51
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null,null,null-- wfxj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
52
|
Rotimi OA, Rotimi SO, Duru CU, Ebebeinwe OJ, Abiodun AO, Oyeniyi BO, Faduyile FA. Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and 2315=dbms_pipe.receive_message(chr(100)||chr(120)||chr(98)||chr(72),5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
53
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 and sleep(5)-- duzb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
54
|
Acute aflatoxin B1 – Induced hepatotoxicity alters gene expression and disrupts lipid and lipoprotein metabolism in rats. Toxicol Rep 2017. [DOI: 10.1016/j.toxrep.2017.07.006 union all select null-- cyim] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
55
|
Mooberry LK, Sabnis NA, Panchoo M, Nagarajan B, Lacko AG. Targeting the SR-B1 Receptor as a Gateway for Cancer Therapy and Imaging. Front Pharmacol 2016; 7:466. [PMID: 28018216 PMCID: PMC5156841 DOI: 10.3389/fphar.2016.00466] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/16/2016] [Indexed: 01/25/2023] Open
Abstract
Malignant tumors display remarkable heterogeneity to the extent that even at the same tissue site different types of cells with varying genetic background may be found. In contrast, a relatively consistent marker the scavenger receptor type B1 (SR-B1) has been found to be consistently overexpressed by most tumor cells. Scavenger Receptor Class B Type I (SR-BI) is a high density lipoprotein (HDL) receptor that facilitates the uptake of cholesterol esters from circulating lipoproteins. Additional findings suggest a critical role for SR-BI in cholesterol metabolism, signaling, motility, and proliferation of cancer cells and thus a potential major impact in carcinogenesis and metastasis. Recent findings indicate that the level of SR-BI expression correlate with aggressiveness and poor survival in breast and prostate cancer. Moreover, genomic data show that depending on the type of cancer, high or low SR-BI expression may promote poor survival. This review discusses the importance of SR-BI as a diagnostic as well as prognostic indicator of cancer to help elucidate the contributions of this protein to cancer development, progression, and survival. In addition, the SR-B1 receptor has been shown to serve as a potential gateway for the delivery of therapeutic agents when reconstituted high density lipoprotein nanoparticles are used for their transport to cancer cells and tumors. Opportunities for the development of new technologies, particularly in the areas of cancer therapy and tumor imaging are discussed.
Collapse
Affiliation(s)
- Linda K. Mooberry
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Nirupama A. Sabnis
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Marlyn Panchoo
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Bhavani Nagarajan
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
| | - Andras G. Lacko
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort WorthTX, USA
- Department of Pediatrics, University of North Texas Health Science Center, Fort WorthTX, USA
| |
Collapse
|
56
|
Yang X, Sethi A, Yanek LR, Knapper C, Nordestgaard BG, Tybjærg-Hansen A, Becker DM, Mathias RA, Remaley AT, Becker LC. SCARB1 Gene Variants Are Associated With the Phenotype of Combined High High-Density Lipoprotein Cholesterol and High Lipoprotein (a). ACTA ACUST UNITED AC 2016; 9:408-418. [PMID: 27651445 DOI: 10.1161/circgenetics.116.001402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/20/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND SR-B1 (scavenger receptor class B type 1), encoded by the gene SCARB1, is a lipoprotein receptor that binds both high-density lipoprotein (HDL) and low-density lipoprotein. We reported that SR-B1 is also a receptor for lipoprotein (a) (Lp(a)), mediating cellular uptake of Lp(a) in vitro and promoting clearance of Lp(a) in vivo. Although genetic variants in SCARB1 are associated with variations in HDL level, no SCARB1 variants affecting Lp(a) have been reported. METHODS AND RESULTS In an index subject with high levels of HDL cholesterol and Lp(a), SCARB1 was sequenced and demonstrated a missense mutation resulting in an S129L substitution in exon 3. To follow up, 2 cohorts (GeneSTAR, the family-based Genetic Study of Atherosclerosis Risk [n=543], and CCHS, the population-based Copenhagen City Heart Study [n=5835]) were screened for combined HDL cholesterol and Lp(a) elevations. Subjects with the extreme phenotype (HDL >80 mg/dL and Lp(a) >100 nmol/L in GeneSTAR, n=8, and >100 mg/dL in CCHS, n=9) underwent sequencing of SCARB1 exons; 15 of 18 from the combined population demonstrated genetic variants, including rare or uncommon missense or splice site mutations in 9 and homozygous synonymous variants in 6. Functional studies with 4 of the SCARB1 variants (c.386C>T, c.631-14T>G, c.4G>A, and c.631-53mC>T & c.726+55mCG>CA) showed decreased receptor function in vitro. CONCLUSIONS Human SCARB1 gene variants are associated with a new lipid phenotype, characterized by high levels of both HDL cholesterol and Lp(a). SCARB1 exonic variants often result in diminished function of translated SR-B1 via reduced binding/intracellular transport of Lp(a).
Collapse
Affiliation(s)
- Xiaoping Yang
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Amar Sethi
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Lisa R Yanek
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Cathy Knapper
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Børge G Nordestgaard
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Anne Tybjærg-Hansen
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Diane M Becker
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Rasika A Mathias
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Alan T Remaley
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.)
| | - Lewis C Becker
- From the Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (X.Y., L.R.Y., D.M.B., R.A.M., L.C.B.); Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, MD (A.S., C.K., A.T.R.); and Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark (B.G.N., A.T.-H.).
| |
Collapse
|
57
|
Statins can exert dual, concentration dependent effects on HCV entry in vitro. Antiviral Res 2016; 128:43-8. [DOI: 10.1016/j.antiviral.2016.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/18/2022]
|
58
|
Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci Rep 2016; 6:20984. [PMID: 26865432 PMCID: PMC4750101 DOI: 10.1038/srep20984] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
In-depth delineation of lipid metabolism in prostate cancer (PCa) is significant to open new insights into prostate tumorigenesis and progression, and provide potential biomarkers with greater accuracy for improved diagnosis. Here, we performed lipidomics and transcriptomics in paired prostate cancer tumor (PCT) and adjacent nontumor (ANT) tissues, followed by external validation of biomarker candidates. We identified major dysregulated pathways involving lipogenesis, lipid uptake and phospholipids remodeling, correlated with widespread lipid accumulation and lipid compositional reprogramming in PCa. Specifically, cholesteryl esters (CEs) were most prominently accumulated in PCa, and significantly associated with cancer progression and metastasis. We showed that overexpressed scavenger receptor class B type I (SR-BI) may contribute to CEs accumulation. In discovery set, CEs robustly differentiated PCa from nontumor (area under curve (AUC) of receiver operating characteristics (ROC), 0.90–0.94). In validation set, CEs potently distinguished PCa and non-malignance (AUC, 0.84–0.91), and discriminated PCa and benign prostatic hyperplasia (BPH) (AUC, 0.90–0.96), superior to serum prostate-specific antigen (PSA) (AUC = 0.83). Cholesteryl oleate showed highest AUCs in distinguishing PCa from non-malignance or BPH (AUC = 0.91 and 0.96). Collectively, our results unravel the major lipid metabolic aberrations in PCa and imply the potential role of CEs, particularly, cholesteryl oleate, as molecular biomarker for PCa detection.
Collapse
|
59
|
Niemsiri V, Wang X, Pirim D, Radwan ZH, Bunker CH, Barmada MM, Kamboh MI, Demirci FY. Genetic contribution of SCARB1 variants to lipid traits in African Blacks: a candidate gene association study. BMC MEDICAL GENETICS 2015; 16:106. [PMID: 26563154 PMCID: PMC4643515 DOI: 10.1186/s12881-015-0250-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/30/2015] [Indexed: 12/03/2022]
Abstract
Background High-density lipoprotein cholesterol (HDL-C) exerts many anti-atherogenic properties including its role in reverse cholesterol transport (RCT). Scavenger receptor class B member 1 (SCARB1) plays a key role in RCT by selective uptake of HDL cholesteryl esters. We aimed to explore the genetic contribution of SCARB1 to affecting lipid levels in African Blacks from Nigeria. Methods We resequenced 13 exons and exon-intron boundaries of SCARB1 in 95 individuals with extreme HDL-C levels using Sanger method. Then, we genotyped 147 selected variants (78 sequence variants, 69 HapMap tagSNPs, and 2 previously reported relevant variants) in the entire sample of 788 African Blacks using either the iPLEX Gold or TaqMan methods. A total of 137 successfully genotyped variants were further evaluated for association with major lipid traits. Results The initial gene-based analysis demonstrated evidence of association with HDL-C and apolipoprotein A-I (ApoA-I). The follow-up single-site analysis revealed nominal evidence of novel associations of nine common variants with HDL-C and/or ApoA-I (P < 0.05). The strongest association was between rs11057851 and HDL-C (P = 0.0043), which remained significant after controlling for multiple testing using false discovery rate. Rare variant association testing revealed a group of 23 rare variants (frequencies ≤1 %) associated with HDL-C (P = 0.0478). Haplotype analysis identified four SCARB1 regions associated with HDL-C (global P < 0.05). Conclusions To our knowledge, this is the first report of a comprehensive association study of SCARB1 variations with lipid traits in an African Black population. Our results showed the consistent association of SCARB1 variants with HDL-C across various association analyses, supporting the role of SCARB1 in lipoprotein-lipid regulatory mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0250-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vipavee Niemsiri
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - Dilek Pirim
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - Zaheda H Radwan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - Clareann H Bunker
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - M Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| | - F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
60
|
Cox JV, Abdelrahman YM, Peters J, Naher N, Belland RJ. Chlamydia trachomatis utilizes the mammalian CLA1 lipid transporter to acquire host phosphatidylcholine essential for growth. Cell Microbiol 2015; 18:305-18. [PMID: 26381674 DOI: 10.1111/cmi.12523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/20/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
Phosphatidylcholine is a constituent of Chlamydia trachomatis membranes that must be acquired from its mammalian host to support bacterial proliferation. The CLA1 (SR-B1) receptor is a bi-directional phosphatidylcholine/cholesterol transporter that is recruited to the inclusion of Chlamydia-infected cells along with ABCA1. C. trachomatis growth was inhibited in a dose-dependent manner by BLT-1, a selective inhibitor of CLA1 function. Expression of a BLT-1-insensitive CLA1(C384S) mutant ameliorated the effect of the drug on chlamydial growth. CLA1 knockdown using shRNAs corroborated an important role for CLA1 in the growth of C. trachomatis. Trafficking of a fluorescent phosphatidylcholine analogue to Chlamydia was blocked by the inhibition of CLA1 or ABCA1 function, indicating a critical role for these transporters in phosphatidylcholine acquisition by this organism. Our analyses using a dual-labelled fluorescent phosphatidylcholine analogue and mass spectrometry showed that the phosphatidylcholine associated with isolated Chlamydia was unmodified host phosphatidylcholine. These results indicate that C. trachomatis co-opts host phospholipid transporters normally used to assemble lipoproteins to acquire host phosphatidylcholine essential for growth.
