51
|
Su Y, Yuan Y, Feng S, Ma S, Wang Y. High frequency stimulation induces sonic hedgehog release from hippocampal neurons. Sci Rep 2017; 7:43865. [PMID: 28262835 PMCID: PMC5338313 DOI: 10.1038/srep43865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/01/2017] [Indexed: 12/27/2022] Open
Abstract
Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca2+, application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons.
Collapse
Affiliation(s)
- Yujuan Su
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuan Yuan
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Feng
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shaorong Ma
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
52
|
Nicoll RA. A Brief History of Long-Term Potentiation. Neuron 2017; 93:281-290. [DOI: 10.1016/j.neuron.2016.12.015] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
53
|
Bodrikov V, Pauschert A, Kochlamazashvili G, Stuermer CAO. Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons. Exp Neurol 2016; 289:31-45. [PMID: 27993509 DOI: 10.1016/j.expneurol.2016.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
Reggie-1 and -2 (flotillins) reside at recycling vesicles and promote jointly with Rab11a the targeted delivery of cargo. Recycling is essential for synapse formation suggesting that reggies and Rab11a may regulate the development of spine synapses. Recycling vesicles provide cargo for dendritic growth and recycle surface glutamate receptors (AMPAR, GluA) for long-term potentiation (LTP) induced surface exposure. Here, we show reduced number of spine synapses and impairment of an in vitro correlate of LTP in hippocampal neurons from reggie-1 k.o. (Flot2-/-) mice maturating in culture. These defects apparently result from reduced trafficking of PSD-95 revealed by live imaging of 10 div reggie-1 k.o. (Flot2-/-) neurons and likely impairs co-transport of cargo destined for spines: N-cadherin and the glutamate receptors GluA1 and GluN1. Impaired cargo trafficking and fewer synapses also emerged in reggie-1 siRNA, reggie-2 siRNA, and reggie-1 and -2 siRNA-treated neurons and was in siRNA and k.o. neurons rescued by reggie-1-EGFP and CA-Rab11a-EGFP. While correlative expressional changes of specific synapse proteins were observed in reggie-1 k.o. (Flot2-/-) brains in vivo, this did not occur in neurons maturating in vitro. Our work suggests that reggie-1 and reggie-2 function at Rab11a recycling containers in the transport of PSD-95, N-cadherin, GluA1 and GluN1, and promote (together with significant signaling molecules) spine-directed trafficking, spine synapse formation and the in vitro correlate of LTP.
Collapse
Affiliation(s)
| | - Aline Pauschert
- Dept. Biology, University Konstanz, 78464 Konstanz, Germany.
| | - Gaga Kochlamazashvili
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany.
| | | |
Collapse
|
54
|
Ludwig M, Apps D, Menzies J, Patel JC, Rice ME. Dendritic Release of Neurotransmitters. Compr Physiol 2016; 7:235-252. [PMID: 28135005 DOI: 10.1002/cphy.c160007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Apps
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - John Menzies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, New York, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
55
|
Bele T, Fabbretti E. The scaffold protein calcium/calmodulin-dependent serine protein kinase controls ATP release in sensory ganglia upon P2X3 receptor activation and is part of an ATP keeper complex. J Neurochem 2016; 138:587-97. [PMID: 27217099 DOI: 10.1111/jnc.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
Abstract
P2X3 receptors, gated by extracellular ATP, are expressed by sensory neurons and are involved in peripheral nociception and pain sensitization. The ability of P2X3 receptors to transduce extracellular stimuli into neuronal signals critically depends on the dynamic molecular partnership with the calcium/calmodulin-dependent serine protein kinase (CASK). The present work used trigeminal sensory neurons to study the impact that activation of P2X3 receptors (evoked by the agonist α,β-meATP) has on the release of endogenous ATP and how CASK modulates this phenomenon. P2X3 receptor function was followed by ATP efflux via Pannexin1 (Panx1) hemichannels, a mechanism that was blocked by the P2X3 receptor antagonist A-317491, and by P2X3 silencing. ATP efflux was enhanced by nerve growth factor, a treatment known to potentiate P2X3 receptor function. Basal ATP efflux was not controlled by CASK, and carbenoxolone or Pannexin silencing reduced ATP release upon P2X3 receptor function. CASK-controlled ATP efflux followed P2X3 receptor activity, but not depolarization-evoked ATP release. Molecular biology experiments showed that CASK was essential for the transactivation of Panx1 upon P2X3 receptor activation. These data suggest that P2X3 receptor function controls a new type of feed-forward purinergic signaling on surrounding cells, with consequences at peripheral and spinal cord level. Thus, P2X3 receptor-mediated ATP efflux may be considered for the future development of pharmacological strategies aimed at containing neuronal sensitization. P2X3 receptors are involved in sensory transduction and associate to CASK. We have studied in primary sensory neurons the molecular mechanisms downstream P2X3 receptor activation, namely ATP release and partnership with CASK or Panx1. Our data suggest that CASK and P2X3 receptors are part of an ATP keeper complex, with important feed-forward consequences at peripheral and central level.
Collapse
Affiliation(s)
- Tanja Bele
- Center for Biomedical Sciences and Engineering, University of Nova Gorica, Nova Gorica, Slovenia
| | - Elsa Fabbretti
- Center for Biomedical Sciences and Engineering, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
56
|
Ludwig M, Stern J. Multiple signalling modalities mediated by dendritic exocytosis of oxytocin and vasopressin. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0182. [PMID: 26009761 DOI: 10.1098/rstb.2014.0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mammalian hypothalamic magnocellular neurons of the supraoptic and paraventricular nuclei are among the best understood of all peptidergic neurons. Through their anatomical features, vasopressin- and oxytocin-containing neurons have revealed many important aspects of dendritic functions. Here, we review our understanding of the mechanisms of somato-dendritic peptide release, and the effects of autocrine, paracrine and hormone-like signalling on neuronal networks and behaviour.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Javier Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
57
|
Balakrishnan V, Puthussery T, Kim MH, Taylor WR, von Gersdorff H. Synaptic Vesicle Exocytosis at the Dendritic Lobules of an Inhibitory Interneuron in the Mammalian Retina. Neuron 2015; 87:563-75. [PMID: 26247863 DOI: 10.1016/j.neuron.2015.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/07/2015] [Accepted: 07/20/2015] [Indexed: 11/16/2022]
Abstract
Ribbon synapses convey sustained and phasic excitatory drive within retinal microcircuits. However, the properties of retinal inhibitory synapses are less well known. AII-amacrine cells are interneurons in the retina that exhibit large glycinergic synapses at their dendritic lobular appendages. Using membrane capacitance measurements, we observe robust exocytosis elicited by the opening of L-type Ca(2+) channels located on the lobular appendages. Two pools of synaptic vesicles were detected: a small, rapidly releasable pool and a larger and more slowly releasable pool. Depending on the stimulus, either paired-pulse depression or facilitation could be elicited. During early postnatal maturation, the coupling of the exocytosis Ca(2+)-sensor to Ca(2+) channel becomes tighter. Light-evoked depolarizations of the AII-amacrine cell elicited exocytosis that was graded to light intensity. Our results suggest that AII-amacrine cell synapses are capable of providing both phasic and sustained inhibitory input to their postsynaptic partners without the benefit of synaptic ribbons.
