51
|
Alles M, Rosenhahn A. Microfluidic detachment assay to probe the adhesion strength of diatoms. BIOFOULING 2015; 31:469-480. [PMID: 26168802 DOI: 10.1080/08927014.2015.1061655] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fouling release (FR) coatings are increasingly applied as an environmentally benign alternative for controlling marine biofouling. As the technology relies on removing fouling by water currents created by the motion of ships, weakening of adhesion of adherent organisms is the key design goal for improved coatings. In this paper, a microfluidic shear force assay is used to quantify how easily diatoms can be removed from surfaces. The experimental setup and the optimization of the experimental parameters to study the adhesion of the diatom Navicula perminuta are described. As examples of how varying the physico-chemical surface properties affects the ability of diatoms to bind to surfaces, a range of hydrophilic and hydrophobic self-assembled monolayers was compared. While the number of cells that attached (adhered) was barely affected by the coatings, the critical shear stress required for their removal from the surface varied significantly.
Collapse
Affiliation(s)
- M Alles
- a Applied Physical Chemistry , Ruprecht-Karls-University Heidelberg , Heidelberg , Germany
| | | |
Collapse
|
52
|
Hanssen KO, Cervin G, Trepos R, Petitbois J, Haug T, Hansen E, Andersen JH, Pavia H, Hellio C, Svenson J. The bromotyrosine derivative ianthelline isolated from the arctic marine sponge Stryphnus fortis inhibits marine micro- and macrobiofouling. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:684-694. [PMID: 25051957 DOI: 10.1007/s10126-014-9583-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
The inhibition of marine biofouling by the bromotyrosine derivative ianthelline, isolated from the Arctic marine sponge Stryphnus fortis, is described. All major stages of the fouling process are investigated. The effect of ianthelline on adhesion and growth of marine bacteria and microalgae is tested to investigate its influence on the initial microfouling process comparing with the known marine antifoulant barettin as a reference. Macrofouling is studied via barnacle (Balanus improvisus) settlement assays and blue mussel (Mytilus edulis) phenoloxidase inhibition. Ianthelline is shown to inhibit both marine micro- and macrofoulers with a pronounced effect on marine bacteria (minimum inhibitory concentration (MIC) values 0.1-10 μg/mL) and barnacle larval settlement (IC50 = 3.0 μg/mL). Moderate effects are recorded on M. edulis (IC50 = 45.2 μg/mL) and microalgae, where growth is more affected than surface adhesion. The effect of ianthelline is also investigated against human pathogenic bacteria. Ianthelline displayed low micromolar MIC values against several bacterial strains, both Gram positive and Gram negative, down to 2.5 μg/mL. In summary, the effect of ianthelline on 20 different representative marine antifouling organisms and seven human pathogenic bacterial strains is presented.
Collapse
Affiliation(s)
- Kine O Hanssen
- Centre for Research-based Innovation on Marine Bioactivities and Drug Discovery (MabCent), UiT The Arctic University of Norway, Breivika, Tromsø, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Savabi O, Kazemi M, Kamali S, Salehi AR, Eslami G, Tahmourespour A, Salehi R. Effects of biosurfactant produced by Lactobacillus casei on gtfB, gtfC, and ftf gene expression level in S. mutans by real-time RT-PCR. Adv Biomed Res 2014; 3:231. [PMID: 25538917 PMCID: PMC4260286 DOI: 10.4103/2277-9175.145729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022] Open
Abstract
Background: The Streptococci are the pioneer strains in plaque formation and Streptococcus mutans are the main etiological agent of dental plaque and caries. In general, biofilm formation is a step-wise process, which begins by adhesion of planktonic cells to the surfaces. Evidences show that expression of glucosyltransferase B and C (gtfB and gtfC) and fructosyltransferase (ftf) genes play critical role in initial adhesion of S. mutans to the tooth surface which results in formation of dental plaques and consequently caries and other periodontal disease. Materials and Methods: The aim of this study was to determine the effect of biosurfactants produced by a probiotic strain; Lactobacillus casei (ATCC39392) on gene expression profile of gftB/C and tft of S. mutans (ATCC35668) using quantitative real-time PCR. Results: The application of the prepared biosurfactant caused dramatic down regulation of all the three genes under study. The reduction in gene expression was statistically highly significant (for gtfB, P > 0.0002; for gtfC, P > 0.0063, and for ftf, P > 0.0057). Conclusion: Considerable downregulation of all three genes in the presence of the prepared biosurfactant comparing to untreated controls is indicative of successful inhibition of influential genes in bacterial adhesion phenomena. In view of the importance of glucosyltransferase gene products for S.mutans attachment to the tooth surface which is the initial important step in biofilm production and dental caries, further research in this field may lead to an applicable alternative for successful with least adverse side effects in dental caries prevention.
