51
|
Nho B, Lee J, Lee J, Ko KR, Lee SJ, Kim S. Effective control of neuropathic pain by transient expression of hepatocyte growth factor in a mouse chronic constriction injury model. FASEB J 2018; 32:5119-5131. [PMID: 29913557 PMCID: PMC6113864 DOI: 10.1096/fj.201800476r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatocyte growth factor (HGF) is a multifunctional protein that contains angiogenic and neurotrophic properties. In the current study, we investigated the analgesic effects of HGF by using a plasmid DNA that was designed to express 2 isoforms of human HGF—pCK-HGF-X7 (or VM202)—in a chronic constriction injury (CCI) –induced mouse neuropathic pain model. Intramuscular injection of pCK-HGF-X7 into proximal thigh muscle induced the expression of HGF in the muscle, sciatic nerve, and dorsal root ganglia (DRG). This gene transfer procedure significantly attenuated mechanical allodynia and thermal hyperalgesia after CCI. Injury-induced expression of activating transcription factor 3, calcium channel subunit α2δ1, and CSF1 in the ipsilateral DRG neurons was markedly down-regulated in the pCK-HGF-X7–treated group, which suggested that HGF might exert its analgesic effects by inhibiting pain-mediating genes in the sensory neurons. In addition, suppressed CSF1 expression in DRG neurons by pCK-HGF-X7 treatment was accompanied by a noticeable suppression of the nerve injury–induced glial cell activation in the spinal cord dorsal horn. Taken together, our data show that pCK-HGF-X7 attenuates nerve injury–induced neuropathic pain by inhibiting pain-related factors in DRG neurons and subsequent spinal cord glial activation, which suggests its therapeutic efficacy in the treatment of neuropathic pain.—Nho, B., Lee, J., Lee, J., Ko, K. R., Lee, S. J., Kim, S. Effective control of neuropathic pain by transient expression of hepatocyte growth factor in a mouse chronic constriction injury model.
Collapse
Affiliation(s)
- Boram Nho
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Junghun Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea.,ViroMed, Seoul, South Korea
| | - Junsub Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kyeong Ryang Ko
- School of Biological Sciences, Seoul National University, Seoul, Korea.,ViroMed, Seoul, South Korea
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Seoul National University, Seoul, South Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea.,ViroMed, Seoul, South Korea
| |
Collapse
|
52
|
Abstract
Injury to or disease of the nervous system can invoke chronic and sometimes intractable neuropathic pain. Many parallel, interdependent, and time-dependent processes, including neuroimmune interactions at the peripheral, supraspinal, and spinal levels, contribute to the etiology of this "disease of pain." Recent work emphasizes the roles of colony-stimulating factor 1, ATP, and brain-derived neurotrophic factor. Excitatory processes are enhanced, and inhibitory processes are attenuated in the spinal dorsal horn and throughout the somatosensory system. This leads to central sensitization and aberrant processing such that tactile and innocuous thermal information is perceived as pain (allodynia). Processes involved in the onset of neuropathic pain differ from those involved in its long-term maintenance. Opioids display limited effectiveness, and less than 35% of patients derive meaningful benefit from other therapeutic approaches. We thus review promising therapeutic targets that have emerged over the last 20 years, including Na+, K+, Ca2+, hyperpolarization-activated cyclic nucleotide-gated channels, transient receptor potential channel type V1 channels, and adenosine A3 receptors. Despite this progress, the gabapentinoids retain their status as first-line treatments, yet their mechanism of action is poorly understood. We outline recent progress in understanding the etiology of neuropathic pain and show how this has provided insights into the cellular actions of pregabalin and gabapentin. Interactions of gabapentinoids with the α2δ-1 subunit of voltage-gated Ca2+ channels produce multiple and neuron type-specific actions in spinal cord and higher centers. We suggest that drugs that affect multiple processes, rather than a single specific target, show the greatest promise for future therapeutic development.
Collapse
Affiliation(s)
- Sascha R A Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| | - Peter A Smith
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada (S.R.A.A.); and Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (P.A.S.)
| |
Collapse
|
53
|
Widerström-Noga E. Neuropathic Pain and Spinal Cord Injury: Phenotypes and Pharmacological Management. Drugs 2017; 77:967-984. [PMID: 28451808 DOI: 10.1007/s40265-017-0747-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic neuropathic pain is a complicated condition after a spinal cord injury (SCI) that often has a lifelong and significant negative impact on life after the injury; therefore, improved pain management is considered a significant and unmet need. Neuropathic pain mechanisms are heterogeneous and the difficulty in determining their individual contribution to specific pain types may contribute to poor treatment outcomes in this population. Thus, identifying human neuropathic pain phenotypes based on pain symptoms, somatosensory changes, or cognitive and psychosocial factors that reflect specific spinal cord or brain mechanisms of neuropathic pain is an important goal. Once a pain phenotype can be reliably replicated, its relationship with biomarkers and clinical treatment outcomes can be analyzed, and thereby facilitate translational research and further the mechanistic understanding of individual differences in the pain experience and in clinical trial outcomes. The present article will discuss clinical aspects of SCI-related neuropathic pain, neuropathic pain phenotypes, pain mechanisms, potential biomarkers and pharmacological interventions, and progress regarding how defining neuropathic pain phenotypes may lead to more targeted treatments for these difficult pain conditions.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA. .,Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
54
|
Ukai K, Fujishiro H, Ozaki N. Effectiveness of low-dose pregabalin in three patients with Lewy body disease and central neuropathic pain. Psychogeriatrics 2017; 17:115-119. [PMID: 26818206 DOI: 10.1111/psyg.12192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
Abstract
Many patients with Lewy body disease complain of pain, and their pain may be associated with this disease. Recently, pain has become a focus of attention in Parkinson's disease, but there is little information regarding pain in patients who have dementia with Lewy bodies. We used pregabalin to treat three Lewy body disease patients with chronic pain that may have been related to degeneration of central neurons. All three patients responded well to pregabalin at 25-50 mg/day. To our knowledge, there have been no previous reports of pregabalin showing efficacy for central neuropathic pain in Parkinson's disease or Lewy body disease.
Collapse
Affiliation(s)
- Katsuyuki Ukai
- Department of Psychogeriatrics, Kamiiida Daiichi General Hospital, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
55
|
Walters ET. How is chronic pain related to sympathetic dysfunction and autonomic dysreflexia following spinal cord injury? Auton Neurosci 2017; 209:79-89. [PMID: 28161248 DOI: 10.1016/j.autneu.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/29/2022]
Abstract
Autonomic dysreflexia (AD) and neuropathic pain occur after severe injury to higher levels of the spinal cord. Mechanisms underlying these problems have rarely been integrated in proposed models of spinal cord injury (SCI). Several parallels suggest significant overlap of these mechanisms, although the relationships between sympathetic function (dysregulated in AD) and nociceptive function (dysregulated in neuropathic pain) are complex. One general mechanism likely to be shared is central sensitization - enhanced responsiveness and synaptic reorganization of spinal circuits that mediate sympathetic reflexes or that process and relay pain-related information to the brain. Another is enhanced sensory input to spinal circuits caused by extensive alterations in primary sensory neurons. Both AD and SCI-induced neuropathic pain are associated with spinal sprouting of peptidergic nociceptors that might increase synaptic input to the circuits involved in AD and SCI pain. In addition, numerous nociceptors become hyperexcitable, hypersensitive to chemicals associated with injury and inflammation, and spontaneously active, greatly amplifying sensory input to sensitized spinal circuits. As discussed with the aid of a preliminary functional model, these effects are likely to have mutually reinforcing relationships with each other, and with consequences of SCI-induced interruption of descending excitatory and inhibitory influences on spinal circuits, with SCI-induced inflammation in the spinal cord and in DRGs, and with activity in sympathetic fibers within DRGs that promotes local inflammation and spontaneous activity in sensory neurons. This model suggests that interventions selectively targeting hyperactivity in C-nociceptors might be useful for treating chronic pain and AD after high SCI.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
56
|
Zhu M, Sun X, Chen X, Xiao H, Duan M, Xu J. Impact of gabapentin on neuronal high voltage-activated Ca 2+ channel properties of injured-side axotomized and adjacent uninjured dorsal root ganglions in a rat model of spinal nerve ligation. Exp Ther Med 2017; 13:851-860. [PMID: 28450909 PMCID: PMC5403705 DOI: 10.3892/etm.2017.4071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/27/2016] [Indexed: 11/17/2022] Open
Abstract
The density and properties of ion channels in the injured axon and dorsal root ganglion (DRG) neuronal soma membrane change following nerve injury, which may result in the development of neuropathic pain. Gabapentin (GBP) is a drug for the first-line treatment of neuropathic pain. One of its therapeutic targets is the voltage-activated calcium channel (VACC). In the present study, the whole-cell patch clamp technique was used to examine the changes of high voltage-activated Ca2+ (HVA-Ca2+) channels in DRG neurons from sham and neuropathic rats in the absence and presence of GBP. The results demonstrated a reduction in peak current density and the ‘window current’ between activation and inactivation in adjacent and axotomized neurons from rats that had undergone L5 spinal nerve ligation, thus attenuating the total inward Ca2+ current. Following the use of the specific channel blockers nifedipine, ω-conotoxin MVIIC and ω-conotoxin MVIIA, increased HVA-Ca2+ channels as well as an increased proportion of N-type Ca2+ currents were observed in axotomized neurons. GBP inhibited HVA calcium channel currents in a dose-dependent manner. The activation and steady-state inactivation curves for HVA channels were shifted in a hyperpolarizing direction by 100 µmol/l GBP. Following the application of GBP, a reduction in the ‘window current’ was observed in control and axotomized neurons, whereas the ‘window current’ was unchanged in adjacent neurons. This indicates that the inhibitory effects of GBP may be dependent on particular neuropathological or inflammatory conditions. The proportion of N-type Ca2+ currents and sensitivity to GBP were increased in axotomized neurons, which indicated the involvement of N-type Ca2+ currents in the inhibitory effect of GBP.