Collapse
Affiliation(s)
| | - Theresa Puthussery
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mean-Hwan Kim
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - W Rowland Taylor
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Henrique von Gersdorff
- The Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
58
|
The palmitoyl acyltransferase DHHC2 regulates recycling endosome exocytosis and synaptic potentiation through palmitoylation of AKAP79/150. J Neurosci 2015; 35:442-56. [PMID: 25589740 DOI: 10.1523/jneurosci.2243-14.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphorylation and dephosphorylation of AMPA-type ionotropic glutamate receptors (AMPARs) by kinases and phosphatases and interactions with scaffold proteins play essential roles in regulating channel biophysical properties and trafficking events that control synaptic strength during NMDA receptor-dependent synaptic plasticity, such as LTP and LTD. We previously demonstrated that palmitoylation of the AMPAR-linked scaffold protein A-kinase anchoring protein (AKAP) 79/150 is required for its targeting to recycling endosomes in dendrites, where it regulates exocytosis from these compartments that is required for LTP-stimulated enlargement of postsynaptic dendritic spines, delivery of AMPARs to the plasma membrane, and maintenance of synaptic potentiation. Here, we report that the recycling endosome-resident palmitoyl acyltransferase DHHC2 interacts with and palmitoylates AKAP79/150 to regulate these plasticity signaling mechanisms. In particular, RNAi-mediated knockdown of DHHC2 expression in rat hippocampal neurons disrupted stimulation of exocytosis from recycling endosomes, enlargement of dendritic spines, AKAP recruitment to spines, and potentiation of AMPAR-mediated synaptic currents that occur during LTP. Importantly, expression of a palmitoylation-independent lipidated AKAP mutant in DHHC2-deficient neurons largely restored normal plasticity regulation. Thus, we conclude that DHHC2-AKAP79/150 signaling is an essential regulator of dendritic recycling endosome exocytosis that controls both structural and functional plasticity at excitatory synapses.
Collapse
|
59
|
Hoerndli FJ, Wang R, Mellem JE, Kallarackal A, Brockie PJ, Thacker C, Madsen DM, Maricq AV. Neuronal Activity and CaMKII Regulate Kinesin-Mediated Transport of Synaptic AMPARs. Neuron 2015; 86:457-74. [PMID: 25843407 DOI: 10.1016/j.neuron.2015.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 01/20/2015] [Accepted: 02/25/2015] [Indexed: 11/29/2022]
Abstract
Excitatory glutamatergic synaptic transmission is critically dependent on maintaining an optimal number of postsynaptic AMPA receptors (AMPARs) at each synapse of a given neuron. Here, we show that presynaptic activity, postsynaptic potential, voltage-gated calcium channels (VGCCs) and UNC-43, the C. elegans homolog of CaMKII, control synaptic strength by regulating motor-driven AMPAR transport. Genetic mutations in unc-43, or spatially and temporally restricted inactivation of UNC-43/CaMKII, revealed its essential roles in the transport of AMPARs from the cell body and in the insertion and removal of synaptic AMPARs. We found that an essential target of UNC-43/CaMKII is kinesin light chain and that mouse CaMKII rescued unc-43 mutants, suggesting conservation of function. Transient expression of UNC-43/CaMKII in adults rescued the transport defects, while optogenetic stimulation of select synapses revealed CaMKII's role in activity-dependent plasticity. Our results demonstrate unanticipated, fundamentally important roles for UNC-43/CaMKII in the regulation of synaptic strength.
Collapse
Affiliation(s)
- Frédéric J Hoerndli
- Department of Biology and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Rui Wang
- Department of Biology and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Jerry E Mellem
- Department of Biology and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Angy Kallarackal
- Department of Biology and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Penelope J Brockie
- Department of Biology and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Colin Thacker
- Department of Biology and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - David M Madsen
- Department of Biology and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Andres V Maricq
- Department of Biology and Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
60
|
Recycling endosomes undergo rapid closure of a fusion pore on exocytosis in neuronal dendrites. J Neurosci 2014; 34:11106-18. [PMID: 25122907 DOI: 10.1523/jneurosci.0799-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exocytosis of recycling endosomes (REs) represents the last step of receptor and membrane recycling, a fundamental process involved in many aspects of cell physiology. In neurons, it is involved in the control of cell polarity and synaptic plasticity and is locally and tightly regulated. However, its molecular mechanisms are still poorly understood. We have imaged single exocytosis events of REs in rat hippocampal neurons in culture transfected with three types of receptors tagged with the pH-sensitive GFP mutant superecliptic phluorin. We found that exocytosis events are grouped into two categories: (1) short burst events in which receptors diffuse into the plasma membrane in a few seconds; and (2) long display events in which receptors remain visible and clustered after exocytosis for many seconds. Display events are much rarer in non-neuronal cells, such as fibroblasts and astrocytes. Using two-color imaging and fast extracellular solution changes, we show that display events correspond to the rapid opening and closing of a fusion pore (or "kiss-and-run") with a median opening time of 2.6 s, which restricts the diffusion of multiple receptor types and bound cargo. Moreover, the RE marker Rab11 remains enriched after display exocytosis events and controls the mode of RE exocytosis. Finally, a given RE can undergo multiple rounds of display exocytosis. The last step of recycling can thus be controlled in neurons for the selective delivery of receptors at the cell surface.
Collapse
|
61
|
Tao-Cheng JH, Pham A, Yang Y, Winters CA, Gallant PE, Reese TS. Syntaxin 4 is concentrated on plasma membrane of astrocytes. Neuroscience 2014; 286:264-71. [PMID: 25485479 DOI: 10.1016/j.neuroscience.2014.11.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 01/30/2023]
Abstract
Syntaxins are a family of transmembrane proteins that participate in SNARE complexes to mediate membrane fusion events including exocytosis. Different syntaxins are thought to participate in exocytosis in different compartments of the nervous system such as the axon, the soma/dendrites or astrocytes. It is well known that exocytosis of synaptic vesicles at axonal presynaptic terminals involves syntaxin 1 but distributions of syntaxins on neuronal somal and dendritic, postsynaptic or astroglial plasma membranes are less well characterized. Here, we use pre-embedding immunogold labeling to compare the distribution of two plasma membrane-enriched syntaxins (1 and 4) in dissociated rat hippocampal cultures as well as in perfusion-fixed mouse brains. Comparison of Western blots of neuronal cultures, consisting of a mixture of hippocampal neurons and glia, with glial cultures, consisting of mostly astrocytes, shows that syntaxin 1 is enriched in neuronal cultures, whereas syntaxin 4 is enriched in glial cultures. Electron microscopy (EM)-immunogold labeling shows that syntaxin 1 is most abundant at the plasma membranes of axons and terminals, while syntaxin 4 is most abundant at astroglial plasma membranes. This differential distribution was evident even at close appositions of membranes at synapses, where syntaxin 1 was localized to the plasma membrane of the presynaptic terminal, including that at the active zone, while syntaxin 4 was localized to nearby peri-synaptic astroglial processes. These results show that syntaxin 4 is available to support exocytosis in astroglia.
Collapse
Affiliation(s)
- J-H Tao-Cheng
- EM Facility, NINDS, NIH, Bethesda, MD, United States.
| | - A Pham
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | - Y Yang
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | - C A Winters
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | - P E Gallant
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| | - T S Reese
- Laboratory of Neurobiology, NINDS, NIH, Bethesda, MD, United States
| |
Collapse
|
62
|
Roman-Vendrell C, Chevalier M, Acevedo-Canabal AM, Delgado-Peraza F, Flores-Otero J, Yudowski GA. Imaging of kiss-and-run exocytosis of surface receptors in neuronal cultures. Front Cell Neurosci 2014; 8:363. [PMID: 25404895 PMCID: PMC4217495 DOI: 10.3389/fncel.2014.00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/14/2014] [Indexed: 02/01/2023] Open
Abstract
Transmembrane proteins are continuously shuttled from the endosomal compartment to the neuronal plasma membrane by highly regulated and complex trafficking steps. These events are involved in many homeostatic and physiological processes such as neuronal growth, signaling, learning and memory among others. We have previously shown that endosomal exocytosis of the B2 adrenergic receptor (B2AR) and the GluR1-containing AMPA receptor to the neuronal plasma membrane is mediated by two different types of vesicular fusion. A rapid type of exocytosis in which receptors are delivered to the plasma membrane in a single kinetic step, and a persistent mode in which receptors remain clustered at the insertion site for a variable period of time before delivery to the cell surface. Here, by comparing the exocytosis of multiple receptors in dissociated hippocampal and striatal cultures, we show that persistent events are a general mechanism of vesicular delivery. Persistent events were only observed after 10 days in vitro, and their frequency increased with use of the calcium ionophore A23187 and with depolarization induced by KCl. Finally, we determined that vesicles producing persistent events remain at the plasma membrane, closing and reopening their fusion pore for a consecutive release of cargo in a mechanism reminiscent of synaptic kiss-and-run. These results indicate that the delivery of transmembrane receptors to the cell surface can be dynamically regulated by kiss-and-run exocytosis.