Collapse
Affiliation(s)
- John V Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yasser M Abdelrahman
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Jan Peters
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nirun Naher
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Robert J Belland
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
61
|
Calattini S, Fusil F, Mancip J, Dao Thi VL, Granier C, Gadot N, Scoazec JY, Zeisel MB, Baumert TF, Lavillette D, Dreux M, Cosset FL. Functional and Biochemical Characterization of Hepatitis C Virus (HCV) Particles Produced in a Humanized Liver Mouse Model. J Biol Chem 2015; 290. [PMID: 26224633 PMCID: PMC4645586 DOI: 10.1074/jbc.m115.662999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lipoprotein components are crucial factors for hepatitis C virus (HCV) assembly and entry. As hepatoma cells producing cell culture-derived HCV (HCVcc) particles are impaired in some aspects of lipoprotein metabolism, it is of upmost interest to biochemically and functionally characterize the in vivo produced viral particles, particularly regarding how lipoprotein components modulate HCV entry by lipid transfer receptors such as scavenger receptor BI (SR-BI). Sera from HCVcc-infected liver humanized FRG mice were separated by density gradients. Viral subpopulations, termed HCVfrg particles, were characterized for their physical properties, apolipoprotein association, and infectivity. We demonstrate that, in contrast to the widely spread distribution of apolipoproteins across the different HCVcc subpopulations, the most infectious HCVfrg particles are highly enriched in apoE, suggesting that such apolipoprotein enrichment plays a role for entry of in vivo derived infectious particles likely via usage of apolipoprotein receptors. Consistent with this salient feature, we further reveal previously undefined functionalities of SR-BI in promoting entry of in vivo produced HCV. First, unlike HCVcc, SR-BI is a particularly limiting factor for entry of HCVfrg subpopulations of very low density. Second, HCVfrg entry involves SR-BI lipid transfer activity but not its capacity to bind to the viral glycoprotein E2. In conclusion, we demonstrate that composition and biophysical properties of the different subpopulations of in vivo produced HCVfrg particles modulate their levels of infectivity and receptor usage, hereby featuring divergences with in vitro produced HCVcc particles and highlighting the powerfulness of this in vivo model for the functional study of the interplay between HCV and liver components.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Gadot
- Structure Fédérative de Recherche (SFR) Lyon-Est, ANIPATH-Centre d'Histopathologie du Petit Animal de laboratoire, CNRS UMS3453-INSERM US7, 69372 Lyon, France
| | - Jean-Yves Scoazec
- Structure Fédérative de Recherche (SFR) Lyon-Est, ANIPATH-Centre d'Histopathologie du Petit Animal de laboratoire, CNRS UMS3453-INSERM US7, 69372 Lyon, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut des Maladies Virales et Hépatiques, 67000 Strasbourg, France, University of Strasbourg, 67000 Strasbourg, France, and
| | | | | | | | | |
Collapse
|
62
|
Armstrong SM, Sugiyama MG, Fung KYY, Gao Y, Wang C, Levy AS, Azizi P, Roufaiel M, Zhu SN, Neculai D, Yin C, Bolz SS, Seidah NG, Cybulsky MI, Heit B, Lee WL. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc Res 2015; 108:268-77. [PMID: 26334034 DOI: 10.1093/cvr/cvv218] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/24/2015] [Indexed: 01/16/2023] Open
Abstract
AIMS Retention of low-density lipoprotein (LDL) cholesterol beneath the arterial endothelium initiates an inflammatory response culminating in atherosclerosis. Since the overlying endothelium is healthy and intact early on, it is likely that LDL passes through endothelial cells by transcytosis. However, technical challenges have made confirming this notion and elucidating the mechanisms of transcytosis difficult. We developed a novel assay for measuring LDL transcytosis in real time across coronary endothelial cell monolayers; we used this approach to identify the receptor involved. METHODS AND RESULTS Murine aortas were perfused ex vivo with LDL and dextran of a smaller molecular radius. LDL (but not dextran) accumulated under the endothelium, indicating that LDL transcytosis occurs in intact vessels. We then confirmed that LDL transcytosis occurs in vitro using human coronary artery endothelial cells. An assay was developed to quantify transcytosis of DiI-LDL in real time using total internal reflection fluorescence microscopy. DiI-LDL transcytosis was inhibited by excess unlabelled LDL, while degradation of the LDL receptor by PCSK9 had no effect. Instead, LDL colocalized partially with the scavenger receptor SR-BI and overexpression of SR-BI increased LDL transcytosis; knockdown by siRNA significantly reduced it. Excess HDL, the canonical SR-BI ligand, significantly decreased LDL transcytosis. Aortas from SR-BI-deficient mice were perfused ex vivo with LDL and accumulated significantly less sub-endothelial LDL compared with wild-type littermates. CONCLUSION We developed an assay to quantify LDL transcytosis across endothelial cells and discovered an unexpected role for SR-BI. Elucidating the mechanisms of LDL transcytosis may identify novel targets for the prevention or therapy of atherosclerosis.
Collapse
Affiliation(s)
- Susan M Armstrong
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8 Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Michael G Sugiyama
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Karen Y Y Fung
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Yizhuo Gao
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Changsen Wang
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Andrew S Levy
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Paymon Azizi
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | - Mark Roufaiel
- Toronto General Research Institute (TGRI), Toronto, Canada
| | - Su-Ning Zhu
- Toronto General Research Institute (TGRI), Toronto, Canada
| | | | - Charles Yin
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Steffen-Sebastian Bolz
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8
| | | | - Myron I Cybulsky
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada Toronto General Research Institute (TGRI), Toronto, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Warren L Lee
- Keenan Research Centre, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada, M5B 1W8 Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada Interdepartmental Division of Critical Care Medicine and the Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
63
|
Fokidis HB, Yieng Chin M, Ho VW, Adomat HH, Soma KK, Fazli L, Nip KM, Cox M, Krystal G, Zoubeidi A, Tomlinson Guns ES. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice. J Steroid Biochem Mol Biol 2015; 150:35-45. [PMID: 25797030 DOI: 10.1016/j.jsbmb.2015.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 02/08/2015] [Accepted: 03/16/2015] [Indexed: 12/18/2022]
Abstract
Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are likely to be mechanistic drivers behind the observed tumor growth suppression.
Collapse
MESH Headings
- 3-Hydroxysteroid Dehydrogenases/genetics
- 3-Hydroxysteroid Dehydrogenases/metabolism
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics
- 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism
- Adenocarcinoma/diet therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Aldo-Keto Reductase Family 1 Member C3
- Androgens/biosynthesis
- Animals
- Blood Glucose/metabolism
- Castration
- Cholesterol/blood
- Cholesterol Esters/blood
- Diet, Carbohydrate-Restricted
- Diet, Western
- Dietary Proteins/administration & dosage
- Estradiol Dehydrogenases/genetics
- Estradiol Dehydrogenases/metabolism
- Gene Expression Regulation
- Growth Hormone/blood
- Humans
- Hydroxyprostaglandin Dehydrogenases/genetics
- Hydroxyprostaglandin Dehydrogenases/metabolism
- Insulin/blood
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Neoplasm Transplantation
- Prostate/drug effects
- Prostate/metabolism
- Prostate/pathology
- Prostate-Specific Antigen/blood
- Prostatic Neoplasms, Castration-Resistant/diet therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Transplantation, Heterologous
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- H Bobby Fokidis
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada; Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T-1Z4, Canada
| | - Mei Yieng Chin
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Victor W Ho
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z-1L3, Canada
| | - Hans H Adomat
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T-1Z4, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Ka Mun Nip
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Michael Cox
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia V5Z-1L3, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada
| | - Emma S Tomlinson Guns
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H-3Z6, Canada.