Collapse
Affiliation(s)
- Omid Savabi
- Department of Dental Prosthetics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Kamali
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Reza Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gilda Eslami
- Department of Parasitology and Mycology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Arezoo Tahmourespour
- Department of Basic Medical Sciences, Khorasgan Branch, Islamic Azad University, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
54
|
Arrhenius Å, Backhaus T, Hilvarsson A, Wendt I, Zgrundo A, Blanck H. A novel bioassay for evaluating the efficacy of biocides to inhibit settling and early establishment of marine biofilms. MARINE POLLUTION BULLETIN 2014; 87:292-299. [PMID: 25150894 DOI: 10.1016/j.marpolbul.2014.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/01/2014] [Accepted: 07/06/2014] [Indexed: 05/21/2023]
Abstract
This paper presents a novel assay that allows a quick and robust assessment of the effects of biocides on the initial settling and establishment of marine photoautotrophic biofilms including the multitude of indigenous fouling organisms. Briefly, biofilms are established in the field, sampled, comminuted and re-settled on clean surfaces, after 72h chlorophyll a is measured as an integrating endpoint to reflect both settling and growth. Eight antifoulants were used to evaluate the assay. Efficacy ranking, based on EC98 values from most to least efficacious compound is: copper pyrithione>TPBP>DCOIT>tolylfluanid>zinc pyrithione>medetomidine>copper (Cu(2+)), while ecotoxicological ranking (based on EC10 values) is irgarol, copper pyrithione>zinc pyrithione>TPBP>tolylfluanid>DCOIT>copper (Cu(2+))>medetomidine. The algaecide irgarol did not cause full inhibition. Instead the inhibition leveled out at 95% effect at 30 nmoll(-)(1), a concentration that was clearly lower than for any other of the tested biocides.
Collapse
Affiliation(s)
- Åsa Arrhenius
- University of Gothenburg, Department of Biological and Environmental Sciences, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Thomas Backhaus
- University of Gothenburg, Department of Biological and Environmental Sciences, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Annelie Hilvarsson
- University of Gothenburg, Department of Biological and Environmental Sciences, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Ida Wendt
- University of Gothenburg, Department of Biological and Environmental Sciences, Box 461, SE-405 30 Gothenburg, Sweden.
| | - Aleksandra Zgrundo
- University of Gdansk, Institute of Oceanography, Al. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Hans Blanck
- University of Gothenburg, Department of Biological and Environmental Sciences, Box 461, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
55
|
Maleschlijski S, Bauer S, Di Fino A, Sendra GH, Clare AS, Rosenhahn A. Barnacle cyprid motility and distribution in the water column as an indicator of the settlement-inhibiting potential of nontoxic antifouling chemistries. BIOFOULING 2014; 30:1055-1065. [PMID: 25334041 DOI: 10.1080/08927014.2014.966097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Testing of new coatings to control fouling frequently involves single-species laboratory bioassays. Barnacle cyprids are among the most widely used model organisms in marine biofouling research, and surfaces that inhibit their settlement are considered to be promising candidates for new coating concepts. An analysis of motility parameters (mean velocity and swimming area coefficient) and distribution of cyprids of Balanus amphitrite in different swimming regions in the vicinity of model surfaces (self-assembled monolayers) is presented. The data are correlated with the settlement preferences of cyprids on these surfaces. Cyprids were predominantly found in interfacial regions and the transition frequencies between swimming regions of different depths were determined.