Collapse
Affiliation(s)
- Cristina Roman-Vendrell
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA ; Department of Physiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | - Michael Chevalier
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California San Francisco San Francisco, CA, USA
| | - Agnes M Acevedo-Canabal
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA ; Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | - Francheska Delgado-Peraza
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA ; Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | - Jacqueline Flores-Otero
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| | - Guillermo A Yudowski
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus San Juan, PR, USA ; Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| |
Collapse
|
63
|
Li Z, Chang SH, Zhang LY, Gao L, Wang J. Molecular genetic studies of ADHD and its candidate genes: a review. Psychiatry Res 2014; 219:10-24. [PMID: 24863865 DOI: 10.1016/j.psychres.2014.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/31/2014] [Accepted: 05/04/2014] [Indexed: 11/26/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset psychiatric disorder with high heritability. In recent years, numerous molecular genetic studies have been published to investigate susceptibility loci for ADHD. These results brought valuable candidates for further research, but they also presented great challenge for profound understanding of genetic data and general patterns of current molecular genetic studies of ADHD since they are scattered and heterogeneous. In this review, we presented a retrospective review of more than 300 molecular genetic studies for ADHD from two aspects: (1) the main achievements of various studies were summarized, including linkage studies, candidate-gene association studies, genome-wide association studies and genome-wide copy number variation studies, with a special focus on general patterns of study design and common sample features; (2) candidate genes for ADHD have been systematically evaluated in three ways for better utilization. The thorough summary of the achievements from various studies will provide an overview of the research status of molecular genetics studies for ADHD. Meanwhile, the analysis of general patterns and sample characteristics on the basis of these studies, as well as the integrative review of candidate ADHD genes, will propose new clues and directions for future experiment design.
Collapse
Affiliation(s)
- Zhao Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Su-Hua Chang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Liu-Yan Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lei Gao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
64
|
Shape-induced asymmetric diffusion in dendritic spines allows efficient synaptic AMPA receptor trapping. Biophys J 2014; 105:2743-50. [PMID: 24359746 DOI: 10.1016/j.bpj.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/01/2013] [Accepted: 11/07/2013] [Indexed: 11/20/2022] Open
Abstract
Dendritic spines are the primary postsynaptic sites of excitatory neurotransmission in the brain. They exhibit a remarkable morphological variety, ranging from thin protrusions, to stubby shapes, to bulbous mushroom shapes. The remodeling of spines is thought to regulate the strength of the synaptic connection, which depends vitally on the number and the spatial distribution of AMPA-type glutamate receptors (AMPARs). We present numerical and analytical analyses demonstrating that this shape strongly affects AMPAR diffusion. We report a pronounced suppression of the receptor exit rate out of spines with decreasing neck radius. Thus, mushroomlike spines become highly effective at retaining receptors in the spine head. Moreover, we show that the postsynaptic density further enhances receptor trapping, particularly in mushroomlike spines local exocytosis in the spine head, in contrast to release at the base, provides rapid and specific regulatory control of AMPAR concentration at synapses.
Collapse
|
65
|
Gold KS, Brückner K. Drosophila as a model for the two myeloid blood cell systems in vertebrates. Exp Hematol 2014; 42:717-27. [PMID: 24946019 PMCID: PMC5013032 DOI: 10.1016/j.exphem.2014.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Fish, mice, and humans rely on two coexisting myeloid blood cell systems. One is sustained by hematopoietic progenitor cells, which reside in specialized microenvironments (niches) in hematopoietic organs and give rise to cells of the monocyte lineage. The other system corresponds to the independent lineage of self-renewing tissue macrophages, which colonize organs during embryonic development and are maintained during later life by proliferation in local tissue microenvironments. However, little is known about the nature of these microenvironments and their regulation. Moreover, many vertebrate tissues contain a mix of both tissue-resident and monocyte-derived macrophages, posing a challenge to the study of lineage-specific regulatory mechanisms and function. This review highlights how research in the simple model organism Drosophila melanogaster can address many of these outstanding questions in the field. Drawing parallels between hematopoiesis in Drosophila and vertebrates, we illustrate the evolutionary conservation of the two myeloid systems across animal phyla. Much like vertebrates, Drosophila possesses a lineage of self-renewing tissue-resident macrophages, which we refer to as tissue hemocytes, as well as a "definitive" lineage of macrophages that derive from hematopoiesis in the progenitor-based lymph gland. We summarize key findings from Drosophila hematopoiesis that illustrate how local microenvironments, systemic signals, immune challenges, and nervous inputs regulate adaptive responses of tissue-resident macrophages and progenitor-based hematopoiesis to maximize fitness of the animal.
Collapse
Affiliation(s)
| | - Katja Brückner
- Department of Cell and Tissue Biology; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
66
|
Cox CL. Complex regulation of dendritic transmitter release from thalamic interneurons. Curr Opin Neurobiol 2014; 29:126-32. [PMID: 25062503 DOI: 10.1016/j.conb.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 11/29/2022]
Abstract
Neuronal output typically involves neurotransmitter release via axonal terminals; however, a subpopulation of neurons can also release neurotransmitters through vesicle-containing presynaptic dendrites. In the thalamus, local circuit inhibitory interneurons are a class of cells that can release γ-aminobutyric acid (GABA) via both axon terminals (termed F1 terminals) as well as presynaptic, vesicle-containing dendrites (termed F2 terminals). For example, in the visual thalamus, these F2 terminals are tightly coupled to the primary sensory afferents (axons of retinogeniculate neurons) that synapse onto thalamocortical relay neurons. The F2 terminals are primarily localized to distal dendrites of the interneurons, and in certain situations the excitation/output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent input/output components giving rise to focal inhibition. On the other hand, somatically evoked Na+-dependent action potentials can backpropagate throughout the dendritic arbor of the interneuron. The transient depolarizations, or stronger somatically initiated events (e.g. activation of low threshold calcium transients) can initiate a backpropagating Ca(2+)-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output (focal versus global) could play an important role in the temporal as well as spatial roles of inhibition that in turn impacts thalamocortical information processing.
Collapse
Affiliation(s)
- Charles L Cox
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
67
|
Hanus C, Kochen L, Tom Dieck S, Racine V, Sibarita JB, Schuman EM, Ehlers MD. Synaptic control of secretory trafficking in dendrites. Cell Rep 2014; 7:1771-8. [PMID: 24931613 PMCID: PMC5321479 DOI: 10.1016/j.celrep.2014.05.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 03/16/2014] [Accepted: 05/14/2014] [Indexed: 11/24/2022] Open
Abstract
Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER) from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK). Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.
Collapse
Affiliation(s)
- Cyril Hanus
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany.
| | - Lisa Kochen
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany
| | | | - Victor Racine
- Institute of Molecular & Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | | | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt 60438, Germany
| | - Michael D Ehlers
- Neuroscience Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA.
| |
Collapse
|
68
|
Abstract
A fundamental and still largely unresolved question is how neurons achieve rapid delivery of selected signaling receptors throughout the elaborate dendritic arbor. Here we show that this requires a conserved sorting machinery called retromer. Retromer-associated endosomes are distributed within dendrites in ∼2 μm intervals and supply frequent membrane fusion events into the dendritic shaft domain immediately adjacent to (<300 nm from) the donor endosome and typically without full endosome discharge. Retromer-associated endosomes contain β-adrenergic receptors as well as ionotropic glutamate receptors, and retromer knockdown reduces extrasynaptic insertion of adrenergic receptors as well as functional expression of AMPA and NMDA receptors at synapses. We propose that retromer supports a broadly distributed network of plasma membrane delivery to dendrites, organized in micron-scale axial territories to render essentially all regions of the postsynaptic surface within rapid diffusion distance of a local exocytic event.
