51
|
Dong W, Zhang Y, Yi C, Chang JJ, Ye S, Nie Z. Halogen Bonding-Driven Reversible Self-Assembly of Plasmonic Colloidal Molecules. ACS NANO 2023; 17:3047-3054. [PMID: 36603151 DOI: 10.1021/acsnano.2c11833] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colloidal molecules (CMs) assembled from plasmonic nanoparticles are an emerging class of building blocks for creating plasmonic materials and devices, but precise yet reversible assembly of plasmonic CMs remains a challenge. This communication describes the reversible self-assembly of binary plasmonic nanoparticles capped with complementary copolymer ligands into different CMs via halogen bonding interactions at high yield. The coordination number of the CMs is governed by the number ratio of complementary halogen donor and acceptor groups on the interacting nanoparticles. The reversibility of the halogen bonds allows for controlling the repeated formation and disassociation of the plasmonic CMs and hence their optical properties. Furthermore, the CMs can be designed to further self-assemble into complex structures in selective solvents. The precisely engineered reversible nanostructures may find applications in sensing, catalysis, and smart optoelectronic devices.
Collapse
Affiliation(s)
- Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Julia J Chang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
52
|
Wang T, Xiao P, Ye L, Zhu P, Zhuang L. Coupling Au-loaded magnetic frameworks to photonic crystal for the improvement of photothermal heating effect in SERS. RSC Adv 2023; 13:5002-5012. [PMID: 36762088 PMCID: PMC9907568 DOI: 10.1039/d2ra07262a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
The combination of plasmonic metals and photonic crystal (PC) structure is considered to have potential for further enhancement of the surface-enhanced Raman scattering (SERS) effect in comparison with conventional metal SERS substrates. Many studies have suggested that SERS signals probably suffer from an often-neglected effect of strong surface plasmon resonance (SPR)-induced photothermal heating during SERS detection. Herein, we have discovered that the photothermal heating problem arises in a traditional hybrid substrate that is prepared by doping plasmonic Au nanoparticles (NPs) into the voids of an opal PC (Au-PC). This happens mainly because excess Au agglomerates formed by non-uniformly distributed Au NPs can cause a strong SPR effect under laser illumination. To fully address this issue, we have employed an improved hybrid substrate that is fabricated by substituting Au NPs in Au-PC with an Au-loaded magnetic framework (AuMF). The AuMF can effectively prevent the aggregation of Au NPs and ensure sufficient hot spots for SERS. This novel substrate prepared by doping AuMFs into a PC (AuMF-PC) was free of strong photothermal heating and showed high SERS intensity and reproducibility of the SERS signal compared with Au-PC. For practical applications, we have demonstrated AuMF-PC as an appropriate candidate for the SERS assay of the trace thiol pesticide thiram, and it enables recycling and reuse to achieve low cost.
Collapse
Affiliation(s)
- Tianxing Wang
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Panpan Xiao
- School of Electronics and Information Technology, Sun Yat-sen UniversityGuangzhou 510006China
| | - Li Ye
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Pengcheng Zhu
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| | - Lin Zhuang
- School of Physics, Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
53
|
Liu M, Fu J, Yang S, Wang Y, Jin L, Nah SH, Gao Y, Ning Y, Murray CB, Yang S. Janus Microdroplets with Tunable Self-Recoverable and Switchable Reflective Structural Colors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207985. [PMID: 36341517 DOI: 10.1002/adma.202207985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Microdroplets made from chiral liquid crystals (CLCs) can display reflective structural colors. However, the small area of reflection and their isotropic shape limit their performance. Here, Janus microdroplets are synthesized through phase separation between CLCs and silicone oil. The as-synthesized Janus microdroplets show primary structural colors with ≈14 times larger area compared to their spherical counterparts at a specific orientation; the orientation and thus the colored/transparent states can be switched by applying a magnetic field. The color of the Janus microdroplets can be tuned ranging from red to violet by varying the concentration of the chiral dopant in the CLC phase. Due to the density difference between the two phases, the Janus microdroplets prefer to orientate the silicone oil side up vertically, enabling the self-recoverable structural color after distortion. The Janus microdroplets can be dispersed in aqueous media to track the configuration and speed of magnetic objects. They can also be patterned as multiplexed labels for data encryption. The magnetic field-responsive Janus CLC microdroplets presented here offer new insights to generate and switch reflective colors with high color saturation. It also paves the way for broader applications of CLCs, including anti-counterfeiting, data encryption, display, and untethered speed sensors.
Collapse
Affiliation(s)
- Mingzhu Liu
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Jiemin Fu
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - So Hee Nah
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Yuchong Gao
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Yifan Ning
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
54
|
Wei X, Shang Y, Zhu Y, Gu Z, Zhang D. Encoding microcarriers for biomedicine. SMART MEDICINE 2023; 2:e20220009. [PMID: 39188559 PMCID: PMC11235794 DOI: 10.1002/smmd.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 08/28/2024]
Abstract
High throughput biological analysis has become an important topic in modern biomedical research and clinical diagnosis. The flow encoding scheme based on the encoding microcarriers provides a feasible strategy for the multiplexed biological analysis. Different encoding characteristics invest the microcarriers with different encoding mechanisms. Biosensor analysis, drug screening, cell culture, and the construction and evaluation of bionic organ chips can be realized by decoding the microcarriers and quantifying the detection signal intensity. In this review, the encoding strategy of microcarriers was divided into the optical and non-optical encoding approaches according to their encoding elements, and the research progress of the microcarrier encoding strategy was elaborated. Finally, we summarized the biomedical applications and predicted their future prospects.
Collapse
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yixuan Shang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yefei Zhu
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhuxiao Gu
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dagan Zhang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
55
|
Wang S, Wang H, Cheng Y. Numerical simulation of mixing-induced dynamic interfacial tension inside droplet by lattice Boltzmann method. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
56
|
Ren J, Wu Y, Han Y, Zhang S, Wu S. Noniridescent and Robust Structural-Colored Coating for Automotives Based on the Mie Scattering of ZnO Spheres. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jie Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Yue Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Yaqun Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
57
|
Yang H, Li J, Rao Y, Yang L, Xue Y, Zhang Y, Yang Z, Li J. Ultrasensitive multiplex SERS immunoassay based on porous Au-Ag alloy nanoparticle-amplified Raman signal probe and encoded photonic crystal beads. Mikrochim Acta 2022; 190:13. [PMID: 36478275 DOI: 10.1007/s00604-022-05539-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
An ultrasensitive multiplex surface-enhanced Raman scattering (SERS) immunoassay was developed using porous Au-Ag alloy nanoparticles (p-AuAg NPs) as Raman signal amplification probe coupling with encoded photonic crystal microsphere. p-AuAg NPs were synthesized and modified with the second antibody (Ab2) and Raman tag (mercaptobenzoic acid, MBA) to prepare a Raman signal-amplified probe. The high porosity of the p-AuAg NPs enables significant coupling of the localized surface plasmon resonance and thus abundant inherent hotspots for Raman signal enhancement. 3D-ordered silver nanoparticles-coated silica photonic crystal beads (Ag/SPCBs) were prepared as encoded SERS substrate for multiplex detection using their reflection peaks. The signal-amplified probe was used for multiplex detection of tumor markers carcinoembryonic antigen (CEA) and alpha fetoprotein (AFP). The wide linear ranges of 10-7-103 ng/mL for CEA and 10-4-103 ng/mL for AFP with detection limits of 1.22 × 10-8 ng/mL and 2.47 × 10-5 ng/mL for CEA and AFP at a signal-to-noise ratio of 3 were obtained. The proposed multiplex SERS immunoassay method displays ultrahigh sensitivity, wide linear range, and excellent specificity, which can be successfully applied to measure clinical serum samples with satisfactory results. The research provides a novel SERS signal enhancement strategy for the multiplex bioassay.