| |
Collapse
|
64
|
Valacchi G, Maioli E, Sticozzi C, Cervellati F, Pecorelli A, Cervellati C, Hayek J. Exploring the link between scavenger receptor B1 expression and chronic obstructive pulmonary disease pathogenesis. Ann N Y Acad Sci 2015; 1340:47-54. [DOI: 10.1111/nyas.12714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Giuseppe Valacchi
- Department of Life Science and Biotechnologies; University of Ferrara; Ferrara Italy
| | | | - Claudia Sticozzi
- Department of Life Science and Biotechnologies; University of Ferrara; Ferrara Italy
| | - Franco Cervellati
- Department of Life Science and Biotechnologies; University of Ferrara; Ferrara Italy
| | - Alessandra Pecorelli
- Department of Molecular and Developmental Medicine; University of Siena; Siena Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences; Section of Medical Biochemistry; Molecular Biology and Genetics; University of Ferrara; Ferrara Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit; University Hospital; Azienda Ospedaliera Universitaria Senese (AOUS); Siena Italy
| |
Collapse
|
65
|
Blanchet M, Sureau C, Guévin C, Seidah NG, Labonté P. SKI-1/S1P inhibitor PF-429242 impairs the onset of HCV infection. Antiviral Res 2015; 115:94-104. [PMID: 25573299 DOI: 10.1016/j.antiviral.2014.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 01/28/2023]
Abstract
Worldwide, approximately 170 million individuals are afflicted with chronic hepatitis C virus (HCV) infection. To prevent the development of inherent diseases such as cirrhosis and hepatocellular carcinoma, tremendous efforts have been made, leading to the development of promising new treatments. However, their efficiency is still dependent on the viral genotype. Additionally, these treatments that target the virus directly can trigger the emergence of resistant variants. In a previous study, we have demonstrated that a long-term (72h) inhibition of SKI-1/S1P, a master lipogenic pathway regulator through activation of SREBP, resulted in impaired HCV genome replication and infectious virion secretion. In the present study, we sought to investigate the antiviral effect of the SKI-1/S1P small molecule inhibitor PF-429242 at the early steps of the HCV lifecycle. Our results indicate a very potent antiviral effect of the inhibitor early in the viral lifecycle and that the overall action of the compound relies on two different contributions. The first one is SREBP/SKI-1/S1P dependent and involves LDLR and NPC1L1 proteins, while the second one is SREBP independent. Overall, our study confirms that SKI-1/S1P is a relevant target to impair HCV infection and that PF-429242 could be a promising candidate in the field of HCV infection treatment.
Collapse
Affiliation(s)
- Matthieu Blanchet
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Canada
| | - Camille Sureau
- Institut National de la Transfusion Sanguine, Paris, France
| | - Carl Guévin
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Affiliated to the Université de Montréal, Montréal, Canada
| | - Patrick Labonté
- INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Canada.
| |
Collapse
|
66
|
Song GJ, Kim SM, Park KH, Kim J, Choi I, Cho KH. SR-BI mediates high density lipoprotein (HDL)-induced anti-inflammatory effect in macrophages. Biochem Biophys Res Commun 2014; 457:112-8. [PMID: 25528585 DOI: 10.1016/j.bbrc.2014.12.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 11/24/2022]
Abstract
High density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), mediates selective cholesteryl ester uptake from lipoproteins into the liver as well as cholesterol efflux from macrophages to HDL. Recently, strong evidence has demonstrated the anti-inflammatory effect of HDL, although the mechanism of action is not fully understood. In this study, we showed that the anti-inflammatory effects of HDL are dependent on SR-BI expression in THP-1 macrophages. Consistent with earlier findings, pretreatment of macrophages with HDL abolished LPS-induced TNFα production. HDL also inhibited LPS-induced NF-κB activation. In addition, knockdown of SR-BI or inhibition of SR-BI ligand binding abolished the anti-inflammatory effect of HDL. SR-BI is a multi-ligand receptor that binds to modified lipoproteins as well as native HDL. Since modified lipoproteins have pro-inflammatory properties, it is unclear whether SR-BI activated by modified HDL has an anti- or pro-inflammatory effect. Glycated HDL induced NF-κB activation and cytokine production in macrophages in vitro, suggesting a pro-inflammatory effect for modified HDL. Moreover, inhibition of SR-BI function or expression potentiated glycated HDL-induced TNF-α production, suggesting an anti-inflammatory effect for SR-BI. In conclusion, SR-BI plays an important function in regulating HDL-mediated anti-inflammatory response in macrophages.
Collapse
Affiliation(s)
- Gyun Jee Song
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea; Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749, Republic of Korea; BK21Plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Seong-Min Kim
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea; Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749, Republic of Korea; BK21Plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ki-Hoon Park
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea; Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749, Republic of Korea; BK21Plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Jihoe Kim
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea; Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749, Republic of Korea; BK21Plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea; Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749, Republic of Korea; BK21Plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Kyung-Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea; Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749, Republic of Korea; BK21Plus Program Serum Biomedical Research and Education Team, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
67
|
Gonçalves AT, Farlora R, Gallardo-Escárate C. Transcriptome survey of the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the salmon louse Caligus rogercresseyi (Crustacea: Copepoda). Comp Biochem Physiol B Biochem Mol Biol 2014; 176:9-17. [PMID: 25062945 DOI: 10.1016/j.cbpb.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022]
Abstract
The goal of this study was to identify and analyze the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the ectoparasite copepod Caligus rogercresseyi. Massive transcriptome sequencing analysis was performed during the infectious copepodid larval stage, during the attached chalimus larval stage, and also in female and male adults. Thirty genes were selected for describing the pathways, and these were annotated for proteins or enzymes involved in lipid digestion, absorption, and transport; fatty acid degradation; the synthesis and degradation of ketone bodies; and steroid and ecdysteroid syntheses. Differential expression of these genes was analyzed by ontogenic stage and discussed considering each stage's feeding habits and energetic needs. Copepodids showed a low expression of fatty acid digestion genes, reflected by a non-feeding behavior, and the upregulation of genes involved in steroid biosynthesis, which was consistent with a pathway for cholesterol synthesis during ecdysis. The chalimus stage showed an upregulation of genes related to fatty acid digestion, absorption, and transport, as well as to fatty acid degradation and the synthesis of ketone bodies, therefore suggesting that lipids ingested from the mucus and skin of the host fish are metabolized as important sources of energy. Adult females also showed a pattern of high lipid metabolism for energy supply and mobilization in relation to reproduction and vitellogenesis. Adult females and males revealed different lipid metabolism patterns that reflected different energetic needs. This study reports for the first time the probable lipid metabolic pathways involved in the energy production and ecdysteroid synthesis of C. rogercresseyi.
Collapse
Affiliation(s)
- Ana Teresa Gonçalves
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Chile.
| | - Rodolfo Farlora
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Chile.
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, P.O. Box 160-C, Chile.
| |
Collapse
|
68
|
Zhu YZ, Qian XJ, Zhao P, Qi ZT. How hepatitis C virus invades hepatocytes: The mystery of viral entry. World J Gastroenterol 2014; 20:3457-3467. [PMID: 24707128 PMCID: PMC3974512 DOI: 10.3748/wjg.v20.i13.3457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a global health problem, with an estimated 170 million people being chronically infected. HCV cell entry is a complex multi-step process, involving several cellular factors that trigger virus uptake into the hepatocytes. The high- density lipoprotein receptor scavenger receptor class B type I, tetraspanin CD81, tight junction protein claudin-1, and occludin are the main receptors that mediate the initial step of HCV infection. In addition, the virus uses cell receptor tyrosine kinases as entry regulators, such as epidermal growth factor receptor and ephrin receptor A2. This review summarizes the current understanding about how cell surface molecules are involved in HCV attachment, internalization, and membrane fusion, and how host cell kinases regulate virus entry. The advances of the potential antiviral agents targeting this process are introduced.
Collapse
|
69
|
Rafique S, Idrees M, Ali A, Sahibzada KI, Iqbal M. Generation of infectious HCV pseudo typed particles and its utilization for studying the role of CD81 & SRBI receptors in HCV infection. Mol Biol Rep 2014; 41:3813-9. [PMID: 24549717 DOI: 10.1007/s11033-014-3247-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 02/07/2014] [Indexed: 11/24/2022]
Abstract
Hepatitis C virus (HCV) entry into isolated primary liver cells and cell lines requires interaction with the cell surface receptors. The study of HCV attachment with host cell surface receptors has been hindered by the unavailability of competent cell culture based system for HCV propagation. This problem has been overcome by the development of genetically tagged infectious HCV pseudo particles (HCVpp) harboring unmodified E1 and E2 glycoproteins. Studies using cell binding assays together with infection assays using HCVpp have shown that CD81 and scavenger receptor (SRBI) are actively involved in binding with envelope proteins facilitating the viral entrance process. This paper aimed to develop HCVpp of local HCV 3a Pakistani isolate and to study the viral tropism role of CD81 and SRBI receptors in HCV infectivity. HCV E1 and E2 genes were amplified and cloned in mammalian expression vector pcDNA 3.1/myc. The expressing plasmid of HCV E1-E2 glycoprotein in native form was co-transfected into 293FT cells with lentiviral packaging plasmid encoding the MLV Gag-Pol core proteins, and a packaging competent MLV-derived genome (pMLVYCMV-Luc) encoding the luciferase marker protein to produce infectious HCVpp. Anti-CD81 antibody (CBL579), anti-SRBI type II antibody (sc-20441) HCV anti-E2 mouse IgG1 (sc-65457) and HCV anti-E1 antibody mouse IgG1 (sc-65459) were used in this setup. We showed that primary site of viral replication is liver which involve CD81 and SRBI receptors for HCV gp-dependent infection with HCVpp. This is the preliminary reported cell cultured based mechanism from Pakistan which facilitated functional studies of different antiviral agents. Understanding of this technique will help in development of new antiviral therapeutics focusing on earlier steps of HCV life cycle. We have developed infectious pseudo particles of local 3a-isolate and concluded that a number of liver-specific surface proteins function along with CD81 and SRBI receptor regarding HCV infectivity. To endeavors and to identify this liver specific co-receptor molecule(s) will provide insights into the role of these molecules in the initial steps of HCV life cycle.