Collapse
|
69
|
Ellenbroek BA, Ghiabi B. The other side of the histamine H3 receptor. Trends Neurosci 2014; 37:191-9. [DOI: 10.1016/j.tins.2014.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
|
70
|
Kinesin-1 regulates synaptic strength by mediating the delivery, removal, and redistribution of AMPA receptors. Neuron 2014; 80:1421-37. [PMID: 24360545 DOI: 10.1016/j.neuron.2013.10.050] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 01/22/2023]
Abstract
A primary determinant of the strength of neurotransmission is the number of AMPA-type glutamate receptors (AMPARs) at synapses. However, we still lack a mechanistic understanding of how the number of synaptic AMPARs is regulated. Here, we show that UNC-116, the C. elegans homolog of vertebrate kinesin-1 heavy chain (KIF5), modifies synaptic strength by mediating the rapid delivery, removal, and redistribution of synaptic AMPARs. Furthermore, by studying the real-time transport of C. elegans AMPAR subunits in vivo, we demonstrate that although homomeric GLR-1 AMPARs can diffuse to and accumulate at synapses in unc-116 mutants, glutamate-gated currents are diminished because heteromeric GLR-1/GLR-2 receptors do not reach synapses in the absence of UNC-116/KIF5-mediated transport. Our data support a model in which ongoing motor-driven delivery and removal of AMPARs controls not only the number but also the composition of synaptic AMPARs, and thus the strength of synaptic transmission.
Collapse
|
71
|
Chan JD, Agbedanu PN, Zamanian M, Gruba SM, Haynes CL, Day TA, Marchant JS. 'Death and axes': unexpected Ca²⁺ entry phenologs predict new anti-schistosomal agents. PLoS Pathog 2014; 10:e1003942. [PMID: 24586156 PMCID: PMC3930560 DOI: 10.1371/journal.ppat.1003942] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis is a parasitic flatworm disease that infects 200 million people worldwide. The drug praziquantel (PZQ) is the mainstay therapy but the target of this drug remains ambiguous. While PZQ paralyses and kills parasitic schistosomes, in free-living planarians PZQ caused an unusual axis duplication during regeneration to yield two-headed animals. Here, we show that PZQ activation of a neuronal Ca2+ channel modulates opposing dopaminergic and serotonergic pathways to regulate ‘head’ structure formation. Surprisingly, compounds with efficacy for either bioaminergic network in planarians also displayed antischistosomal activity, and reciprocally, agents first identified as antischistocidal compounds caused bipolar regeneration in the planarian bioassay. These divergent outcomes (death versus axis duplication) result from the same Ca2+ entry mechanism, and comprise unexpected Ca2+ phenologs with meaningful predictive value. Surprisingly, basic research into axis patterning mechanisms provides an unexpected route for discovering novel antischistosomal agents. Schistosomiasis (Bilharzia) is one of the most burdensome parasitic worm infections, encumbering third world economies with an annual loss of several million disability-adjusted life years. The key treatment for schistosome infections is the drug praziquantel but the mechanism of action of this drug remains controversial hampering targeted development of next generation antischistosomal agents. Here we provide fresh insight into the signaling pathways engaged by PZQ, by resolving commonalities in the action of PZQ with the process of regenerative signaling in free-living planarian flatworms. A similar calcium-dependent network is engaged in both model systems, but with divergent phenotypic outcomes. This relationship provides predictive insight such that basic research on signaling pathways involved in tissue regeneration reveals novel drug leads for schistosomiasis, and reciprocally schistosomal drug screens reveal targets involved in regenerative signaling. We believe this phenology will be helpful for uncovering new antischistosomal drug targets by exploiting broader vulnerabilities within the PZQ interactome.
Collapse
Affiliation(s)
- John D. Chan
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prince N. Agbedanu
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Mostafa Zamanian
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Sarah M. Gruba
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy A. Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
- The Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
72
|
Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2013; 76:301-31. [PMID: 24274740 DOI: 10.1146/annurev-physiol-021113-170305] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892; ,
| | | | | | | |
Collapse
|
73
|
Nechipurenko IV, Doroquez DB, Sengupta P. Primary cilia and dendritic spines: different but similar signaling compartments. Mol Cells 2013; 36:288-303. [PMID: 24048681 PMCID: PMC3837705 DOI: 10.1007/s10059-013-0246-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023] Open
Abstract
Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures.
Collapse
Affiliation(s)
- Inna V. Nechipurenko
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - David B. Doroquez
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
74
|
Heimer-McGinn V, Murphy ACH, Kim JC, Dymecki SM, Young PW. Decreased dendritic spine density as a consequence of tetanus toxin light chain expression in single neurons in vivo. Neurosci Lett 2013; 555:36-41. [PMID: 24035894 DOI: 10.1016/j.neulet.2013.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/19/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
Tetanus toxin light chain has been used for some time as a genetically-encoded tool to inhibit neurotransmission and thereby dissect mechanisms underlying neural circuit formation and function. In addition to cleaving v-SNARE proteins involved in axonal neurotransmitter release, tetanus toxin light chain can also block activity-dependent dendritic exocytosis. The application of tetanus toxin light chain as a research tool in mammalian models, however, has been limited to a small number of cell types. Here we have induced expression of tetanus toxin light chain in a very small number of fluorescently labeled neurons in many regions of the adult mouse brain. This was achieved by crossing SLICK (single-neuron labeling with inducible cre-mediated knockout) transgenic lines with RC::Ptox mice that have Cre recombinase-controlled expression of the tetanus toxin light chain. Using this system we have examined the cell-autonomous effects of tetanus toxin light chain expression on dendritic spines in vivo. We find that dendritic spine density is reduced by 15% in tetanus toxin expressing hippocampal CA1 pyramidal cells, while spine morphology is unaltered. This effect is likely to be a consequence of inhibition of activity-dependent dendritic exocytosis and suggests that on-going plasticity-associated exocytosis is required for long-term dendritic spine maintenance in vivo.
Collapse
Affiliation(s)
- Victoria Heimer-McGinn
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
75
|
Chausson P, Leresche N, Lambert RC. Dynamics of intrinsic dendritic calcium signaling during tonic firing of thalamic reticular neurons. PLoS One 2013; 8:e72275. [PMID: 23991078 PMCID: PMC3749121 DOI: 10.1371/journal.pone.0072275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022] Open
Abstract
The GABAergic neurons of the nucleus reticularis thalami that control the communication between thalamus and cortex are interconnected not only through axo-dendritic synapses but also through gap junctions and dendro-dendritic synapses. It is still unknown whether these dendritic communication processes may be triggered both by the tonic and the T-type Ca2+ channel-dependent high frequency burst firing of action potentials displayed by nucleus reticularis neurons during wakefulness and sleep, respectively. Indeed, while it is known that activation of T-type Ca2+ channels actively propagates throughout the dendritic tree, it is still unclear whether tonic action potential firing can also invade the dendritic arborization. Here, using two-photon microscopy, we demonstrated that dendritic Ca2+ responses following somatically evoked action potentials that mimic wake-related tonic firing are detected throughout the dendritic arborization. Calcium influx temporally summates to produce dendritic Ca2+ accumulations that are linearly related to the duration of the action potential trains. Increasing the firing frequency facilitates Ca2+ influx in the proximal but not in the distal dendritic compartments suggesting that the dendritic arborization acts as a low-pass filter in respect to the back-propagating action potentials. In the more distal compartment of the dendritic tree, T-type Ca2+ channels play a crucial role in the action potential triggered Ca2+ influx suggesting that this Ca2+ influx may be controlled by slight changes in the local dendritic membrane potential that determine the T-type channels’ availability. We conclude that by mediating Ca2+ dynamic in the whole dendritic arborization, both tonic and burst firing of the nucleus reticularis thalami neurons might control their dendro-dendritic and electrical communications.