Collapse
Affiliation(s)
- Minmin Zhu
- Department of Anaesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China.,Department of Anaesthesiology, Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Xiaodi Sun
- Department of Anaesthesiology, First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaodong Chen
- Department of Anaesthesiology, First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Hang Xiao
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Manlin Duan
- Department of Anaesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Jianguo Xu
- Department of Anaesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
57
|
Early-onset treadmill training reduces mechanical allodynia and modulates calcitonin gene-related peptide fiber density in lamina III/IV in a mouse model of spinal cord contusion injury. Pain 2016; 157:687-697. [PMID: 26588690 DOI: 10.1097/j.pain.0000000000000422] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Below-level central neuropathic pain (CNP) affects a large proportion of spinal cord injured individuals. To better define the dynamic changes of the spinal cord neural network contributing to the development of CNP after spinal cord injury (SCI), we characterized the morphological and behavioral correlates of CNP in female C57BL/6 mice after a moderate T11 contusion SCI (50 kdyn) and the influence of moderate physical activity. Compared with sham-operated animals, injured mice developed mechanical allodynia 2 weeks post injury when tested with small-diameter von Frey hair filaments (0.16 g and 0.4 g filament), but presented hyporesponsiveness to noxious mechanical stimuli (1.4 g filament). The mechano-sensory alterations lasted up to 35 days post injury, the longest time point examined. The response latency to heat stimuli already decreased significantly 10 days post injury reaching a plateau 2 weeks later. In contrast, injured mice developed remarkable hyposensitivity to cold stimuli. Animals that underwent moderate treadmill training (2 × 15 minutes; 5 d/wk) showed a significant reduction in the response rate to light mechanical stimuli as early as 6 days after training. Calcitonin gene-related peptide (CGRP) labeling in lamina III-IV of the dorsal horn revealed significant increases in CGRP-labeling density in injured animals compared with sham control animals. Importantly, treadmill training reduced CGRP-labeling density by about 50% (P < 0.01), partially reducing the injury-induced increases. Analysis of IB4-labeled nonpeptidergic sensory fibers revealed no differences between experimental groups. Abnormalities in temperature sensation were not influenced by physical activity. Thus, treadmill training partially resolves signs of below-level CNP after SCI and modulates the density of CGRP-labeled fibers.
Collapse
|
58
|
|
59
|
Kramer JLK, Minhas NK, Jutzeler CR, Erskine ELKS, Liu LJW, Ramer MS. Neuropathic pain following traumatic spinal cord injury: Models, measurement, and mechanisms. J Neurosci Res 2016; 95:1295-1306. [PMID: 27617844 DOI: 10.1002/jnr.23881] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Neuropathic pain following spinal cord injury (SCI) is notoriously difficult to treat and is a high priority for many in the SCI population. Resolving this issue requires animal models fidelic to the clinical situation in terms of injury mechanism and pain phenotype. This Review discusses the means by which neuropathic pain has been induced and measured in experimental SCI and compares these with human outcomes, showing that there is a substantial disconnection between experimental investigations and clinical findings in a number of features. Clinical injury level is predominantly cervical, whereas injury in the laboratory is modeled mainly at the thoracic cord. Neuropathic pain is primarily spontaneous or tonic in people with SCI (with a relatively smaller incidence of allodynia), but measures of evoked responses (to thermal and mechanical stimuli) are almost exclusively used in animals. There is even the question of whether pain per se has been under investigation in most experimental SCI studies rather than simply enhanced reflex activity with no affective component. This Review also summarizes some of the problems related to clinical assessment of neuropathic pain and how advanced imaging techniques may circumvent a lack of patient/clinician objectivity and discusses possible etiologies of neuropathic pain following SCI based on evidence from both clinical studies and animal models, with examples of cellular and molecular changes drawn from the entire neuraxis from primary afferent terminals to cortical sensory and affective centers. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John L K Kramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nikita K Minhas
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine R Jutzeler
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin L K S Erskine
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa J W Liu
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
60
|
Lempel AA, Coll L, Schinder AF, Uchitel OD, Piriz J. Chronic pregabalin treatment decreases excitability of dentate gyrus and accelerates maturation of adult-born granule cells. J Neurochem 2016; 140:257-267. [PMID: 27419661 DOI: 10.1111/jnc.13740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/12/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Pregabalin (PGB) is extensively prescribed to treat neurological and neuropsychiatrical conditions such as neuropathic pain, anxiety disorders, and epilepsy. Although PGB is known to bind selectively to the α2δ subunit of voltage-gated calcium channels, there is little understanding about how it exerts its therapeutic effects. In this article, we analyzed the effects of an in vivo chronic treatment with PGB over the physiology of dentate gyrus granule cells (DGGCs) using ex vivo electrophysiological and morphological analysis in adult mice. We found that PGB decreases neuronal excitability of DGGCs. In addition, PGB accelerates maturation of adult-born DGGCs, an effect that would modify dentate gyrus plasticity. Together, these findings suggest that PGB reduces activity in the dentate gyrus and modulates overall network plasticity, which might contribute to its therapeutic effects. Cover Image for this issue: doi: 10.1111/jnc.13783.
Collapse
Affiliation(s)
- Augusto Abel Lempel
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Buenos Aires, Argentina
| | - Lucia Coll
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Buenos Aires, Argentina
| | - Alejandro F Schinder
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA - CONICET), Buenos Aires, Argentina
| | - Osvaldo Daniel Uchitel
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Buenos Aires, Argentina
| | - Joaquin Piriz
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Buenos Aires, Argentina.,Instituto de Fisiología y Biofísica "Houssay" (IFIBIO "Houssay", UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
61
|
Alles SRA, Smith PA. The Anti-Allodynic Gabapentinoids: Myths, Paradoxes, and Acute Effects. Neuroscientist 2016; 23:40-55. [PMID: 27118808 DOI: 10.1177/1073858416628793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gabapentinoids (pregabalin and gabapentin) are first line treatments for neuropathic pain. They exert their actions by binding to the α2δ accessory subunits of voltage-gated Ca2+ channels. Because these subunits interact with critical aspects of the neurotransmitter release process, gabapentinoid binding prevents transmission in nociceptive pathways. Gabapentinoids also reduce plasma membrane expression of voltage-gated Ca2+ channels but this may have little direct bearing on their therapeutic actions. In animal models of neuropathic pain, gabapentinoids exert an anti-allodynic action within 30 minutes but most of their in vitro effects are 30-fold slower, taking at least 17 hours to develop. This difference may relate to increased levels of α2δ expression in the injured nervous system. Thus, in situations where α2δ is experimentally upregulated in vitro, gabapentinoids act within minutes to interrupt trafficking of α2δ subunits to the plasma membrane within nerve terminals. When α2δ is not up-regulated, gabapentinoids act slowly to interrupt trafficking of α2δ protein from cell bodies to nerve terminals. This improved understanding of the mechanism of gabapentinoid action is related to their slowly developing actions in neuropathic pain patients, to the concept that different processes underlie the onset and maintenance of neuropathic pain and to the use of gabapentinoids in management of postsurgical pain.
Collapse
Affiliation(s)
- Sascha R A Alles
- 1 Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Smith
- 1 Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
62
|
P-glycoprotein inhibitors improve effective dose and time of pregabalin to inhibit intermittent cold stress-induced central pain. J Pharmacol Sci 2016; 131:64-7. [DOI: 10.1016/j.jphs.2016.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/03/2016] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
|
63
|
Park J, Yu YP, Zhou CY, Li KW, Wang D, Chang E, Kim DS, Vo B, Zhang X, Gong N, Sharp K, Steward O, Vitko I, Perez-Reyes E, Eroglu C, Barres B, Zaucke F, Feng G, Luo ZD. Central Mechanisms Mediating Thrombospondin-4-induced Pain States. J Biol Chem 2016; 291:13335-48. [PMID: 27129212 DOI: 10.1074/jbc.m116.723478] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
Peripheral nerve injury induces increased expression of thrombospondin-4 (TSP4) in spinal cord and dorsal root ganglia that contributes to neuropathic pain states through unknown mechanisms. Here, we test the hypothesis that TSP4 activates its receptor, the voltage-gated calcium channel Cavα2δ1 subunit (Cavα2δ1), on sensory afferent terminals in dorsal spinal cord to promote excitatory synaptogenesis and central sensitization that contribute to neuropathic pain states. We show that there is a direct molecular interaction between TSP4 and Cavα2δ1 in the spinal cord in vivo and that TSP4/Cavα2δ1-dependent processes lead to increased behavioral sensitivities to stimuli. In dorsal spinal cord, TSP4/Cavα2δ1-dependent processes lead to increased frequency of miniature and amplitude of evoked excitatory post-synaptic currents in second-order neurons as well as increased VGlut2- and PSD95-positive puncta, indicative of increased excitatory synapses. Blockade of TSP4/Cavα2δ1-dependent processes with Cavα2δ1 ligand gabapentin or genetic Cavα2δ1 knockdown blocks TSP4 induced nociception and its pathological correlates. Conversely, TSP4 antibodies or genetic ablation blocks nociception and changes in synaptic transmission in mice overexpressing Cavα2δ1 Importantly, TSP4/Cavα2δ1-dependent processes also lead to similar behavioral and pathological changes in a neuropathic pain model of peripheral nerve injury. Thus, a TSP4/Cavα2δ1-dependent pathway activated by TSP4 or peripheral nerve injury promotes exaggerated presynaptic excitatory input and evoked sensory neuron hyperexcitability and excitatory synaptogenesis, which together lead to central sensitization and pain state development.
