51
|
Association of microRNAs with Argonaute proteins in the malaria mosquito Anopheles gambiae after blood ingestion. Sci Rep 2017; 7:6493. [PMID: 28747726 PMCID: PMC5529372 DOI: 10.1038/s41598-017-07013-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Drastic changes in gene expression occur after adult female mosquitoes take a blood meal and use the nutrients for egg maturation. A growing body of evidence indicates that microRNAs (miRNAs) contribute to this tightly controlled tissue- and stage-specific gene expression. To investigate the role of miRNAs, we monitored miRNA expression in the mosquito Anopheles gambiae during the 72-h period immediately after blood feeding. We also measured the association of miRNAs with Argonaute 1 (Ago1) and Argonaute 2 (Ago2) to assess the functional status of individual miRNA species. Overall, 173 mature miRNAs were precipitated with Ago1 and Ago2, including 12 new miRNAs, the orthologs of which are found thus far only in other Anopheles species. Ago1 is the predominant carrier of miRNAs in Anopheles gambiae. The abundance and Ago loading of most of the mature miRNAs were relatively stable after blood ingestion. However, miRNAs of the miR-309/286/2944 cluster were considerably upregulated after blood feeding. Injection of the specific antagomir for miR-309 resulted in smaller developing oocytes and ultimately fewer eggs. In addition, the Ago association of some miRNAs was not proportional to their cellular abundance, suggesting that integration of miRNAs into the Ago complexes is regulated by additional mechanisms.
Collapse
|
52
|
Abstract
Long noncoding RNAs (lncRNAs) are emerging as potential key regulators in gene expression networks and exhibit a surprising range of shapes and sizes. Several distinct classes of lncRNAs are transcribed from different DNA elements, including promoters, enhancers, and intergenic regions in eukaryotic genomes. Additionally, others are derived from long primary transcripts with noncanonical RNA processing pathways, generating new RNA species with unexpected formats. These lncRNAs can be processed by several mechanisms, including ribonuclease P (RNase P) cleavage to generate mature 3' ends, capping by small nucleolar RNA (snoRNA)-protein (snoRNP) complexes at their ends, or the formation of circular structures. Here we review current knowledge on lncRNAs and highlight the most recent discoveries of the underlying mechanisms related to their formation.
Collapse
Affiliation(s)
- Huang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China.
| |
Collapse
|
53
|
Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter. mBio 2017; 8:mBio.00713-17. [PMID: 28559488 PMCID: PMC5449659 DOI: 10.1128/mbio.00713-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis-acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single-stranded oligonucleotides targeting the replication fork on either leading or lagging strands, we showed that viral lagging-strand replication activates the promoter. We also identified a transcriptional repressor element located upstream of the promoter transcription start site which interacts with cellular proteins hnRNP D0B and hnRNP A/B and modulates the late promoter activity. This is the first report on how DNA replication activates a viral late promoter.
Collapse
|
54
|
Chen Z, Sun Y, Yang X, Wu Z, Guo K, Niu X, Wang Q, Ruan J, Bu W, Gao S. Two featured series of rRNA-derived RNA fragments (rRFs) constitute a novel class of small RNAs. PLoS One 2017; 12:e0176458. [PMID: 28441451 PMCID: PMC5404876 DOI: 10.1371/journal.pone.0176458] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/11/2017] [Indexed: 11/19/2022] Open
Abstract
In this study, we reported two featured series of rRNA-derived RNA fragments (rRFs) from the small RNA sequencing (sRNA-seq) data of Amblyomma testudinarium using the Illunima platform. Two series of rRFs (rRF5 and rRF3) were precisely aligned to the 5' and 3' ends of the 5.8S and 28S rRNA gene. The rRF5 and rRF3 series were significantly more highly expressed than the rRFs located in the body of the rRNA genes. These series contained perfectly aligned reads, the lengths of which varied progressively with 1-bp differences. The rRF5 and rRF3 series in the same expression pattern exist ubiquitously from ticks to human. The cellular experiments showed the RNAi knockdown of one 20-nt rRF3 induced the cell apoptosis and inhibited the cell proliferation. In addition, the RNAi knockdown resulted in a significant decrease of H1299 cells in the G2 phase of the cell cycle. These results indicated the rRF5 and rRF3 series were not random intermediates or products during rRNA degradation, but could constitute a new class of small RNAs that deserves further investigation.
Collapse
Affiliation(s)
- Ze Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, China
| | - Yu Sun
- College of Life Sciences, Nankai University, Tianjin, Tianjin, China
| | - Xiaojun Yang
- Faculty of Ecotourism, Southwest Forestry University, Kunming, Yunnan, China
| | - Zhenfeng Wu
- School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Kaifei Guo
- Faculty of Ecotourism, Southwest Forestry University, Kunming, Yunnan, China
| | - Xiaoran Niu
- College of Life Sciences, Nankai University, Tianjin, Tianjin, China
| | - Qingsong Wang
- Tianjin Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jishou Ruan
- School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- College of Life Sciences, Nankai University, Tianjin, Tianjin, China
- * E-mail: (SG); (WB)
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, Tianjin, China
- Institute of Statistics, Nankai University, Tianjin, China
- * E-mail: (SG); (WB)
| |
Collapse
|
55
|
Ma X, Han N, Shao C, Meng Y. Transcriptome-Wide Discovery of PASRs (Promoter-Associated Small RNAs) and TASRs (Terminus-Associated Small RNAs) in Arabidopsis thaliana. PLoS One 2017; 12:e0169212. [PMID: 28046132 PMCID: PMC5207706 DOI: 10.1371/journal.pone.0169212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/13/2016] [Indexed: 01/21/2023] Open
Abstract
Hints from animals point to the existence of two novel small RNA (sRNA) species surrounding the transcription start sites (TSSs) and the termini of the genes, respectively. In this study, we performed a comprehensive search for the two sRNA species named promoter-associated sRNAs (PASRs) and terminus-associated sRNAs (TASRs) in Arabidopsis. By using sRNA sequencing data from wild type plants and several mutants related to the sRNA biogenesis, Argonaute (AGO) 1- and AGO4-associated sRNA sequencing data, double-stranded RNA sequencing (dsRNA-seq) data, and DNA methylation profiling data, the biogenesis and action pathways of the PASRs and the TASRs were investigated. PASR and TASR peaks were identified on hundreds of the protein-coding genes. Deep analysis uncovered that some of the sRNA peaks were covered by dsRNA-seq reads, and these peaks were significantly repressed in specific mutants. Besides, certain PASRs and TASRs were preferentially recruited by AGO4, and site-specific DNA methylation signals encompassing the genomic loci of these sRNAs were also detected. Accordingly, we proposed a model that certain PASRs and TASRs were generated through a specific Pol IV-, RDR-, DCL-dependent pathway, and they were associated with AGO4 to perform site-specific DNA methylation on their host genes. The above results indicate the existence of PASRs and TASRs in plants. The proposed biogenesis pathway and action mode of the PASRs and TASRs could facilitate us to perform in-depth functional studies on these novel sRNA species.