Collapse
Affiliation(s)
- Patrick Chausson
- UMR 7102 CNRS, Paris, France
- UPMC, Université Paris 6, Paris, France
| | | | - Régis C. Lambert
- UMR 7102 CNRS, Paris, France
- UPMC, Université Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
76
|
Shank3-Rich2 interaction regulates AMPA receptor recycling and synaptic long-term potentiation. J Neurosci 2013; 33:9699-715. [PMID: 23739967 DOI: 10.1523/jneurosci.2725-12.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synaptic long-term potentiation (LTP) is a key mechanism involved in learning and memory, and its alteration is associated with mental disorders. Shank3 is a major postsynaptic scaffolding protein that orchestrates dendritic spine morphogenesis, and mutations of this protein lead to mental retardation and autism spectrum disorders. In the present study we investigated the role of a new Shank3-associated protein in LTP. We identified the Rho-GAP interacting CIP4 homolog 2 (Rich2) as a new Shank3 partner by proteomic screen. Using single-cell bioluminescence resonance energy transfer microscopy, we found that Rich2-Shank3 interaction is increased in dendritic spines of mouse cultured hippocampal neurons during LTP. We further characterized Rich2 as an endosomal recycling protein that controls AMPA receptor GluA1 subunit exocytosis and spine morphology. Knock-down of Rich2 with siRNA, or disruption of the Rich2-Shank3 complex using an interfering mimetic peptide, inhibited the dendritic spine enlargement and the increase in GluA1 subunit exocytosis typical of LTP. These results identify Rich2-Shank3 as a new postsynaptic protein complex involved in synaptic plasticity.
Collapse
|
77
|
Joshi S, Keith KJ, Ilyas A, Kapur J. GABAA receptor membrane insertion rates are specified by their subunit composition. Mol Cell Neurosci 2013; 56:201-11. [PMID: 23714576 DOI: 10.1016/j.mcn.2013.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/03/2013] [Accepted: 05/19/2013] [Indexed: 02/07/2023] Open
Abstract
γ Amino-butyric acid type-A receptors (GABARs) containing γ2 or δ subunits form separate pools of receptors in vivo, with distinct localization and function. We determined the rate of surface membrane insertion of native and recombinant γ2 and δ subunit-containing GABARs (γ2-GABARs and δ-GABARs). Insertion of the α-bungarotoxin binding site (BBS) tagged γ2 subunit (t-γ2)-containing GABARs in the surface membrane of HEK293 cells occurred within minutes and reached a peak by 30 min. In contrast, insertion of the BBS-tagged δ subunit (t-δ)-containing receptors required longer incubation and peaked in 120 min. Insertion of the t-γ2 subunit-containing receptors was not influenced by assembling α1 or α4 subunits. In contrast, insertion of the α4β3t-δ subunit-containing receptors was faster than those containing α1β3t-δ subunits. The rate of insertion of native GABARs in the surface membrane of cultured hippocampal neurons, determined by an antibody saturation assay, was similar to that of the recombinant receptors expressed in HEK293 cells. Insertion of the γ2-GABARs was rapid and new γ2-GABARs were detected on the surface membrane of cell soma and dendrites within minutes. In contrast, insertion of the δ-GABARs was slow and newly inserted receptors were initially present only in the surface membrane of cell soma and later also appeared over the dendrites. Thus the rate of insertion of GABARs was dependent on their subunit composition.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | | | | | | |
Collapse
|
78
|
Jurado S, Goswami D, Zhang Y, Molina AJM, Südhof TC, Malenka RC. LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 2013; 77:542-58. [PMID: 23395379 DOI: 10.1016/j.neuron.2012.11.029] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2012] [Indexed: 11/29/2022]
Abstract
Membrane fusion during exocytosis is mediated by assemblies of SNARE (soluble NSF-attachment protein receptor) and SM (Sec1/Munc18-like) proteins. The SNARE/SM proteins involved in vesicle fusion during neurotransmitter release are well understood, whereas little is known about the protein machinery that mediates activity-dependent AMPA receptor (AMPAR) exocytosis during long-term potentiation (LTP). Using direct measurements of LTP in acute hippocampal slices and an in vitro LTP model of stimulated AMPAR exocytosis, we demonstrate that the Q-SNARE proteins syntaxin-3 and SNAP-47 are required for regulated AMPAR exocytosis during LTP but not for constitutive basal AMPAR exocytosis. In contrast, the R-SNARE protein synaptobrevin-2/VAMP2 contributes to both regulated and constitutive AMPAR exocytosis. Both the central complexin-binding and the N-terminal Munc18-binding sites of syntaxin-3 are essential for its postsynaptic role in LTP. Thus, postsynaptic exocytosis of AMPARs during LTP is mediated by a unique fusion machinery that is distinct from that used during presynaptic neurotransmitter release.
Collapse
Affiliation(s)
- Sandra Jurado
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
79
|
Silberman Y, Winder DG. Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala. Neuropharmacology 2013; 70:316-23. [PMID: 23470280 DOI: 10.1016/j.neuropharm.2013.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 01/14/2023]
Abstract
Glutamatergic neurotransmission in the central nucleus of the amygdala (CeA) plays an important role in many behaviors including anxiety, memory consolidation and cardiovascular responses. While these behaviors can be modulated by corticotropin releasing factor (CRF) and catecholamine signaling, the mechanism(s) by which these signals modify CeA glutamatergic neurotransmission remains unclear. Utilizing whole-cell patch-clamp electrophysiology recordings from neurons in the lateral subdivision of the CeA (CeAL), we show that CRF, dopamine (DA) and the β-adrenergic receptor agonist isoproterenol (ISO) all enhance the frequency of spontaneous excitatory postsynaptic currents (sEPSC) without altering sEPSC kinetics, suggesting they increase presynaptic glutamate release. The effect of CRF on sEPSCs was mediated by a combination of CRFR1 and CRFR2 receptors. While previous work from our lab suggests that CRFRs mediate the effect of catecholamines on excitatory transmission in other subregions of the extended amygdala, blockade of CRFRs in the CeAL failed to significantly alter effects of DA and ISO on glutamatergic transmission. These findings suggest that catecholamine and CRF enhancement of glutamatergic transmission onto CeAL neurons occurs via distinct mechanisms. While CRF increased spontaneous glutamate release in the CeAL, CRF caused no significant changes to optogenetically evoked glutamate release in this region. The dissociable effects of CRF on different types of glutamatergic neurotransmission suggest that CRF may specifically regulate spontaneous excitatory transmission.
Collapse
Affiliation(s)
- Yuval Silberman
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
80
|
Enhanced recruitment of endosomal Na+/H+ exchanger NHE6 into Dendritic spines of hippocampal pyramidal neurons during NMDA receptor-dependent long-term potentiation. J Neurosci 2013; 33:595-610. [PMID: 23303939 DOI: 10.1523/jneurosci.2583-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic endosomal trafficking has emerged as a principal regulatory mechanism of structural and functional plasticity of glutamatergic synapses. Recycling endosomes perform activity-dependent transport of AMPA receptors (AMPARs) and lipids to the postsynaptic membrane, activities that are known to contribute to long-term synaptic potentiation and hypothesized to subserve learning and memory processes in the brain. Recently, genetic defects in a widely expressed vesicular pH-regulating transporter, the Na(+)/H(+) exchanger NHE6 isoform, have been implicated in neurodevelopmental disorders including severe X-linked mental retardation and autism. However, little information is available regarding the cellular properties of this transporter in the CNS. Here, we show by quantitative light microscopy that the protein abundance of NHE6 is developmentally regulated in area CA1 of the mouse hippocampus. Within pyramidal neurons, NHE6 was found to localize to discrete puncta throughout the soma and neurites, with noticeable accumulation at dendritic spines and presynaptic terminals. Dual immunolabeling of dendritic spines revealed that NHE6 partially colocalizes with typical markers of early and recycling endosomes as well as with the AMPAR subunit GluA1. Significantly, NHE6-containing vesicles exhibited enhanced translocation to dendritic spine heads during NMDA receptor (NMDAR)-dependent long-term potentiation. These data suggest that NHE6 may play a unique, previously unrecognized, role at glutamatergic synapses that are important for learning and memory.