Collapse
Affiliation(s)
- Stojan Maleschlijski
- a Institute of Functional Interfaces , Karlsruhe Institute of Technology , Karlsruhe , Germany
| | | | | | | | | | | |
Collapse
|
56
|
Trepos R, Cervin G, Hellio C, Pavia H, Stensen W, Stensvåg K, Svendsen JS, Haug T, Svenson J. Antifouling compounds from the sub-arctic ascidian Synoicum pulmonaria: synoxazolidinones A and C, pulmonarins A and B, and synthetic analogues. JOURNAL OF NATURAL PRODUCTS 2014; 77:2105-2113. [PMID: 25181423 DOI: 10.1021/np5005032] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The current study describes the antifouling properties of four members belonging to the recently discovered synoxazolidinone and pulmonarin families, isolated from the sub-Arctic sessile ascidian Synoicum pulmonaria collected off the Norwegian coast. Four simplified synthetic analogues were also prepared and included in the study. Several of the studied compounds displayed MIC values in the micro-nanomolar range against 16 relevant marine species involved in both the micro- and macrofouling process. Settlement studies on Balanus improvisus cyprids indicated a deterrent effect and a low toxicity for selected compounds. The two synoxazolidinones displayed broad activity and are shown to be among the most active natural antifouling bromotyrosine derivatives described. Synoxazolidinone C displayed selected antifouling properties comparable to the commercial antifouling product Sea-Nine-211. The pulmonarins prevented the growth of several bacterial strains at nanomolar concentrations but displayed a lower activity toward microalgae and no effect on barnacles. The linear and cyclic synthetic peptidic mimics also displayed potent antifouling activities mainly directed against bacterial adhesion and growth.
Collapse
Affiliation(s)
- Rozenn Trepos
- School of Biological Sciences, University of Portsmouth , Portsmouth PO1 2DY, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Martín-Rodríguez AJ, González-Orive A, Hernández-Creus A, Morales A, Dorta-Guerra R, Norte M, Martín VS, Fernández JJ. On the influence of the culture conditions in bacterial antifouling bioassays and biofilm properties: Shewanella algae, a case study. BMC Microbiol 2014; 14:102. [PMID: 24755232 PMCID: PMC4021068 DOI: 10.1186/1471-2180-14-102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/11/2014] [Indexed: 12/22/2022] Open
Abstract
Background A variety of conditions (culture media, inocula, incubation temperatures) are employed in antifouling tests with marine bacteria. Shewanella algae was selected as model organism to evaluate the effect of these parameters on: bacterial growth, biofilm formation, the activity of model antifoulants, and the development and nanomechanical properties of the biofilms. The main objectives were: 1) To highlight and quantify the effect of these conditions on relevant parameters for antifouling studies: biofilm morphology, thickness, roughness, surface coverage, elasticity and adhesion forces. 2) To establish and characterise in detail a biofilm model with a relevant marine strain. Results Both the medium and the temperature significantly influenced the total cell densities and biofilm biomasses in 24-hour cultures. Likewise, the IC50 of three antifouling standards (TBTO, tralopyril and zinc pyrithione) was significantly affected by the medium and the initial cell density. Four media (Marine Broth, MB; 2% NaCl Mueller-Hinton Broth, MH2; Luria Marine Broth, LMB; and Supplemented Artificial Seawater, SASW) were selected to explore their effect on the morphological and nanomechanical properties of 24-h biofilms. Two biofilm growth patterns were observed: a clear trend to vertical development, with varying thickness and surface coverage in MB, LMB and SASW, and a horizontal, relatively thin film in MH2. The Atomic Force Microscopy analysis showed the lowest Young modulii for MB (0.16 ± 0.10 MPa), followed by SASW (0.19 ± 0.09 MPa), LMB (0.22 ± 0.13 MPa) and MH2 (0.34 ± 0.16 MPa). Adhesion forces followed an inverted trend, being higher in MB (1.33 ± 0.38 nN) and lower in MH2 (0.73 ± 0.29 nN). Conclusions All the parameters significantly affected the ability of S. algae to grow and form biofilms, as well as the activity of antifouling molecules. A detailed study has been carried out in order to establish a biofilm model for further assays. The morphology and nanomechanics of S. algae biofilms were markedly influenced by the nutritional environments in which they were developed. As strategies for biofilm formation inhibition and biofilm detachment are of particular interest in antifouling research, the present findings also highlight the need for a careful selection of the assay conditions.