Collapse
Affiliation(s)
- John Park
- From the Department of Pharmacology and
| | | | | | - Kang-Wu Li
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Dongqing Wang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Eric Chang
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Doo-Sik Kim
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Benjamin Vo
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Xia Zhang
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Nian Gong
- Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697
| | - Kelli Sharp
- Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697
| | - Iuliia Vitko
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Cagla Eroglu
- Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ben Barres
- Department of Neurobiology, Stanford University, Stanford, California 94305, and
| | - Frank Zaucke
- Center for Biochemistry and Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, D50931 Cologne, Germany
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Z David Luo
- From the Department of Pharmacology and Department of Anesthesiology and Perioperative Care, University of California, Irvine, California 92697, Reeve-Irvine Research Center, University of California, Irvine, School of Medicine, Irvine, California 92697,
| |
Collapse
|
64
|
Combined approaches for the relief of spinal cord injury-induced neuropathic pain. Complement Ther Med 2016; 25:27-33. [DOI: 10.1016/j.ctim.2015.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023] Open
|
65
|
Fallon M, Hoskin PJ, Colvin LA, Fleetwood-Walker SM, Adamson D, Byrne A, Murray GD, Laird BJA. Randomized Double-Blind Trial of Pregabalin Versus Placebo in Conjunction With Palliative Radiotherapy for Cancer-Induced Bone Pain. J Clin Oncol 2016; 34:550-6. [PMID: 26644535 PMCID: PMC5098845 DOI: 10.1200/jco.2015.63.8221] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Cancer-induced bone pain (CIBP) affects one third of patients with cancer. Radiotherapy remains the gold-standard treatment; however, laboratory and clinical work suggest that pregabalin may be useful in treating CIBP. The aim of this study was to examine pregabalin in patients with CIBP receiving radiotherapy. PATIENTS AND METHODS A multicenter, double-blind randomized trial of pregabalin versus placebo was conducted. Eligible patients were age ≥ 18 years, had radiologically proven bone metastases, were scheduled to receive radiotherapy, and had pain scores ≥ 4 of 10 (on 0-to-10 numeric rating scale). Before radiotherapy, baseline assessments were completed, followed by random assignment. Doses of pregabalin and placebo were increased over 4 weeks. The primary end point was treatment response, defined as a reduction of ≥ 2 points in worst pain by week 4, accompanied by a stable or reduced opioid dose, compared with baseline. Secondary end points assessed average pain, interference of pain with activity, breakthrough pain, mood, quality of life, and adverse events. RESULTS A total of 233 patients were randomly assigned: 117 to placebo and 116 to pregabalin. The most common cancers were prostate (n = 88; 38%), breast (n = 77; 33%), and lung (n = 42; 18%). In the pregabalin arm, 45 patients (38.8%) achieved the primary end point, compared with 47 (40.2%) in the placebo arm (adjusted odds ratio, 1.07; 95% CI, 0.63 to 1.81; P = .816). There were no statistically significant differences in average pain, pain interference, or quality of life between arms. There were differences in mood (P = .031) and breakthrough pain duration (P = .037) between arms. Outcomes were compared at 4 weeks. CONCLUSION Our findings do not support the role of pregabalin in patients with CIBP receiving radiotherapy. The role of pregabalin in CIBP with a clinical neuropathic pain component is unknown.
Collapse
Affiliation(s)
- Marie Fallon
- Marie Fallon and Barry J.A. Laird, Edinburgh Cancer Research Centre, University of Edinburgh; Lesley A. Colvin, Western General Hospital and University of Edinburgh; Susan M. Fleetwood-Walker, School of Biomedical Sciences, University of Edinburgh; Gordon D. Murray, Centre for Population Health Sciences, University of Edinburgh, Edinburgh; Peter J. Hoskin, Mount Vernon Hospital Cancer Centre, Middlesex, and University College London; Douglas Adamson, Princess Alexandra Centre, Ninewells Hospital, Dundee; Anthony Byrne, Marie Curie Palliative Care Research Centre, Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom; and Barry J.A. Laird, European Palliative Care Research Centre, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Peter J Hoskin
- Marie Fallon and Barry J.A. Laird, Edinburgh Cancer Research Centre, University of Edinburgh; Lesley A. Colvin, Western General Hospital and University of Edinburgh; Susan M. Fleetwood-Walker, School of Biomedical Sciences, University of Edinburgh; Gordon D. Murray, Centre for Population Health Sciences, University of Edinburgh, Edinburgh; Peter J. Hoskin, Mount Vernon Hospital Cancer Centre, Middlesex, and University College London; Douglas Adamson, Princess Alexandra Centre, Ninewells Hospital, Dundee; Anthony Byrne, Marie Curie Palliative Care Research Centre, Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom; and Barry J.A. Laird, European Palliative Care Research Centre, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lesley A Colvin
- Marie Fallon and Barry J.A. Laird, Edinburgh Cancer Research Centre, University of Edinburgh; Lesley A. Colvin, Western General Hospital and University of Edinburgh; Susan M. Fleetwood-Walker, School of Biomedical Sciences, University of Edinburgh; Gordon D. Murray, Centre for Population Health Sciences, University of Edinburgh, Edinburgh; Peter J. Hoskin, Mount Vernon Hospital Cancer Centre, Middlesex, and University College London; Douglas Adamson, Princess Alexandra Centre, Ninewells Hospital, Dundee; Anthony Byrne, Marie Curie Palliative Care Research Centre, Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom; and Barry J.A. Laird, European Palliative Care Research Centre, Norwegian University of Science and Technology, Trondheim, Norway
| | - Susan M Fleetwood-Walker
- Marie Fallon and Barry J.A. Laird, Edinburgh Cancer Research Centre, University of Edinburgh; Lesley A. Colvin, Western General Hospital and University of Edinburgh; Susan M. Fleetwood-Walker, School of Biomedical Sciences, University of Edinburgh; Gordon D. Murray, Centre for Population Health Sciences, University of Edinburgh, Edinburgh; Peter J. Hoskin, Mount Vernon Hospital Cancer Centre, Middlesex, and University College London; Douglas Adamson, Princess Alexandra Centre, Ninewells Hospital, Dundee; Anthony Byrne, Marie Curie Palliative Care Research Centre, Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom; and Barry J.A. Laird, European Palliative Care Research Centre, Norwegian University of Science and Technology, Trondheim, Norway
| | - Douglas Adamson
- Marie Fallon and Barry J.A. Laird, Edinburgh Cancer Research Centre, University of Edinburgh; Lesley A. Colvin, Western General Hospital and University of Edinburgh; Susan M. Fleetwood-Walker, School of Biomedical Sciences, University of Edinburgh; Gordon D. Murray, Centre for Population Health Sciences, University of Edinburgh, Edinburgh; Peter J. Hoskin, Mount Vernon Hospital Cancer Centre, Middlesex, and University College London; Douglas Adamson, Princess Alexandra Centre, Ninewells Hospital, Dundee; Anthony Byrne, Marie Curie Palliative Care Research Centre, Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom; and Barry J.A. Laird, European Palliative Care Research Centre, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anthony Byrne
- Marie Fallon and Barry J.A. Laird, Edinburgh Cancer Research Centre, University of Edinburgh; Lesley A. Colvin, Western General Hospital and University of Edinburgh; Susan M. Fleetwood-Walker, School of Biomedical Sciences, University of Edinburgh; Gordon D. Murray, Centre for Population Health Sciences, University of Edinburgh, Edinburgh; Peter J. Hoskin, Mount Vernon Hospital Cancer Centre, Middlesex, and University College London; Douglas Adamson, Princess Alexandra Centre, Ninewells Hospital, Dundee; Anthony Byrne, Marie Curie Palliative Care Research Centre, Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom; and Barry J.A. Laird, European Palliative Care Research Centre, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gordon D Murray
- Marie Fallon and Barry J.A. Laird, Edinburgh Cancer Research Centre, University of Edinburgh; Lesley A. Colvin, Western General Hospital and University of Edinburgh; Susan M. Fleetwood-Walker, School of Biomedical Sciences, University of Edinburgh; Gordon D. Murray, Centre for Population Health Sciences, University of Edinburgh, Edinburgh; Peter J. Hoskin, Mount Vernon Hospital Cancer Centre, Middlesex, and University College London; Douglas Adamson, Princess Alexandra Centre, Ninewells Hospital, Dundee; Anthony Byrne, Marie Curie Palliative Care Research Centre, Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom; and Barry J.A. Laird, European Palliative Care Research Centre, Norwegian University of Science and Technology, Trondheim, Norway
| | - Barry J A Laird
- Marie Fallon and Barry J.A. Laird, Edinburgh Cancer Research Centre, University of Edinburgh; Lesley A. Colvin, Western General Hospital and University of Edinburgh; Susan M. Fleetwood-Walker, School of Biomedical Sciences, University of Edinburgh; Gordon D. Murray, Centre for Population Health Sciences, University of Edinburgh, Edinburgh; Peter J. Hoskin, Mount Vernon Hospital Cancer Centre, Middlesex, and University College London; Douglas Adamson, Princess Alexandra Centre, Ninewells Hospital, Dundee; Anthony Byrne, Marie Curie Palliative Care Research Centre, Institute of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom; and Barry J.A. Laird, European Palliative Care Research Centre, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
66
|
Differential pain modulation properties in central neuropathic pain after spinal cord injury. Pain 2016; 157:1415-1424. [DOI: 10.1097/j.pain.0000000000000532] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
67
|
Yamamoto K, Tsuboi M, Kambe T, Abe K, Nakatani Y, Kawakami K, Utsunomiya I, Taguchi K. Oxaliplatin administration increases expression of the voltage-dependent calcium channel α2δ-1 subunit in the rat spinal cord. J Pharmacol Sci 2016; 130:117-22. [PMID: 26883453 DOI: 10.1016/j.jphs.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Oxaliplatin is a chemotherapeutic agent that is effective against various types of cancer including colorectal cancer. Acute cold hyperalgesia is a serious side effect of oxaliplatin treatment. Although the therapeutic drug pregabalin is beneficial for preventing peripheral neuropathic pain by targeting the voltage-dependent calcium channel α2δ-1 (Cavα2δ-1) subunit, the effect of oxaliplatin-induced acute cold hypersensitivity is uncertain. To analyze the contribution of the Cavα2δ-1 subunit to the development of oxaliplatin-induced acute cold hypersensitivity, Cavα2δ-1 subunit expression in the rat spinal cord was analyzed after oxaliplatin treatment. Behavioral assessment using the acetone spray test showed that 6 mg/kg oxaliplatin-induced cold hypersensitivity 2 and 4 days later. Oxaliplatin-induced acute cold hypersensitivity 4 days after treatment was significantly inhibited by pregabalin (50 mg/kg, p.o.). Oxaliplatin (6 mg/kg, i.p.) treatment increased the expression level of Cavα2δ-1 subunit mRNA and protein in the spinal cord 2 and 4 days after treatment. Immunohistochemistry showed that oxaliplatin increased Cavα2δ-1 subunit protein expression in superficial layers of the spinal dorsal horn 2 and 4 days after treatment. These results suggest that oxaliplatin treatment increases Cavα2δ-1 subunit expression in the superficial layers of the spinal cord and may contribute to functional peripheral acute cold hypersensitivity.