Collapse
|
81
|
Eom T, Zhang C, Wang H, Lay K, Fak J, Noebels JL, Darnell RB. NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure. eLife 2013; 2:e00178. [PMID: 23359859 PMCID: PMC3552424 DOI: 10.7554/elife.00178] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/29/2012] [Indexed: 12/13/2022] Open
Abstract
The neuronal RNA binding protein NOVA regulates splicing, shuttles to the cytoplasm, and co-localizes with target transcripts in dendrites, suggesting links between splicing and local translation. Here we identified >200 transcripts showing NOVA-dependent changes in abundance, but, surprisingly, HITS-CLIP revealed NOVA binds these RNAs in introns rather than 3′ UTRs. This led us to discover NOVA-regulated splicing of cryptic exons within these introns. These exons triggered nonsense mediated decay (NMD), as UPF1 and protein synthesis were required for NOVA's effect on RNA levels. Their regulation was dynamic and physiologically relevant. The NMD exons were regulated by seizures, which also induced changes in Nova subcellular localization and mediated large changes in synaptic proteins, including proteins implicated in familial epilepsy. Moreover, Nova haploinsufficient mice had spontaneous epilepsy. The data reveal a hidden means of dynamic RNA regulation linking electrical activity to splicing and protein output, and of mediating homeostatic excitation/inhibition balance in neurons. DOI:http://dx.doi.org/10.7554/eLife.00178.001 After the DNA in a gene has been transcribed into messenger RNA, portions of the mRNA called introns are removed, and the remaining stretches of mRNA, which are known as exons, are spliced together. Within eukaryotic cells, a process known as alternative splicing allows a single gene to encode for multiple protein variants by ensuring that some exons are included in the final, modified mRNA, while other exons are excluded. This modified mRNA is then translated into proteins. Eukaryotic cells also contain proteins that bind to RNA to regulate alternative splicing. These RNA-binding proteins are often found in both the cytoplasm and nucleus of cells, and their involvement in splicing may be linked to other processes in the cell such as mRNA localization and translation. It has also become clear over the past two decades that certain types of RNA-binding proteins, including NOVA proteins, are only found in neurons, and that these proteins have been best characterized as alternative splicing regulators. Recent work has also suggested that they also have important roles in regulating neuronal activity and development, and that their actions in neuronal nuclei and cytoplasm might be coordinated. Now Eom et al. use the predictive power of a high throughput sequencing and crosslinking method termed HITS-CLIP to show that NOVA proteins can indirectly regulate cytoplasmic mRNA levels by regulating the process of alternative splicing in the nucleus to produce ‘cryptic’ exons in the brains of mice. The presence of these exons in the mRNA leads to the production of premature termination codons in the cytoplasm. These codons trigger a process called nonsense-mediated decay that involves identifying mRNA transcripts that contain nonsense mutations, and then degrading them. These cryptic exons were seen in mice missing the NOVA proteins, where they are expressed in abnormally high levels; in normal mice, these exons have not been seen before, hence they were termed ‘cryptic’. Eom et al. also show that these cryptic exons are physiologically relevant by inducing epileptic seizures in mice. Following the seizures, they find that the NOVA proteins up-regulate and down-regulate the levels of different cryptic exons, leading to changes in the levels of the proteins encoded by these mRNAs, including proteins that inhibit further seizures. Overall the results indicate that, by controlling the production of various proteins in neurons, these previously unknown cryptic exons have important roles in the workings of the brain. DOI:http://dx.doi.org/10.7554/eLife.00178.002
Collapse
Affiliation(s)
- Taesun Eom
- Laboratory of Molecular Neuro-Oncology , Rockefeller University , New York , United States
| | | | | | | | | | | | | |
Collapse
|
82
|
Gambardella C, Pignatelli A, Belluzzi O. The h-current in the substantia Nigra pars compacta neurons: a re-examination. PLoS One 2012; 7:e52329. [PMID: 23284989 PMCID: PMC3528748 DOI: 10.1371/journal.pone.0052329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/12/2012] [Indexed: 01/15/2023] Open
Abstract
The properties of the hyperpolarization-activated cation current (Ih) were investigated in rat substantia nigra - pars compacta (SNc) principal neurons using patch-clamp recordings in thin slices. A reliable identification of single dopaminergic neurons was made possible by the use of a transgenic line of mice expressing eGFP under the tyrosine hydroxylase promoter. The effects of temperature and different protocols on the Ih kinetics showed that, at 37°C and minimizing the disturbance of the intracellular milieu with perforated patch, this current actually activates at potentials more positive than what is generally indicated, with a half-activation potential of −77.05 mV and with a significant level of opening already at rest, thereby substantially contributing to the control of membrane potential, and ultimately playing a relevant function in the regulation of the cell excitability. The implications of the known influence of intracellular cAMP levels on Ih amplitude and kinetics were examined. The direct application of neurotransmitters (DA, 5-HT and noradrenaline) physiologically released onto SNc neurons and known to act on metabotropic receptors coupled to the cAMP pathway modify the Ih amplitude. Here, we show that direct activation of dopaminergic and of 5-HT receptors results in Ih inhibition of SNc DA cells, whereas noradrenaline has the opposite effect. Together, these data suggest that the modulation of Ih by endogenously released neurotransmitters acting on metabotropic receptors –mainly but not exclusively linked to the cAMP pathway- could contribute significantly to the control of SNc neuron excitability.
Collapse
Affiliation(s)
- Cristina Gambardella
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
| | - Angela Pignatelli
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
| | - Ottorino Belluzzi
- Dipartimento di Scienze della Vita e Biotecnologie, University of Ferrara and Istituto Nazionale di Neuroscienze, Ferrara, Italy
- * E-mail:
| |
Collapse
|
83
|
Famulski JK, Solecki DJ. New spin on an old transition: epithelial parallels in neuronal adhesion control. Trends Neurosci 2012; 36:163-73. [PMID: 23245691 DOI: 10.1016/j.tins.2012.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 12/13/2022]
Abstract
During histogenesis of the vertebrate central nervous system (CNS), neuronal progenitors must interact with germinal zone (GZ) niches, differentiate, and morphologically mature, and neurons must migrate to their final positions. The extrinsic cues that control neurogenesis, specify neurons, and guide their movement are relatively well understood. However, less is known about how neurons spatiotemporally modify cell-cell interactions and cell polarization to navigate through complex, distinct cellular environments during neuronal circuit formation. Here we examine the parallels between the mechanisms controlling epithelial morphogenesis and the cell adhesion events by which neural cells organize GZ niches and direct neuronal migration. We focus on the emerging relationship between neuronal adhesive interactions and conserved cell-polarity signaling cascades.
Collapse
Affiliation(s)
- Jakub K Famulski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
84
|
Peixoto R, Kunz PA, Kwon H, Mabb AM, Sabatini BL, Philpot BD, Ehlers MD. Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 2012; 76:396-409. [PMID: 23083741 PMCID: PMC3783515 DOI: 10.1016/j.neuron.2012.07.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 12/28/2022]
Abstract
Adhesive contact between pre- and postsynaptic neurons initiates synapse formation during brain development and provides a natural means of transsynaptic signaling. Numerous adhesion molecules and their role during synapse development have been described in detail. However, once established, the mechanisms of adhesive disassembly and its function in regulating synaptic transmission have been unclear. Here, we report that synaptic activity induces acute proteolytic cleavage of neuroligin-1 (NLG1), a postsynaptic adhesion molecule at glutamatergic synapses. NLG1 cleavage is triggered by NMDA receptor activation, requires Ca2+ /calmodulin-dependent protein kinase, and is mediated by proteolytic activity of matrix metalloprotease 9 (MMP9). Cleavage of NLG1 occurs at single activated spines, is regulated by neural activity in vivo, and causes rapid destabilization of its presynaptic partner neurexin-1β (NRX1β). In turn, NLG1 cleavage depresses synaptic transmission by abruptly reducing presynaptic release probability. Thus, local proteolytic control of synaptic adhesion tunes synaptic transmission during brain development and plasticity.