Collapse
Affiliation(s)
- Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, PR China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Chaogang Shao
- College of Life Sciences, Huzhou University, Huzhou, PR China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, PR China
- * E-mail:
| |
Collapse
|
56
|
Ustianenko D, Pasulka J, Feketova Z, Bednarik L, Zigackova D, Fortova A, Zavolan M, Vanacova S. TUT-DIS3L2 is a mammalian surveillance pathway for aberrant structured non-coding RNAs. EMBO J 2016; 35:2179-2191. [PMID: 27647875 PMCID: PMC5069555 DOI: 10.15252/embj.201694857] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/19/2016] [Indexed: 11/19/2022] Open
Abstract
Uridylation of various cellular RNA species at the 3′ end has been generally linked to RNA degradation. In mammals, uridylated pre‐let‐7 miRNAs and mRNAs are targeted by the 3′ to 5′ exoribonuclease DIS3L2. Mutations in DIS3L2 have been associated with Perlman syndrome and with Wilms tumor susceptibility. Using in vivo cross‐linking and immunoprecipitation (CLIP) method, we discovered the DIS3L2‐dependent cytoplasmic uridylome of human cells. We found a broad spectrum of uridylated RNAs including rRNAs, snRNAs, snoRNAs, tRNAs, vault, 7SL, Y RNAs, mRNAs, lncRNAs, and transcripts from pseudogenes. The unifying features of most of these identified RNAs are aberrant processing and the presence of stable secondary structures. Most importantly, we demonstrate that uridylation mediates DIS3L2 degradation of short RNA polymerase II‐derived RNAs. Our findings establish the role of DIS3L2 and oligouridylation as the cytoplasmic quality control for highly structured ncRNAs.
Collapse
Affiliation(s)
- Dmytro Ustianenko
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Josef Pasulka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Feketova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lukas Bednarik
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dagmar Zigackova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Andrea Fortova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mihaela Zavolan
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Stepanka Vanacova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
57
|
Stutika C, Mietzsch M, Gogol-Döring A, Weger S, Sohn M, Chen W, Heilbronn R. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation. PLoS One 2016; 11:e0161454. [PMID: 27611072 PMCID: PMC5017669 DOI: 10.1371/journal.pone.0161454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 01/10/2023] Open
Abstract
Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic.
Collapse
Affiliation(s)
- Catrin Stutika
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
| | - Mario Mietzsch
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
| | | | - Stefan Weger
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
| | - Madlen Sohn
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin Institute for Medical Systems Biology, Laboratory for Functional Genomics and Systems Biology, Berlin, Germany
| | - Wei Chen
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin Institute for Medical Systems Biology, Laboratory for Functional Genomics and Systems Biology, Berlin, Germany
| | - Regine Heilbronn
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
- * E-mail:
| |
Collapse
|
58
|
Chen Y, Pai AA, Herudek J, Lubas M, Meola N, Järvelin AI, Andersson R, Pelechano V, Steinmetz LM, Jensen TH, Sandelin A. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters. Nat Genet 2016; 48:984-94. [PMID: 27455346 PMCID: PMC5008441 DOI: 10.1038/ng.3616] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022]
Abstract
Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation sites, promoters often cluster so that the divergent activity of one might impact another. Here we found that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT formation, but owing to polyadenylation site constraints, these transcripts tend to spread into the neighboring mRNA on the same strand. This mechanism to derive new alternative mRNA transcription start sites (TSSs) is also evident at closely spaced promoters supporting convergent mRNA transcription. We suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provide a framework with which evolution shapes transcriptomes.
Collapse
Affiliation(s)
- Yun Chen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Athma A Pai
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jan Herudek
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Michal Lubas
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Nicola Meola
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Aino I Järvelin
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vicent Pelechano
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,Stanford Genome Technology Center, Palo Alto, California, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
59
|
Promoter-Associated RNAs Regulate HSPC152 Gene Expression in Malignant Melanoma. Noncoding RNA 2016; 2:ncrna2030007. [PMID: 29657265 PMCID: PMC5831909 DOI: 10.3390/ncrna2030007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 06/13/2016] [Accepted: 06/19/2016] [Indexed: 01/02/2023] Open
Abstract
The threshold of 200 nucleotides (nt) conventionally divides non-coding RNAs (ncRNA) into long ncRNA (lincRNA, that have more than 200 nt in length) and the remaining ones which are grouped as "small" RNAs (microRNAs, small nucleolar RNAs and piwiRNAs). Promoter-associated RNAs (paRNAs) are generally 200-500 nt long and are transcribed from sequences positioned in the promoter regions of genes. Growing evidence suggests that paRNAs play a crucial role in controlling gene transcription. Here, we used deep sequencing to identify paRNA sequences that show altered expression in a melanoma cell line compared to normal melanocytes. Thousands of reads were mapped to transcription start site (TSS) regions. We limited our search to paRNAs adjacent to genes with an expression that differed between melanoma and normal melanocytes and a length of 200-500 nt that did not overlap the gene mRNA by more than 300 nt, ultimately leaving us with 11 such transcripts. Using quantitative real-time PCR (qRT-PCR), we found a significant correlation between the expression of the mRNA and its corresponding paRNA for two studied genes: TYR and HSPC152. Ectopic overexpression of the paRNA of HSPC152 (designated paHSPC) enhanced the expression of the HSPC152 mRNA, and an siRNA targeting the paHSPC152 decreased the expression of the HSPC152 mRNA. Overexpression of paHSPC also affected the epigenetic structure of its putative promoter region along with effects on several biologic features of melanoma cells. The ectopic expression of the paRNA to TYR did not have any effect. Overall, our work indicates that paRNAs may serve as an additional layer in the regulation of gene expression in melanoma, thus meriting further investigation.
Collapse
|
60
|
Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, Federation A, Chao J, Elliott O, Liu ZP, Economides AN, Bradner JE, Rabadan R, Basu U. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2016; 161:774-89. [PMID: 25957685 DOI: 10.1016/j.cell.2015.04.034] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/11/2015] [Accepted: 04/20/2015] [Indexed: 01/19/2023]
Abstract
We have ablated the cellular RNA degradation machinery in differentiated B cells and pluripotent embryonic stem cells (ESCs) by conditional mutagenesis of core (Exosc3) and nuclear RNase (Exosc10) components of RNA exosome and identified a vast number of long non-coding RNAs (lncRNAs) and enhancer RNAs (eRNAs) with emergent functionality. Unexpectedly, eRNA-expressing regions accumulate R-loop structures upon RNA exosome ablation, thus demonstrating the role of RNA exosome in resolving deleterious DNA/RNA hybrids arising from active enhancers. We have uncovered a distal divergent eRNA-expressing element (lncRNA-CSR) engaged in long-range DNA interactions and regulating IgH 3' regulatory region super-enhancer function. CRISPR-Cas9-mediated ablation of lncRNA-CSR transcription decreases its chromosomal looping-mediated association with the IgH 3' regulatory region super-enhancer and leads to decreased class switch recombination efficiency. We propose that the RNA exosome protects divergently transcribed lncRNA expressing enhancers by resolving deleterious transcription-coupled secondary DNA structures, while also regulating long-range super-enhancer chromosomal interactions important for cellular function.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Regeneron Pharmaceuticals and Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Jiguang Wang
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Junghyun Lim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jianbo Sun
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Jaime Chao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Oliver Elliott
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Aris N Economides
- Regeneron Pharmaceuticals and Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - James E Bradner
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Raul Rabadan
- Department of Biomedical Informatics and Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
61
|
Rougemaille M, Libri D. Control of cryptic transcription in eukaryotes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 702:122-31. [PMID: 21713682 DOI: 10.1007/978-1-4419-7841-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Over the last few years, the development of large-scale technologies has radically modified our conception of genome-wide transcriptional control by unveiling an unexpected high complexity of the eukaryotic transcriptome. In organisms ranging from yeast to human, a considerable number of novel small RNA species have been discovered in regions that were previously thought to be incompatible with high levels of transcription. Intriguingly, these transcripts, which are rapidly targeted for degradation by the exosome, appear to be devoid of any coding potential and may be the consequence of unwanted transcription events. However, the notion that an important fraction of these RNAs represent by-products of regulatory transcription is progressively emerging. In this chapter, we discuss the recent advances made in our understanding of the shape of the eukaryotic transcriptome. We also focus on the molecular mechanisms that cells exploit to prevent cryptic transcripts from interfering with the expression of protein-coding genes. Finally, we summarize data obtained in different systems suggesting that such RNAs may play a critical role in the regulation of gene expression as well as the evolution of genomes.