Collapse
Affiliation(s)
- Shazia Rafique
- Centre of Applied Molecular Biology, Ministry of Science & Technology Govt. of Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, Lahore, Pakistan,
| | | | | | | | | |
Collapse
|
70
|
Amano Y, Shimada M, Miura S, Adachi R, Tozawa R. Effects of a farnesoid X receptor antagonist on hepatic lipid metabolism in primates. Eur J Pharmacol 2013; 723:108-15. [PMID: 24361308 DOI: 10.1016/j.ejphar.2013.10.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/02/2013] [Accepted: 10/20/2013] [Indexed: 01/22/2023]
Abstract
We aimed to elucidate the mechanism underlying the anti-dyslipidemic effect of compound-T3, a farnesoid X receptor antagonist, by investigating its effects on hepatic lipid metabolism in non-human primates. We administered lipid-lowering drugs for 7 days to cynomolgus monkeys receiving a high-fat diet, and subsequently measured the levels of lipid parameters in plasma, feces, and hepatic tissue fluids. Compound-T3 (0.3 and 3mg/kg p.o.) significantly decreased the plasma levels of non-high-density lipoprotein (non-HDL) cholesterol and apolipoprotein B in a dose-dependent manner. It also decreased the mRNA levels of hepatic small heterodimer partner-1, induced the mRNA expression of hepatic cholesterol 7α-hydroxylase, reduced hepatic cholesterol and triglyceride levels, increased fecal bile acid excretion, and upregulated the expression of hepatic low-density lipoprotein (LDL) receptor. Furthermore, compound-T3 significantly increased plasma HDL cholesterol and apolipoprotein A-I levels. The mRNA expression levels of hepatic apolipoprotein A-I tended to increase after compound-T3 treatment. Compound-T3 also induced accumulation of hepatic bile acids and decreased the mRNA expression levels of the hepatic bile acid export pump. The effects of cholestyramine (300mg/kg p.o.) on the plasma and hepatic lipid parameters were similar to those of compound-T3, and it increased fecal bile acid levels without causing accumulation of hepatic bile acids. These findings suggest that LDL receptor-mediated hepatic LDL incorporation due to cholesterol catabolism catalyzed by cholesterol 7α-hydroxylase decreases plasma non-HDL cholesterol levels. Upregulation of hepatic apolipoprotein A-I mRNA expression may partially contribute to the increase in HDL cholesterol levels mediated by compound-T3.
Collapse
Affiliation(s)
- Yuichiro Amano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraokahigashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Mitsuyuki Shimada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraokahigashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shotaro Miura
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraokahigashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryutaro Adachi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraokahigashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryuichi Tozawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraokahigashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
71
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
72
|
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13:621-34. [PMID: 23928573 DOI: 10.1038/nri3515] [Citation(s) in RCA: 593] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Johnathan Canton
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
73
|
Li Y, Kakinami C, Li Q, Yang B, Li H. Human apolipoprotein A-I is associated with dengue virus and enhances virus infection through SR-BI. PLoS One 2013; 8:e70390. [PMID: 23894648 PMCID: PMC3722190 DOI: 10.1371/journal.pone.0070390] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/21/2013] [Indexed: 12/12/2022] Open
Abstract
Diseases caused by dengue virus (DV) infection vary in severity, with symptoms ranging from mild fever to life threatening dengue hemorrhage fever (DHF) and dengue shock syndrome (DSS). Clinical studies have shown that significant decrease in the level of lipoproteins is correlated with severe illness in DHF/DSS patients. Available evidence also indicates that lipoproteins including high-density lipoprotein (HDL) and low-density lipoprotein (LDL) are able to facilitate cell entry of HCV or other flaviviruses via corresponding lipoprotein receptors. In this study, we found that pre-incubation of DV with human serum leads to an enhanced DV infectivity in various types of cells. Such enhancement could be due to interactions between serum components and DV particles. Through co-immunoprecipitation we revealed that apolipoprotein A-I (ApoA-I), the major protein component in HDL, is associated with DV particles and is able to promote DV infection. Based on that observation, we further found that siRNA knockdown of the scavenger receptor class B type I (SR-BI), the cell receptor of ApoA-I, abolished the activity of ApoA-I in enhancement of DV infection. This suggests that ApoA-I bridges DV particles and cell receptor SR-BI and facilitates entry of DV into cells. FACS analysis of cell surface dengue antigen after virus absorption further confirmed that ApoA-I enhances DV infection via promoting initial attachment of the virus to cells. These findings illustrate a novel entry route of DV into cells, which may provide insights into the functional importance of lipoproteins in dengue pathogenesis.
Collapse
Affiliation(s)
- Yujia Li
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Cherie Kakinami
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Qi Li
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Baojun Yang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Hongwei Li
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
74
|
Dikkers A, Freak de Boer J, Annema W, Groen AK, Tietge UJF. Scavenger receptor BI and ABCG5/G8 differentially impact biliary sterol secretion and reverse cholesterol transport in mice. Hepatology 2013; 58:293-303. [PMID: 23401258 DOI: 10.1002/hep.26316] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022]
Abstract
UNLABELLED Biliary lipid secretion plays an important role in gallstone disease and reverse cholesterol transport (RCT). Using Sr-bI/Abcg5 double knockout mice (dko), the present study investigated the differential contribution of two of the most relevant transporters: adenosine triphosphate (ATP)-binding cassette subfamily G member 5 and 8 (ABCG5/G8) and scavenger receptor class B type I (SR-BI) to sterol metabolism and RCT. Plasma cholesterol levels increased in the following order, mainly due to differences in high density lipoprotein (HDL): Abcg5 ko < wild type < Sr-bI/Abcg5 dko < Sr-bI ko. Liver cholesterol content was elevated in Sr-bI ko only (P < 0.05). In Sr-bI/Abcg5 dko plasma plant sterols were highest, while hepatic plant sterols were lower compared with Abcg5 ko (P < 0.05). Under baseline conditions, biliary cholesterol secretion rates decreased in the following order: wild type > Sr-bI ko (-16%) > Abcg5 ko (-75%) > Sr-bI/Abcg5 dko (-94%), all at least P < 0.05, while biliary bile acid secretion did not differ between groups. However, under supraphysiological conditions, upon infusion with increasing amounts of the bile salt tauroursodeoxycholic acid, Abcg5 became fully rate-limiting for biliary cholesterol secretion. Additional in vivo macrophage-to-feces RCT studies demonstrated an almost 50% decrease in overall RCT in Sr-bI/Abcg5 dko compared with Abcg5 ko mice (P < 0.01). CONCLUSION These data demonstrate that (1) SR-BI contributes to ABCG5/G8-independent biliary cholesterol secretion under basal conditions; (2) biliary cholesterol mass secretion under maximal bile salt-stimulated conditions is fully dependent on ABCG5/G8; and (3) Sr-bI contributes to macrophage-to-feces RCT independent of Abcg5/g8.
Collapse
Affiliation(s)
- Arne Dikkers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | | | | | | | | |
Collapse
|
75
|
Yang XP, Amar MJ, Vaisman B, Bocharov AV, Vishnyakova TG, Freeman LA, Kurlander RJ, Patterson AP, Becker LC, Remaley AT. Scavenger receptor-BI is a receptor for lipoprotein(a). J Lipid Res 2013; 54:2450-7. [PMID: 23812625 DOI: 10.1194/jlr.m038877] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) is a multi-ligand receptor that binds a variety of lipoproteins, including high density lipoprotein (HDL) and low density lipoprotein (LDL), but lipoprotein(a) [Lp(a)] has not been investigated as a possible ligand. Stable cell lines (HEK293 and HeLa) expressing human SR-BI were incubated with protein- or lipid-labeled Lp(a) to investigate SR-BI-dependent Lp(a) cell association. SR-BI expression enhanced the association of both (125)I- and Alexa Fluor-labeled protein from Lp(a). By confocal microscopy, SR-BI was also found to promote the internalization of fluorescent lipids (BODIPY-cholesteryl ester (CE)- and DiI-labeled) from Lp(a), and by immunocytochemistry the cellular internalization of apolipoprotein(a) and apolipoprotein B. When dual-labeled ((3)H-cholesteryl ether,(125)I-protein) Lp(a) was added to cells expressing SR-BI, there was a greater relative increase in lipid uptake over protein, indicating that SR-BI mediates selective lipid uptake from Lp(a). Compared with C57BL/6 control mice, transgenic mice overexpressing human SR-BI in liver were found to have increased plasma clearance of (3)H-CE-Lp(a), whereas mouse scavenger receptor class B type I knockout (Sr-b1-KO) mice had decreased plasma clearance (fractional catabolic rate: 0.63 ± 0.08/day, 1.64 ± 0.62/day, and 4.64 ± 0.40/day for Sr-b1-KO, C57BL/6, and human scavenger receptor class B type I transgenic mice, respectively). We conclude that Lp(a) is a novel ligand for SR-BI and that SR-BI mediates selective uptake of Lp(a)-associated lipids.