Collapse
Affiliation(s)
- Alberto J Martín-Rodríguez
- Institute for Bio-Organic Chemistry "Antonio González", Center for Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna, Avenida Astrofísico Francisco Sánchez 2, La Laguna, Tenerife 38206, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Antifouling activity of synthetic alkylpyridinium polymers using the barnacle model. Mar Drugs 2014; 12:1959-76. [PMID: 24699112 PMCID: PMC4012450 DOI: 10.3390/md12041959] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 01/11/2023] Open
Abstract
Polymeric alkylpyridinium salts (poly-APS) isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera) sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite) as a model (cyprids and II stage nauplii larvae) in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC₅₀) after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC₅₀: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L) than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC₅₀ of 4.83 and 1.86 mg/L.
Collapse
|
59
|
Xu J, Fan X, Yang J, Ma C, Ye X, Zhang G. Poly(l-lactide-co-2-(2-methoxyethoxy)ethyl methacrylate): A biodegradable polymer with protein resistance. Colloids Surf B Biointerfaces 2014; 116:531-6. [DOI: 10.1016/j.colsurfb.2014.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 02/07/2023]
|
60
|
Hawkins ML, Faÿ F, Réhel K, Linossier I, Grunlan MA. Bacteria and diatom resistance of silicones modified with PEO-silane amphiphiles. BIOFOULING 2014; 30:247-258. [PMID: 24447301 DOI: 10.1080/08927014.2013.862235] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Silicone coatings with enhanced antifouling behavior towards bacteria, diatoms, and a diatom dominated slime were prepared by incorporating PEO-silane amphiphiles with varied siloxane tether lengths (a-c): α-(EtO)3Si(CH2)2-oligodimethylsiloxanen-block-poly(ethylene oxide)8-OCH3 [n = 0 (a), 4 (b), and 13 (c)]. Three modified silicone coatings (A-C) were prepared by the acid-catalyzed sol-gel cross-linking of a-c, respectively, each with a stoichiometric 2:3 M ratio of α, ω-bis(Si-OH)polydimethylsiloxane (Mn = 3,000 g mol(-1)). The coatings were exposed to the marine bacterium Bacillus sp.416 and the diatom (microalga) Cylindrotheca closterium, as well as a mixed community of Bacillus sp. and C. closterium. In addition, in situ microfouling was assessed by maintaining the coatings in the Atlantic Ocean. Under all test conditions, biofouling was reduced to the highest extent on coating C which was prepared with the PEO-silane amphiphile having the longest siloxane tether length (c).
Collapse
Affiliation(s)
- Melissa L Hawkins
- a Department of Biomedical Engineering , Texas A&M University , College Station , TX , USA
| | | | | | | | | |
Collapse
|
61
|
Lin HC, Wong YH, Tsang LM, Chu KH, Qian PY, Chan BKK. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology. BIOFOULING 2014; 30:169-181. [PMID: 24329402 DOI: 10.1080/08927014.2013.853051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles.