Collapse
Affiliation(s)
- Huizhen Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Jiayin Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yan Rao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Linan Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yadong Xue
- Jinhua Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| | - Juan Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| |
Collapse
|
58
|
Wenderoth S, Bleyer G, Endres J, Prieschl J, Vogel N, Wintzheimer S, Mandel K. Spray-Dried Photonic Balls with a Disordered/Ordered Hybrid Structure for Shear-Stress Indication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203068. [PMID: 36253136 DOI: 10.1002/smll.202203068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Optical microscale shear-stress indicator particles are of interest for the in situ recording of localized forces, e.g., during 3D printing or smart skins in robotic applications. Recently developed particle systems are based on optical responses enabled by integrated organic dyes. They thus suffer from potential chemical instability and cross-sensitivities toward humidity or temperature. These drawbacks can be circumvented using photonic balls as shear-stress indicator particles, which employ structural color as the element to record forces. Here, such photonic balls are prepared from silica and iron oxide nanoparticles via the scalable and fast spray-drying technique. Process parameters to create photonic balls with a disordered core and an ordered particle structure toward the exterior of the supraparticles are reported. This hybrid disordered-ordered structure is responsible for a color loss of the indicator particles during shear-stress application because of irreversible structural destruction. By adjusting the primary silica particle sizes, nearly all colors of the visible spectrum can be achieved and the sensitivity of the response to shear stress can be adjusted.
Collapse
Affiliation(s)
- Sarah Wenderoth
- Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University Würzburg, Röntgenring 11, D97070, Würzburg, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D97082, Würzburg, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, D91058, Erlangen, Germany
| | - Jakob Endres
- Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University Würzburg, Röntgenring 11, D97070, Würzburg, Germany
| | - Johannes Prieschl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, D91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D97082, Würzburg, Germany
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| | - Karl Mandel
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D97082, Würzburg, Germany
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| |
Collapse
|
59
|
Wang J, Wen L, Cao R, Gao X, Li X, Xu E, Zhang Q, Xu S, Dai C, Xue Q. Metal sulfide nanoparticle-based dual barcode-triggered DNAzyme cascade for multiplex miRNA detection in a single assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4523-4530. [PMID: 36318214 DOI: 10.1039/d2ay01367c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single miRNAs are not specific and accurate enough to meet the strict diagnosis requirements in practice. Therefore, simultaneous monitoring of multiplexed miRNA in biological samples can not only improve the accuracy and specificity of bioassays but also avoid the squandering of valuable biological specimens. Herein, we designed a metal sulfide nanoparticle-based dual barcode-triggered DNAzyme cascade strategy for the sensitive and simultaneous multiplex miRNA detection in a single assay. Firstly, the capture probes (H1, H2) specifically recognize targets (miRNA-21, miRNA-141), exposing the stem of H1 and H2. Then, with the introduction of a detection probe (CuS-H3, ZnS-H4), the exposed H1 and H2 catalyze the hairpin assembly (CHA) reaction, realizing target miRNA recycling, and forming H1/H3-CuS and H2/H4-ZnS complexes. Subsequently, the formed H1/H3-CuS and H2/H4-ZnS complexes are encoded on magnetic beads through the biotin/streptavidin interaction. The CuS and ZnS nanoparticles captured by magnetic beads release thousands of Cu2+ and Zn2+via the cation exchange reaction. Finally, the released Cu2+ and Zn2+ specially activate the DNAzyme of the catalytic and molecular beacon (CAMB) system. The CAMB system affords an amplified fluorescence signal output by cycling and regenerating the metal ion-dependent DNAzyme to realize multiple enzymatic turnovers. Benefiting from target recycling, nanoparticle amplification, and catalytic and molecular beacon amplification, there is substantial amplification and the target miRNAs can be detected at 0.06 fM (miRNA-21) and 0.048 fM (miRNA-141) in a single assay. Furthermore, the high selectivity and accuracy of the assay were proved by practical analysis of different cancer cells, which exhibited good practicability in multiplex miRNA detection in clinical sera. The results indicate that the proposed strategy holds great potential for the sensitive detection of multiplex cancer biomarkers and offers the opportunity for future applications in clinical diagnosis.
Collapse
Affiliation(s)
- Jiao Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Liyuan Wen
- Earthquake Monitoring Center Station of Liaocheng, Earthquake Administration of Shandong Province, China
| | - Ruyuan Cao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xiaorong Gao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Xia Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Ensheng Xu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Shuling Xu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Caifeng Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan 250012, Shandong, P. R. China.
| | - Qingwang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
60
|
Li N, Chen Z, Wang Y, Chen Y, Yang S, Hu J, Wei J. Ultraviolet-magnetic response multicolored janus colloidal photonic crystal beads for information coding. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
61
|
Wang D, Hermes M, Najmr S, Tasios N, Grau-Carbonell A, Liu Y, Bals S, Dijkstra M, Murray CB, van Blaaderen A. Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement. Nat Commun 2022; 13:6001. [PMID: 36224188 PMCID: PMC9556815 DOI: 10.1038/s41467-022-33616-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Nanoplatelets offer many possibilities to construct advanced materials due to new properties associated with their (semi)two-dimensional shapes. However, precise control of both positional and orientational order of the nanoplatelets in three dimensions, which is required to achieve emerging and collective properties, is challenging to realize. Here, we combine experiments, advanced electron tomography and computer simulations to explore the structure of supraparticles self-assembled from nanoplatelets in slowly drying emulsion droplets. We demonstrate that the rich phase behaviour of nanoplatelets, and its sensitivity to subtle changes in shape and interaction potential can be used to guide the self-assembly into a wide range of different structures, offering precise control over both orientation and position order of the nanoplatelets. Our research is expected to shed light on the design of hierarchically structured metamaterials with distinct shape- and orientation- dependent properties.
Collapse
Affiliation(s)
- Da Wang
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Michiel Hermes
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Stan Najmr
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nikos Tasios
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Albert Grau-Carbonell
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Yang Liu
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
- Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands
- Monash Centre for Electron Microscopy, Monash University, Clayton, VIC, 3800, Australia
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands.
| |
Collapse
|
62
|
Lan R, Bao J, Huang R, Wang Z, Zhang L, Shen C, Wang Q, Yang H. Amplifying Molecular Scale Rotary Motion: The Marriage of Overcrowded Alkene Molecular Motor with Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109800. [PMID: 35732437 DOI: 10.1002/adma.202109800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Design and fabrication of macroscopic functional devices by molecular engineering is an emerging and effective strategy in exploration of advanced materials. Photoresponsive overcrowded alkene-based molecular motor (OAMM) is considered as one of the most promising molecular machines due to the unique rotary motion driven by light with high temporal and spatial precision. Amplifying the molecular rotary motions into macroscopic behaviors of photodirected systems links the molecular dynamics with macroscopic motions of materials, providing new opportunities to design novel materials and devices with a bottom-up strategy. In this review, recent developments of the light-responsive liquid crystal system triggered by OAMM will be summarized. The mechanism of amplification effect of liquid crystal matrix will be introduced first. Then progress of the OAMM-driven liquid crystal materials will be described including light-controlled photonic crystals, texture-tunable liquid crystal coating and microspheres, photoactuated soft robots, and dynamic optical devices. It is hoped that this review provides inspirations in design and exploration of light-driven soft matters and novel functional materials from molecular engineering to structural modification.