Collapse
Affiliation(s)
- Ken Yamamoto
- Department of Education and Research Center for Clinical Pharmacy, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Mayuko Tsuboi
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Toshie Kambe
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kenji Abe
- Department of Pharmacology, School of Pharmaceutical Sciences, Ohu University, 31-1 Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yoshihiko Nakatani
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kazuyoshi Kawakami
- Department of Pharmacy, Cancer Institute Hospital, 3-10-6 Ariake, Koto-Ku, Tokyo 135-8550, Japan
| | - Iku Utsunomiya
- Department of Developmental Education, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kyoji Taguchi
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
68
|
Jiang BC, Yang T, He LN, Tao YX, Gao YJ. Altered T-UCRs expression profile in the spinal cord of mice with neuropathic pain. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2016; 1:1-10. [PMID: 27500182 PMCID: PMC4971523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Spinal cord plays an important role in the transmission and modulation of nociceptive information. Global changes in gene expression in the spinal cord contribute to the induction and maintenance of neuropathic pain. Transcribed Ultraconserved Regions (T-UCRs), a novel class of long noncoding RNAs, can regulate gene expression at both transcriptional and post-transcriptional levels and are related to many human diseases such as cancer, Alzheimer's disease, and heart diseases. In this study, we screened abnormal T-UCRs expression in the spinal cord under spinal nerve ligation (SNL)-induced neuropathic pain condition. Microarray data showed the alternation of T-UCRs at the transcriptional level in the spinal cord 10 days after SNL. Among 78 altered T-UCRs, 23 T-UCRs were upregulated by more than 1.5-fold and 55 ones downregulated by less than 0.5-fold after SNL. Hierarchical cluster analysis of T-UCRs expression profiles showed the opposite expression pattern between SNL and sham-operated mice. The quantitative real-time reverse transcription polymerase chain reaction analysis further confirmed the expression patterns of uc.305, uc.189, uc.46, and uc.217 after SNL. The gene ontology annotation and signaling pathway analysis for the T-UCRs host genes indicated that differentially expressed T-UCRs were involved in several intracellular activities and signaling pathways, including Ephrin receptor activity, soluble NSF attachment protein receptor (SNARE) interactions in vesicular transport pathway, and WNT signaling pathway. Collectively, the current data suggest the possible role of T-UCR in the pathogenesis of neuropathic pain. T-UCRs may serve as a new kind of target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China
| | - Tian Yang
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China
| | - Li-Na He
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226019, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
69
|
Zhang M. Two-step production of monoamines in monoenzymatic cells in the spinal cord: a different control strategy of neurotransmitter supply? Neural Regen Res 2016; 11:1904-1909. [PMID: 28197177 PMCID: PMC5270419 DOI: 10.4103/1673-5374.197124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Monoamine neurotransmitters play an important role in the modulation of sensory, motor and autonomic functions in the spinal cord. Although traditionally it is believed that in mammalian spinal cord, monoamine neurotransmitters mainly originate from the brain, accumulating evidence indicates that especially when the spinal cord is injured, they can also be produced in the spinal cord. In this review, I will present evidence for a possible pathway for two-step synthesis of dopamine and serotonin in the spinal cord. Published data from different sources and unpublished data from my own ongoing projects indicate that monoenzymatic cells expressing aromatic L-amino acid decarboxylase (AADC), tyrosine hydroxylase (TH) or tryptophan hydroxylase (TPH) are present in the spinal cord and that these TH and THP cells often lie in close proximity to AADC cells. Prompted by the above evidence, I hypothesize that dopamine and serotonin could be synthesized sequentially in two monoenzymatic cells in the spinal cord via a TH-AADC and a TPH-AADC cascade respectively. The monoamines synthesized through this pathway may compensate for lost neurotransmitters following spinal cord injury and also may play specific roles in the recovery of sensory, motor and autonomic functions.
Collapse
Affiliation(s)
- Mengliang Zhang
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
70
|
Lin SL, Chang FL, Ho SY, Charoenkwan P, Wang KW, Huang HL. Predicting Neuroinflammation in Morphine Tolerance for Tolerance Therapy from Immunostaining Images of Rat Spinal Cord. PLoS One 2015; 10:e0139806. [PMID: 26437460 PMCID: PMC4593634 DOI: 10.1371/journal.pone.0139806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 09/17/2015] [Indexed: 02/07/2023] Open
Abstract
Long-term morphine treatment leads to tolerance which attenuates analgesic effect and hampers clinical utilization. Recent studies have sought to reveal the mechanism of opioid receptors and neuroinflammation by observing morphological changes of cells in the rat spinal cord. This work proposes a high-content screening (HCS) based computational method, HCS-Morph, for predicting neuroinflammation in morphine tolerance to facilitate the development of tolerance therapy using immunostaining images for astrocytes, microglia, and neurons in the spinal cord. HCS-Morph first extracts numerous HCS-based features of cellular phenotypes. Next, an inheritable bi-objective genetic algorithm is used to identify a minimal set of features by maximizing the prediction accuracy of neuroinflammation. Finally, a mathematic model using a support vector machine with the identified features is established to predict drug-treated images to assess the effects of tolerance therapy. The dataset consists of 15 saline controls (1 μl/h), 15 morphine-tolerant rats (15 μg/h), and 10 rats receiving a co-infusion of morphine (15 μg/h) and gabapentin (15 μg/h, Sigma). The three individual models of astrocytes, microglia, and neurons for predicting neuroinflammation yielded respective Jackknife test accuracies of 96.67%, 90.00%, and 86.67% on the 30 rats, and respective independent test accuracies of 100%, 90%, and 60% on the 10 co-infused rats. The experimental results suggest that neuroinflammation activity expresses more predominantly in astrocytes and microglia than in neuron cells. The set of features for predicting neuroinflammation from images of astrocytes comprises mean cell intensity, total cell area, and second-order geometric moment (relating to cell distribution), relevant to cell communication, cell extension, and cell migration, respectively. The present investigation provides the first evidence for the role of gabapentin in the attenuation of morphine tolerance from phenotypic changes of astrocytes and microglia. Based on neuroinflammation prediction, the proposed computer-aided image diagnosis system can greatly facilitate the development of tolerance therapy with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Shinn-Long Lin
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Fang-Lin Chang
- Department of Anesthesiology, Kang-Ning General Hospital, Taipei, Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Phasit Charoenkwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuan-Wei Wang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
71
|
Plessas IN, Volk HA, Rusbridge C, Vanhaesebrouck AE, Jeffery ND. Comparison of gabapentin versus topiramate on clinically affected dogs with Chiari-like malformation and syringomyelia. Vet Rec 2015; 177:288. [DOI: 10.1136/vr.103234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 01/21/2023]
Affiliation(s)
- I. N. Plessas
- Department of Clinical Science and Services; Royal Veterinary College; Hawkshead Lane North Mymms AL9 7TA UK
| | - H. A. Volk
- School of Veterinary Medicine, University of Surrey; Guildford Surrey GU2 7XH UK
| | - C. Rusbridge
- Department of Neurology; Fitzpatrick Referrals; Halfway Lane, Eashing, Godalming Surrey GU7 2QQ UK
| | - A. E. Vanhaesebrouck
- Department of Veterinary Medicine; Veterinary Medicine School, University of Cambridge; Madingley Road Cambridge CB3 0ES UK
| | - N. D. Jeffery
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine, Iowa State University; 2503 Vet Med, 1600 South 16th Street Ames Iowa 50011 USA
| |
Collapse
|
72
|
Wang Y, Zhang M, Xie F, Li X, Bao M, Yang N, Shi R, Wang Z, Wu A, Guan Y, Yue Y. Upregulation of α₂δ-1 Calcium Channel Subunit in the Spinal Cord Contributes to Pelvic Organ Cross-Sensitization in a Rat Model of Experimentally-Induced Endometriosis. Neurochem Res 2015; 40:1267-73. [PMID: 25935199 DOI: 10.1007/s11064-015-1592-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 12/30/2022]
Abstract
Pelvic organ cross-sensitization, also termed as viscero-visceral referred hyperalgesia, is a major contributor to painful endometriosis. Its underlying mechanism is poorly understood. Clinical and basic studies have shown that gabapentin, a drug that binds to the α2δ-1 subunit of voltage-dependent calcium channels (Cavα2δ-1), is effective in treating chronic visceral pain. Accordingly, we hypothesized that pelvic organ cross-sensitization in painful endometriosis is mediated by an upregulation of Cavα2δ-1 in the spinal cord. We examined if the dysregulation of spinal Cavα2δ-1 subunit may play an important role in the development of ectopic growths-to-colon cross-sensitization in a rat model of experimentally-induced endometriosis. Our findings suggest that there was an increased Cavα2δ-1 expression in the dorsal horn and an ectopic growths-to-colon cross-sensitization in female rats with established endometriosis. Intrathecal administration of gabapentin (300 μg) remarkably reduced the ectopic growths-to-colon cross-sensitization in rats with established endometriosis. Furthermore, intrathecal injection of Cavα2δ-1 antisense oligodeoxynucleotides reversed the ectopic growths-to-colon cross-sensitization and also normalized the upregulation of spinal Cavα2δ-1 expression in endometriosis rats. The current study suggests that the upregulation of Cavα2δ-1 in the spinal cord may contribute to pelvic organ cross-sensitization in painful endometriosis. Our study may provide a biological basis for selectively targeting this pathway to relieve viscero-visceral referred hyperalgesia in patients with painful endometriosis.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Chaoyang District, Beijing, 100020, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ruyang T, Yang Z, Wei F. Gabapentin prevents oxaliplatin-induced central sensitization in the dorsal horn neurons in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:493-8. [PMID: 26124936 PMCID: PMC4475658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/07/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The present study aims to study the alteration of glutamatergic transmission in the dorsal horn neurons and the effect of gabapentin on oxaliplatin-induced neuropathic pain in rats. MATERIALS AND METHODS Oxaliplatin (5 mg/kg) or saline was administered to adult male Sprague-Dawley rats. Gabapentin (60 mg/kg, IP) or vehicle was injected daily. Mechanical allodynia was assessed using a series of von Frey filaments. The expression of glutamate receptor subunits (NR2B and GluR1) and brain-derived neurotrophic factor (BDNF) was measured in the dorsal horn. The glutamatergic strength was recorded in the spinal cord slices. RESULTS Administration of oxaliplatin induced significant hyperreactivity to mechanical stimuli in rats, which was attenuated by gabapentin. Significant increase in the expression of BDNF was found in the dorsal horn in rats receiving oxaliplatin, which was prevented by gabapentin. Further studies also observed a significant increase in the expression of GluR1 and NR2B, as well as enhanced glutamatergic transmission in the dorsal horn neurons in rats treated with oxaliplatin. The upregulation of glutamatergic transmission was significantly reversed by gabapentin. CONCLUSION These results illustrated an increased expression of BDNF and enhanced glutamatergic transmission in rats with oxaliplatin-induced neuropathic pain, which was markedly attenuated by gabapentin.