Collapse
Affiliation(s)
- Hsiu-Chin Lin
- a Biodiversity Research Center, Academia Sinica , Taipei 115 , Taiwan
| | | | | | | | | | | |
Collapse
|
62
|
Gabilondo R, Graham H, Caldwell GS, Clare AS. Laboratory culture and evaluation of the tubeworm Ficopomatus enigmaticus for biofouling studies. BIOFOULING 2013; 29:869-878. [PMID: 23844848 DOI: 10.1080/08927014.2013.810214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ficopomatus enigmaticus, a euryhaline tube-building polychaete worm with a subtropical to temperate distribution, is an increasingly problematic fouling organism. In this study, laboratory protocols for maintaining adult broodstock, destructive spawning, larval culture and a settlement bioassay were developed. The method routinely yielded approximately 200 larvae per spawning adult. The mean number of eggs released by females was 1517 and the mean number of spermatozoids per male was 4.425 × 10(6). Fertilisation success, using an initial concentration of 2.5 × 10(6) spermatozoids and 45 eggs ml(-1), was 76% after a contact time of 60 min. The first cleavage occurred after 20 min and the trocophore larval stage was attained by 18 h. Metatrochophores were observed 4 d post-fertilisation and were competent to settle 1 day later. The proportion of larvae that settled after 48 h was surface-dependent: 10.24% on glass, 1.39% on polystyrene and 11.07% on a poly(dimethylsiloxane) elastomer. The presence of a biofilm on glass increased the rate of settlement 7-fold compared to clean glass.
Collapse
Affiliation(s)
- Regina Gabilondo
- School of Marine Science and Technology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | | | |
Collapse
|
63
|
Finlay JA, Schultz MP, Cone G, Callow ME, Callow JA. A novel biofilm channel for evaluating the adhesion of diatoms to non-biocidal coatings. BIOFOULING 2013; 29:401-411. [PMID: 23574353 DOI: 10.1080/08927014.2013.777046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Laboratory assessment of the adhesion of diatoms to non-toxic fouling-release coatings has tended to focus on single cells rather than the more complex state of a biofilm. A novel culture system based on open channel flow with adjustable bed shear stress values (0-2.4 Pa) has been used to produce biofilms of Navicula incerta. Biofilm development on glass and polydimethylsiloxane elastomer (PDMSe) showed a biphasic relationship with bed shear stress, which was characterised by regions of biofilm stability and instability reflecting cohesion between cells relative to the adhesion to the substratum. On glass, a critical shear stress of 1.3-1.4 Pa prevented biofilm development, whereas on PDMS, biofilms continued to grow at 2.4 Pa. Studies of diatom biofilms cultured on zwitterionic coatings using a bed shear stress of 0.54 Pa showed lower biomass production and adhesion strength on poly(sulfobetaine methacrylate) compared to poly(carboxybetaine methacrylate). The dynamic biofilm approach provides additional information to supplement short duration laboratory evaluations.
Collapse
Affiliation(s)
- John A Finlay
- School of Biosciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | |
Collapse
|
64
|
Abstract
This paper reports the cell-substratum interactions of planktonic (Chlorella vulgaris) and benthic (Botryococcus sudeticus) freshwater green algae with hydrophilic (glass) and hydrophobic (indium tin oxide) substrata to determine the critical parameters controlling the adhesion of algal cells to surfaces. The surface properties of the algae and substrata were quantified by measuring contact angle, electrophoretic mobility, and streaming potential. Using these data, the cell-substratum interactions were modeled using thermodynamic, DLVO, and XDLVO approaches. Finally, the rate of attachment and the strength of adhesion of the algal cells were quantified using a parallel-plate flow chamber. The results indicated that (1) acid-base interactions played a critical role in the adhesion of algae, (2) the hydrophobic alga attached at a higher density and with a higher strength of adhesion on both substrata, and (3) the XDLVO model was the most accurate in predicting the density of cells and their strength of adhesion. These results can be used to select substrata to promote/inhibit the adhesion of algal cells to surfaces.