Collapse
Affiliation(s)
- Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chen Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qian Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
63
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
64
|
Kim YG, Park S, Kim SH. Designing photonic microparticles with droplet microfluidics. Chem Commun (Camb) 2022; 58:10303-10328. [PMID: 36043863 DOI: 10.1039/d2cc03629k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photonic materials with a periodic change of refractive index show unique optical properties through wavelength-selective diffraction and modulation of the optical density of state, which is promising for various optical applications. In particular, photonic structures have been produced in the format of microparticles using emulsion templates to achieve advanced properties and applications beyond those of a conventional film format. Photonic microparticles can be used as a building block to construct macroscopic photonic materials, and the individual microparticles can serve as miniaturized photonic devices. Droplet microfluidics enables the production of emulsion drops with a controlled size, composition, and configuration that serve as the optimal confining geometry for designing photonic microparticles. This feature article reviews the recent progress and current state of the art in the field of photonic microparticles, covering all aspects of microfluidic production methods, microparticle geometries, optical properties, and applications. Two distinct bottom-up approaches based on colloidal assembly and liquid crystals are, respectively, discussed and compared.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sihun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
65
|
Guo Q, Xue R, Zhao J, Zhang Y, van de Kerkhof GT, Zhang K, Li Y, Vignolini S, Song D. Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Eco‐Friendly Photonic Pigments via Interfacial Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202206723. [DOI: 10.1002/anie.202206723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Qilin Guo
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Runze Xue
- Institute of Coastal Environmental Pollution Control Key Laboratory of Marine Environment and Ecology Ministry of Education Ocean University of China Qingdao 266100 China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control Key Laboratory of Marine Environment and Ecology Ministry of Education Ocean University of China Qingdao 266100 China
- Laboratory for Marine Ecology and Environmental Science Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Yuxia Zhang
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | | | - Kunyu Zhang
- Advanced Materials Research Center Petrochemical Research Institute PetroChina Company Limited Beijing 102206 China
| | - Yuesheng Li
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| | - Silvia Vignolini
- Department of Chemistry University of Cambridge Cambridge CB2 1EW UK
| | - Dong‐Po Song
- Key Laboratory of Composite and Functional Materials School of Materials Science and Engineering Tianjin University Tianjin 300350 China
| |
Collapse
|
66
|
Chen X, Song DP, Li Y. Precisely Tunable Photonic Pigments via Interfacial Self-Assembly of Bottlebrush Block Copolymer Binary Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Dong-Po Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
67
|
Zou B, Lou S, Wang J, Zhou S, Wang Y. Periodic Surface-Enhanced Raman Scattering-Encoded Magnetic Beads for Reliable Quantitative Surface-Enhanced Raman Scattering-Based Multiplex Bioassay. Anal Chem 2022; 94:11557-11563. [PMID: 35960877 DOI: 10.1021/acs.analchem.2c01793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface-enhanced Raman scattering (SERS)-based immunoassay on encoded beads is highly attractive with the advantages of ultrasensitivity, multiplex and high throughput. However, it was a great challenge to screen out in-focus signals of the immunoconjugated SERS nanoprobes on spherical bead conveniently. Here, periodic SERS-encoded magnetic beads (PSE-MBs) were developed through droplet optofluidic technique by using monodisperse SERS-encoded magnetic nanospheres as building blocks. The designed PSE-MBs not only exhibit huge coding capacity, but also provide the strongest and reproducible SERS coding signals as "in-focus beacons". When PSE-MBs are used as capture carriers in SERS-based immunoassay, both multiple target analytes and in-focus signals of SERS nanoprobes could be easily identified according to the collected SERS coding signals. Thus, reliable quantitative analysis of multiple target analytes could be conveniently achieved by such detection protocol. Additionally, the magnetic ingredient in PSE-MBs made the operation easily during the bioassay. The multiple advantages of PSE-MBs including large coding capacity, in-focus beacons and magnetic operation endorse them to be robust capture carriers in reliable quantitative SERS-based multiplex immunoassay.
Collapse
Affiliation(s)
- Bingfang Zou
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China.,School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Shiyun Lou
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Jizhou Wang
- Department of Clinical Laboratory, Translational Medicine Centre, Huaihe Hospital Affiliated to Henan University, Kaifeng 475004, P. R. China
| | - Shaomin Zhou
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
68
|
Li C, Yu Y, Li H, Tian J, Guo W, Shen Y, Cui H, Pan Y, Song Y, Shum HC. One-Pot Self-Assembly of Dual-Color Domes Using Mono-Sized Silica Nanoparticles. NANO LETTERS 2022; 22:5236-5243. [PMID: 35731830 DOI: 10.1021/acs.nanolett.2c01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spots with dual structural colors on the skin of some organisms in nature are of tremendous interest due to the unique function of their dye-free colors. However, imitation of them requires complicated manufacturing processes, expensive equipment, and multiple predesigned building blocks. In this work, a one-pot strategy based on the phase-separation-assisted nonuniform self-assembly of monosized silica nanoparticles is developed to construct domes with dual structural colors. In drying poly(ethylene glycol)-dextran-based (PEG-DEX) droplets, monosized nanoparticles distribute nonuniformly in two compartments due to the droplet inner flow and different nanoparticle compatibility with the two phases. The dome colors are derived from the self-assembled nanoparticles and are programmable by regulating the assembly conditions. The one-pot strategy enables the preparation of multicolor using only one type of building block. With the dual-color domes, encrypted patterns with a high volume of contents are designed, showing promising applications in information delivery.
Collapse
Affiliation(s)
- Chang Li
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yafeng Yu
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yanting Shen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Huanqing Cui
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yi Pan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| |
Collapse
|
69
|
Chen F, Huang Y, Li R, Zhang S, Jiang Q, Luo Y, Wang B, Zhang W, Wu X, Wang F, Lyu P, Zhao S, Xu W, Wei F, Zhang R. Superdurable and fire-retardant structural coloration of carbon nanotubes. SCIENCE ADVANCES 2022; 8:eabn5882. [PMID: 35767610 PMCID: PMC9242455 DOI: 10.1126/sciadv.abn5882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/11/2022] [Indexed: 05/22/2023]
Abstract
Carbon nanotubes (CNTs) are promising candidates for numerous cutting-edge fields because of their excellent properties. However, the inherent black color of CNTs cannot satisfy the aesthetic/fashion requirement, and the flammability of CNTs severely restricts their application in high-temperature environments with oxygen. Here, we realized a structural coloration of CNTs by coating them with amorphous TiO2 layers. By tuning the TiO2 coating thickness, both CNT fibers and membranes exhibited controllable and brilliant colors, which exhibited remarkable superdurability that could endure 2000 cycles of laundering tests and more than 10 months of high-intensity ultraviolet irradiation. The TiO2-coated CNTs exhibited a notable fire-retardant performance and could endure 8 hours of fire burning. The structural coloration of CNTs with excellent fire retardance substantially improves their performance and broadens their applications.