Collapse
Affiliation(s)
- Mathieu Rougemaille
- LEA Laboratory of Nuclear RNA Metabolism, Centre de Génétique Moléculaire, CNRS-UPR2167, Gif-sur-Yvette, France,
| | | |
Collapse
|
62
|
Meng Y, Yi X, Li X, Hu C, Wang J, Bai L, Czajkowsky DM, Shao Z. The non-coding RNA composition of the mitotic chromosome by 5'-tag sequencing. Nucleic Acids Res 2016; 44:4934-46. [PMID: 27016738 PMCID: PMC4889943 DOI: 10.1093/nar/gkw195] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/15/2016] [Indexed: 12/16/2022] Open
Abstract
Mitotic chromosomes are one of the most commonly recognized sub-cellular structures in eukaryotic cells. Yet basic information necessary to understand their structure and assembly, such as their composition, is still lacking. Recent proteomic studies have begun to fill this void, identifying hundreds of RNA-binding proteins bound to mitotic chromosomes. However, by contrast, there are only two RNA species (U3 snRNA and rRNA) that are known to be associated with the mitotic chromosome, suggesting that there are many mitotic chromosome-associated RNAs (mCARs) not yet identified. Here, using a targeted protocol based on 5'-tag sequencing to profile the mammalian mCAR population, we report the identification of 1279 mCARs, the majority of which are ncRNAs, including lncRNAs that exhibit greater conservation across 60 vertebrate species than the entire population of lncRNAs. There is also a significant enrichment of snoRNAs and specific SINE RNAs. Finally, ∼40% of the mCARs are presently unannotated, many of which are as abundant as the annotated mCARs, suggesting that there are also many novel ncRNAs in the mCARs. Overall, the mCARs identified here, together with the previous proteomic and genomic data, constitute the first comprehensive catalogue of the molecular composition of the eukaryotic mitotic chromosomes.
Collapse
Affiliation(s)
- Yicong Meng
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Xinhui Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuansheng Hu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Ling Bai
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes & Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
63
|
Abstract
Epigenomics has grown exponentially, providing a better understanding of the mechanistic aspects of new and old phenomena originally described through genetics, as well as providing unexpected insights into the way chromatin modulates the genomic information. In this overview, some of the advances are selected for discussion and comment under six topics: (1) histone modifications, (2) weak interactions, (3) interplay with external inputs, (4) the role of RNA molecules, (5) chromatin folding and architecture, and, finally, (6) a view of the essential role of chromatin transactions in regulating the access to genomic DNA.
Collapse
Affiliation(s)
- Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
64
|
Garajová I, Le Large TYS, Giovannetti E, Kazemier G, Biasco G, Peters GJ. The Role of MicroRNAs in Resistance to Current Pancreatic Cancer Treatment: Translational Studies and Basic Protocols for Extraction and PCR Analysis. Methods Mol Biol 2016; 1395:163-187. [PMID: 26910074 DOI: 10.1007/978-1-4939-3347-1_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common cause of cancer death and has the worst prognosis of any major malignancy, with less than 5 % of patients alive 5-years after diagnosis. The therapeutic options for metastatic PDAC have changed in the past few years from single agent gemcitabine treatment to combination regimens. Nowadays, FOLFIRINOX or gemcitabine with nab-paclitaxel are new standard combinations in frontline metastatic setting in PDAC patients with good performance status. MicroRNAs (miRNA) are small, noncoding RNA molecules affecting important cellular processes such as inhibition of apoptosis, cell proliferation, epithelial-to-mesenchymal transition (EMT), metastases, and resistance to common cytotoxic and anti-signaling therapy in PDAC. A functional association between miRNAs and chemoresistance has been described for several common therapies. Therefore, in this review, we summarize the current knowledge on the role of miRNAs in the resistance to current anticancer treatment used for patients affected by metastatic PDAC.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Tessa Y S Le Large
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Geert Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Guido Biasco
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
| |
Collapse
|
65
|
Yang JX, Rastetter RH, Wilhelm D. Non-coding RNAs: An Introduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:13-32. [PMID: 26659485 DOI: 10.1007/978-94-017-7417-8_2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For many years the main role of RNA, it addition to the housekeeping functions of for example tRNAs and rRNAs, was believed to be a messenger between the genes encoded on the DNA and the functional units of the cell, the proteins. This changed drastically with the identification of the first small non-coding RNA, termed microRNA, some 20 years ago. This discovery opened the field of regulatory RNAs with no or little protein-coding potential. Since then many new classes of regulatory non-coding RNAs, including endogenous small interfering RNAs (endo-siRNAs), PIWI-associated RNAs (piRNAs), and long non-coding RNAs, have been identified and we have made amazing progress in elucidating their expression, biogenesis, mechanisms and mode of action, and function in many, if not all, biological processes. In this chapter we provide an introduction about the current knowledge of the main classes of non-coding RNAs, what is know about their biogenesis and mechanism of function.
Collapse
Affiliation(s)
- Jennifer X Yang
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Raphael H Rastetter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Dagmar Wilhelm
- Department of Anatomy and Neuroscience, The University of Melbourne, Medical Building (181) Grattan Street, Parkville, VIC, 3800, Australia.
| |
Collapse
|
66
|
Fu Y, Lee I, Lee YS, Bao X. Small Non-coding Transfer RNA-Derived RNA Fragments (tRFs): Their Biogenesis, Function and Implication in Human Diseases. Genomics Inform 2015; 13:94-101. [PMID: 26865839 PMCID: PMC4742329 DOI: 10.5808/gi.2015.13.4.94] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
tRNA-derived RNA fragments (tRFs) are an emerging class of non-coding RNAs (ncRNAs). A growing number of reports have shown that tRFs are not random degradation products but are functional ncRNAs made of specific tRNA cleavage. They play regulatory roles in several biological contexts such as cancer, innate immunity, stress responses, and neurological disorders. In this review, we summarize the biogenesis and functions of tRFs.
Collapse
Affiliation(s)
- Yu Fu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Yong Sun Lee
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.; The Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA.; The Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
67
|
Lo PK, Wolfson B, Zhou X, Duru N, Gernapudi R, Zhou Q. Noncoding RNAs in breast cancer. Brief Funct Genomics 2015; 15:200-21. [PMID: 26685283 DOI: 10.1093/bfgp/elv055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian transcriptome has recently been revealed to encompass a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. MicroRNAs (miRNAs), the best studied of the short noncoding RNAs (sncRNAs), have been extensively characterized with regard to their biogenesis, function and importance in tumorigenesis. Another class of sncRNAs called piwi-interacting RNAs (piRNAs) has also gained attention recently in cancer research owing to their critical role in stem cell regulation. Long noncoding RNAs (lncRNAs) of >200 nucleotides in length have recently emerged as key regulators of developmental processes, including mammary gland development. lncRNA dysregulation has also been implicated in the development of various cancers, including breast cancer. In this review, we describe and discuss the roles of sncRNAs (including miRNAs and piRNAs) and lncRNAs in the initiation and progression of breast tumorigenesis, with a focus on outlining the molecular mechanisms of oncogenic and tumor-suppressor ncRNAs. Moreover, the current and potential future applications of ncRNAs to clinical breast cancer research are also discussed, with an emphasis on ncRNA-based diagnosis, prognosis and future therapeutics.
Collapse
|
68
|
de Hoon M, Shin JW, Carninci P. Paradigm shifts in genomics through the FANTOM projects. Mamm Genome 2015; 26:391-402. [PMID: 26253466 PMCID: PMC4602071 DOI: 10.1007/s00335-015-9593-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022]
Abstract
Big leaps in science happen when scientists from different backgrounds interact. In the past 15 years, the FANTOM Consortium has brought together scientists from different fields to analyze and interpret genomic data produced with novel technologies, including mouse full-length cDNAs and, more recently, expression profiling at single-nucleotide resolution by cap-analysis gene expression. The FANTOM Consortium has provided the most comprehensive mouse cDNA collection for functional studies and extensive maps of the human and mouse transcriptome comprising promoters, enhancers, as well as the network of their regulatory interactions. More importantly, serendipitous observations of the FANTOM dataset led us to realize that the mammalian genome is pervasively transcribed, even from retrotransposon elements, which were previously considered junk DNA. The majority of products from the mammalian genome are long non-coding RNAs (lncRNAs), including sense-antisense, intergenic, and enhancer RNAs. While the biological function has been elucidated for some lncRNAs, more than 98 % of them remain without a known function. We argue that large-scale studies are urgently needed to address the functional role of lncRNAs.