Collapse
Affiliation(s)
- Altan Ozkan
- Civil, Architechtural and Environmental Engineering Department, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
65
|
Synthesis of cembranoid analogues and evaluation of their potential as quorum sensing inhibitors. Bioorg Med Chem 2013. [DOI: 10.1016/j.bmc.2012.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
66
|
Petrone L, Lee SSC, Teo SLM, Birch WR. A novel geometry for a laboratory-based larval settlement assay. BIOFOULING 2013; 29:213-221. [PMID: 23368408 DOI: 10.1080/08927014.2012.762643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel configuration, consisting of two apposing surfaces bounding a vertical water column, is presented and evaluated for settlement assays using cyprids of Balanus amphitrite. Assays were conducted on planar surfaces, ranging from hydrophobic polystyrene to hydrophilic glass and including CH(3)- and NH(3) (+)-terminated self-assembled monolayers (SAMs). Identical apposing surfaces generated settlement rates comparable to those obtained in prior studies, while a choice assay yielded consistent results, with individual replicates each indicating the preferred surface for settlement. As gravity favours contact with the lower apposing surface, cyprids trapped at the air/water interface settled on or around the perimeter where the water column meets the lower substratum. These cyprids are capable of selecting a settlement location and are thus not lost to the assay. The assay geometry lends itself to assessing cyprid exploration and settlement on planar surfaces with chemical patterning, including relief microstructures, without using a confining material or requiring the coating of a three-dimensional well.
Collapse
Affiliation(s)
- Luigi Petrone
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, A∗STAR, Singapore
| | | | | | | |
Collapse
|
67
|
Tello E, Castellanos L, Arévalo-Ferro C, Duque C. Disruption in quorum-sensing systems and bacterial biofilm inhibition by cembranoid diterpenes isolated from the octocoral Eunicea knighti. JOURNAL OF NATURAL PRODUCTS 2012; 75:1637-1642. [PMID: 22905751 DOI: 10.1021/np300313k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Three new cembranoid diterpenes, knightine (1), 11(R)-hydroxy-12(20)-en-knightal (2), and 11(R)-hydroxy-12(20)-en-knightol acetate (3), were isolated as minor constituents of the Caribbean gorgonian Eunicea knighti, along with the known cembranoids 4-8. The stereostructures of the new compounds were determined by detailed spectroscopic analyses and a combination of chemical transformations and modified Mosher's methods. All isolated cembranoids were tested against fouling using a quorum-sensing inhibition (QSI) assay and a biofilm inhibition test. Compounds 2, 3, and 6 disrupted QS systems at lower concentrations than kojic acid and Cu(2)O, and in most cases cembranoids 1-8 showed bacterial biofilm inhibition at lower concentrations than kojic acid.