Collapse
Affiliation(s)
- Fengxiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Ya Huang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Run Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shiliang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Qinyuan Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuxin Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Baoshun Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenshuo Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xueke Wu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Pei Lyu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Siming Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Rufan Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Corresponding author.
| |
Collapse
|
70
|
Precise Tailoring of Polyester Bottlebrush Amphiphiles toward Eco‐Friendly Photonic Pigments via Interfacial Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
71
|
Chen H, Bian F, Guo J, Zhao Y. Aptamer-Functionalized Barcodes in Herringbone Microfluidics for Multiple Detection of Exosomes. SMALL METHODS 2022; 6:e2200236. [PMID: 35466594 DOI: 10.1002/smtd.202200236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Indexed: 05/04/2023]
Abstract
Tumor-derived exosomes are vital for clinical dynamic and accurate tumor diagnosis, thus developing sensitive and multiple exosomes detection technology has attracted remarkable attention of scientists. Here, a novel herringbone microfluidic device with aptamer-functionalized barcodes integration for specific capture and multiple detection of tumor-derived exosomes is presented. The barcodes with core-shell constructions are obtained by partially replicating the periodically ordered hexagonal close-packaged colloidal crystal beads. As their inverse opal hydrogel shell possesses rich interconnected pores, the barcodes could provide abundant surface area for functionalization of DNA aptamers to realize specific recognition of target exosomes. Besides, the encoded structure colors of the barcodes can be maintained stably during the detection events as their hardish cores are with sufficient mechanical strength. It is demonstrated that by embedding these barcodes in herringbone groove microfluidic device with designed patterns, the specific capture efficiency and synergetic detection of multiple tumor-derived exosomes in peripheral blood can be significantly improved due to enhanced resistance of turbulent flow. These features make the aptamer-functionalized barcodes and herringbone microfluidics integrated platform promising for exosomes extraction and dynamic tumor diagnosis.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Feika Bian
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jiahui Guo
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
72
|
Sandu I, Fleaca CT, Dumitrache F, Sava BA, Urzica I, Antohe I, Brajnicov S, Dumitru M. Shaping in the Third Direction; Fabrication of Hemispherical Micro-Concavity Array by Using Large Size Polystyrene Spheres as Template for Direct Self-Assembly of Small Size Silica Spheres. Polymers (Basel) 2022; 14:polym14112158. [PMID: 35683831 PMCID: PMC9183027 DOI: 10.3390/polym14112158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Silica and polystyrene spheres with a small size ratio (r = 0.005) form by sequential hanging drop self-assembly, a binary colloidal crystal through which calcination transforms in a silica-ordered concavity array. These arrays are capable of light Bragg diffraction and shape dependent optical phenomena, and they can be transformed into inverse-opal structures. Hierarchical 2D and 3D super-structures with ordered concavities as structural units were fabricated in this study.
Collapse
Affiliation(s)
- Ion Sandu
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Claudiu Teodor Fleaca
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Florian Dumitrache
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Bogdan Alexandru Sava
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 313 Splaiul Independenţei Street, Sector 6, 060042 Bucharest, Romania
- Correspondence: (B.A.S.); (M.D.); Tel.: +40-728062160 (B.A.S.)
| | - Iuliana Urzica
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Iulia Antohe
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Simona Brajnicov
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
| | - Marius Dumitru
- National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, 077125 Bucharest, Romania; (I.S.); (C.T.F.); (F.D.); (I.U.); (I.A.); (S.B.)
- Correspondence: (B.A.S.); (M.D.); Tel.: +40-728062160 (B.A.S.)
| |
Collapse
|
73
|
Xiong N, Wang A, Xie T, Hu T, Chen Q, Zhao Q, Li G. Oil-Triggered and Template-Confined Dewetting for Facile and Low-Loss Sample Digitization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20813-20822. [PMID: 35485956 DOI: 10.1021/acsami.2c04728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper proposes a simple and robust method for spontaneously digitizing aqueous samples into a high-density microwell array. The method is based on an oil-triggered template-confined dewetting phenomenon. To realize the dewetting-induced sample digitization, an aqueous sample is first infused into a networked microwell array (NMA) through a pre-degassing-based self-pumping mechanism, and an immiscible oil phase is then applied over the surface of NMA chip to induce the templated dewetting. Due to periodic interfacial tension heterogeneity, such dewetting ruptures the sample at the thinnest parts (i.e., connection channels) and spontaneously splits the sample into droplets in individual microwells. Without requiring any complex pumping or valving systems, this method can discretize a sample into tens of thousands of addressable droplets in a matter of minutes with nearly 98% usage. To demonstrate the utility and universality of this self-digitization method, we exploited it to discretize samples into 40 233 wells for a digital PCR assay, the digital quantification of bacteria, the self-assembly of spherical colloidal photonic crystals, and the spherical crystallization of drugs. We believe this facile technique will provide a substantial benefit to many compartmentalized assays or syntheses where it is necessary to partition samples into a large number of small individual volumes.
Collapse
Affiliation(s)
- Nankun Xiong
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Anyan Wang
- Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tengbao Xie
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Tianbao Hu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Qiang Chen
- Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Qiang Zhao
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| | - Gang Li
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing, Sichuan 400044, China
| |
Collapse
|
74
|
Kim JB, Kim JW, Kim M, Kim SH. Dual-Colored Janus Microspheres with Photonic and Plasmonic Faces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201437. [PMID: 35491521 DOI: 10.1002/smll.202201437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Photonic and plasmonic colors, stemming from nanostructures of dielectric materials and metals, are promising for pigment-free coloration. In particular, nanostructures with structural colors have been employed in stimuli-responsive Janus microparticles to provide active color pixels. Here, the authors report a simple strategy to produce electro-responsive Janus microspheres composed of photonic and plasmonic faces for active color change. The photonic microspheres are first prepared by self-assembly of silica particles in emulsion droplets of photocurable resin. The silica particles form 3D crystalline arrays in the interior and 2D hexagonal arrays on the interface. The emulsion droplets are photocured and the silica particles are selectively removed to make porous photonic microspheres with hexagonal arrays of dimples on the surface. Directional deposition of gold or aluminum on the photonic microsphere develops plasmonic color on the top hemisphere while maintaining photonic color on the bottom hemisphere. Moreover, the metal deposited on one side renders the Janus microspheres electro-responsive. Therefore, the photonic and plasmonic colors are switchable by the orientation control of the Janus microspheres with an external electric field. The photonic and plasmonic colors are independently adjustable by employing two different sizes of silica particles in core-shell emulsion drops.
Collapse
Affiliation(s)
- Jong Bin Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Ji-Won Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Minjung Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
75
|
Wang S, Shao R, Li W, Li X, Sun J, Jiao S, Dai S, Dou M, Xu R, Li Q, Li J. Three-Dimensional Ordered Macroporous Magnetic Inverse Photonic Crystal Microsphere-Based Molecularly Imprinted Polymer for Selective Capture of Aflatoxin B 1. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18845-18853. [PMID: 35412789 DOI: 10.1021/acsami.2c01014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of an efficient detection method to monitor residual mycotoxins in food is very important to ensure food safety, but the complex food matrix seriously affects the detection sensitivity and accuracy. Here, using a three-dimensional ordered macroporous magnetic inverse photonic crystal microsphere (MPCM) as the supporting material, a molecularly imprinted polymer (MIP) that can selectively recognize aflatoxin B1 (AFB1) was synthesized through the dummy template imprinting strategy. The MPCM@MIP prepared by employing 5,7-dimethoxycoumarin as the template and methacrylic acid as the functional monomer displayed selectivity toward AFB1 (imprinting factor of 1.5) and could be used as a solid-phase extraction material. By coupling with high-performance liquid chromatography, an analytical method targeting AFB1 was established and displayed a wide linear range of 5-1000 ng/mL with a low detection limit of 0.4 ng/mL. The method showed a good recovery rate of 73-92% in AFB1-spiked soy sauce and vinegar samples. Moreover, the MPCM@MIP could be separated from the sample solution easily because of its magnetic performance, displaying a promising future not only in the enrichment of AFB1 to improve the detection sensitivity and accuracy but also in the removal of AFB1 from food and environmental samples.