Collapse
Affiliation(s)
- Michiel de Hoon
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, 230-0045, Japan.
| | - Jay W Shin
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, 230-0045, Japan.
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, 230-0045, Japan.
| |
Collapse
|
69
|
Husso T, Turunen MP, Parker N, Ylä-Herttuala S. Epigenetherapy, a new concept. Biomol Concepts 2015; 2:127-34. [PMID: 25962024 DOI: 10.1515/bmc.2011.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/26/2011] [Indexed: 11/15/2022] Open
Abstract
Small RNAs have been shown to regulate gene transcription by interacting with the promoter region and modifying the histone code. The exact mechanism of function is still unclear but the feasibility to activate or repress endogenous gene expression with small RNA molecules has already been demonstrated in vitro and in vivo. In traditional gene therapy non-mutated or otherwise useful genes are inserted into patient's cells to treat a disease. In epigenetherapy the action of small RNAs is utilized by delivering only the small RNAs to patient's cells where they then regulate gene expression by epigenetic mechanisms. This method could be widely useful not only for basic research but also for clinical applications of small RNAs.
Collapse
|
70
|
Abstract
Small RNA programmed Argonautes are sophisticated cellular effector platforms known to be involved in a diverse array of functions ranging from mRNA cleavage, translational inhibition, DNA elimination, epigenetic silencing, alternative splicing and even gene activation. First observed in human cells, small RNA-induced gene activation, also known as RNAa, involves the targeted recruitment of Argonaute proteins to specific promoter sequences followed by induction of stable epigenetic changes which promote transcription. The existence of RNAa remains contentious due to its elusive mechanism. A string of recent studies in C. elegans provides unequivocal evidence for RNAa's fundamental role in sculpting the epigenetic landscape and maintaining active transcription of endogenous genes and supports the presence of a functionally sophisticated network of small RNA-Argonaute pathways consisting of opposite yet complementary "yin and yang" regulatory elements. In this review, we summarize key findings from recent studies of endogenous RNAa in C. elegans, with an emphasis on the Argonaute protein CSR-1.
Collapse
Key Words
- Argonaute
- LCE, lin-4 complementary element
- RDRP, RNA-dependent RNA polymerase
- RISC, RNA induced silencing complex
- RNAa
- RNAa, RNA activation
- RNAe
- RNAe, RNA-induced epigenetic silencing
- RNAi, RNA interference
- TSS, transcription start site
- WAGO, worm-specific AGO
- epigenetic memory
- gene expression
- miRNAa, miRNA induced RNAa
- piRNA, Piwi-interacting RNA
Collapse
Affiliation(s)
- Dan Guo
- a Laboratory of Molecular Medicine; Peking Union Medical College Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College ; Beijing , China
| | | | | | | | | |
Collapse
|
71
|
Scheidegger A, Nechaev S. RNA polymerase II pausing as a context-dependent reader of the genome. Biochem Cell Biol 2015; 94:82-92. [PMID: 26555214 DOI: 10.1139/bcb-2015-0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The RNA polymerase II (Pol II) transcribes all mRNA genes in eukaryotes and is among the most highly regulated enzymes in the cell. The classic model of mRNA gene regulation involves recruitment of the RNA polymerase to gene promoters in response to environmental signals. Higher eukaryotes have an additional ability to generate multiple cell types. This extra level of regulation enables each cell to interpret the same genome by committing to one of the many possible transcription programs and executing it in a precise and robust manner. Whereas multiple mechanisms are implicated in cell type-specific transcriptional regulation, how one genome can give rise to distinct transcriptional programs and what mechanisms activate and maintain the appropriate program in each cell remains unclear. This review focuses on the process of promoter-proximal Pol II pausing during early transcription elongation as a key step in context-dependent interpretation of the metazoan genome. We highlight aspects of promoter-proximal Pol II pausing, including its interplay with epigenetic mechanisms, that may enable cell type-specific regulation, and emphasize some of the pertinent questions that remain unanswered and open for investigation.
Collapse
Affiliation(s)
- Adam Scheidegger
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| | - Sergei Nechaev
- Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA.,Department of Basic Sciences, University of North Dakota School of Medicine, Grand Forks, ND 58201, USA
| |
Collapse
|
72
|
Pundhir S, Gorodkin J. Differential and coherent processing patterns from small RNAs. Sci Rep 2015; 5:12062. [PMID: 26166713 PMCID: PMC4499813 DOI: 10.1038/srep12062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Post-transcriptional processing events related to short RNAs are often reflected in their read profile patterns emerging from high-throughput sequencing data. MicroRNA arm switching across different tissues is a well-known example of what we define as differential processing. Here, short RNAs from the nine cell lines of the ENCODE project, irrespective of their annotation status, were analyzed for genomic loci representing differential or coherent processing. We observed differential processing predominantly in RNAs annotated as miRNA, snoRNA or tRNA. Four out of five known cases of differentially processed miRNAs that were in the input dataset were recovered and several novel cases were discovered. In contrast to differential processing, coherent processing is observed widespread in both annotated and unannotated regions. While the annotated loci predominantly consist of ~24 nt short RNAs, the unannotated loci comparatively consist of ~17 nt short RNAs. Furthermore, these ~17 nt short RNAs are significantly enriched for overlap to transcription start sites and DNase I hypersensitive sites (p-value < 0.01) that are characteristic features of transcription initiation RNAs. We discuss how the computational pipeline developed in this study has the potential to be applied to other forms of RNA-seq data for further transcriptome-wide studies of differential and coherent processing.
Collapse
Affiliation(s)
- Sachin Pundhir
- Center for non-coding RNA in Technology and Health, IKVH, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, IKVH, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark
| |
Collapse
|
73
|
Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 2015; 161:541-554. [PMID: 25910208 DOI: 10.1016/j.cell.2015.03.010] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/26/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023]
Abstract
Major features of transcription by human RNA polymerase II (Pol II) remain poorly defined due to a lack of quantitative approaches for visualizing Pol II progress at nucleotide resolution. We developed a simple and powerful approach for performing native elongating transcript sequencing (NET-seq) in human cells that globally maps strand-specific Pol II density at nucleotide resolution. NET-seq exposes a mode of antisense transcription that originates downstream and converges on transcription from the canonical promoter. Convergent transcription is associated with a distinctive chromatin configuration and is characteristic of lower-expressed genes. Integration of NET-seq with genomic footprinting data reveals stereotypic Pol II pausing coincident with transcription factor occupancy. Finally, exons retained in mature transcripts display Pol II pausing signatures that differ markedly from skipped exons, indicating an intrinsic capacity for Pol II to recognize exons with different processing fates. Together, human NET-seq exposes the topography and regulatory complexity of human gene expression.