Collapse
Affiliation(s)
- Teng Ruyang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Zhao Yang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Feng Wei
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China,*Corresponding author: Feng Wei. Department of Anesthesiology, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, Shandong 266003, China. Tel: +86-532-82911847;
| |
Collapse
|
74
|
Su J, Gao T, Shi T, Xiang Q, Xu X, Wiesenfeld-Hallin Z, Hökfelt T, Svensson CI. Phenotypic changes in dorsal root ganglion and spinal cord in the collagen antibody-induced arthritis mouse model. J Comp Neurol 2015; 523:1505-28. [DOI: 10.1002/cne.23749] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/26/2014] [Accepted: 01/24/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Tianle Gao
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Tiejun Shi
- Department of Neuroscience; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Qiong Xiang
- Department of Neuroscience; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Xiaojun Xu
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| | | | - Tomas Hökfelt
- Department of Neuroscience; Karolinska Institutet; Stockholm 171 77 Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm 171 77 Sweden
| |
Collapse
|
75
|
Chung WS, Allen NJ, Eroglu C. Astrocytes Control Synapse Formation, Function, and Elimination. Cold Spring Harb Perspect Biol 2015; 7:a020370. [PMID: 25663667 DOI: 10.1101/cshperspect.a020370] [Citation(s) in RCA: 558] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, through their close associations with synapses, can monitor and alter synaptic function, thus actively controlling synaptic transmission in the adult brain. Besides their important role at adult synapses, in the last three decades a number of critical findings have highlighted the importance of astrocytes in the establishment of synaptic connectivity in the developing brain. In this article, we will review the key findings on astrocytic control of synapse formation, function, and elimination. First, we will summarize our current structural and functional understanding of astrocytes at the synapse. Then, we will discuss the cellular and molecular mechanisms through which developing and mature astrocytes instruct the formation, maturation, and refinement of synapses. Our aim is to provide an overview of astrocytes as important players in the establishment of a functional nervous system.
Collapse
Affiliation(s)
- Won-Suk Chung
- Stanford University, School of Medicine, Department of Neurobiology, Stanford, California 94305
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, La Jolla, California 92037
| | - Cagla Eroglu
- Duke University Medical Center, Cell Biology and Neurobiology Departments, Duke Institute for Brain Sciences, Durham, North Carolina 27710
| |
Collapse
|
76
|
Terada Y, Kawabata A. H2S and Pain: A Novel Aspect for Processing of Somatic, Visceral and Neuropathic Pain Signals. Handb Exp Pharmacol 2015; 230:217-230. [PMID: 26162837 DOI: 10.1007/978-3-319-18144-8_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydrogen sulfide (H2S) formed by multiple enzymes including cystathionine-γ-lyase (CSE) targets Cav3.2 T-type Ca2+ channels (T-channels) and transient receptor potential ankyrin-1 (TRPA1). Intraplantar and intracolonic administration of H2S donors promotes somatic and visceral pain, respectively, via activation of Cav3.2 and TRPA1 in rats and/or mice. Injection of H2S donors into the plantar tissues, pancreatic duct, colonic lumen, or bladder causes T-channel-dependent excitation of nociceptors, determined as phosphorylation of ERK or expression of Fos in the spinal dorsal horn. Electrophysiological studies demonstrate that exogenous and/or endogenous H2S facilitates membrane currents through T-channels in NG108-15 cells and isolated mouse dorsal root ganglion (DRG) neurons that abundantly express Cav3.2 and also in Cav3.2-transfected HEK293 cells. In mice with cerulein-induced pancreatitis and cyclophosphamide-induced cystitis, visceral pain and/or referred hyperalgesia are inhibited by CSE inhibitors and by pharmacological blockade or genetic silencing of Cav3.2, and CSE protein is upregulated in the pancreas and bladder. In rats with neuropathy induced by L5 spinal nerve cutting or by repeated administration of paclitaxel, an anticancer drug, the neuropathic hyperalgesia is reversed by inhibitors of CSE or T-channels and by silencing of Cav3.2. Upregulation of Cav3.2 protein in DRG is detectable in the former, but not in the latter, neuropathic pain models. Thus, H2S appears to function as a nociceptive messenger by facilitating functions of Cav3.2 and TRPA1, and the enhanced function of the CSE/H2S/Cav3.2 pathway is considered to be involved in the pancreatitis- and cystitis-related pain and in neuropathic pain.
Collapse
Affiliation(s)
- Yuka Terada
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, 577-8502, Japan
| | | |
Collapse
|
77
|
Chen T, O'Den G, Song Q, Koga K, Zhang MM, Zhuo M. Adenylyl cyclase subtype 1 is essential for late-phase long term potentiation and spatial propagation of synaptic responses in the anterior cingulate cortex of adult mice. Mol Pain 2014; 10:65. [PMID: 25304256 PMCID: PMC4198686 DOI: 10.1186/1744-8069-10-65] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/25/2014] [Indexed: 01/07/2023] Open
Abstract
Long-term potentiation (LTP) is a key cellular mechanism for pathological pain in the central nervous system. LTP contains at least two different phases: early-phase LTP (E-LTP) and late-phase LTP (L-LTP). Among several major cortical areas, the anterior cingulate cortex (ACC) is a critical brain region for pain perception and its related emotional changes. Periphery tissue or nerve injuries cause LTP of excitatory synaptic transmission in the ACC. Our previous studies have demonstrated that genetic deletion of calcium-stimulated adenylyl cyclase 1 (AC1) or pharmacological application of a selective AC1 inhibitor NB001 blocked E-LTP in the ACC. However, the effect of AC1 on L-LTP, which requires new protein synthesis and is important for the process of chronic pain, has not been investigated. Here we tested the effects of NB001 on the ACC L-LTP and found that bath application of NB001 (0.1 μM) totally blocked the induction of L-LTP and recruitment of cortical circuitry without affecting basal excitatory transmission. In contrast, gabapentin, a widely used analgesic drug for neuropathic pain, did not block the induction of L-LTP and circuitry recruitment even at a high concentration (100 μM). Gabapentin non-selectively decreased basal synaptic transmission. Our results provide strong evidence that the selective AC1 inhibitor NB001 can be used to inhibit pain-related cortical L-LTP without affecting basal synaptic transmission. It also provides basic mechanisms for possible side effects of gabapentin in the central nervous system and its ineffectiveness in some patients with neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
78
|
Walters ET. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense. Exp Neurol 2014; 258:48-61. [PMID: 25017887 DOI: 10.1016/j.expneurol.2014.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 12/30/2022]
Abstract
Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Medical School at Houston, TX, USA.
| |
Collapse
|
79
|
Hagenston AM, Simonetti M. Neuronal calcium signaling in chronic pain. Cell Tissue Res 2014; 357:407-26. [PMID: 25012522 DOI: 10.1007/s00441-014-1942-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/03/2014] [Indexed: 01/03/2023]
Abstract
Acute physiological pain, the unpleasant sensory response to a noxious stimulus, is essential for animals and humans to avoid potential injury. Pathological pain that persists after the original insult or injury has subsided, however, not only results in individual suffering but also imposes a significant cost on society. Improving treatments for long-lasting pathological pain requires a comprehensive understanding of the biological mechanisms underlying pain perception and the development of pain chronicity. In this review, we aim to highlight some of the major findings related to the involvement of neuronal calcium signaling in the processes that mediate chronic pain.
Collapse
Affiliation(s)
- Anna M Hagenston
- University of Heidelberg, Neurobiology, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany,
| | | |
Collapse
|
80
|
Abstract
Chronic post-traumatic headache (CPTHA), the most frequent complaint after traumatic brain injury (TBI), dramatically affects quality of life and function. Despite its high prevalence and persistence, the mechanism of CPTHA is poorly understood. This literature review aimed to analyze the results of studies assessing the characteristics and sensory profile of CPTHA in order to shed light on its possible underlying mechanisms. The search for English language articles published between 1960 and 2013 was conducted in MEDLINE, CINAHL, and PubMed. Studies assessing clinical features of headache after TBI as well as studies conducting quantitative somatosensory testing (QST) in individuals with CPTHA and in individuals suffering from other types of pain were included. Studies on animal models of pain following damage to peripheral tissues and to the peripheral and central nervous system were also included. The clinical features of CPTHA resembled those of primary headache, especially tension-type and migraine headache. Positive and negative signs were prevalent among individuals with CPTHA, in both the head and in other body regions, suggesting the presence of local (cranial) mechanical hypersensitivity, together with generalized thermal hypoesthesia and hypoalgesia. Evidence of dysfunctional pain modulation was also observed. Chronic post-traumatic headache can result from damage to intra- and pericranial tissues that caused chronic sensitization of these tissues. Alternatively, although not mutually exclusive, CPTHA might possibly be a form of central pain due to damage to brain structures involved in pain processing. These, other possibilities, as well as risk factors for CPTHA are discussed at length.