Collapse
Affiliation(s)
- Siwei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Rui Shao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiang Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jialong Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Saisai Jiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruimin Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
76
|
Shen C, Wang Z, Huang R, Bao J, Li Z, Zhang L, Lan R, Yang H. Humidity-Responsive Photonic Crystals with pH and SO 2 Gas Detection Ability Based on Cholesteric Liquid Crystalline Networks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16764-16771. [PMID: 35352930 DOI: 10.1021/acsami.2c03420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dynamic photonic crystals with tunable structural colors have been a hot topic in the research of anticounterfeiting devices, decoration, and detection. In this work, we prepared cholesteric liquid crystalline network (CLCN)-based photonic crystals that present humidity- and SO2 gas-responsive behaviors. The covalently cross-linked CLCN film presents humidity-responsive color changes due to the swelling/deswelling of the matrix under different humidity conditions. When treating the CLCN film with SO2 gas, the carboxylic salt converted to the acid and the film was not able to respond to the humidity change anymore. The mechanism of the SO2 gas-gated humidity responsiveness of the CLCN film was characterized. It was found that the acidic gas caused changes of pH, resulting in the conversion of the salt to acid and alteration of the surface property. The influence of concentration of SO2 gas and pH on humidity responsiveness of the CLCN film was investigated. We hope that this method provides inspirations for the design and fabrication of visualized pH and acidic gas detectors.
Collapse
Affiliation(s)
- Chen Shen
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zizheng Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jinying Bao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhaozhong Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lanying Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, P. R. China
| | - Ruochen Lan
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
77
|
Wang J, Liu Y, Bleyer G, Goerlitzer ESA, Englisch S, Przybilla T, Mbah CF, Engel M, Spiecker E, Imaz I, Maspoch D, Vogel N. Coloration in Supraparticles Assembled from Polyhedral Metal-Organic Framework Particles. Angew Chem Int Ed Engl 2022; 61:e202117455. [PMID: 35129874 PMCID: PMC9307011 DOI: 10.1002/anie.202117455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/15/2022]
Abstract
Supraparticles are spherical colloidal crystals prepared by confined self‐assembly processes. A particularly appealing property of these microscale structures is the structural color arising from interference of light with their building blocks. Here, we assemble supraparticles with high structural order that exhibit coloration from uniform, polyhedral metal–organic framework (MOF) particles. We analyse the structural coloration as a function of the size of these anisotropic building blocks and their internal structure. We attribute the angle‐dependent coloration of the MOF supraparticles to the presence of ordered, onion‐like layers at the outermost regions. Surprisingly, even though different shapes of the MOF particles have different propensities to form these onion layers, all supraparticle dispersions show well‐visible macroscopic coloration, indicating that local ordering is sufficient to generate interference effects.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Yang Liu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC & The Barcelona Institute of Science and Technology, Bellaterra, 08193, Barcelona, Spain
| | - Gudrun Bleyer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Eric S A Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Silvan Englisch
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Thomas Przybilla
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Chrameh Fru Mbah
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC & The Barcelona Institute of Science and Technology, Bellaterra, 08193, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC & The Barcelona Institute of Science and Technology, Bellaterra, 08193, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
78
|
Sun YW, Li ZW, Chen ZQ, Zhu YL, Sun ZY. Colloidal cubic diamond photonic crystals through cooperative self-assembly. SOFT MATTER 2022; 18:2654-2662. [PMID: 35311843 DOI: 10.1039/d1sm01770e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal cubic diamond crystals with low-coordinated and staggered structures could display a wide photonic bandgap at low refractive index contrasts, which makes them extremely valuable for photonic applications. However, self-assembly of cubic diamond crystals using simple colloidal building blocks is still considerably challenging, due to their low packing fraction and mechanical instability. Here we propose a new strategy for constructing colloidal cubic diamond crystals through cooperative self-assembly of surface-anisotropic triblock Janus colloids and isotropic colloidal spheres into superlattices. In self-assembly, cooperativity is achieved by tuning the interaction and particle size ratio of colloidal building blocks. The pyrochlore lattice formed by self-assembly of triblock Janus colloids acts as a soft template to direct the packing of colloidal spheres into cubic diamond lattices. Numerical simulations show that this cooperative self-assembly strategy works well in a large range of particle size ratio of these two species. Moreover, photonic band structure calculations reveal that the resulting cubic diamond lattices exhibit wide and complete photonic bandgaps and the width and frequency of the bandgaps can also be easily adjusted by tuning the particle size ratio. Our work will open up a promising avenue toward photonic bandgap materials by cooperative self-assembly employing surface-anisotropic Janus or patchy colloids as a soft template.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
79
|
Bian F, Sun L, Chen H, Wang Y, Wang L, Shang L, Zhao Y. Bioinspired Perovskite Nanocrystals-Integrated Photonic Crystal Microsphere Arrays for Information Security. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105278. [PMID: 35048564 PMCID: PMC8948562 DOI: 10.1002/advs.202105278] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/19/2023]
Abstract
Information security occupies an important position in the era of big data. Attempts to improve the security performance tend to impart them with more additional encryption strategies. Herein, inspired by the wettability feature of Stenocara beetle elytra and signal model of traffic light, a novel array of perovskite nanocrystals (PNs)-integrated PhC microsphere for information security is presented. The photoluminescent PNs are encapsulated in angle-independent PhC microspheres to impart them with binary optical signals as coding information. Through the multimask superposition approach, PNs-integrated PhC microspheres with different codes are placed into fluorosilane-treated PDMS substrate to form different arrays. These arrays could converge moisture on PhC microspheres in wet environment, which avoids the ions loss of the PNs and effectively prevented mutual contamination. In addition, the fluorescence of the PNs inside PhC microspheres could reversibly quench or recover in response to the environmental moisture. Based on these features, it is demonstrated that the PNs-integrated PhC microsphere arrays could realize various information encryption modes, which indicate their excellent values in information security fields.