Collapse
|
74
|
Fatima R, Akhade VS, Pal D, Rao SMR. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana MR Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
75
|
Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312 DOI: 10.1186/s40591-015-0042-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana Mr Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
76
|
Assumpção CB, Calcagno DQ, Araújo TMT, Santos SEBD, Santos ÂKCRD, Riggins GJ, Burbano RR, Assumpção PP. The role of piRNA and its potential clinical implications in cancer. Epigenomics 2015; 7:975-84. [PMID: 25929784 PMCID: PMC4750480 DOI: 10.2217/epi.15.37] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms work in an orchestrated fashion to control gene expression in both homeostasis and diseases. Among small noncoding RNAs, piRNAs seem to meet the necessary requirements to be included in this epigenetic network due to their role in both transcriptional and post-transcriptional regulation. piRNAs and PIWI proteins might play important roles in cancer occurrence, prognosis and treatment as reported previously. Nevertheless, the potential clinical relevance of these molecules has yet been elucidated. A brief overview of piRNA biogenesis and their potential roles as part of an epigenetic network that is possibly involved in cancer is provided. Moreover, potential strategies based on the use of piRNAs and PIWI proteins as diagnostic and prognostic biomarkers as well as for cancer therapeutics are discussed.
Collapse
Affiliation(s)
- Carolina Baraúna Assumpção
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, CEP: 66075-110, Belém-PA, Brazil
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| | - Taíssa Maíra Thomaz Araújo
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| | - Sidney Emmanuel Batista dos Santos
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| | | | - Gregory Joseph Riggins
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, 1550 Orleans Street, Room 257 CRB2, Baltimore, MD 21231, USA
| | - Rommel Rodriguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, CEP: 66075-110, Belém-PA, Brazil
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Av. Mundurucus, 4487, Guamá, CEP: 66073-000, Belém-PA, Brazil
| |
Collapse
|
77
|
Razin SV, Gavrilov AA, Ulyanov SV. Transcription-controlling regulatory elements of the eukaryotic genome. Mol Biol 2015. [DOI: 10.1134/s0026893315020119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Panzeri I, Rossetti G, Abrignani S, Pagani M. Long Intergenic Non-Coding RNAs: Novel Drivers of Human Lymphocyte Differentiation. Front Immunol 2015; 6:175. [PMID: 25926836 PMCID: PMC4397839 DOI: 10.3389/fimmu.2015.00175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/28/2015] [Indexed: 12/29/2022] Open
Abstract
Upon recognition of a foreign antigen, CD4(+) naïve T lymphocytes proliferate and differentiate into subsets with distinct functions. This process is fundamental for the effective immune system function, as CD4(+) T cells orchestrate both the innate and adaptive immune response. Traditionally, this differentiation event has been regarded as the acquisition of an irreversible cell fate so that memory and effector CD4(+) T subsets were considered terminally differentiated cells or lineages. Consequently, these lineages are conventionally defined thanks to their prototypical set of cytokines and transcription factors. However, recent findings suggest that CD4(+) T lymphocytes possess a remarkable phenotypic plasticity, as they can often re-direct their functional program depending on the milieu they encounter. Therefore, new questions are now compelling such as which are the molecular determinants underlying plasticity and stability and how the balance between these two opposite forces drives the cell fate. As already mentioned, in some cases, the mere expression of cytokines and master regulators could not fully explain lymphocytes plasticity. We should consider other layers of regulation, including epigenetic factors such as the modulation of chromatin state or the transcription of non-coding RNAs, whose high cell-specificity give a hint on their involvement in cell fate determination. In this review, we will focus on the recent advances in understanding CD4(+) T lymphocytes subsets specification from an epigenetic point of view. In particular, we will emphasize the emerging importance of non-coding RNAs as key players in these differentiation events. We will also present here new data from our laboratory highlighting the contribution of long non-coding RNAs in driving human CD4(+) T lymphocytes differentiation.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Grazisa Rossetti
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Sergio Abrignani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy
| | - Massimiliano Pagani
- Integrative Biology Unit, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", IRCCS Ospedale Maggiore Policlinico , Milano , Italy ; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
79
|
Roy AL, Singer DS. Core promoters in transcription: old problem, new insights. Trends Biochem Sci 2015; 40:165-71. [PMID: 25680757 DOI: 10.1016/j.tibs.2015.01.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 12/11/2022]
Abstract
Early studies established that transcription initiates within an approximately 50 bp DNA segment capable of nucleating the assembly of RNA polymerase II (Pol II) and associated general transcription factors (GTFs) necessary for transcriptional initiation; this region is called a core promoter. Subsequent analyses identified a series of conserved DNA sequence elements, present in various combinations or not at all, in core promoters. Recent genome-wide analyses have provided further insights into the complexity of core promoter architecture and function. Here we review recent studies that delineate the active role of core promoters in the transcriptional regulation of diverse physiological systems.
Collapse
Affiliation(s)
- Ananda L Roy
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
80
|
Carissimi C, Laudadio I, Cipolletta E, Gioiosa S, Mihailovich M, Bonaldi T, Macino G, Fulci V. ARGONAUTE2 cooperates with SWI/SNF complex to determine nucleosome occupancy at human Transcription Start Sites. Nucleic Acids Res 2015; 43:1498-512. [PMID: 25605800 PMCID: PMC4330357 DOI: 10.1093/nar/gku1387] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Argonaute (AGO) proteins have a well-established role in post-transcriptional regulation of gene expression as key component of the RNA silencing pathways. Recent evidence involves AGO proteins in mammalian nuclear processes such as transcription and splicing, though the mechanistic aspects of AGO nuclear functions remain largely elusive. Here, by SILAC-based interaction proteomics, we identify the chromatin-remodelling complex SWI/SNF as a novel AGO2 interactor in human cells. Moreover, we show that nuclear AGO2 is loaded with a novel class of Dicer-dependent short RNAs (sRNAs), that we called swiRNAs, which map nearby the Transcription Start Sites (TSSs) bound by SWI/SNF. The knock-down of AGO2 decreases nucleosome occupancy at the first nucleosome located downstream of TSSs in a swiRNA-dependent manner. Our findings indicate that in human cells AGO2 binds SWI/SNF and a novel class of sRNAs to establish nucleosome occupancy on target TSSs.
Collapse
Affiliation(s)
- Claudia Carissimi
- Dipartimento di Biotecnologie Cellulari ed Ematologia, 'Sapienza' Università di Roma, Rome 00161, Italy
| | - Ilaria Laudadio
- Dipartimento di Biotecnologie Cellulari ed Ematologia, 'Sapienza' Università di Roma, Rome 00161, Italy
| | - Emanuela Cipolletta
- Dipartimento di Biotecnologie Cellulari ed Ematologia, 'Sapienza' Università di Roma, Rome 00161, Italy
| | - Silvia Gioiosa
- Dipartimento di Biotecnologie Cellulari ed Ematologia, 'Sapienza' Università di Roma, Rome 00161, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy
| | - Giuseppe Macino
- Dipartimento di Biotecnologie Cellulari ed Ematologia, 'Sapienza' Università di Roma, Rome 00161, Italy
| | - Valerio Fulci
- Dipartimento di Biotecnologie Cellulari ed Ematologia, 'Sapienza' Università di Roma, Rome 00161, Italy
| |
Collapse
|
81
|
Telomerase reverse transcriptase regulates microRNAs. Int J Mol Sci 2015; 16:1192-208. [PMID: 25569094 PMCID: PMC4307298 DOI: 10.3390/ijms16011192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/26/2014] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that inhibit the translation of target mRNAs. In humans, most microRNAs are transcribed by RNA polymerase II as long primary transcripts and processed by sequential cleavage of the two RNase III enzymes, DROSHA and DICER, into precursor and mature microRNAs, respectively. Although the fundamental functions of microRNAs in RNA silencing have been gradually uncovered, less is known about the regulatory mechanisms of microRNA expression. Here, we report that telomerase reverse transcriptase (TERT) extensively affects the expression levels of mature microRNAs. Deep sequencing-based screens of short RNA populations revealed that the suppression of TERT resulted in the downregulation of microRNAs expressed in THP-1 cells and HeLa cells. Primary and precursor microRNA levels were also reduced under the suppression of TERT. Similar results were obtained with the suppression of either BRG1 (also called SMARCA4) or nucleostemin, which are proteins interacting with TERT and functioning beyond telomeres. These results suggest that TERT regulates microRNAs at the very early phases in their biogenesis, presumably through non-telomerase mechanism(s).