Collapse
Affiliation(s)
- Ruth Defrin
- Department of Physical Therapy, School of Allied Health Professions, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
81
|
Widerström-Noga E. Multidimensional clinical pain phenotypes after spinal cord injury. Pain Manag 2014; 2:467-78. [PMID: 24645863 DOI: 10.2217/pmt.12.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SUMMARY Persistent neuropathic pain after spinal cord injury (SCI) is a serious problem that significantly affects general health and wellbeing over and above what is caused by other medical consequences after SCI. The ideal approach to the management of the neuropathic pain conditions after SCI would be to identify the primary contributing mechanisms of pain in each person and tailor the treatment to these. However, despite significant basic and clinical research progress, this approach remains elusive. One strategy to further this effort is to define neuropathic pain phenotypes based on pain symptoms, sensory function/dysfunction and psychosocial factors, and determine the relationship between these and treatment outcomes and biomarkers including brain imaging. This approach will facilitate the interaction between basic and clinical science and translational research, further the understanding of the mechanisms that contribute to the development and maintenance of neuropathic pain after SCI, and thus the development of effective mechanisms-based pain treatment strategies.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, LPLC (R-48) and Departments of Neurological Surgery & Rehabilitation Medicine, Miller School of Medicine, University of Miami, LPLC (R-48), 1095 NW, 14th Terrace Miami, FL 33136, USA.
| |
Collapse
|
82
|
Hama AT, Pearson JP, Sagen J. Effects of repeated dosing with mechanistically distinct antinociceptive ligands in a rat model of neuropathic spinal cord injury pain. Pharmacol Res Perspect 2014; 2:e00034. [PMID: 25505583 PMCID: PMC4184706 DOI: 10.1002/prp2.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 11/24/2022] Open
Abstract
A lack of efficacy of some analgesic drugs has been previously described in rats with neuropathic spinal cord injury (SCI) pain. It has been suggested that repeated dosing in these animals over time may eventually lead to efficacy. However, it is also possible that efficacy may diminish over time with repeated dosing. This study evaluated the efficacy of various drugs upon repeated dosing over time in a rat model of SCI pain. Four weeks following an acute spinal cord compression at the mid-thoracic level, rats developed decreased hind paw withdrawal threshold, suggestive of below level neuropathic hypersensitivity. Either cannabinoid (CB) receptor agonist CP 55,940, the anticonvulsant carbamazepine or gabapentin, the antidepressant amitriptyline or vehicle was administered over a period of 7 days. Neither carbamazepine nor amitriptyline demonstrated efficacy either after a single or repeated dosing. Beginning with a 50% efficacious dose of gabapentin, the effect of gabapentin in SCI rats neither increased nor decreased over the treatment period. The antinociceptive effect of CP 55,940 was maintained for the entire treatment period, which was mediated by CB1 but not CB2 receptors. The current data suggest that sustained antinociception can be obtained with some drugs in rats with neuropathic SCI pain. Furthermore, the current data do not substantiate the notion that repeated treatment with initially ineffective drugs will eventually lead to efficacy; treatments that are not acutely effective are unlikely to demonstrate clinical efficacy.
Collapse
Affiliation(s)
- Aldric T Hama
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, Florida, 33136
| | - James P Pearson
- Ironwood Pharmaceuticals, Inc. Cambridge, Massachusetts, 02142
| | - Jacqueline Sagen
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, Florida, 33136
| |
Collapse
|
83
|
Bao YH, Zhou QH, Chen R, Xu H, Zeng LL, Zhang X, Jiang W, Du DP. Gabapentin enhances the morphine anti-nociceptive effect in neuropathic pain via the interleukin-10-heme oxygenase-1 signalling pathway in rats. J Mol Neurosci 2014; 54:137-46. [PMID: 24573601 PMCID: PMC4125805 DOI: 10.1007/s12031-014-0262-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/11/2014] [Indexed: 12/15/2022]
Abstract
In the present study, we investigated the anti-inflammatory mechanisms by which gabapentin enhances morphine anti-nociceptive effect in neuropathic pain in rats and the interaction between the anti-nociceptive effects of gabapentin on morphine and the interleukin (IL)-10-heme-oxygenase (HO)-1 signal pathway in a rat model of neuropathic pain. The neuropathic pain model was induced via a left L5/6 spinal nerve ligation (SNL) in rats. The anti-nociceptive effect of gabapentin and IL-10 on morphine was examined over a 7-day period, and the effects of the anti-IL-10 and HO-1 inhibitor zinc protoporphyrin (ZnPP) on gabapentin/morphine co-injection were assessed. Drug administration was given over 7 days, and on day 8, both anti-inflammatory cytokine IL-10, a stress-induced protein HO-1 and pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were measured. Gabapentin attenuated morphine tolerance over 7 days of co-administration, and reduced the expression of pro-inflammatory cytokines but increased IL-10 and HO-1 expression. The effect of gabapentin on morphine was partially blocked using the anti-IL-10 antibody or the HO-1 inhibitor zinc protoporphyrin. Our findings indicated that the anti-nociceptive effects of gabapentin on morphine might be caused by activation of the IL-10-HO-1 signalling pathway, which resulted in the inhibition of the expression of pro-inflammatory cytokines in neuropathic pain in the rat spinal cord.
Collapse
Affiliation(s)
- Yu-Hua Bao
- Pain Management Center, Shanghai Six People's Hospital, Shanghai Jiaotong University, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
85
|
Li KW, Yu YP, Zhou C, Kim DS, Lin B, Sharp K, Steward O, Luo ZD. Calcium channel α2δ1 proteins mediate trigeminal neuropathic pain states associated with aberrant excitatory synaptogenesis. J Biol Chem 2014; 289:7025-7037. [PMID: 24459143 DOI: 10.1074/jbc.m114.548990] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To investigate a potential mechanism underlying trigeminal nerve injury-induced orofacial hypersensitivity, we used a rat model of chronic constriction injury to the infraorbital nerve (CCI-ION) to study whether CCI-ION caused calcium channel α2δ1 (Cavα2δ1) protein dysregulation in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 cervical dorsal spinal cord (Vc/C2). Furthermore, we studied whether this neuroplasticity contributed to spinal neuron sensitization and neuropathic pain states. CCI-ION caused orofacial hypersensitivity that correlated with Cavα2δ1 up-regulation in trigeminal ganglion neurons and Vc/C2. Blocking Cavα2δ1 with gabapentin, a ligand for the Cavα2δ1 proteins, or Cavα2δ1 antisense oligodeoxynucleotides led to a reversal of orofacial hypersensitivity, supporting an important role of Cavα2δ1 in orofacial pain processing. Importantly, increased Cavα2δ1 in Vc/C2 superficial dorsal horn was associated with increased excitatory synaptogenesis and increased frequency, but not the amplitude, of miniature excitatory postsynaptic currents in dorsal horn neurons that could be blocked by gabapentin. Thus, CCI-ION-induced Cavα2δ1 up-regulation may contribute to orofacial neuropathic pain states through abnormal excitatory synapse formation and enhanced presynaptic excitatory neurotransmitter release in Vc/C2.
Collapse
Affiliation(s)
- Kang-Wu Li
- Department of Anesthesiology and Perioperative Care, University of California School of Medicine, Irvine, California 92697
| | - Yanhui Peter Yu
- Department of Pharmacology, University of California School of Medicine, Irvine, California 92697
| | - Chunyi Zhou
- Department of Pharmacology, University of California School of Medicine, Irvine, California 92697
| | - Doo-Sik Kim
- Department of Anesthesiology and Perioperative Care, University of California School of Medicine, Irvine, California 92697
| | - Bin Lin
- Department of Anesthesiology and Perioperative Care, University of California School of Medicine, Irvine, California 92697
| | - Kelli Sharp
- Reeve-Irvine Research Center, University of California School of Medicine, Irvine, California 92697
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California School of Medicine, Irvine, California 92697
| | - Z David Luo
- Department of Anesthesiology and Perioperative Care, University of California School of Medicine, Irvine, California 92697; Department of Pharmacology, University of California School of Medicine, Irvine, California 92697; Reeve-Irvine Research Center, University of California School of Medicine, Irvine, California 92697.
| |
Collapse
|
86
|
Finnerup NB. Pain in patients with spinal cord injury. Pain 2013; 154 Suppl 1:S71-S76. [DOI: 10.1016/j.pain.2012.12.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
|
87
|
Bali KK, Selvaraj D, Satagopam VP, Lu J, Schneider R, Kuner R. Genome-wide identification and functional analyses of microRNA signatures associated with cancer pain. EMBO Mol Med 2013; 5:1740-58. [PMID: 24039159 PMCID: PMC3840489 DOI: 10.1002/emmm.201302797] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 12/05/2022] Open
Abstract
Cancer pain remains a major challenge and there is an urgent demand for the development of specific mechanism-based therapies. Various diseases are associated with unique signatures of expression of microRNAs (miRNAs), which reveal deep insights into disease pathology. Using a comprehensive approach combining genome-wide miRNA screening, molecular and in silico analyses with behavioural approaches in a clinically relevant model of metastatic bone-cancer pain in mice, we now show that tumour-induced conditions are associated with a marked dysregulation of 57 miRNAs in sensory neurons corresponding to tumour-affected areas. By establishing protocols for interference with disease-induced miRNA dysregulation in peripheral sensory neurons in vivo, we functionally validate six dysregulated miRNAs as significant modulators of tumour-associated hypersensitivity. In silico analyses revealed that their predicted targets include key pain-related genes and we identified Clcn3, a gene encoding a chloride channel, as a key miRNA target in sensory neurons, which is functionally important in tumour-induced nociceptive hypersensitivity in vivo. Our results provide new insights into endogenous gene regulatory mechanisms in cancer pain and open up attractive and viable therapeutic options.