Collapse
Affiliation(s)
- Rui Peixoto
- Department of Neurobiology, Duke University Medical Center, Durham NC, USA
- Gulbenkian PhD Program in Biomedicine, Oeiras, Portugal
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston MA, USA
| | - Portia A. Kunz
- Department of Cell and Molecular Physiology, Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill NC, USA
| | - Hyungbae Kwon
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston MA, USA
| | - Angela M. Mabb
- Department of Cell and Molecular Physiology, Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill NC, USA
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston MA, USA
| | - Benjamin D. Philpot
- Department of Cell and Molecular Physiology, Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill NC, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham NC, USA
- Pfizer Worldwide Research and Development, Neuroscience Research Unit, Cambridge MA, USA
| |
Collapse
|
85
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
86
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
87
|
Cotrufo T, Andrés RM, Ros O, Pérez-Brangulí F, Muhaisen A, Fuschini G, Martínez R, Pascual M, Comella JX, Soriano E. Syntaxin 1 is required for DCC/Netrin-1-dependent chemoattraction of migrating neurons from the lower rhombic lip. Eur J Neurosci 2012; 36:3152-64. [PMID: 22946563 DOI: 10.1111/j.1460-9568.2012.08259.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Directed cell migration and axonal guidance are essential steps in neural development that share many molecular mechanisms. The guidance of developing axons and migrating neurons is likely to depend on the precise control of plasmalemma turnover in selected regions of leading edges and growth cones, respectively. Previous results provided evidence of a signaling mechanism that couples chemotropic deleted in colorectal cancer (DCC)/Netrin-1 axonal guidance and exocytosis through Syntaxin1(Sytx1)/TI-VAMP SNARE proteins. Here we studied whether Netrin-1-dependent neuronal migration relies on a similar SNARE mechanism. We show that migrating neurons in the lower rhombic lip (LRL) express several SNARE proteins, and that DCC co-associates with Sytx1 and TI-VAMP in these cells. We also demonstrate that cleavage of Sytx1 by botulinum toxin C1 (BoNT/C1) abolishes Netrin-1-dependent chemoattraction of migrating neurons, and that interference of Sytx1 functions with shRNAs or Sytx1-dominant negatives disrupts Netrin-1-dependent chemoattraction of LRL neurons. These findings indicate that a Sytx1/DCC interaction is required for Netrin-1 guidance of migrating neurons, thereby highlighting a relationship between guidance signaling and SNARE proteins that regulate membrane turnover.
Collapse
Affiliation(s)
- Tiziana Cotrufo
- Developmental Neurobiology and Regeneration Unit, Department of Cell Biology, Institute for Research in Biomedicine, Parc Cientific de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Jensen M, Brockie PJ, Maricq AV. Wnt signaling regulates experience-dependent synaptic plasticity in the adult nervous system. Cell Cycle 2012; 11:2585-6. [PMID: 22781061 PMCID: PMC3409000 DOI: 10.4161/cc.21138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Comment on: Jensen M, et al. Cell 2012; 149:173-87.
Collapse
|
89
|
Chang S, Zhang W, Gao L, Wang J. Prioritization of candidate genes for attention deficit hyperactivity disorder by computational analysis of multiple data sources. Protein Cell 2012; 3:526-34. [PMID: 22773342 DOI: 10.1007/s13238-012-2931-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/15/2012] [Indexed: 01/24/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder characterized by hyperactivity, inattention and increased impulsivity. In recent years, a large number of genetic studies for ADHD have been published and related genetic data has been accumulated dramatically. To provide researchers a comprehensive ADHD genetic resource, we previously developed the first genetic database for ADHD (ADHDgene). The abundant genetic data provides novel candidates for further study. Meanwhile, it also brings new challenge for selecting promising candidate genes for replication and verification research. In this study, we surveyed the computational tools for candidate gene prioritization and selected five tools, which integrate multiple data sources for gene prioritization, to prioritize ADHD candidate genes in ADHDgene. The prioritization analysis resulted in 16 prioritized candidate genes, which are mainly involved in several major neurotransmitter systems or in nervous system development pathways. Among these genes, nervous system development related genes, especially SNAP25, STX1A and the gene-gene interactions related with each of them deserve further investigations. Our results may provide new insight for further verification study and facilitate the exploration of pathogenesis mechanism of ADHD.
Collapse
Affiliation(s)
- Suhua Chang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
90
|
Photochemical inactivation analysis of temporal dynamics of postsynaptic native AMPA receptors in hippocampal slices. J Neurosci 2012; 32:6517-24. [PMID: 22573674 DOI: 10.1523/jneurosci.0720-12.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic expression of AMPA-type glutamate receptors (AMPAR) is more mobile than previously thought. Much evidence suggests that AMPAR are delivered from intracellular reserved pools to postsynaptic sites in a constitutive, as well as activity-dependent manner by exocytosis, lateral diffusion, or diffusional trapping. These notions were supported by optical monitoring of AMPAR subunits labeled with macromolecular tags such as GFP or Immunobeads, although it remains uncertain whether the mode and rate of synaptic delivery are similar to native "unlabeled" receptors. To reveal the real-time dynamics of native AMPAR in situ, photochemical inactivation of surface receptors using 6-azido-7-nitro-1,4-dihydroquinoxaline-2,3-dione (ANQX), a photoreactive AMPAR blocker, was adopted for acute hippocampal slices of mice. Because of the irreversible block due to cross-link formation between ANQX and surface AMPAR, recovery of EPSPs after photoinactivation reflects the time course of synaptic delivery of intracellular AMPAR. Brief UV illumination with fast application of ANQX resulted in persistent suppression of EPSPs for a prolonged period of up to 3 h, suggesting minimal synaptic delivery of AMPAR by exocytosis in the resting condition. Kinetic analysis of EPSP recovery clarified that the supply of postsynaptic AMPAR from the intracellular pool is dominated in the initial, but not in the later, phase of long-term potentiation (LTP). These results suggest that constitutive synaptic delivery is minimal in the resting condition at intact hippocampal synapses in a time scale of hours, while postsynaptic AMPAR are replaced with those in intracellular pools almost exclusively in an activity-dependent manner, typically shortly after LTP induction.
Collapse
|
91
|
Jensen M, Hoerndli FJ, Brockie PJ, Wang R, Johnson E, Maxfield D, Francis MM, Madsen DM, Maricq AV. Wnt signaling regulates acetylcholine receptor translocation and synaptic plasticity in the adult nervous system. Cell 2012; 149:173-87. [PMID: 22464329 DOI: 10.1016/j.cell.2011.12.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/08/2011] [Accepted: 12/30/2011] [Indexed: 12/20/2022]
Abstract
The adult nervous system is plastic, allowing us to learn, remember, and forget. Experience-dependent plasticity occurs at synapses--the specialized points of contact between neurons where signaling occurs. However, the mechanisms that regulate the strength of synaptic signaling are not well understood. Here, we define a Wnt-signaling pathway that modifies synaptic strength in the adult nervous system by regulating the translocation of one class of acetylcholine receptors (AChRs) to synapses. In Caenorhabditis elegans, we show that mutations in CWN-2 (Wnt ligand), LIN-17 (Frizzled), CAM-1 (Ror receptor tyrosine kinase), or the downstream effector DSH-1 (disheveled) result in similar subsynaptic accumulations of ACR-16/α7 AChRs, a consequent reduction in synaptic current, and predictable behavioral defects. Photoconversion experiments revealed defective translocation of ACR-16/α7 to synapses in Wnt-signaling mutants. Using optogenetic nerve stimulation, we demonstrate activity-dependent synaptic plasticity and its dependence on ACR-16/α7 translocation mediated by Wnt signaling via LIN-17/CAM-1 heteromeric receptors.