Collapse
|
82
|
Abstract
The revolution of miRNA discovery, in the early 2000s, shed a new light in the exciting field of small non-coding RNAs. Since then, and owing to outstanding breakthroughs in RNomic techniques, novel small non-coding RNA families have been regularly discovered, e.g., piRNAs, tiRNAs, and many others.In this review, we provide a very succinct historical and functional overview on most prominent small non-coding RNA families.
Collapse
Affiliation(s)
- Guillaume Clerget
- Université de Lorraine, CNRS UMR 7365, IMoPA, 9 avenue de la Forêt de Haye, Vandoeuvre-lès-Nancy, 54506, France
| | | | | |
Collapse
|
83
|
Orekhova AS, Rubtsov PM. Bidirectional promoters in the transcription of mammalian genomes. BIOCHEMISTRY (MOSCOW) 2014; 78:335-41. [PMID: 23590436 DOI: 10.1134/s0006297913040020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the genomes of humans and other mammals a large number of closely spaced pairs of genes that are transcribed in opposite directions were revealed. Their transcription is directed by so-called bidirectional promoters. This review is devoted to the characteristics of bidirectional promoters and features of their structure. The composition of "core" promoter elements in conventional unidirectional and bidirectional promoters is compared. Data on binding sites of transcription factors that are primarily specific for bidirectional promoters are discussed. The examples of promoters that share protein-coding genes transcribed by RNA polymerase II and the non-coding RNA genes transcribed by RNA polymerase III are described. Data obtained from global transcriptome analysis about the existence of short noncoding antisense RNA associated with the promoters in the context of the hypothesis of bidirectional transcription initiation as an inherent property of eukaryotic promoters are discussed.
Collapse
Affiliation(s)
- A S Orekhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | |
Collapse
|
84
|
Gstir R, Schafferer S, Scheideler M, Misslinger M, Griehl M, Daschil N, Humpel C, Obermair GJ, Schmuckermair C, Striessnig J, Flucher BE, Hüttenhofer A. Generation of a neuro-specific microarray reveals novel differentially expressed noncoding RNAs in mouse models for neurodegenerative diseases. RNA (NEW YORK, N.Y.) 2014; 20:1929-43. [PMID: 25344396 PMCID: PMC4238357 DOI: 10.1261/rna.047225.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/27/2014] [Indexed: 05/24/2023]
Abstract
We have generated a novel, neuro-specific ncRNA microarray, covering 1472 ncRNA species, to investigate their expression in different mouse models for central nervous system diseases. Thereby, we analyzed ncRNA expression in two mouse models with impaired calcium channel activity, implicated in Epilepsy or Parkinson's disease, respectively, as well as in a mouse model mimicking pathophysiological aspects of Alzheimer's disease. We identified well over a hundred differentially expressed ncRNAs, either from known classes of ncRNAs, such as miRNAs or snoRNAs or which represented entirely novel ncRNA species. Several differentially expressed ncRNAs in the calcium channel mouse models were assigned as miRNAs and target genes involved in calcium signaling, thus suggesting feedback regulation of miRNAs by calcium signaling. In the Alzheimer mouse model, we identified two snoRNAs, whose expression was deregulated prior to amyloid plaque formation. Interestingly, the presence of snoRNAs could be detected in cerebral spine fluid samples in humans, thus potentially serving as early diagnostic markers for Alzheimer's disease. In addition to known ncRNAs species, we also identified 63 differentially expressed, entirely novel ncRNA candidates, located in intronic or intergenic regions of the mouse genome, genomic locations, which previously have been shown to harbor the majority of functional ncRNAs.
Collapse
Affiliation(s)
- Ronald Gstir
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Simon Schafferer
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Marcel Scheideler
- RNA Biology Group, Institute for Genomics and Bioinformatics, Graz University of Technology, 8010 Graz, Austria
| | - Matthias Misslinger
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias Griehl
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Daschil
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Christian Humpel
- Department of Psychiatry and Psychotherapy, University Clinic of General and Social Psychiatry, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Claudia Schmuckermair
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Joerg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
85
|
Ricciuti B, Mecca C, Crinò L, Baglivo S, Cenci M, Metro G. Non-coding RNAs in lung cancer. Oncoscience 2014; 1:674-705. [PMID: 25593996 PMCID: PMC4278269 DOI: 10.18632/oncoscience.98] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/15/2014] [Indexed: 12/14/2022] Open
Abstract
The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | | | - Lucio Crinò
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Sara Baglivo
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Matteo Cenci
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
86
|
Avitabile C, Cimmino A, Romanelli A. Oligonucleotide analogues as modulators of the expression and function of noncoding RNAs (ncRNAs): emerging therapeutics applications. J Med Chem 2014; 57:10220-40. [PMID: 25280271 DOI: 10.1021/jm5006594] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ncRNAs are emerging as key regulators of physiological and pathological processes and therefore have been identified as pharmacological targets and as markers for some diseases. Oligonucleotide analogues represent so far the most widely employed tool for the modulation of the expression of ncRNAs. In this perspective we briefly describe most of the known classes of ncRNAs and then we discuss the design and the applications of oligonucleotide analogues for their targeting. The effects of modifications of the chemical structure of the oligonucleotides on properties such as the binding affinity toward targets and off targets, and the stability to degradation and their biological effects (when known) are discussed. Examples of molecules currently used in clinical trials are also reported.
Collapse
Affiliation(s)
- Concetta Avitabile
- Università di Napoli "Federico II" , Dipartimento di Farmacia, via Mezzocannone 16, 80134 Napoli, Italy
| | | | | |
Collapse
|
87
|
Zaramela LS, Vêncio RZN, ten-Caten F, Baliga NS, Koide T. Transcription start site associated RNAs (TSSaRNAs) are ubiquitous in all domains of life. PLoS One 2014; 9:e107680. [PMID: 25238539 PMCID: PMC4169567 DOI: 10.1371/journal.pone.0107680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 08/18/2014] [Indexed: 01/06/2023] Open
Abstract
A plethora of non-coding RNAs has been discovered using high-resolution transcriptomics tools, indicating that transcriptional and post-transcriptional regulation is much more complex than previously appreciated. Small RNAs associated with transcription start sites of annotated coding regions (TSSaRNAs) are pervasive in both eukaryotes and bacteria. Here, we provide evidence for existence of TSSaRNAs in several archaeal transcriptomes including: Halobacterium salinarum, Pyrococcus furiosus, Methanococcus maripaludis, and Sulfolobus solfataricus. We validated TSSaRNAs from the model archaeon Halobacterium salinarum NRC-1 by deep sequencing two independent small-RNA enriched (RNA-seq) and a primary-transcript enriched (dRNA-seq) strand-specific libraries. We identified 652 transcripts, of which 179 were shown to be primary transcripts (∼7% of the annotated genome). Distinct growth-associated expression patterns between TSSaRNAs and their cognate genes were observed, indicating a possible role in environmental responses that may result from RNA polymerase with varying pausing rhythms. This work shows that TSSaRNAs are ubiquitous across all domains of life.