Collapse
Affiliation(s)
- Xiao-Ping Yang
- Cardiology Division, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Scavenger receptors mediate the role of SUMO and Ftz-f1 in Drosophila steroidogenesis. PLoS Genet 2013; 9:e1003473. [PMID: 23637637 PMCID: PMC3630131 DOI: 10.1371/journal.pgen.1003473] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/07/2013] [Indexed: 12/31/2022] Open
Abstract
SUMOylation participates in ecdysteroid biosynthesis at the onset of metamorphosis in Drosophila melanogaster. Silencing the Drosophila SUMO homologue smt3 in the prothoracic gland leads to reduced lipid content, low ecdysone titers, and a block in the larval–pupal transition. Here we show that the SR-BI family of Scavenger Receptors mediates SUMO functions. Reduced levels of Snmp1 compromise lipid uptake in the prothoracic gland. In addition, overexpression of Snmp1 is able to recover lipid droplet levels in the smt3 knockdown prothoracic gland cells. Snmp1 expression depends on Ftz-f1 (an NR5A-type orphan nuclear receptor), the expression of which, in turn, depends on SUMO. Furthermore, we show by in vitro and in vivo experiments that Ftz-f1 is SUMOylated. RNAi–mediated knockdown of ftz-f1 phenocopies that of smt3 at the larval to pupal transition, thus Ftz-f1 is an interesting candidate to mediate some of the functions of SUMO at the onset of metamorphosis. Additionally, we demonstrate that the role of SUMOylation, Ftz-f1, and the Scavenger Receptors in lipid capture and mobilization is conserved in other steroidogenic tissues such as the follicle cells of the ovary. smt3 knockdown, as well as ftz-f1 or Scavenger knockdown, depleted the lipid content of the follicle cells, which could be rescued by Snmp1 overexpression. Therefore, our data provide new insights into the regulation of metamorphosis via lipid homeostasis, showing that Drosophila Smt3, Ftz-f1, and SR-BIs are part of a general mechanism for uptake of lipids such as cholesterol, required during development in steroidogenic tissues. Steroid hormones are cholesterol derivates that control many aspects of animal physiology, including development of the adult organisms, growth, energy storage, and reproduction. In insects, pulses of the steroid hormone ecdysone precede molting and metamorphosis, the regulation of hormonal synthesis being a crucial step that determines animal viability and size. Reduced levels of the small ubiquitin-like modifier SUMO in the prothoracic gland block the synthesis of ecdysone, as SUMO is needed for cholesterol intake. Here we show that SUMO is required for the expression of Scavenger Receptors (Class B, type I). These membrane receptors are necessary for lipid uptake by the gland. Strikingly, their expression is sufficient to recover lipid content when SUMO is removed. The expression of the Scavenger Receptors depends on Ftz-f1, a nuclear transcription factor homologous to mammalian Steroidogenic factor 1 (SF-1). Interestingly, the expression of Ftz-f1 also depends on SUMO and, in addition, Ftz-f1 is SUMOylated. This modification modulates its capacity to activate the Scavenger Receptor Snmp1. The role of SUMO, Scavenger Receptors, and Ftz-f1 on lipid intake is conserved in other tissues that synthesize steroid hormones, such as the ovaries. These factors are conserved in vertebrates, with mutations underlying human disease, so this mechanism to regulate lipid uptake could have implications for human health.
Collapse
|
77
|
Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ 2013; 22:399-411. [PMID: 23541627 DOI: 10.1016/j.hlc.2013.03.001] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 02/07/2023]
Abstract
Atherosclerotic plaque rupture with luminal thrombosis is the most common mechanism responsible for the majority of acute coronary syndromes and sudden coronary death. The precursor lesion of plaque rupture is thought to be a thin cap fibroatheroma (TCFA) or "vulnerable plaque". TCFA is characterised by a necrotic core with an overlying thin fibrous cap (≤65 μm) that is infiltrated by macrophages and T-lymphocytes. Intraplaque haemorrhage is a major contributor to the enlargement of the necrotic core. Haemorrhage is thought to occur from leaky vasa vasorum that invades the intima from the adventitia as the intima enlarges. The early atherosclerotic plaque progression from pathologic intimal thickening (PIT) to a fibroatheroma is thought to be the result of macrophage infiltration. PIT is characterised by the presence of lipid pools which consist of proteoglycan with lipid insudation. The conversion of the lipid pool to a necrotic core is poorly understood but is thought to occur as a result of macrophage infiltration which releases matrix metalloproteinase (MMPs) along with macrophage apoptosis that leads to the formation of a acellular necrotic core. The fibroatheroma has a thick fibrous cap that begins to thin over time through macrophage MMP release and apoptotic death of smooth muscle cells converting the fibroatheroma into a TCFA. Other causes of thrombosis include plaque erosion which is less frequent than plaque rupture but is a common cause of thrombosis in young individuals especially women <50 years of age. The underlying lesion morphology in plaque erosion consists of PIT or a thick cap fibroatheroma. Calcified nodule is the least frequent cause of thrombosis, which occurs in older individuals with heavily calcified and tortious arteries.
Collapse
|
78
|
Harris HJ, Clerte C, Farquhar MJ, Goodall M, Hu K, Rassam P, Dosset P, Wilson GK, Balfe P, IJzendoorn SC, Milhiet PE, McKeating JA. Hepatoma polarization limits CD81 and hepatitis C virus dynamics. Cell Microbiol 2013; 15:430-45. [PMID: 23126643 PMCID: PMC3599488 DOI: 10.1111/cmi.12047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/08/2012] [Accepted: 09/27/2012] [Indexed: 12/12/2022]
Abstract
Many viruses target the polarized epithelial apex during host invasion. In contrast, hepatitis C virus (HCV) engages receptors at the basal surface of hepatocytes in the polarized liver parenchyma. Hepatocyte polarization limits HCV entry by undefined mechanism(s). Given the recent reports highlighting a role for receptor mobility in pathogen entry, we studied the effect(s) of hepatocyte polarization on viral receptor and HCV pseudoparticle (HCVpp) dynamics using real-time fluorescence recovery after photobleaching and single particle tracking. Hepatoma polarization reduced CD81 and HCVpp dynamics at the basal membrane. Since cell polarization is accompanied by changes in the actin cytoskeleton and CD81 links to actin via its C-terminus, we studied the dynamics of a mutant CD81 lacking a C-terminal tail (CD81(ΔC)) and its effect(s) on HCVpp mobility and infection. CD81(ΔC) showed an increased frequency of confined trajectories and a reduction of Brownian diffusing molecules compared to wild-type protein in non-polarized cells. However, these changes were notobserved in polarized cells. HCVpp showed a significant reduction in Brownian diffusion and infection of CD81(ΔC) expressing non-polarized cells. In summary, these data highlight the dynamic nature of CD81 and demonstrate a role for CD81 lateral diffusion to regulate HCV infection in a polarization-dependent manner.
Collapse
Affiliation(s)
- H J Harris
- School of Immunity and Infection, University of BirminghamBirmingham, UK
- NIHR Centre for Liver Disease, University of BirminghamBirmingham, UK
| | - C Clerte
- Unité 1054, InsermMontpellier, France
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048Montpellier, France
| | - M J Farquhar
- School of Immunity and Infection, University of BirminghamBirmingham, UK
- NIHR Centre for Liver Disease, University of BirminghamBirmingham, UK
| | - M Goodall
- School of Immunity and Infection, University of BirminghamBirmingham, UK
- NIHR Centre for Liver Disease, University of BirminghamBirmingham, UK
| | - K Hu
- School of Immunity and Infection, University of BirminghamBirmingham, UK
- NIHR Centre for Liver Disease, University of BirminghamBirmingham, UK
| | - P Rassam
- Unité 1054, InsermMontpellier, France
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048Montpellier, France
| | - P Dosset
- Unité 1054, InsermMontpellier, France
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048Montpellier, France
| | - G K Wilson
- School of Immunity and Infection, University of BirminghamBirmingham, UK
- NIHR Centre for Liver Disease, University of BirminghamBirmingham, UK
| | - P Balfe
- School of Immunity and Infection, University of BirminghamBirmingham, UK
- NIHR Centre for Liver Disease, University of BirminghamBirmingham, UK
| | - S C IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of GroningenGroningen, The Netherlands
| | - P E Milhiet
- Unité 1054, InsermMontpellier, France
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048Montpellier, France
| | - J A McKeating
- School of Immunity and Infection, University of BirminghamBirmingham, UK
- NIHR Centre for Liver Disease, University of BirminghamBirmingham, UK
- NIHR Liver Biomedical Research Unit, University of BirminghamBirmingham, UK
| |
Collapse
|
79
|
Zhang M, Xu Y, Li L, Wei S, Zhang S, Liu Z. Identification, evolution and expression of a CD36 homolog in the basal chordate amphioxus Branchiostoma japonicum. FISH & SHELLFISH IMMUNOLOGY 2013; 34:546-555. [PMID: 23261503 DOI: 10.1016/j.fsi.2012.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
CD36, as one member of scavenger receptor class B (SRB) family, is a transmembrane glycoprotein and has been associated with diverse normal physiological processes and pathological conditions. However, little is known about it in amphioxus, a model organism for insights into the origin and evolution of vertebrates. In this paper, CD36 homologs in amphioxus were identified. Evolutionary analysis suggested that amphioxus BfCD36F-a/b, which were more similar to vertebrate CD36, might represent the primitive form before the splitting of CD36, SRB1 and SRB2 genes during evolution. Then the BjCD36F-a cDNA was cloned from Branchiostoma japonicum using RACE technology. Real-time PCR and in situ hybridization revealed the expression of BjCD36F-a in all the tissues detected with the highest expression in the hepatic caecum. The BjCD36F-a expression was obviously up-regulated after feeding and down-regulated during fasting, indicating a role of BjCD36F-a in feeding regulation. Besides, the up-regulation expression of BjCD36F-a transcripts was also found after either Lipoteichoic acid (LTA) treatment in the BjCD36F-a-transfected FG cells or Escherichia coli (E. coli) challenge in vivo, implying an immune-related function for BjCD36F-a. Collectively, we identify and characterize a conserved gene that is important in the fundamental process of immune and nutritional regulation. These are the first such data in amphioxus, laying a foundation for further study of their physiological functions.
