT Southwestern Medical Center, Dallas, TX (D.P.).
| |
Collapse
|
98
|
Zhao S, Yin J, Zhou L, Yan F, He Q, Huang L, Peng S, Jia J, Cheng J, Chen H, Tao W, Ji X, Xu Y, Yuan Z. Hippo/MST1 signaling mediates microglial activation following acute cerebral ischemia-reperfusion injury. Brain Behav Immun 2016; 55:236-248. [PMID: 26721416 DOI: 10.1016/j.bbi.2015.12.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 01/16/2023] Open
Abstract
Cerebral ischemia-reperfusion injury is a major public health concern that causes high rates of disability and mortality in adults. Microglial activation plays a crucial role in ischemic stroke-induced alteration of the immune microenvironment. However, the mechanism underlying the triggering of microglial activation by ischemic stroke remains to be elucidated. Previously, we demonstrated that the protein kinase Hippo/MST1 plays an important role in oxidative stress-induced cell death in mammalian primary neurons and that the protein kinase c-Abl phosphorylates MST1 at Y433, which increases MST1 kinase activity. Microglial activation has been implicated as a secondary detrimental cellular response that contributes to neuronal cell death in ischemic stroke. Here, we are the first, to our knowledge, to demonstrate that MST1 mediates stroke-induced microglial activation by directly phosphorylating IκBα at residues S32 and S36. We further demonstrate that Src kinase functions upstream of MST1-IκB signaling during microglial activation. Specific deletion of MST1 in microglia mitigates stroke-induced brain injury. Therefore, we propose that Src-MST1-IκB signaling plays a critical role in stroke-induced microglial activation. Together with our previous work demonstrating that MST1 is important for oxidative stress-induced neuronal cell death, our results indicate that MST1 could represent a potent therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Siqi Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Yin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lujun Zhou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Yan
- The Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Qing He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengyi Peng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junying Jia
- Core Facility Center, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinbo Cheng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wufan Tao
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xunming Ji
- The Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yun Xu
- Department of Neurology and Radiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Zengqiang Yuan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
99
|
Fallahi E, O'Driscoll NA, Matallanas D. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes (Basel) 2016; 7:genes7060028. [PMID: 27322327 PMCID: PMC4929427 DOI: 10.3390/genes7060028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/06/2023] Open
Abstract
The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Fallahi
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland. emma.fallahi---
| | - Niamh A O'Driscoll
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
100
|
Donninger H, Schmidt ML, Mezzanotte J, Barnoud T, Clark GJ. Ras signaling through RASSF proteins. Semin Cell Dev Biol 2016; 58:86-95. [PMID: 27288568 DOI: 10.1016/j.semcdb.2016.06.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
Abstract
There are six core RASSF family proteins that contain conserved Ras Association domains and may serve as Ras effectors. They lack intrinsic enzymatic activity and appear to function as scaffolding and localization molecules. While initially being associated with pro-apoptotic signaling pathways such as Bax and Hippo, it is now clear that they can also connect Ras to a surprisingly broad range of signaling pathways that control senescence, inflammation, autophagy, DNA repair, ubiquitination and protein acetylation. Moreover, they may be able to impact the activation status of pro-mitogenic Ras effector pathways, such as the Raf pathway. The frequent epigenetic inactivation of RASSF genes in human tumors disconnects Ras from pro-death signaling systems, enhancing Ras driven transformation and metastasis. The best characterized members are RASSF1A and RASSF5 (NORE1A).
Collapse
Affiliation(s)
- Howard Donninger
- Department of Medicine, University of Louisville, KY, 40202, USA
| | - M Lee Schmidt
- Department of Pharmacoloxy and Toxicology, University of Louisville, KY, 40202, USA
| | - Jessica Mezzanotte
- Department of Biochemistry and Molecular Genetics, Molecular Targets Program, J.G Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Genetics, Molecular Targets Program, J.G Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Geoffrey J Clark
- Department of Pharmacoloxy and Toxicology, University of Louisville, KY, 40202, USA.
| |
Collapse
|