Collapse
Affiliation(s)
- Livia S. Zaramela
- Department Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Z. N. Vêncio
- Department of Computing and Mathematics, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe ten-Caten
- Department Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Tie Koide
- Department Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
88
|
Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote Giardia lamblia. Proc Natl Acad Sci U S A 2014; 111:14159-64. [PMID: 25225396 DOI: 10.1073/pnas.1414394111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Small RNAs (sRNAs), including microRNAs and endogenous siRNAs (endo-siRNAs), regulate most important biologic processes in eukaryotes, such as cell division and differentiation. Although sRNAs have been extensively studied in various eukaryotes, the role of sRNAs in the early emergence of eukaryotes is unclear. To address these questions, we deep sequenced the sRNA transcriptome of four different stages in the differentiation of Giardia lamblia, one of the most primitive eukaryotes. We identified a large number of endo-siRNAs in this fascinating parasitic protozoan and found that they were produced from live telomeric retrotransposons and three genomic regions (i.e., endo-siRNA generating regions [eSGRs]). eSGR-derived endo-siRNAs were proven to target mRNAs in trans. Gradual up-regulation of endo-siRNAs in the differentiation of Giardia suggested that they might be involved in the regulation of this process. This hypothesis was supported by the impairment of the differentiation ability of Giardia when GLDICER, essential for the biogenesis of endo-siRNAs, was knocked down. Endo-siRNAs are not the only sRNA regulators in Giardia differentiation, because a great number of tRNAs-derived sRNAs showed more dramatic expression changes than endo-siRNAs in this process. We totally identified five novel kinds of tRNAs-derived sRNAs and found that the biogenesis in four of them might be correlated with that of stress-induced tRNA-derived RNA (sitRNA), which was discovered in our previous studies. Our studies reveal an unexpected complex panorama of sRNA in G. lamblia and shed light on the origin and functional evolution of eukaryotic sRNAs.
Collapse
|
89
|
Roberts TC. The MicroRNA Biology of the Mammalian Nucleus. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e188. [PMID: 25137140 PMCID: PMC4221600 DOI: 10.1038/mtna.2014.40] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a class of genome-encoded small RNAs that are primarily considered to be post-transcriptional negative regulators of gene expression acting in the cytoplasm. Over a decade of research has focused on this canonical paradigm of miRNA function, with many success stories. Indeed, miRNAs have been identified that act as master regulators of a myriad of cellular processes, and many miRNAs are promising therapeutic targets or disease biomarkers. However, it is becoming increasingly apparent that the canonical view of miRNA function is incomplete. Several lines of evidence now point to additional functions for miRNAs in the nucleus of the mammalian cell. The majority of cellular miRNAs are present in both the nucleus and the cytoplasm, and certain miRNAs show specific nuclear enrichment. Additionally, some miRNAs colocalize with sub-nuclear structures such as the nucleolus and chromatin. Multiple components of the miRNA processing machinery are present in the nuclear compartment and are shuttled back and forth across the nuclear envelope. In the nucleus, miRNAs act to regulate the stability of nuclear transcripts, induce epigenetic alterations that either silence or activate transcription at specific gene promoters, and modulate cotranscriptional alternative splicing events. Nuclear miRNA-directed gene regulation constitutes a departure from the prevailing view of miRNA function and as such, warrants detailed further investigation.
Collapse
Affiliation(s)
- Thomas C Roberts
- 1] Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA [2] Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
90
|
Huang T, Alvarez A, Hu B, Cheng SY. Noncoding RNAs in cancer and cancer stem cells. CHINESE JOURNAL OF CANCER 2014; 32:582-93. [PMID: 24206916 PMCID: PMC3845549 DOI: 10.5732/cjc.013.10170] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potentially useful diagnostic tools.
Collapse
Affiliation(s)
- Tianzhi Huang
- The Ken & Ruth Davee Department of Neuro-logy, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. ,
| | | | | | | |
Collapse
|
91
|
PAPD5-mediated 3' adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc Natl Acad Sci U S A 2014; 111:11467-72. [PMID: 25049417 DOI: 10.1073/pnas.1317751111] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Next-generation sequencing experiments have shown that microRNAs (miRNAs) are expressed in many different isoforms (isomiRs), whose biological relevance is often unclear. We found that mature miR-21, the most widely researched miRNA because of its importance in human disease, is produced in two prevalent isomiR forms that differ by 1 nt at their 3' end, and moreover that the 3' end of miR-21 is posttranscriptionally adenylated by the noncanonical poly(A) polymerase PAPD5. PAPD5 knockdown caused an increase in the miR-21 expression level, suggesting that PAPD5-mediated adenylation of miR-21 leads to its degradation. Exoribonuclease knockdown experiments followed by small-RNA sequencing suggested that PARN degrades miR-21 in the 3'-to-5' direction. In accordance with this model, microarray expression profiling demonstrated that PAPD5 knockdown results in a down-regulation of miR-21 target mRNAs. We found that disruption of the miR-21 adenylation and degradation pathway is a general feature in tumors across a wide range of tissues, as evidenced by data from The Cancer Genome Atlas, as well as in the noncancerous proliferative disease psoriasis. We conclude that PAPD5 and PARN mediate degradation of oncogenic miRNA miR-21 through a tailing and trimming process, and that this pathway is disrupted in cancer and other proliferative diseases.
Collapse
|
92
|
Abstract
Discoveries over the past decade portend a paradigm shift in molecular biology. Evidence suggests that RNA is not only functional as a messenger between DNA and protein but also involved in the regulation of genome organization and gene expression, which is increasingly elaborate in complex organisms. Regulatory RNA seems to operate at many levels; in particular, it plays an important part in the epigenetic processes that control differentiation and development. These discoveries suggest a central role for RNA in human evolution and ontogeny. Here, we review the emergence of the previously unsuspected world of regulatory RNA from a historical perspective.
Collapse
Affiliation(s)
- Kevin V Morris
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John S Mattick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; the School of Biotechnology and Biomedical Sciences, and St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
93
|
Abstract
The ability to sequence genomes and characterize their products has begun to reveal the central role for regulatory RNAs in biology, especially in complex organisms. It is now evident that the human genome contains not only protein-coding genes, but also tens of thousands of non-protein coding genes that express small and long ncRNAs (non-coding RNAs). Rapid progress in characterizing these ncRNAs has identified a diverse range of subclasses, which vary widely in size, sequence and mechanism-of-action, but share a common functional theme of regulating gene expression. ncRNAs play a crucial role in many cellular pathways, including the differentiation and development of cells and organs and, when mis-regulated, in a number of diseases. Increasing evidence suggests that these RNAs are a major area of evolutionary innovation and play an important role in determining phenotypic diversity in animals.
Collapse
|
94
|
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Müller F, Forrest AR, Carninci P, Rehli M, Sandelin A. An atlas of active enhancers across human cell types and tissues. Nature 2014; 507:455-461. [PMID: 24670763 PMCID: PMC5215096 DOI: 10.1038/nature12787] [Citation(s) in RCA: 1816] [Impact Index Per Article: 165.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 10/16/2013] [Indexed: 02/07/2023]
Abstract
Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.