Collapse
Affiliation(s)
- Edisson Tello
- Departamento de Química, Universidad Nacional de Colombia, AA 14490, Bogotá, Colombia
| | | | | | | |
Collapse
|
68
|
Correa H, Zorro P, Arevalo-Ferro C, Puyana M, Duque C. Possible Ecological Role of Pseudopterosins G and P-U and SECO-Pseudopterosins J and K from the Gorgonian Pseudopterogorgia elisabethae from Providencia Island (SW Caribbean) in Regulating Microbial Surface Communities. J Chem Ecol 2012; 38:1190-202. [DOI: 10.1007/s10886-012-0182-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/30/2012] [Accepted: 08/10/2012] [Indexed: 11/28/2022]
|
69
|
Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilm forming bacteria. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60181-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
70
|
Carl C, Poole AJ, Vucko MJ, Williams MR, Whalan S, de Nys R. Enhancing the efficacy of fouling-release coatings against fouling by Mytilus galloprovincialis using nanofillers. BIOFOULING 2012; 28:1077-1091. [PMID: 23025554 DOI: 10.1080/08927014.2012.728588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fouling-release (FR) coatings minimise the adhesion strength of fouling organisms. This study describes improved technologies to control the settlement and adhesion of the important fouling organism Mytilus galloprovincialis by incorporating the nanofillers titanium dioxide (TiO(2)) and carbon nanotubes (CNTs) in polydimethylsiloxane (PDMS) matrices. The incorporation of TiO(2) prevented larval settlement when photoactivated with UV light, even at the lowest concentration of the nanofiller (3.75 wt%). Notably, there was 100% mortality of pediveligers exposed to photoactivated TiO(2). However, plantigrades initially settled to photoactivated TiO(2), but their adhesion strength was significantly reduced on these surfaces in comparison to blank PDMS. In addition, plantigrades had high mortality after 6 h. In contrast to the enhanced antifouling and FR properties of PDMS incorporating TiO(2), the incorporation of CNTs had no effect on the settlement and adhesion of M. galloprovincialis.
Collapse
Affiliation(s)
- C Carl
- School of Marine and Tropical Biology, Centre of Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
71
|
Evariste E, Gachon CMM, Callow ME, Callow JA. Development and characteristics of an adhesion bioassay for ectocarpoid algae. BIOFOULING 2012; 28:15-27. [PMID: 22146003 DOI: 10.1080/08927014.2011.643466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Species of filamentous brown algae in the family Ectocarpaceae are significant members of fouling communities. However, there are few systematic studies on the influence of surface physico-chemical properties on their adhesion. In the present paper the development of a novel, laboratory-based adhesion bioassay for ectocarpoid algae, at an appropriate scale for the screening of sets of experimental samples in well-replicated and controlled experiments is described. The assays are based on the colonization of surfaces from a starting inoculum consisting of multicellular filaments obtained by blending the cultured alga Ectocarpus crouaniorum. The adhesion strength of the biomass after 14 days growth was assessed by applying a hydrodynamic shear stress. Results from adhesion tests on a set of standard surfaces showed that E. crouaniorum adhered more weakly to the amphiphilic Intersleek® 900 than to the more hydrophobic Intersleek® 700 and Silastic® T2 coatings. Adhesion to hydrophilic glass was also weak. Similar results were obtained for other cultivated species of Ectocarpus but differed from those obtained with the related ectocarpoid species Hincksia secunda. The response of the ectocarpoid algae to the surfaces was also compared to that for the green alga, Ulva.
Collapse
|
72
|
Hodson OM, Monty JP, Molino PJ, Wetherbee R. Novel whole cell adhesion assays of three isolates of the fouling diatom Amphora coffeaeformis reveal diverse responses to surfaces of different wettability. BIOFOULING 2012; 28:381-393. [PMID: 22509778 DOI: 10.1080/08927014.2012.680020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Whole cell, strength of adhesion assays of three different isolates of the fouling diatom Amphora coffeaeformis were compared using a hydrophilic surface viz. acid washed glass (AWG), and a hydrophobic surface viz. a self assembled monolayer (SAM) of undecanethiol (UDT). Assays were performed using a newly designed turbulent flow channel that permits direct observation and recording of cell populations on a test surface. Exposure to continuous shear stress over 3 h revealed that the more motile isolate, WIL2, adhered much more strongly to both test surfaces compared to the other two strains. When the response of the isolates to shear stress after 3 h was compared, there was no significant difference in the percentage of cells removed, irrespective of surface wettability. Cells of the three isolates of A. coffeaeformis varied significantly in their response to different surfaces during initial adhesion, indicating the presence of a wide range of 'physiological races' within this species.