Collapse
Affiliation(s)
- Min Zhang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
New therapies that challenge existing paradigms are needed for the treatment of cancer. We report a nanoparticle-enabled therapeutic approach to B-cell lymphoma using synthetic high density lipoprotein nanoparticles (HDL-NPs). HDL-NPs are synthesized using a gold nanoparticle template to control conjugate size and ensure a spherical shape. Like natural HDLs, biomimetic HDL-NPs target scavenger receptor type B-1, a high-affinity HDL receptor expressed by lymphoma cells. Functionally, compared with natural HDL, the gold NP template enables differential manipulation of cellular cholesterol flux in lymphoma cells, promoting cellular cholesterol efflux and limiting cholesterol delivery. This combination of scavenger receptor type B-1 binding and relative cholesterol starvation selectively induces apoptosis. HDL-NP treatment of mice bearing B-cell lymphoma xenografts selectively inhibits B-cell lymphoma growth. As such, HDL-NPs are biofunctional therapeutic agents, whose mechanism of action is enabled by the presence of a synthetic nanotemplate. HDL-NPs are active in B-cell lymphomas and potentially, other malignancies or diseases of pathologic cholesterol accumulation.
Collapse
|
81
|
Ghosh S, Kaplan KJ, Schrum LW, Bonkovsky HL. Cytoskeletal proteins: shaping progression of hepatitis C virus-induced liver disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:279-319. [PMID: 23351713 DOI: 10.1016/b978-0-12-407699-0.00005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection, which results in chronic hepatitis C (CHC) in most patients (70-85%), is a major cause of liver disease and remains a major therapeutic challenge. The mechanisms determining liver damage and the key factors that lead to a high rate of CHC remain imperfectly understood. The precise role of cytoskeletal (CS) proteins in HCV infection remains to be determined. Some studies including our recent study have demonstrated that changes occur in the expression of CS proteins in HCV-infected hepatocytes. A variety of host proteins interact with HCV proteins. Association between CS and HCV proteins may have implications in future design of CS protein-targeted therapy for the treatment for HCV infection. This chapter will focus on the interaction between host CS and viral proteins to signify the importance of this event in HCV entry, replication and transportation.
Collapse
Affiliation(s)
- Sriparna Ghosh
- Liver-Biliary-Pancreatic Center, Carolinas Medical Center, and School of Medicine, University of North Carolina, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | |
Collapse
|
82
|
Rejeb J, Omezzine A, Boumaiza I, Rebhi L, Kacem S, Rejeb NB, Nabli N, Abdelaziz AB, Boughzala E, Bouslama A. Association of three polymorphisms of scavenger receptor class BI gene (exon8, exon1, intron5) with coronary stenosis in a coronary Tunisian population. Gene 2012; 511:383-8. [PMID: 23041084 DOI: 10.1016/j.gene.2012.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/09/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND The potential role of scavenger receptor class BI (gene name SCARB1) in the regulation of lipoproteins metabolism and atherosclerosis has attracted considerable interest. We tested the relationship of SCARB1 polymorphisms with significant coronary stenosis (SCS) and lipid profile in a coronary Tunisian population. METHODS Three SCARB1 polymorphisms (exon8 (C/T), exon1 (G/A), intron5 (C/T)) were studied in 316 Tunisian patients undergoing coronary angiography. SCS was defined as a luminal narrowing of ≥ 50% in at least one major coronary artery. Lipid profile was measured. Genotyping was performed using PCR-RFLP. RESULTS Individuals with TT genotypes of exon8 were associated with higher concentrations of plasma HDL-C and ApoAI in the group without SCS. Carriers of T allele of exon8 were associated with 41% lower risk of SCS. This protective effect seemed to be particularly significant in women, nondiabetics and nonsmokers. Subjects homozygous for the variant allele of intron5 were significantly associated with an increased risk of SCS, particularly in smokers. AA genotype of exon1 was associated with an increased risk of SCS in diabetics and in patients with metabolic syndrome. The (CAT) haplotype was associated with increase in the risk of SCS compared to the wild haplotype and had a 4-fold greater risk of SCS than patients with haplotype (TGC) which seems to be the most protective against SCS. CONCLUSION Carriers of T allele of exon8 in SCARB1 seemed to increase HDL-C and ApoAI concentrations and reduce the risk of SCS. The intron5, exon1 and (CAT) haplotype seemed to have an atherogenic effect.
Collapse
Affiliation(s)
- Jihène Rejeb
- Biochemistry Department, UR MSP 28/04, Sahloul University Hospital, Sousse, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Cox JV, Naher N, Abdelrahman YM, Belland RJ. Host HDL biogenesis machinery is recruited to the inclusion of Chlamydia trachomatis-infected cells and regulates chlamydial growth. Cell Microbiol 2012; 14:1497-512. [PMID: 22672264 DOI: 10.1111/j.1462-5822.2012.01823.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/04/2012] [Accepted: 05/28/2012] [Indexed: 11/29/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that is the most common cause of sexually transmitted bacterial infections and is the etiological agent of trachoma, the leading cause of preventable blindness. The organism infects epithelial cells of the genital tract and eyelid resulting in a damaging inflammatory response. Chlamydia trachomatis grows within a vacuole termed the inclusion, and its growth depends on numerous host factors, including lipids. Although a variety of mechanisms are involved in the acquisition of host cell cholesterol and glycosphingolipids by C. trachomatis, none of the previously documented pathways for lipid acquisition are absolutely required for growth. Here we demonstrate that multiple components of the host high-density lipoprotein (HDL) biogenesis machinery including the lipid effluxers, ABCA1 and CLA 1, and their extracellular lipid acceptor, apoA-1, are recruited to the inclusion of C. trachomatis-infected cells. Furthermore, the apoA-1 that accumulates within the inclusion colocalizes with pools of phosphatidylcholine. Knockdown of ABCA1, which mediates the cellular efflux of cholesterol and phospholipids to initiate the formation of HDL in the serum, prevents the growth of C. trachomatis in infected HeLa cells. In addition, drugs that inhibit the lipid transport activities of ABCA1 and CLA 1 also inhibit the recruitment of phospholipids to the inclusion and prevent chlamydial growth.These results strongly suggest that C. trachomatis co-opts the host cell lipid transport system involved in the formation of HDL to acquire lipids, such as phosphatidylcholine, that are necessary for growth.
Collapse
Affiliation(s)
- John V Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
84
|
Twiddy AL, Cox ME, Wasan KM. Knockdown of scavenger receptor class B type I reduces prostate specific antigen secretion and viability of prostate cancer cells. Prostate 2012; 72:955-65. [PMID: 22025344 DOI: 10.1002/pros.21499] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/19/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND Scavenger Receptor Class B Type I (SR-BI) facilitates influx of cholesterol to the cell from lipoproteins in the circulation. This influx of cholesterol may be important for many cellular functions, including synthesis of androgens. Castration-resistant prostate cancer tumors are able to synthesize androgens de novo in order to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-BI may impact the ability of prostate cancer cells, particularly those of castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. METHODS SR-BI expression was knocked down using small interfering RNA in LNCaP and C4-2 cells. The effect of down-regulation of SR-BI on PSA production, cell toxicity, and cell viability was measured in both cell types. In addition, compensatory cholesterol synthesis activity was measured using the radiolabeled precursor, (14) C-acetate. RESULTS SR-BI protein expression is higher basally in C4-2 cells than LNCaP cells. Silencing of SR-BI expression to greater than 85% reduced PSA production in LNCaP and C4-2 SRBI-KD cells by 55% and 58% compared to negative control cells, respectively. SR-BI-KD C4-2 cells demonstrated significantly reduced cell viability (>25%) compared the NC cells. CONCLUSIONS The down-regulation of SR-BI significantly impacts PSA production of prostate cancer cells, as well as the viability of C4-2 cells in the presence and absence of HDL. This may indicate a deficiency in cholesterol availability to the androgen synthesis pathway or may implicate a role for SR-BI in prostate cancer signal transduction pathways.