Collapse
Affiliation(s)
- Robin Andersson
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Claudia Gebhard
- Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | - Irene Miguel-Escalada
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ilka Hoof
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Jette Bornholdt
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Mette Boyd
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Xiaobei Zhao
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christian Schmidl
- Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | - Takahiro Suzuki
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Evgenia Ntini
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, C.F. Møllers Alle 3, Bldg. 1130, DK-8000 Aarhus, Denmark
| | - Erik Arner
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Eivind Valen
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
- Department of Molecular and Cellular Biology, Harvard University, USA
| | - Kang Li
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Lucia Schwarzfischer
- Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | - Dagmar Glatz
- Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | - Johanna Raithel
- Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | - Berit Lilje
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Nicolas Rapin
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet and Danish Stem Cell Centre (DanStem), University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Denmark
| | - Frederik Otzen Bagger
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet and Danish Stem Cell Centre (DanStem), University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Denmark
| | - Mette Jørgensen
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Peter Refsing Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, C.F. Møllers Alle 3, Bldg. 1130, DK-8000 Aarhus, Denmark
| | - Nicolas Bertin
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Owen Rackham
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - A. Maxwell Burroughs
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - J. Kenneth Baillie
- Roslin Institute, Edinburgh University, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Yuri Ishizu
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yuri Shimizu
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Shiori Maeda
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yutaka Negishi
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Christopher J. Mungall
- Genomics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 64-121, Berkeley, CA 94720, USA
| | - Terrence F. Meehan
- EMBL Outstation - Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD
| | - Timo Lassmann
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Hideya Kawaji
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Naoto Kondo
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Jun Kawai
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Carsten O. Daub
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Stockholm, Sweden
| | - Peter Heutink
- Department of Clinical Genetics, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, Netherlands
| | - David A. Hume
- Roslin Institute, Edinburgh University, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, C.F. Møllers Alle 3, Bldg. 1130, DK-8000 Aarhus, Denmark
| | - Harukazu Suzuki
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Yoshihide Hayashizaki
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Ferenc Müller
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alistair R.R. Forrest
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| |
Collapse
|
95
|
Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Müller F, Forrest ARR, Carninci P, Rehli M, Sandelin A. An atlas of active enhancers across human cell types and tissues. Nature 2014. [DOI: 10.10.1038/nature12787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
96
|
Bhan A, Mandal SS. Long noncoding RNAs: emerging stars in gene regulation, epigenetics and human disease. ChemMedChem 2014; 9:1932-56. [PMID: 24677606 DOI: 10.1002/cmdc.201300534] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 12/19/2022]
Abstract
Noncoding RNAs (ncRNAs) are classes of transcripts that are encoded by the genome and transcribed but never get translated into proteins. Though not translated into proteins, ncRNAs play pivotal roles in a variety of cellular functions. Here, we review the functions of long noncoding RNAs (lncRNAs) and their implications in various human diseases. Increasing numbers of studies demonstrate that lncRNAs play critical roles in regulation of protein-coding genes, maintenance of genomic integrity, dosage compensation, genomic imprinting, mRNA processing, cell differentiation, and development. Misregulation of lncRNAs is associated with a variety of human diseases, including cancer, immune and neurological disorders. Different classes of lncRNAs, their functions, mechanisms of action, and associations with different human diseases are summarized in detail, highlighting their as yet untapped potential in therapy.
Collapse
Affiliation(s)
- Arunoday Bhan
- Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019 (USA)
| | | |
Collapse
|
97
|
Direct transcriptional regulation by nuclear microRNAs. Int J Biochem Cell Biol 2014; 54:304-11. [PMID: 24680896 DOI: 10.1016/j.biocel.2014.03.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/06/2014] [Accepted: 03/17/2014] [Indexed: 01/07/2023]
Abstract
The function of microRNAs is well characterized in the cytoplasm, where they direct an Argonaute-containing complex to target and repress mRNAs. More recently, regulatory roles for microRNAs and Argonaute have also been reported in the nucleus where microRNAs guide Argonaute to target gene promoters and directly regulate transcription in either a positive or a negative manner. Deep sequencing has revealed a high abundance of endogenous microRNAs within the nucleus, and in silico target prediction suggests thousands of potential microRNA:promoter interaction sites. The predicted high frequency of miRNA:promoter interactions is supported by chromatin immunoprecipitation, indicating the microRNA-dependent recruitment of Argonaute to thousands of transcriptional start sites and the subsequent regulation of RNA polymerase-II occupancy and chromatin modifiers. In this review we discuss the evidence for, and mechanisms associated with, direct transcriptional regulation by microRNAs which may represent a significant and largely unexplored aspect of microRNA function. This article is part of a Directed Issue entitled: The non-coding RNA revolution.
Collapse
|
98
|
Zovoilis A, Mungall AJ, Moore R, Varhol R, Chu A, Wong T, Marra M, Jones SJM. The expression level of small non-coding RNAs derived from the first exon of protein-coding genes is predictive of cancer status. EMBO Rep 2014; 15:402-10. [PMID: 24534129 DOI: 10.1002/embr.201337950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small non-coding RNAs (smRNAs) are known to be significantly enriched near the transcriptional start sites of genes. However, the functional relevance of these smRNAs remains unclear, and they have not been associated with human disease. Within the cancer genome atlas project (TCGA), we have generated small RNA datasets for many tumor types. In prior cancer studies, these RNAs have been regarded as transcriptional "noise," due to their apparent chaotic distribution. In contrast, we demonstrate their striking potential to distinguish efficiently between cancer and normal tissues and classify patients with cancer to subgroups of distinct survival outcomes. This potential to predict cancer status is restricted to a subset of these smRNAs, which is encoded within the first exon of genes, highly enriched within CpG islands and negatively correlated with DNA methylation levels. Thus, our data show that genome-wide changes in the expression levels of small non-coding RNAs within first exons are associated with cancer.
Collapse
|
99
|
Werner A, Cockell S, Falconer J, Carlile M, Alnumeir S, Robinson J. Contribution of natural antisense transcription to an endogenous siRNA signature in human cells. BMC Genomics 2014; 15:19. [PMID: 24410956 PMCID: PMC3898206 DOI: 10.1186/1471-2164-15-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/15/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Eukaryotic cells express a complex layer of noncoding RNAs. An intriguing family of regulatory RNAs includes transcripts from the opposite strand of protein coding genes, so called natural antisense transcripts (NATs). Here, we test the hypothesis that antisense transcription triggers RNA interference and gives rise to endogenous short RNAs (endo-siRNAs). RESULTS We used cloned human embryonic kidney cells (HEK293) followed by short RNAseq to investigate the small genic RNA transcriptome. 378 genes gave rise to short RNA reads that mapped to exons of RefSeq genes. The length profile of short RNAs showed a broad peak of 20-24 nucleotides, indicative of endo-siRNAs. Collapsed reads mapped predominantly to the first and the last exon of genes (74%). RNAs reads were intersected with sequences occupied by RNAPII or bound to Argonaute (AGO1 by crosslinking, ligation, and sequencing of hybrids, CLASH). In the first exon, 94% of the reads correlated with RNAPII occupancy with an average density of 130 (relative units); this decreased to 65%/20 in middle exons and 54%/12 in the last exon. CLASH reads mapping to multi-exon genes showed little distribution bias with an average of about 5 CLASH reads overlapping with 60% of the endo-siRNA reads. However, endo-siRNAs (21-25 nt) intersecting with CLASH reads were enriched at the 5'end and decreased towards the 3'end.We then investigated the 378 genes with particular focus on features indicative for short RNA production; however, found that endo-siRNA numbers did not correlate with gene structures that favor convergent transcription. In contrast, our gene set was found notably over-represented in the NATsDB sense/antisense group as compared to non-overlapping and non-bidirectional groups. Moreover, read counts showed no correlation with the steady-state levels of the related mRNAs and the pattern of endo-siRNAs proved reproducible after an induced mutagenic insult. CONCLUSIONS Our results suggest that antisense transcripts contribute to low levels of endo-siRNAs in fully differentiated human cells. A characteristic endo-siRNA footprint is being produced at sites of RNAPII transcription which is also related to AGO1. This endo-siRNA signature represents an intriguing finding and its reproducibility suggests that the production of endo-siRNAs is a regulated process with potential homoeostatic impact.
Collapse
Affiliation(s)
- Andreas Werner
- RNA Biology Group, Institute of Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK.
| | | | | | | | | | | |
Collapse
|
100
|
Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2014; 12:847-65. [PMID: 24172333 DOI: 10.1038/nrd4140] [Citation(s) in RCA: 1149] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first cancer-targeted microRNA (miRNA) drug - MRX34, a liposome-based miR-34 mimic - entered Phase I clinical trials in patients with advanced hepatocellular carcinoma in April 2013, and miRNA therapeutics are attracting special attention from both academia and biotechnology companies. Although miRNAs are the most studied non-coding RNAs (ncRNAs) to date, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognized. Here, we summarize the roles of miRNAs and lncRNAs in cancer, with a focus on the recently identified novel mechanisms of action, and discuss the current strategies in designing ncRNA-targeting therapeutics, as well as the associated challenges.
Collapse
Affiliation(s)
- Hui Ling
- 1] Experimental Therapeutics and Leukemia Department, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA. [2]
| | | | | |
Collapse
|