Collapse
Affiliation(s)
- Feika Bian
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Lingyu Sun
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Hanxu Chen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Li Wang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospitaland the Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and TechnologyInstitutes of Biomedical Sciences)Fudan UniversityShanghai200433China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Yuanjin Zhao
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
80
|
Mao X, Wang M, Jin S, Rao J, Deng R, Zhu J. Monodispersed polymer particles with tunable surface structures: Droplet
microfluidic‐assisted
fabrication and biomedical applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Mian Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Shaohong Jin
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Jingyi Rao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| |
Collapse
|
81
|
Wang J, Liu Y, Bleyer G, Goerlitzer ESA, Englisch S, Przybilla T, Mbah CF, Engel M, Spiecker E, Imaz I, Maspoch D, Vogel N. Coloration in Supraparticles Assembled from Polyhedral Metal‐Organic Framework Particles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Yang Liu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC & The Barcelona Institute of Science and Technology Bellaterra 08193 Barcelona Spain
| | - Gudrun Bleyer
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Eric S. A. Goerlitzer
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Silvan Englisch
- Institute of Micro- and Nanostructure Research (IMN) Center for Nanoanalysis and Electron Microscopy (CENEM) IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Thomas Przybilla
- Institute of Micro- and Nanostructure Research (IMN) Center for Nanoanalysis and Electron Microscopy (CENEM) IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Chrameh Fru Mbah
- Institute for Multiscale Simulation IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Michael Engel
- Institute for Multiscale Simulation IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) Center for Nanoanalysis and Electron Microscopy (CENEM) IZNF, Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC & The Barcelona Institute of Science and Technology Bellaterra 08193 Barcelona Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC & The Barcelona Institute of Science and Technology Bellaterra 08193 Barcelona Spain
- ICREA Pg. Lluis Companys 23 08010 Barcelona Spain
| | - Nicolas Vogel
- Institute of Particle Technology Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen Germany
| |
Collapse
|
82
|
Advances in droplet microfluidics for SERS and Raman analysis. Biosens Bioelectron 2022; 198:113822. [PMID: 34836710 DOI: 10.1016/j.bios.2021.113822] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022]
Abstract
Raman spectroscopy can realize qualitative and quantitative characterization, and surface-enhanced Raman spectroscopy (SERS) can further enhance its detection sensitivity. In combination with droplet microfluidics, some significant but insurmountable limitations of SERS and Raman spectroscopy can be overcome to some extent, thus improving their detection capability and extending their application. During the past decade, these systems have constantly developed and demonstrated a great potential in more applications, but there is no new review systematically summarizing the droplet microfluidics-based Raman and SERS analysis system since the first related review was published in 2011. Thus, there is a great need for a new review to summarize the advances. In this review, we focus on droplet microfluidics-based Raman and SERS analysis, and summarize two mainstream research directions on this topic up to now. The one is SERS or Raman detection in the moving droplet microreactors, including analysis of molecules, single cells and chemical reaction processes. The other one is SERS active microparticle fabrication via microfluidic droplet templates covering polymer matrix and photonic crystal microparticles. We also comment on the advantages, disadvantage and correlation resolution of droplet microfluidics for SERS or Raman. Finally, we summarize these systems and illustrate our perspectives for future research directions in this field.
Collapse
|
83
|
Ushkov AA, Dellea O, Lebaigue O, Poncelet O, Verrier I, Lefkir Y, Jourlin Y. A versatile technology for colloidal crystal transfer using parylene coatings and hydrosoluble polymers. NANOTECHNOLOGY 2022; 33:185301. [PMID: 35062001 DOI: 10.1088/1361-6528/ac4dc3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
We propose a novel versatile colloidal crystal transfer technique compatible with a wide range of water-insoluble substrates regardless of their size, material, and wettability. There are no inherent limitations on colloidal particles material and size. The method possibilities are demonstrated via the colloidal transfer on quartz, glass substrates with a flat and curved surface, and via the fabrication of 3D colloidal structure with 5 overlaid colloidal monolayers. The process occurs at a room temperature in water and is independent from the illumination conditions, which makes it ideal for experimental manipulations with sensitive functional substrates. We performed the nanosphere photolithography process on a photosensitive substrate with a transferred colloidal monolayer. The metallized hexagonal arrays of nanopores demonstrated a clear resonant plasmonic behavior. We believe that due to its high integration possibilities the proposed transfer technique will find applications in a large-area surface nanotexturing, plasmonics, and will speed up a device fabrication process.
Collapse
Affiliation(s)
- Andrei A Ushkov
- Laboratoire Hubert Curien UMR 5516, F-42023, Université de Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, 18 Rue Du Pr. Benot Lauras, 42000, Saint-Etienne, France
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9 Institutsky Lane, 141700, Dolgoprudnyy, Russia
| | - Olivier Dellea
- CEA-Liten, Grenoble Alpes Univ, 17 rue des Martyrs, 38054, Grenoble, France
| | - Olivier Lebaigue
- CEA-Liten, Grenoble Alpes Univ, 17 rue des Martyrs, 38054, Grenoble, France
| | - Olivier Poncelet
- CEA-Liten, Grenoble Alpes Univ, 17 rue des Martyrs, 38054, Grenoble, France
| | - Isabelle Verrier
- Laboratoire Hubert Curien UMR 5516, F-42023, Université de Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, 18 Rue Du Pr. Benot Lauras, 42000, Saint-Etienne, France
| | - Yaya Lefkir
- Laboratoire Hubert Curien UMR 5516, F-42023, Université de Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, 18 Rue Du Pr. Benot Lauras, 42000, Saint-Etienne, France
| | - Yves Jourlin
- Laboratoire Hubert Curien UMR 5516, F-42023, Université de Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, 18 Rue Du Pr. Benot Lauras, 42000, Saint-Etienne, France
| |
Collapse
|
84
|
Kim JH, Kim JB, Choi YH, Park S, Kim SH. Photonic Microbeads Templated by Oil-in-Oil Emulsion Droplets for High Saturation of Structural Colors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105225. [PMID: 34889511 DOI: 10.1002/smll.202105225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Photonic microbeads containing crystalline colloidal arrays are promising as a key component of structural-color inks for various applications including printings, paintings, and cosmetics. However, structural colors from microbeads usually have low color saturation and the production of the beads requires delicate and time-consuming protocols. Herein, elastic photonic microbeads are designed with enhanced color saturation through facile photocuring of oil-in-oil emulsion droplets. Dispersions of highly-concentrated silica particles in elastomer precursors are microfluidically emulsified into immiscible oil to produce monodisperse droplets. The silica particles spontaneously form crystalline arrays in the entire volume of the droplets due to interparticle repulsion which is unperturbed by the diffusion of the surrounding oil whereas weakened for oil-in-water droplets. The crystalline arrays are permanently stabilized by photopolymerization of the precursor, forming elastic photonic microbeads. The microbeads are transferred into the refractive-index-matched biocompatible oil. The high crystallinity of colloidal arrays increases the reflectivity at stopband and the index matching reduces incoherent scattering at the surface of the microbeads, enhancing color saturation. The colors can be adjusted by mixing two distinctly colored microbeads. Also, low stiffness and high elasticity reduce foreign-body sensation and enhance fluidity, potentially serving as pragmatic structural colorants for photonic inks.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong Bin Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
85
|
Ji DD, Wu MX, Ding SN. Photonic crystal barcodes assembled from dendritic silica nanoparticles for the multiplex immunoassays of ovarian cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:298-305. [PMID: 34985054 DOI: 10.1039/d1ay01658j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combined detection of CA125, CEA and AFP is of great significance in the diagnosis of ovarian cancer. Photonic crystal (PhC) barcodes have apparent advantages in multiplex immunoassays of ovarian cancer markers. In this paper, a novel PhC barcode was assembled from dendritic silica nanoparticles (dSiO2) for multiplex detection of ovarian cancer biomarkers. The interconnected macroporous structure of the dSiO2 PhC beads and the open porous topography of dendritic silica particles could increase the surface area to volume ratio for antibody immobilization. We simultaneously detected multiple ovarian cancer markers in one test tube using the sandwich immunization method by utilizing dSiO2 PhC beads as a barcode and CdTe QDs as a detection signal. The detection limits of the three ovarian cancer markers, AFP, CEA and CA125, were 0.52 ng mL-1, 0.64 ng mL-1 and 0.79 U mL-1, respectively (the signal-to-noise ratio was 3). Compared with the classic silica colloidal crystal bead (SCCB) suspension array, the sensitivity of the dSiO2 PhC bead suspension array was increased. In addition, the results showed that this barcode suspension array had acceptable accuracy and good reproducibility.