Collapse
Affiliation(s)
- Alexis L Twiddy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
85
|
Vercauteren K, Leroux-Roels G, Meuleman P. Blocking HCV entry as potential antiviral therapy. Future Virol 2012. [DOI: 10.2217/fvl.12.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
86
|
Cigarette smoke affects keratinocytes SRB1 expression and localization via H2O2 production and HNE protein adducts formation. PLoS One 2012; 7:e33592. [PMID: 22442701 PMCID: PMC3307738 DOI: 10.1371/journal.pone.0033592] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/11/2012] [Indexed: 11/19/2022] Open
Abstract
Scavenger Receptor B1 (SR-B1), also known as HDL receptor, is involved in cellular cholesterol uptake. Stratum corneum (SC), the outermost layer of the skin, is composed of more than 25% cholesterol. Several reports support the view that alteration of SC lipid composition may be the cause of impaired barrier function which gives rise to several skin diseases. For this reason the regulation of the genes involved in cholesterol uptake is of extreme significance for skin health. Being the first shield against external insults, the skin is exposed to several noxious substances and among these is cigarette smoke (CS), which has been recently associated with various skin pathologies. In this study we first have shown the presence of SR-B1 in murine and human skin tissue and then by using immunoblotting, immunoprecipitation, RT-PCR, and confocal microscopy we have demonstrated the translocation and the subsequent lost of SR-B1 in human keratinocytes (cell culture model) after CS exposure is driven by hydrogen peroxide (H2O2) that derives not only from the CS gas phase but mainly from the activation of cellular NADPH oxidase (NOX). This effect was reversed when the cells were pretreated with NOX inhibitors or catalase. Furthermore, CS caused the formation of SR-B1-aldheydes adducts (acrolein and 4-hydroxy-2-nonenal) and the increase of its ubiquitination, which could be one of the causes of SR-B1 loss. In conclusion, exposure to CS, through the production of H2O2, induced post-translational modifications of SR-B1 with the consequence lost of the receptor and this may contribute to the skin physiology alteration as a consequence of the variation of cholesterol uptake.
Collapse
|
87
|
Meredith LW, Wilson GK, Fletcher NF, McKeating JA. Hepatitis C virus entry: beyond receptors. Rev Med Virol 2012; 22:182-93. [PMID: 22392805 DOI: 10.1002/rmv.723] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/30/2011] [Accepted: 10/09/2011] [Indexed: 12/11/2022]
Abstract
HCV is a blood-borne pathogen that affects approximately 3% of the global population and leads to progressive liver disease. Recent advances have identified an essential role for host cell molecules: tetraspanin CD81, scavenger receptor B1 and the tight junction proteins claudin-1 and occludin in HCV entry, suggesting a complex multi-step process. The conserved nature of this receptor-dependent step in the viral life cycle offers an attractive target for therapeutic intervention. Evidence is emerging that additional factors other than classical receptors, such as inflammatory mediators regulate the ability of hepatocytes to support HCV entry, and as such may provide potential avenues for drug design and development. In this review, we summarise the recent literature on HCV entry mechanisms with a view to realising the future potential of therapeutically targeting this process.
Collapse
Affiliation(s)
- Luke W Meredith
- Institute for Biomedical Research, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
88
|
Valacchi G, Sticozzi C, Lim Y, Pecorelli A. Scavenger receptor class B type I: a multifunctional receptor. Ann N Y Acad Sci 2011; 1229:E1-7. [DOI: 10.1111/j.1749-6632.2011.06205.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
89
|
Cerda Á, Genvigir FDV, Rodrigues AC, Willrich MAV, Dorea EL, Bernik MMS, Arazi SS, Oliveira RD, Hirata MH, Hirata RDC. Influence of polymorphisms and cholesterol-lowering treatment on SCARB1 mRNA expression. J Atheroscler Thromb 2011; 18:640-51. [PMID: 21512283 DOI: 10.5551/jat.6544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM This study evaluated the influence of polymorphisms and cholesterol-lowering treatments on SCARB1 mRNA expression in peripheral blood mononuclear cells and in HepG2 and Caco-2 cells. METHODS Blood samples were drawn from normolipidemic (NL, n = 166) and hypercholesterolemic (HC, n = 123) individuals to extract DNA and total RNA and to analyze the lipid profile. After a 4-week washout period, 98 HC individuals were treated with atorvastatin (10 mg/day/4 weeks) whereas 25 were treated with ezetimibe (10 mg/day/4 weeks), followed by simvastatin (10 mg/day/8 weeks) and simvastatin plus ezetimibe (10 mg each/day/4 weeks). HepG2 and Caco-2 cells were treated with atorvastatin, simvastatin and ezetimibe at various concentrations for 12 and 24 h and collected for RNA extraction. SCARB1 mRNA expression was measured by TaqMan® assay and SCARB1 c.4G> A, c.726 + 54C> T and c.1080C> T polymorphisms were detected by PCR-RFLP. RESULTS High LDL cholesterol (> 160 mg/dL) values were associated with low baseline SCARB1 mRNA expression in PBMC. Allele T carriers for SCARB1 c.726+54C> T had lower basal SCARB1 transcription in PBMC (p < 0.05). Simvastatin, atorvastatin and ezetimibe treatments did not modify the SCARB1 mRNA level in PBMC from HC patients. Similarly, these cholesterol-lowering drugs did not modulate the SCARB1 expression in HepG2 and Caco-2 cells in spite of the concentration and time of exposure (p > 0.05). CONCLUSION LDL cholesterol levels and SCARB1 c.726 + 54C> T are associated with low mRNA expression in mononuclear cells. Cholesterol-lowering drugs do not modulate SCARB1 expression in PBMC from HC subjects or in HepG2 and Caco-2 cells.
Collapse
Affiliation(s)
- Álvaro Cerda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Aron-Wisnewsky J, Julia Z, Poitou C, Bouillot JL, Basdevant A, Chapman MJ, Clement K, Guerin M. Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J Clin Endocrinol Metab 2011; 96:1151-9. [PMID: 21289254 DOI: 10.1210/jc.2010-2378] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM We tested the hypothesis that quantitative changes in high-density lipoprotein (HDL) particles weight loss induced by Roux-en-Y bypass (RYGBP) in morbidly obese subjects might be associated with improved functionality of these particles in the reverse cholesterol transport pathway. METHODS AND RESULTS Thirty-four morbidly obese women were recruited and followed up before and 6 months after RYGBP. After surgery, along with a major weight loss (-20%; P < 0.0001), we observed a significant increase in HDL mass concentration (+14%; P < 0.04), reflecting a specific increase in large HDL2 subfraction levels (+42%; P < 0.01), whereas those of HDL3 remained unchanged. Cholesterol ester transfer protein activity decreased significantly (-15%; P < 0.0001). Efflux capacity of total plasma increased significantly via both scavenger receptor class B type I (SR-BI) (+58%; P < 0.0001) and ATP binding cassette G1 (ABCG1) (+26%; P < 0.0001) pathways. Such enhanced capacity resulted from increased capacity of HDL2 particles to mediate cholesterol efflux through the SR-BI pathway (+56%, P < 0.001) and from the increase plasma level of cholesteryl ester-rich HDL2 particles for the ABCG1 pathway. CONCLUSION RYGBP-induced weight loss results in improvement in atherogenic lipid profile including a shift toward a more cardioprotective HDL subfraction profile. In addition, our in vitro studies demonstrated an increased in plasma efflux capacity via both SR-BI and ABCG1 after surgery.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Assistance Publique-Hôpitaux de Paris, Endocrinology and Nutrition Department, Human Research Nutrition Center, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease. With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol originating from cholesterol-laden macrophage foam cells in the vessel wall in a pathway named reverse cholesterol transport. On the other hand, cholesterol hypersecretion into the bile is considered the main pathophysiological determinant of cholesterol gallstone formation. This review summarizes current knowledge on the origins of cholesterol secreted into the bile as well as the relevant processes and transporters involved. Next to the established ATP-binding cassette (ABC) transporters mediating the biliary secretion of bile acids (ABCB11), phospholipids (ABCB4) and cholesterol (ABCG5/G8), special attention is given to emerging proteins that modulate or mediate biliary cholesterol secretion. In this regard, the potential impact of the phosphatidylserine flippase ATPase class I type 8B member 1, the Niemann Pick C1-like protein 1 that mediates cholesterol absorption and the high density lipoprotein cholesterol uptake receptor, scavenger receptor class B type I, is discussed.
Collapse
|
92
|
Comparison of tetrahydrofuran, fetal calf serum, and Tween 40 for the delivery of astaxanthin and canthaxanthin to HepG2 cells. Cytotechnology 2010; 63:89-97. [PMID: 21153438 DOI: 10.1007/s10616-010-9324-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022] Open
Abstract
The present investigation aimed to compare fetal calf serum (FCS) and Tween 40 with the commonly employed tetrahydrofuran (THF) with respect to cytotoxicity, stability of the solubilized carotenoids, and uptake and accumulation of the xanthophylls astaxanthin (AX) and canthaxanthin (CX) in cultured human liver cells (HepG2). Incubation of HepG2 cells for 24 h with THF (≥1.25%) or FCS (≥11.25%) with or without AX (≥25 μmol/L) or CX (≥25 μmol/L) did not affect cell viability. Tween 40 (0.25-1.25% in medium) reduced cell viability by 75-99%. The stabilities of AX and CX in cell-free RPMI 1640 medium for ≤24 h were higher when delivered with THF instead of FCS. The dose- and time-dependent accumulations of AX and CX (1-10 μmol/L) in HepG2 cells were higher when carotenoids were delivered with FCS compared to THF. In conclusion, FCS and THF, but not Tween 40, were suitable solvent systems for the delivery of AX and CX to HepG2 cells. In our experiments FCS was superior with regard to the uptake and accumulation of both carotenoids.