Collapse
Affiliation(s)
- Michael Jensen
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a005710. [PMID: 22510460 DOI: 10.1101/cshperspect.a005710] [Citation(s) in RCA: 710] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long-term potentiation and long-term depression (LTP/LTD) can be elicited by activating N-methyl-d-aspartate (NMDA)-type glutamate receptors, typically by the coincident activity of pre- and postsynaptic neurons. The early phases of expression are mediated by a redistribution of AMPA-type glutamate receptors: More receptors are added to potentiate the synapse or receptors are removed to weaken synapses. With time, structural changes become apparent, which in general require the synthesis of new proteins. The investigation of the molecular and cellular mechanisms underlying these forms of synaptic plasticity has received much attention, because NMDA receptor-dependent LTP and LTD may constitute cellular substrates of learning and memory.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences and Clinic of Neurology, University of Geneva, Switzerland.
| | | |
Collapse
|
93
|
Tanaka H, Hirano T. Visualization of subunit-specific delivery of glutamate receptors to postsynaptic membrane during hippocampal long-term potentiation. Cell Rep 2012; 1:291-8. [PMID: 22832222 DOI: 10.1016/j.celrep.2012.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/28/2011] [Accepted: 02/09/2012] [Indexed: 11/25/2022] Open
Abstract
An increase in the number of AMPA-type glutamate receptors (AMPARs) is critical for long-term potentiation (LTP), synaptic plasticity regarded as a basal mechanism of learning and memory. However, when and how each type of AMPAR reaches the postsynaptic membrane remain unclear. We have developed experimental methods to form postsynaptic-like membrane (PSLM) on a glass surface to precisely visualize the location and movement of receptors. We observed fluorescence-labeled AMPAR subunits (GluA1-3) around PSLM with total internal reflection fluorescence microscopy. The increases of GluA1, 2, and 3 in PSLM showed different time courses after LTP induction. GluA1 increased first, and was exocytosed to the periphery of PSLM soon after LTP induction. GluA2 and GluA3 initially decreased, and then increased. Exocytosis of GluA2 and GluA3 occurred primarily in non-PSLM, and later than exocytosis of GluA1. Thus, GluA1-3 appear to increase in the postsynaptic membrane through distinct pathways during LTP.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
94
|
Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde YA. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. ACTA ACUST UNITED AC 2012; 196:775-88. [PMID: 22412021 PMCID: PMC3308691 DOI: 10.1083/jcb.201201038] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Contrasting with the long-established retrograde model for neurotrophin function, specific immunohistochemical localization of brain-derived neurotrophic factor in the central nervous system supports the alternative model of presynaptic localization and anterograde function. Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system.
Collapse
Affiliation(s)
- Sandra Dieni
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Stimulation-dependent intraspinal microtubules and synaptic failure in Alzheimer's disease: a review. Int J Alzheimers Dis 2012; 2012:519682. [PMID: 22482073 PMCID: PMC3310171 DOI: 10.1155/2012/519682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/22/2011] [Indexed: 01/13/2023] Open
Abstract
There are many microtubules in axons and dendritic shafts, but it has been thought that there were fewer microtubules in spines. Recently, there have been four reports that observed the intraspinal microtubules. Because microtubules originate from the centrosome, these four reports strongly suggest a stimulation-dependent connection between the nucleus and the stimulated postsynaptic membrane by microtubules. In contrast, several pieces of evidence suggest that spine elongation may be caused by the polymerization of intraspinal microtubules. This structural mechanism for spine elongation suggests, conversely, that the synapse loss or spine loss observed in Alzheimer's disease may be caused by the depolymerization of intraspinal microtubules. Based on this evidence, it is suggested that the impairment of intraspinal microtubules may cause spinal structural change and block the translocation of plasticity-related molecules between the stimulated postsynaptic membranes and the nucleus, resulting in the cognitive deficits of Alzheimer's disease.
Collapse
|
96
|
Roman-Vendrell C, Yu YJ, Yudowski GA. Fast modulation of μ-opioid receptor (MOR) recycling is mediated by receptor agonists. J Biol Chem 2012; 287:14782-91. [PMID: 22378794 DOI: 10.1074/jbc.m111.319616] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The μ-opioid receptor (MOR) is a member of the G protein-coupled receptor family and the main target of endogenous opioid neuropeptides and morphine. Upon activation by ligands, MORs are rapidly internalized via clathrin-coated pits in heterologous cells and dissociated striatal neurons. After initial endocytosis, resensitized receptors recycle back to the cell surface by vesicular delivery for subsequent cycles of activation. MOR trafficking has been linked to opioid tolerance after acute exposure to agonist, but it is also involved in the resensitization process. Several studies describe the regulation and mechanism of MOR endocytosis, but little is known about the recycling of resensitized receptors to the cell surface. To study this process, we induced internalization of MOR with [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) and morphine and imaged in real time single vesicles recycling receptors to the cell surface. We determined single vesicle recycling kinetics and the number of receptors contained in them. Then we demonstrated that rapid vesicular delivery of recycling MORs to the cell surface was mediated by the actin-microtubule cytoskeleton. Recycling was also dependent on Rab4, Rab11, and the Ca(2+)-sensitive motor protein myosin Vb. Finally, we showed that recycling is acutely modulated by the presence of agonists and the levels of cAMP. Our work identifies a novel trafficking mechanism that increases the number of cell surface MORs during acute agonist exposure, effectively reducing the development of opioid tolerance.
Collapse
Affiliation(s)
- Cristina Roman-Vendrell
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | | | | |
Collapse
|
97
|
Unified quantitative model of AMPA receptor trafficking at synapses. Proc Natl Acad Sci U S A 2012; 109:3522-7. [PMID: 22331885 DOI: 10.1073/pnas.1109818109] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trafficking of AMPA receptors (AMPARs) plays a key role in synaptic transmission. However, a general framework integrating the two major mechanisms regulating AMPAR delivery at postsynapses (i.e., surface diffusion and internal recycling) is lacking. To this aim, we built a model based on numerical trajectories of individual AMPARs, including free diffusion in the extrasynaptic space, confinement in the synapse, and trapping at the postsynaptic density (PSD) through reversible interactions with scaffold proteins. The AMPAR/scaffold kinetic rates were adjusted by comparing computer simulations to single-particle tracking and fluorescence recovery after photobleaching experiments in primary neurons, in different conditions of synapse density and maturation. The model predicts that the steady-state AMPAR number at synapses is bidirectionally controlled by AMPAR/scaffold binding affinity and PSD size. To reveal the impact of recycling processes in basal conditions and upon synaptic potentiation or depression, spatially and temporally defined exocytic and endocytic events were introduced. The model predicts that local recycling of AMPARs close to the PSD, coupled to short-range surface diffusion, provides rapid control of AMPAR number at synapses. In contrast, because of long-range diffusion limitations, extrasynaptic recycling is intrinsically slower and less synapse-specific. Thus, by discriminating the relative contributions of AMPAR diffusion, trapping, and recycling events on spatial and temporal bases, this model provides unique insights on the dynamic regulation of synaptic strength.
Collapse
|
98
|
Active action potential propagation but not initiation in thalamic interneuron dendrites. J Neurosci 2012; 31:18289-302. [PMID: 22171033 DOI: 10.1523/jneurosci.4417-11.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K-based action potentials can evoke calcium transients in dendrites via local active conductances, making the backpropagating action potential a candidate for dendritic neurotransmitter release. In this study, we used high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation rapidly and actively backpropagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid backpropagation into the dendritic arbor depended upon voltage-gated sodium and tetraethylammonium chloride-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then backpropagate with high fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments.
Collapse
|
99
|
A signaling mechanism coupling netrin-1/deleted in colorectal cancer chemoattraction to SNARE-mediated exocytosis in axonal growth cones. J Neurosci 2011; 31:14463-80. [PMID: 21994363 DOI: 10.1523/jneurosci.3018-11.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.
Collapse
|
100
|
Abstract
Dendritic exocytosis underpins a broad range of integrative and homeostatic synaptic functions. Emerging data highlight the essential role of SNAREs in trafficking and fusion of secretory organelles with release of peptides and neurotransmitters from dendrites. This Perspective analyzes recent evidence inferring axo-dendritic polarization of vesicular release machinery and pinpoints progress made with existing challenges in this rapidly progressing field of dendritic research. Interpreting the relation of new molecular data to physiological results on secretion from dendrites would greatly advance our understanding of this facet of neuronal mechanisms.
Collapse
Affiliation(s)
- Saak V. Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - J. Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|