Collapse
Affiliation(s)
- Kiran Kumar Bali
- Medical Faculty Heidelberg, Institute for Pharmacology, Heidelberg UniversityHeidelberg, Germany
- Molecular Medicine Partnership Unit with European Molecular Biology LaboratoryHeidelberg, Germany
| | - Deepitha Selvaraj
- Medical Faculty Heidelberg, Institute for Pharmacology, Heidelberg UniversityHeidelberg, Germany
- Molecular Medicine Partnership Unit with European Molecular Biology LaboratoryHeidelberg, Germany
| | - Venkata P Satagopam
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, House of BiomedicineEsch-sur-Alzette, Luxembourg
- European Molecular Biology LaboratoryHeidelberg, Germany
| | - Jianning Lu
- Medical Faculty Heidelberg, Institute for Pharmacology, Heidelberg UniversityHeidelberg, Germany
- Molecular Medicine Partnership Unit with European Molecular Biology LaboratoryHeidelberg, Germany
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, House of BiomedicineEsch-sur-Alzette, Luxembourg
- European Molecular Biology LaboratoryHeidelberg, Germany
| | - Rohini Kuner
- Medical Faculty Heidelberg, Institute for Pharmacology, Heidelberg UniversityHeidelberg, Germany
- Molecular Medicine Partnership Unit with European Molecular Biology LaboratoryHeidelberg, Germany
| |
Collapse
|
88
|
Zhou C, Luo ZD. Electrophysiological characterization of spinal neuron sensitization by elevated calcium channel alpha-2-delta-1 subunit protein. Eur J Pain 2013; 18:649-58. [PMID: 24151064 DOI: 10.1002/j.1532-2149.2013.00416.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Voltage-gated calcium channel α2 δ1 subunit is the binding site for gabapentin, an effective drug in controlling neuropathic pain states including thermal hyperalgesia. Hyperalgesia to noxious thermal stimuli in both spinal nerve-ligated (SNL) and voltage-gated calcium channel α2 δ1 overexpressing transgenic (Tg) mice correlates with higher α2 δ1 levels in dorsal root ganglia and dorsal spinal cord. In this study, we investigated whether abnormal synaptic transmission is responsible for thermal hyperalgesia induced by elevated α2 δ1 expression in these models. METHODS Behavioural sensitivities to thermal stimuli were test in L4 SNL and sham mice, as well as in α2 δ1 Tg and wild-type mice. Miniature excitatory (mEPSC) and inhibitory (mIPSC) post-synaptic currents were recorded in superficial dorsal spinal cord neurons from these models using whole-cell patch clamp slice recording techniques. RESULTS The frequency, but not amplitude, of mEPSC in superficial dorsal horn neurons was increased in SNL and α2 δ1 Tg mice, which could be attenuated by gabapentin dose dependently. Intrathecal α2 δ1 antisense oligodeoxynucleotide treatment diminished increased mEPSC frequency and gabapentin's inhibitory effects in elevated mEPSC frequency in the SNL mice. In contrast, neither the frequency nor the amplitude of mIPSC was altered in superficial dorsal horn neurons from the SNL and α2 δ1 Tg mice. CONCLUSIONS Our findings support a role of peripheral nerve injury-induced α2 δ1 in enhancing pre-synaptic excitatory input onto superficial dorsal spinal cord neurons that contributes to nociception development.
Collapse
Affiliation(s)
- C Zhou
- Department of Pharmacology, School of Medicine, University of California Irvine, USA
| | | |
Collapse
|
89
|
Li H, Shen L, Ma C, Huang Y. Differential expression of miRNAs in the nervous system of a rat model of bilateral sciatic nerve chronic constriction injury. Int J Mol Med 2013; 32:219-26. [PMID: 23673427 DOI: 10.3892/ijmm.2013.1381] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/17/2013] [Indexed: 11/05/2022] Open
Abstract
Chronic neuropathic pain is associated with global changes in gene expression in different areas of the nociceptive pathway. MicroRNAs (miRNAs) are small (~22 nt long) non-coding RNAs, which are able to regulate hundreds of different genes post-transcriptionally. The aim of this study was to determine the miRNA expression patterns in the different regions of the pain transmission pathway using a rat model of human neuropathic pain induced by bilateral sciatic nerve chronic constriction injury (bCCI). Using microarray analysis and quantitative reverse transcriptase-PCR, we observed a significant upregulation in miR-341 expression in the dorsal root ganglion (DRG), but not in the spinal dorsal horn (SDH), hippocampus or anterior cingulate cortex (ACC), in the rats with neuropathic pain compared to rats in the naïve and sham-operated groups. By contrast, the expression of miR-203, miR-181a-1* and miR-541* was significantly reduced in the SDH of rats with neuropathic pain. Our data indicate that miR-341 is upregulated in the DRG, whereas miR-203, miR-181a-1* and miR-541* are downregulated in the SDH under neuropathic pain conditions. Thus, the differential expression of miRNAs in the nervous system may play a role in the development of chronic pain. These observations may aid in the development of novel treatment methods for neuropathic pain, which may involve miRNA gene therapy in local regions.
Collapse
Affiliation(s)
- Haixia Li
- Department of Anesthesiology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | | | | | | |
Collapse
|
90
|
Zeng J, Kim D, Li KW, Sharp K, Steward O, Zaucke F, Luo ZD. Thrombospondin-4 contributes to spinal cord injury-induced changes in nociception. Eur J Pain 2013; 17:1458-64. [PMID: 23649982 DOI: 10.1002/j.1532-2149.2013.00326.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND Our previous data have indicated that nerve injury-induced up-regulation of thrombospondin-4 (TSP4) proteins in dorsal spinal cord plays a causal role in neuropathic pain state development in a spinal nerve ligation model. To investigate whether TSP4 proteins also contribute to the development of centrally mediated changes in nociception after spinal cord injury (SCI), we investigated whether SCI induced TSP4 dysregulation, and if so, whether this change correlated with changes in nociception in a T9 spinal cord contusion injury model. METHODS Behavioural sensitivity to mechanical, thermal stimuli and locomotor function recovery were tested blindly in SCI or sham rats post-injury. Intrathecal antisense or mismatch control oligodeoxynucleotides were used to treat SCI rats with nociceptive hyperreflexia, and Western blots were used to measure TSP4 protein levels in dorsal spinal cord samples. RESULTS SCI induced below-level hindpaw hypersensitivity to stimuli. TSP4 protein levels are up-regulated in dorsal spinal cord of SCI rats with nociceptive hyperreflexia, but not in SCI rats without nociceptive hyperreflexia. There was no significant difference in motor function recovery post-injury between SCI rats with or without nociceptive hyperreflexia. Intrathecal treatment with TSP4 antisense, but not mismatch control, oligodeoxynucleotides led to reversal of injury-induced TSP4 up-regulation and nociceptive hyperreflexia in SCI rats. CONCLUSIONS SCI leads to TSP4 up-regulation in lumbar spinal cord that may play a critical role in mediating centrally mediated behavioural hypersensitivity. Blocking this pathway may be helpful in management of SCI-induced changes in nociception.
Collapse
Affiliation(s)
- J Zeng
- Department of Anesthesiology & Perioperative Care, University of California Irvine, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Kawakami K, Chiba T, Katagiri N, Saduka M, Abe K, Utsunomiya I, Hama T, Taguchi K. Paclitaxel increases high voltage-dependent calcium channel current in dorsal root ganglion neurons of the rat. J Pharmacol Sci 2013; 120:187-95. [PMID: 23090716 DOI: 10.1254/jphs.12123fp] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Peripheral neuropathic pain is a serious side effect of paclitaxel treatment. However, the mechanism of this paclitaxel-induced neuropathic pain is unknown. In this study, we investigated the effects of paclitaxel on the voltage-dependent calcium channel (VDCC) current in rat dorsal root ganglion (DRG) neurons using the whole-cell patch clamp technique. Behavioral assessment using von Frey filament stimuli showed that 2 and 4 mg/kg paclitaxel treatment induced mechanical allodynia/hyperalgesia. Paclitaxel-induced mechanical hyperalgesia was significantly inhibited by gabapentin (100 mg/kg). Using the patch clamp method, we observed that paclitaxel (4 mg/kg) treatment significantly increased the VDCC current in small- and medium-diameter DRG neurons. Moreover, paclitaxel-induced increase in the VDCC current in medium-diameter DRG neurons was completely inhibited by 10 and 100 μM gabapentin. Similar effects in small-diameter DRG neurons were only seen with 100 μM gabapentin. Western blotting revealed that paclitaxel increased protein levels of the VDCC subunit α₂δ-1 (Ca(v)α₂δ-1) in DRG neurons. Immunohistochemistry showed that paclitaxel treatment increased Ca(v)α₂δ-1 protein expression in DRG neurons. Thus, paclitaxel treatment increases the VDCC current in small- and medium-diameter DRG neurons and upregulates Ca(v)α₂δ-1. The antihyperalgesic action of gabapentin may be due to inhibition of paclitaxel-induced increases in the VDCC current in DRG neurons.
Collapse
Affiliation(s)
- Kazuyoshi Kawakami
- Department of Medicinal Pharmacology, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res 2013; 36:237-51. [PMID: 23435945 DOI: 10.1007/s12272-013-0057-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/14/2012] [Indexed: 01/25/2023]
Abstract
Gabapentin is an anti-epileptic agent but now it is also recommended as first line agent in neuropathic pain, particularly in diabetic neuropathy and post herpetic neuralgia. α2δ-1, an auxillary subunit of voltage gated calcium channels, has been documented as its main target and its specific binding to this subunit is described to produce different actions responsible for pain attenuation. The binding to α2δ-1 subunits inhibits nerve injury-induced trafficking of α1 pore forming units of calcium channels (particularly N-type) from cytoplasm to plasma membrane (membrane trafficking) of pre-synaptic terminals of dorsal root ganglion (DRG) neurons and dorsal horn neurons. Furthermore, the axoplasmic transport of α2δ-1 subunits from DRG to dorsal horns neurons in the form of anterograde trafficking is also inhibited in response to gabapentin administration. Gabapentin has also been shown to induce modulate other targets including transient receptor potential channels, NMDA receptors, protein kinase C and inflammatory cytokines. It may also act on supra-spinal region to stimulate noradrenaline mediated descending inhibition, which contributes to its anti-hypersensitivity action in neuropathic pain.
Collapse
Affiliation(s)
- Ankesh Kukkar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | | | | | | |
Collapse
|
93
|
Rosati M, Goedde T, Steffen F, Gandini G, De Risio L, Reese S, Matiasek K. Developmental Changes in Voltage-Gated Calcium Channel α 2δ-Subunit Expression in the Canine Dorsal Root Ganglion. Dev Neurosci 2012; 34:440-8. [DOI: 10.1159/000343725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 09/27/2012] [Indexed: 01/21/2023] Open
|
94
|
Abstract
Neuropathic pain is a well-known type of chronic pain caused by damage to the nervous system. Until recently, many researchers have primarily focused on identifying cellular or chemical sources of neuropathic pain or have approached neuropathic pain via the basis of biological study. We investigated whether both mmu-mir-23b (miR23b) and NADPH oxidase 4 (NOX4) antibody infusion can alleviate neuropathic pain by compensating for abnormally downregulated miR23b via reducing the expression of its target gene, NOX4, a reactive oxygen species (ROS) family member overexpressed in neuropathic pain. Ectopic miR23b expression effectively downregulated NOX4 and finally normalized glutamic acid decarboxylase 65/67 expression. Moreover, animals with neuropathic pain showed significantly improved paw withdrawal thresholds (PWTs) following miR23b infusion. Normalizing miR23b expression in tissue lesions, caused by neuropathic pain induction, reduced inflammatory mediators and increased several ROS scavengers. Moreover, γ-aminobutyric acid (GABA)ergic neurons coexpressed suboptimal levels of miR23b and elevated NOX4/ROS after pain induction at the cellular level. MiR23b finally protects GABAergic neurons against ROS/p38/c-Jun N-terminal kinase (JNK)-mediated apoptotic death. By evaluating the functional behavior of mice receiving pain/miR23b, normal/anti-miR23b, anti-miR23b/si-NOX4, pain/NOX4 antibody, pain/ascorbic acid, and pain/ascorbic acid/NOX4 antibody, the positive role of miR23b and the negative role of NOX4 in neuropathic pain were confirmed. Based on this study, we conclude that miR23b has a crucial role in the amelioration of neuropathic pain in injured spinal cord by inactivating its target gene, NOX4, and protection of GABAergic neurons from cell death. We finally suggest that infusion of miR23b and NOX4 antibody may provide attractive diagnostic and therapeutic resources for effective pain modulation in neuropathic pain.