Collapse
|
93
|
Thysell E, Surowiec I, Hörnberg E, Crnalic S, Widmark A, Johansson AI, Stattin P, Bergh A, Moritz T, Antti H, Wikström P. Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol. PLoS One 2010; 5:e14175. [PMID: 21151972 PMCID: PMC2997052 DOI: 10.1371/journal.pone.0014175] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/04/2010] [Indexed: 11/30/2022] Open
Abstract
Background Metastasis to the bone is one clinically important features of prostate cancer (PCa). Current diagnostic methods cannot predict metastatic PCa at a curable stage of the disease. Identification of metabolic pathways involved in the growth of bone metastases therefore has the potential to improve PCa prognostication as well as therapy. Methodology/Principal Findings Metabolomics was applied for the study of PCa bone metastases (n = 20) in comparison with corresponding normal bone (n = 14), and furthermore of malignant (n = 13) and benign (n = 17) prostate tissue and corresponding plasma samples obtained from patients with (n = 15) and without (n = 13) diagnosed metastases and from men with benign prostate disease (n = 30). This was done using gas chromatography-mass spectrometry for sample characterization, and chemometric bioinformatics for data analysis. Results were verified in a separate test set including metastatic and normal bone tissue from patients with other cancers (n = 7). Significant differences were found between PCa bone metastases, bone metastases of other cancers, and normal bone. Furthermore, we identified metabolites in primary tumor tissue and in plasma which were significantly associated with metastatic disease. Among the metabolites in PCa bone metastases especially cholesterol was noted. In a test set the mean cholesterol level in PCa bone metastases was 127.30 mg/g as compared to 81.06 and 35.85 mg/g in bone metastases of different origin and normal bone, respectively (P = 0.0002 and 0.001). Immunohistochemical staining of PCa bone metastases showed intense staining of the low density lipoprotein receptor and variable levels of the scavenger receptor class B type 1 and 3-hydroxy-3-methylglutaryl-coenzyme reductase in tumor epithelial cells, indicating possibilities for influx and de novo synthesis of cholesterol. Conclusions/Significance We have identified metabolites associated with PCa metastasis and specifically identified high levels of cholesterol in PCa bone metastases. Based on our findings and the previous literature, this makes cholesterol a possible therapeutic target for advanced PCa.
Collapse
Affiliation(s)
- Elin Thysell
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Emma Hörnberg
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Sead Crnalic
- Department of Pathology, Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Anders Widmark
- Department of Urology and Andrology and Orthopedics, and Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Annika I. Johansson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Pär Stattin
- Department of Pathology, Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Henrik Antti
- Department of Chemistry, Umeå University, Umeå, Sweden
- * E-mail: ;
| | - Pernilla Wikström
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- * E-mail: ;
| |
Collapse
|
94
|
Julia Z, Duchene E, Fournier N, Bellanger N, Chapman MJ, Le Goff W, Guerin M. Postprandial lipemia enhances the capacity of large HDL2 particles to mediate free cholesterol efflux via SR-BI and ABCG1 pathways in type IIB hyperlipidemia. J Lipid Res 2010; 51:3350-8. [DOI: 10.1194/jlr.p009746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
95
|
Abstract
Cholesterol efflux from lipid-loaded cells is a key athero-protective event that counteracts cholesterol uptake. The imbalance between cholesterol efflux and uptake determines the prevention or development of atherosclerosis. Many proteins and factors participate in the cholesterol efflux event. However, there are currently no systematic models of reverse cholesterol transport (RCT) that include most RCT-related factors and events. On the basis of recent research findings from other and our laboratories, we propose a novel model of one center and four systems with coupling transportation and networking regulation. This model represents a common way of cholesterol efflux; however, the systems in the model consist of different proteins/factors in different cells. In this review, we evaluate the novel model in vascular smooth muscle cells (VSMCs) and macrophages, which are the most important original cells of foam cells. This novel model consists of 1) a caveolae transport center, 2) an intracellular trafficking system of the caveolin-1 complex, 3) a transmembrane transport system of the ABC-A1 complex, 4) a transmembrane transport system of the SR-B1 complex, and 5) an extracelluar trafficking system of HDL/Apo-A1. In brief, the caveolin-1 system transports cholesterol from intracellular compartments to caveolae. Subsequently, both ABC-A1 and SR-B1 complex systems transfer cholesterol from caveolae to extracellular HDL/Apo-A1. The four systems are linked by a regulatory network. This model provides a simple and concise way to understand the dynamic process of atherosclerosis.
Collapse
|
96
|
Twiddy AL, Leon CG, Wasan KM. Cholesterol as a Potential Target for Castration-Resistant Prostate Cancer. Pharm Res 2010; 28:423-37. [DOI: 10.1007/s11095-010-0210-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/28/2010] [Indexed: 01/15/2023]
|
97
|
Abstract
Plasma lipoproteins (VLDL, LDL, Lp[a] and HDL) function primarily in lipid transport among tissues and organs. However, cumulative evidence suggests that lipoproteins may also prevent bacterial, viral and parasitic infections and are therefore a component of innate immunity. Lipoproteins can also detoxify lipopolysaccharide and lipoteichoic acid. Infections can induce oxidation of LDL, and oxLDL in turn plays important anti-infective roles and protects against endotoxin-induced tissue damage. There is also evidence that apo(a) is protective against pathogens. Taken together, the evidence suggests that it might be valuable to introduce the concept that plasma lipoproteins belong in the realm of host immune response.
Collapse
Affiliation(s)
- Runlin Han
- Research Center of Plasma Lipoprotein Immunology, College of Animal Medicine, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Huhhot, 010018, China.
| |
Collapse
|
98
|
Abstract
Plasma lipoproteins (VLDL, LDL, Lp[a] and HDL) function primarily in lipid transport among tissues and organs. However, cumulative evidence suggests that lipoproteins may also prevent bacterial, viral and parasitic infections and are therefore a component of innate immunity. Lipoproteins can also detoxify lipopolysaccharide and lipoteichoic acid. Infections can induce oxidation of LDL, and oxLDL in turn plays important anti-infective roles and protects against endotoxin-induced tissue damage. There is also evidence that apo(a) is protective against pathogens. Taken together, the evidence suggests that it might be valuable to introduce the concept that plasma lipoproteins belong in the realm of host immune response.
Collapse
Affiliation(s)
- Runlin Han
- Research Center of Plasma Lipoprotein Immunology, College of Animal Medicine, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Huhhot, 010018, China.
| |
Collapse
|
99
|
Abstract
Over the past decade, Human enterovirus (HEV)71 has emerged as a highly significant cause of viral encephalitis in the south-east Asian region. A pattern of increased epidemic activity has been observable since 1997, the cause of which is unclear. Ongoing investigations into the molecular basis of HEV71 infection and virulence, in particular viral translation and replication, have confirmed similarities between HEV71 and other enteroviruses, including the prototype species Poliovirus, but more work is required in this field. Although several putative receptors for HEV71 have been identified, it remains likely that other, as yet unidentified, receptors exist. Work in several established animal models for HEV71 infection has confirmed the protective efficacy of several inactivated vaccines. As more information emerges regarding the molecular processes involved in HEV71 infection, further advances may lead to the development of more effective antiviral treatments and, ultimately, a vaccine protection strategy.
Collapse
Affiliation(s)
- Emily J Bek
- Infectious Diseases & Immunology, Sydney Medical School, Blackburn Building D06, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
100
|
Rodríguez IR, Larrayoz IM. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J Lipid Res 2010; 51:2847-62. [PMID: 20567027 DOI: 10.1194/jlr.r004820] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review will discuss the formation and potential implications of 7-ketocholesterol (7KCh) in the retina. 7KCh is a proinflammatory oxysterol known to be present in high amounts in oxidized LDL deposits associated with atheromatous plaques. 7KCh is generated in situ in these lipoprotein deposits where it can accumulate and reach very high concentrations. In normal primate retina, 7KCh has been found associated with lipoprotein deposits in the choriocapillaris, Bruch's membrane, and the retinal pigment epithelium (RPE). In photodamaged rats, 7KCh has been found in the neural retina in areas of high mitochondrial content, ganglion cells, photoreceptor inner segments and synapses, and the RPE. Intermediates found by LCMS indicate 7KCh is formed via a free radical-mediated mechanism catalyzed by iron. 7KCh seems to activate several kinase signaling pathways that work via nuclear factor κB and cause the induction of vascular endothelial growth factor, interleukin (IL)-6, and IL-8. There seems to be little evidence of 7KCh metabolism in the retina, although some form of efflux mechanism may be active. The chronic mode of formation and the potent inflammatory properties of 7KCh indicate it may be an "age-related" risk factor in aging diseases such as atherosclerosis, Alzheimer's, and age-related macular degeneration.
Collapse
Affiliation(s)
- Ignacio R Rodríguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|