Collapse
Affiliation(s)
- Dan-Dan Ji
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Mei-Xia Wu
- Lianshui People's Hospital, Jiangsu 223400, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
86
|
Aldhaleai A, Tsai PA. Evaporation Dynamics of Surfactant-Laden Droplets on a Superhydrophobic Surface: Influence of Surfactant Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:593-601. [PMID: 34967641 DOI: 10.1021/acs.langmuir.1c03097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surfactant-laden sessile droplet evaporation plays a crucial role in a variety of omnipresent natural and technological applications, such as drying, coating, spray, and inkjet printing. Surfactant molecules can adsorb easily on interfaces and, hence, destructively ruin the useful gas-trapping wetting state (i.e., Cassie-Baxter, CB) of a drop on superhydrophobic (SH) surfaces. However, the influence of surfactant adsorption or concentration on evaporation modes has been rarely investigated so far. Here, we investigate the evaporation dynamics of aqueous didodecyldimethylammonium bromide (DDAB) sessile droplet on SH surfaces made of regular hydrophobic micropillars, with various dimensionless surfactant concentrations (CS), primarily using experiments. We find that all drops initially form a CB state with a pinned base radius and evaporate in a mode of constant contact radius (CCR). Water and low-CS (=0.02) drop subsequently evaporate with a constant contact angle (CCA) mode, followed by a CCR mode and, eventually, a mixed-mode. By contrast, high-CS (of 0.25-1) droplets undergo a complex mixed mode, with rapidly increasing base radius, and finally a mixed mode, with slowly decreasing base radius and contact angle. The experimental data reveal that contact-angle-dependent evaporative mass flux, ṁ, collapses onto a nearly universal curve depending on CS. For the low-CS (of 0-0.25) drops, ṁ is lower and consistent with an evaporative cooling model, whereas high-CS (of 0.5-1) droplets are consistent with a pure vapor-diffusive model. We further show that the critical CS delineating these two evaporative models correlates with saturated surfactant adsorption on both liquid-solid and liquid-vapor interfaces.
Collapse
Affiliation(s)
- Ahmed Aldhaleai
- Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Peichun Amy Tsai
- Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
87
|
Li G, Qu X, Hao L, Li Q, Chen S. A microfluidics‐dispensing‐printing strategy for Janus photonic crystal microspheres towards smart patterned displays. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Guo‐Xing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Xiao‐Wei Qu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Lu‐Wei Hao
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Qing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials Nanjing Tech University Nanjing China
| |
Collapse
|
88
|
Liu B, Li L, Liu W, Chen Q, Wu Z. Interpenetrating porous photonic crystal balls for rapid naked eye detection of uranyl ions. Analyst 2022; 147:3585-3592. [DOI: 10.1039/d2an00839d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a label-free interpenetrating porous photonic crystal ball sensor with amidoxime groups and carboxyl groups by two-step activation for rapid detection of UO22+ with the naked eye without an angle dependence.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Letian Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Wenzhao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Qianshan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhaoyang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
89
|
Li D, Liu N, Zeng M, Ji J, Chen X, Yuan J. Customizable nano-sized colloidal tetrahedrons by polymerization-induced particle self-assembly (PIPA). Polym Chem 2022. [DOI: 10.1039/d2py00407k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal molecules (CMs) are colloidal clusters with molecule-like symmetry and architecture, generated from the self-assembly of nanoparticles with attractive patches. However, large-scale preparation of patchy nanoparticles remains challenging. Here, we...
Collapse
|
90
|
Li Z, Wang X, Han L, Zhu C, Xin H, Yin Y. Multicolor Photonic Pigments for Rotation-Asymmetric Mechanochromic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107398. [PMID: 34710254 DOI: 10.1002/adma.202107398] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Photonic crystals are extensively explored to replace inorganic pigments and organic dyes as coloring elements in printing, painting, sensing, and anti-counterfeiting due to their brilliant structural colors, chemical stability, and environmental friendliness. However, most existing photonic-crystal-based pigments can only display monochromatic colors once made, and generating multicolors has to start with designing different building blocks. Here, a novel photonic pigment featuring highly tunable structural colors in the entire visible spectrum, made by the magnetic assembly of monodisperse nanorods into body-centered-tetragonal photonic crystals, is reported. Their prominent magnetic and crystal anisotropy makes it efficient to generate multicolors using one photonic pigment by magnetically controlling the crystal orientation. Further, the combination of angle-dependent diffraction and magnetic orientation control enables the design of rotation-asymmetric photonic films that display distinct patterns and encrypted information in response to rotation. The efficient multicolor generation through precise orientational control makes this novel photonic pigment promising in developing high-performance structural-colored materials and optical devices.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiaojing Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Lili Han
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA, 92697, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Huolin Xin
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA, 92697, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
91
|
Wu W, Liu X, Li W. Progress and challenges in functional nanomaterial‐based suspension array technology for multiplexed biodetection. VIEW 2022. [DOI: 10.1002/viw.20200140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Weijie Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China
| | - Xinyi Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China
| | - Wanwan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai P. R. China
| |
Collapse
|
92
|
Wang Y, Zheng Y, Zhao K, Wu S, Ju B, Zhang S, Niu W. Magnetoresponsive Photonic Micromotors and Wireless Sensing Microdevices Based on Robust Magnetic Photonic Microspheres. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yunpeng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China
| | - Yu Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China
| | - Kai Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China
| |
Collapse
|
93
|
Shaping in the Third Direction; Synthesis of Patterned Colloidal Crystals by Polyester Fabric-Guided Self-Assembly. Polymers (Basel) 2021; 13:polym13234081. [PMID: 34883585 PMCID: PMC8658756 DOI: 10.3390/polym13234081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
A polyester fabric with rectangular openings was used as a sacrificial template for the guiding of a sub-micron sphere (polystyrene (PS) and silica) aqueous colloid self-assembly process during evaporation as a patterned colloidal crystal (PCC). This simple process is also a robust one, being less sensitive to external parameters (ambient pressure, temperature, humidity, vibrations). The most interesting feature of the concave-shape-pattern unit cell (350 μm × 400 μm × 3 μm) of this crystal is the presence of triangular prisms at its border, each prism having a one-dimensional sphere array at its top edge. The high-quality ordered single layer found inside of each unit cell presents the super-prism effect and left-handed behavior. Wider yet elongated deposits with ordered walls and disordered top surfaces were formed under the fabric knots. Rectangular patterning was obtained even for 20 μm PS spheres. Polyester fabrics with other opening geometries and sizes (~300–1000 μm) or with higher fiber elasticity also allowed the formation of similar PCCs, some having curved prismatic walls. A higher colloid concentration (10–20%) induces the formation of thicker walls with fiber-negative replica morphology. Additionally, thick-wall PCCs (~100 μm) with semi-cylindrical morphology were obtained using SiO2 sub-microspheres and a wavy fabric. The colloidal pattern was used as a lithographic mask for natural lithography and as a template for the synthesis of triangular-prism-shaped inverted opals.