Collapse
|
95
|
Okubo K, Nakanishi H, Matsunami M, Shibayama H, Kawabata A. Topical application of disodium isostearyl 2-O-L-ascorbyl phosphate, an amphiphilic ascorbic acid derivative, reduces neuropathic hyperalgesia in rats. Br J Pharmacol 2012; 166:1058-68. [PMID: 22229645 DOI: 10.1111/j.1476-5381.2012.01835.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca(v) 3.2 T-type calcium channels, targeted by H(2) S, are involved in neuropathic hyperalgesia in rats and ascorbic acid inhibits Ca(v) 3.2 channels. Therefore, we evaluated the effects of intraplantar (i.pl.) administration of ascorbic acid or topical application of disodium isostearyl 2-O-L-ascorbyl phosphate (DI-VCP), a skin-permeable ascorbate derivative on hyperalgesia induced by NaHS, an H(2) S donor, and on neuropathic hyperalgesia. EXPERIMENTAL APPROACH In rats mechanical hyperalgesia was evoked by i.pl. NaHS, and neuropathic hyperalgesia was induced by L5 spinal nerve cutting (L5SNC) or by repeated administration of paclitaxel, an anti-cancer drug. Dermal ascorbic acid levels were determined colorimetrically. KEY RESULTS The NaHS-evoked Ca(v) 3.2 channel-dependent hyperalgesia was inhibited by co-administered ascorbic acid. Topical application of DI-VCP, but not ascorbic acid, prevented the NaHS-evoked hyperalgesia, and also increased dermal ascorbic acid levels. Neuropathic hyperalgesia induced by L5SNC or paclitaxel was reversed by i.pl. NNC 55-0396, a selective T-type calcium channel blocker, ascorbic acid or DI-VCP, and by topical DI-VCP, but not by topical ascorbic acid. The effects of i.pl. ascorbic acid and topical DI-VCP in the paclitaxel-treated rats were characterized by the faster onset and greater magnitude, compared with their effects in the L5SNC rats. Dermal ascorbic acid levels in the hindpaw significantly decreased after paclitaxel treatment, but not L5SNC, which was reversed by topical DI-VCP. CONCLUSIONS AND IMPLICATIONS Ascorbic acid, known to inhibit Ca(v) 3.2 channels, suppressed neuropathic hyperalgesia. DI-VCP ointment for topical application may be of benefit in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Kazumasa Okubo
- Division of Pharmacology and Pathophysiology, Kinki University School of Pharmacy, Higashi-Osaka, Japan
| | | | | | | | | |
Collapse
|
96
|
Abstract
Neuropathic pain is a common cause of pain after nerve injury, but its molecular basis is poorly understood. In a post-gene chip microarray effort to identify new target genes contributing to neuropathic pain development, we report here the characterization of a novel neuropathic pain contributor, thrombospondin-4 (TSP4), using a neuropathic pain model of spinal nerve ligation injury. TSP4 is mainly expressed in astrocytes and significantly upregulated in the injury side of dorsal spinal cord that correlates with the development of neuropathic pain states. TSP4 blockade by intrathecal antibodies, antisense oligodeoxynucleotides, or inactivation of the TSP4 gene reverses or prevents behavioral hypersensitivities. Intrathecal injection of TSP4 protein into naive rats is sufficient to enhance the frequency of EPSCs in spinal dorsal horn neurons, suggesting an increased excitatory presynaptic input, and to cause similar behavioral hypersensitivities. Together, these findings support that injury-induced spinal TSP4 may contribute to spinal presynaptic hypersensitivity and neuropathic pain states. Development of TSP4 antagonists has the therapeutic potential for target-specific neuropathic pain management.
Collapse
|
97
|
Gonçalves L, Dickenson AH. Asymmetric time-dependent activation of right central amygdala neurones in rats with peripheral neuropathy and pregabalin modulation. Eur J Neurosci 2012; 36:3204-13. [PMID: 22861166 DOI: 10.1111/j.1460-9568.2012.08235.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropathic pain (NP) often presents with comorbidities, including depression and anxiety. The amygdala is involved in the processing of mood disorders, fear, and the emotional-affective components of pain. Hemispheric lateralization of pain processing in the amygdala has recently been brought to light because, independently of the side of the peripheral injury, the right central nucleus of the amygdala (CeA) showed higher neuronal activity than the left in models of inflammatory pain. Although the CeA has been called the 'nociceptive amygdala', because of its high content of nociceptive neurones, little is known about changes in its neuronal function in vivo, under NP conditions. Herein, we quantified CeA spontaneous and evoked activity in rats subjected to spinal nerve ligation (SNL), under isoflurane anaesthesia, following application of mechanical and thermal stimuli to widespread body areas. We found that spontaneous and stimulus-evoked neuronal activity was higher in the left CeA at 2 and 6 days after SNL induction and declined afterwards, whereas activity in the right CeA became dominant at 14 days after surgery, independently of the side of surgery. We also observed that systemic injection of pregabalin, which is widely used in patients with NP, reduced CeA spontaneous and stimulus-evoked neuronal activity. Overall, we observed that peripheral nerve injury produced asymmetric plasticity in ongoing and evoked activity in the left and right CeA. Remarkably, at 14 days after SNL induction, enhanced evoked activity in the right CeA persisted compared to short-term increases in activity in the left CeA. The plasticity found in ongoing and evoked activity was inhibited by pregabalin.
Collapse
Affiliation(s)
- Leonor Gonçalves
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London WC1E 6BT, UK.
| | | |
Collapse
|
98
|
Abstract
This review provides a brief summary of what is known about the anxiolytic mechanism of action of pregabalin, a highly selective, high-affinity ligand of the P/Q type of voltage-gated calcium channel (CaV). Evidence from in vivo models of neuronal hyperexcitability suggests that pregabalin reduces synaptic release of neurotransmitters in selected CNS regions including the cortex, olfactory bulb, hypothalamus, amygdala, hippocampus, cerebellum and dorsal horn of the spinal cord. Release of neurotransmitters from the synaptic vesicle, and propagation of neurotransmission, requires the vesicle to fuse with the presynaptic membrane. Pregabalin binding to the α(2)δ type 1 protein of the P/Q type CaV reduces the availability of Ca2+ required for membrane fusion and exocytosis of neurotransmitters. Evidence that the anxiolytic mechanism of action of pregabalin is mediated by binding to the α(2)δ type 1 protein comes from animal models, which have demonstrated a structure-activity relationship between the affinity of ligands for the α(2)δ type 1 protein and their potency in models of anxiety such as the Vogel conflict test. Furthermore, the anxiolytic activity of pregabalin is lost in transgenic mice with specific point mutations in the CaV α(2)δ type 1 protein. Pregabalin-mediated reduction in calcium currents has also been shown to result in a significant inhibition of the release of neurotransmitters implicated in pathological anxiety such as glutamate and monoamine neurotransmitters. However, further research is needed to confirm that these effects contribute to the anxiolytic mechanism of action of pregabalin. Finally, pregabalin may also act by inhibiting synaptogenesis of excitatory neurons formed in response to chronic stress or anxiety, or more acutely inhibit the trafficking of CaV to the plasma membrane.
Collapse
Affiliation(s)
- Juan-Antonio Micó
- Department of Neuroscience, Pharmacology and Psychiatry, CIBER of Mental Health, CIBERSAM, Instituto de Salud Carlos III, University of Cdiz, Cdiz, Spain.
| | | |
Collapse
|
99
|
|
100
|
Im YB, Jee MK, Jung JS, Choi JI, Jang JH, Kang SK. miR23b ameliorates neuropathic pain in spinal cord by silencing NADPH oxidase 4. Antioxid Redox Signal 2012; 16:1046-60. [PMID: 22149086 DOI: 10.1089/ars.2011.4224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Neuropathic pain is a well-known type of chronic pain caused by damage to the nervous system. Until recently, researchers have been primarily focused on identifying the cellular or chemical sources of neuropathic pain or have approached neuropathic pain via the basis of biological study. We investigated whether mmu-mir-23b (miR23b) infusion can alleviate pain by compensating for the abnormally downregulated miR23b by reducing the expression of its target gene, NADPH oxidase 4 (NOX4), a reactive oxygen species (ROS) family member overexpressed in neuropathic pain. RESULTS Ectopic miR23b expression effectively downregulated NOX4 and was normalized to GAD65/67 expression. Moreover, the animals with neuropathic pain showed significant improvements in the paw withdrawal thresholds following miR23b infusion. Normalizing miR23b expression in tissue lesions caused by neuropathic pain induction reduced inflammatory mediator expression and increased the level of several ROS scavengers. Moreover, GABAergic neurons coexpressed suboptimal levels of miR23b and elevated NOX4/ROS after pain induction at the cellular level. MiR23b protects GABAergic neurons against ROS/p38/JNK-mediated apoptotic death. By evaluating the functional behavior of the mice receiving pain/miR23b, normal/anti-miR23b, or anti-miR23b/si-NOX4, the positive role of miR23b and the negative role of NOX4 in neuropathic pain were confirmed. INNOVATION AND CONCLUSION Based on this study, we conclude that miR23b plays a crucial role in the amelioration of neuropathic pain in the injured spinal cord by inactivating its target gene, NOX4, and protecting GABAergic neurons from cell death. We finally suggest that miR23b may provide attractive diagnostic and therapeutic resources for effective pain modulation in neuropathic pain.
Collapse
Affiliation(s)
- Young Bin Im
- Laboratory of Stem Cell Biology, Department of Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|