Collapse
|
94
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
95
|
Wang J, Kang E, Sultan U, Merle B, Inayat A, Graczykowski B, Fytas G, Vogel N. Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:23445-23456. [PMID: 34737841 PMCID: PMC8558861 DOI: 10.1021/acs.jpcc.1c06839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Indexed: 05/14/2023]
Abstract
Colloidal supraparticles are micron-scale spherical assemblies of uniform primary particles, which exhibit emergent properties of a colloidal crystal, yet exist as a dispersible powder. A prerequisite to utilize these emergent functionalities is that the supraparticles maintain their mechanical integrity upon the mechanical impacts that are likely to occur during processing. Understanding how the internal structure relates to the resultant mechanical properties of a supraparticle is therefore of general interest. Here, we take the example of supraparticles templated from water/fluorinated oil emulsions in droplet-based microfluidics and explore the effect of surfactants on their mechanical properties. Stable emulsions can be generated by nonionic block copolymers consisting of a hydrophilic and fluorophilic block and anionic fluorosurfactants widely available under the brand name Krytox. The supraparticles formed in the presence of both types of surfactants appear structurally similar, but differ greatly in their mechanical properties. While the nonionic surfactant induces superior mechanical stability and ductile fracture behavior, the anionic Krytox surfactant leads to weak supraparticles with brittle fracture. We complement this macroscopic picture with Brillouin light spectroscopy that is very sensitive to the interparticle contacts for subnanometer-thick adsorbed layers atop of the nanoparticle. While the anionic Krytox does not significantly affect the interparticle bonds, the amphiphilic nonionic surfactant drastically strengthens these bonds to the point that individual particle vibrations are not resolved in the experimental spectrum. Our results demonstrate that seemingly subtle changes in the physicochemical properties of supraparticles can drastically impact the resultant mechanical properties.
Collapse
Affiliation(s)
- Junwei Wang
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Eunsoo Kang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Umair Sultan
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials
Science and Engineering I and Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexandra Inayat
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- E-mail:
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- E-mail:
| |
Collapse
|
96
|
Wang J, Schwenger J, Ströbel A, Feldner P, Herre P, Romeis S, Peukert W, Merle B, Vogel N. Mechanics of colloidal supraparticles under compression. SCIENCE ADVANCES 2021; 7:eabj0954. [PMID: 34644116 PMCID: PMC11095630 DOI: 10.1126/sciadv.abj0954] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 05/16/2023]
Abstract
Colloidal supraparticles are finite, spherical assemblies of many primary particles. To take advantage of their emergent functionalities, such supraparticles must retain their structural integrity. Here, we investigate their size-dependent mechanical properties via nanoindentation. We find that the deformation resistance inversely scales with the primary particle diameter, while the work of deformation is dependent on the supraparticle diameter. We adopt the Griffith theory to such particulate systems to provide a predictive scaling to relate the fracture stress to the geometry of supraparticles. The interplay between primary particle material and cohesive interparticle forces dictates the mechanical properties of supraparticles. We find that enhanced stability, associated with ductile fracture, can be achieved if supraparticles are engineered to dissipate more energy via deformation of primary particles than breaking of interparticle bonds. Our work provides a coherent framework to analyze, predict, and design the mechanical properties of colloidal supraparticles.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Schwenger
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Ströbel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Feldner
- Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Herre
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Stefan Romeis
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
97
|
Avci C, De Marco ML, Byun C, Perrin J, Scheel M, Boissière C, Faustini M. Metal-Organic Framework Photonic Balls: Single Object Analysis for Local Thermal Probing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104450. [PMID: 34486183 DOI: 10.1002/adma.202104450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Indexed: 05/24/2023]
Abstract
Due to their high porosity and chemical versatility, metal-organic frameworks (MOFs) exhibit physical properties appealing for photonic-based applications. While several MOF photonic structures have been reported, examples of applications thereof are mainly limited to chemical sensing. Herein, the range of application of photonic MOFs is extended to local thermal and photothermal sensing by integrating them into a new architecture: MOF photonic balls. Micrometric-sized photonic balls are made of monodispersed MOFs colloids that are self-assembled via spray-drying, a low-cost, green, and high-throughput method. The versatility of the process allows tuning the morphology and the composition of photonic balls made of several MOFs and composites with tailored optical properties. X-ray nanotomography and environmental hyperspectral microscopy enable analysis of single objects and their evolution in controlled atmosphere and temperature. Notably, in presence of vapors, the MOF photonic balls act as local, label-free temperature probes. Importantly, compared to other thermal probes, the temperature detection range of these materials can be adjusted "on-demand." As proof of concept, the photonic balls are used to determine local temperature profiles around a concentrated laser beam. More broadly, this work is expected to stimulate new research on the physical properties of photonic MOFs providing new possibilities for device fabrication.
Collapse
Affiliation(s)
- Civan Avci
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| | - Maria Letizia De Marco
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| | - Caroline Byun
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| | | | - Mario Scheel
- Synchrotron Soleil, Gif-sur-Yvette, 91192, France
| | - Cédric Boissière
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| | - Marco Faustini
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université-CNRS, Paris, F-75005, France
| |
Collapse
|
98
|
Zhao K, Wang Y, Zhang S, Niu W. Highly Flexible, Multicolored, and Multifunctional Single-Fiber-Based Microsensors for UV, Temperature, and Infrared Detection. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Road, Dalian 116024, China
| | - Yunpeng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Road, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Road, Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, West Campus, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
99
|
Areias LRP, Mariz I, Maçôas E, Farinha JPS. Reflectance Confocal Microscopy: A Powerful Tool for Large Scale Characterization of Ordered/Disordered Morphology in Colloidal Photonic Structures. ACS NANO 2021; 15:11779-11788. [PMID: 34240840 DOI: 10.1021/acsnano.1c02813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of appropriate methods to correlate the structure and optical properties of colloidal photonic structures is still a challenge. Structural information is mostly obtained by electron, X-ray, or optical microscopy methods and X-ray diffraction, while bulk spectroscopic methods and low resolution bright-field microscopy are used for optical characterization. Here, we describe the use of reflectance confocal microscopy as a simple and intuitive technique to provide a direct correlation between the ordered/disordered structural morphology of colloidal crystals and glasses, and their corresponding optical properties.
Collapse
Affiliation(s)
- Laurinda R P Areias
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Inês Mariz
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Ermelinda Maçôas
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - José Paulo S Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| |
Collapse
|
100
|
Noniridescent structural color from enhanced electromagnetic resonances of particle aggregations and its applications for reconfigurable patterns. J Colloid Interface Sci 2021; 604:178-187. [PMID: 34265678 DOI: 10.1016/j.jcis.2021.06.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS The conventional noniridescent structural colors refer to the coherent scattering of visible light by the short-range ordered structures assembled from the small colloids (100-250 nm). Our hypothesis is that noniridescent structural color can be generated by the random aggregations of large silica particles through the enhanced electromagnetic resonances. EXPERIMENTS The random aggregations of large silica particles (350-475 nm) were prepared through the infiltration of silica particles solution with the porous substrate. The mechanism of the structural color is investigated. Reconfigurable patterns are prepared. FINDINGS Dissimilar to the conventional noniridescent colors, the angle-independent colors of silica aggregations originate from the enhanced electromagnetic resonances due to the random aggregation of the particles. The colors (blue, green, and red) and corresponding reflection peak positions of the particle aggregations can be well controlled by simply altering the size of the silica particles. Compared to the traditional prints with permanent patterns, reconfigurable patterns with large-area and multicolor can be fabricated by the repeatedly selective spray of water on the substrate pre-coated with noniridescent colors. This work provides new insight and greenway for the fabrication of noniridescent structural colors and reconfigurable patterns, and will promote their applications in soft display, green printing, and anti-counterfeiting.
Collapse
|