Collapse
Affiliation(s)
- Oliver M Hodson
- School of Botany, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | |
Collapse
|
73
|
Tello E, Castellanos L, Arevalo-Ferro C, Rodríguez J, Jiménez C, Duque C. Absolute stereochemistry of antifouling cembranoid epimers at C-8 from the Caribbean octocoral Pseudoplexaura flagellosa. Revised structures of plexaurolones. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
74
|
Carl C, Poole AJ, Vucko MJ, Williams MR, Whalan S, de Nys R. Optimising settlement assays of pediveligers and plantigrades of Mytilus galloprovincialis. BIOFOULING 2011; 27:859-868. [PMID: 21827335 DOI: 10.1080/08927014.2011.605943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The mussel Mytilus galloprovincialis is a common aquaculture species, and also a major fouling organism that has negative economic impacts. There are no standard assay conditions for this important species and therefore, this study quantified the effect of key factors on the settlement of pediveligers and plantigrades. Density dependent settlement did not occur for either pediveligers or plantigrades. Settlement increased in drop assays in a 12 h light:12 h dark cycle, while bottom shade had no effect of any magnitude. In addition, settlement was significantly enhanced by storing pediveligers for between 4 and 24 days at 4 °C. Overall, these data provide the template to optimise and standardise static laboratory settlement assays for mussels in order to develop materials that either enhance settlement for the aquaculture industry, or deter settlement for antifouling applications. Furthermore, simple mechanisms such as storage at 4 °C can enhance settlement beyond current methods used in aquaculture hatcheries.
Collapse
Affiliation(s)
- C Carl
- School of Marine & Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
75
|
Sundaram HS, Cho Y, Dimitriou MD, Weinman CJ, Finlay JA, Cone G, Callow ME, Callow JA, Kramer EJ, Ober CK. Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. BIOFOULING 2011; 27:589-602. [PMID: 21985292 DOI: 10.1080/08927014.2011.587662] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fluorine-free mixed amphiphilic block copolymers with mixtures of short side groups of polydimethyl siloxane (PDMS) and polyethylene glycol (PEG) were synthesized and studied for their ability to influence the surface properties and control the adhesion of marine organisms to coated surfaces. The settlement (attachment) and strength of adhesion of two different marine algae, the green seaweed Ulva and the diatom Navicula, were evaluated against the surfaces. It is known that hydrophobic coatings based on polydimethyl siloxane elastomers (PDMSe) are prone to protein adsorption and accumulation of strongly adherent diatom slimes, in contrast to PEG-based hydrophilic surfaces that inhibit protein adsorption and moderate only weak adhesion of diatoms. By incorporating both PDMS and PEG side chains into the polymers, the effect of incorporating both polar and non-polar groups on fouling-release could be studied. The dry surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The ability of these mixed amphiphilic polymers to reconstruct in water was examined using underwater bubble contact angle and dynamic water contact angle experiments. To understand more about surface reconstruction behavior, protein adsorption experiments were carried out with fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) on both dry and pre-soaked surfaces.
Collapse
Affiliation(s)
- Harihara S Sundaram
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Camps M, Briand JF, Guentas-Dombrowsky L, Culioli G, Bazire A, Blache Y. Antifouling activity of commercial biocides vs. natural and natural-derived products assessed by marine bacteria adhesion bioassay. MARINE POLLUTION BULLETIN 2011; 62:1032-1040. [PMID: 21414639 DOI: 10.1016/j.marpolbul.2011.02.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
Biofilm formation is a key step during marine biofouling, the natural colonization of immersed substrata, leading to major economic and ecological consequences. Consequently, bacteria have been used for the screening of new non-toxic antifoulants: the adhesion of five strains isolated on three French locations was monitored using a fluorescence-based assay and toxicity was also evaluated. Nine biocides including commercial, natural and natural-derived products were tested. The commercial antifoulants, TBTO and Sea Nine showed low EC(50) but high toxicity. The non-commercial products TFA-Z showed significant anti-adhesion activities and appeared to be non-toxic, suggesting a specific anti-adhesion mechanism. In addition, the strains could be classified depending on their sensitivity to the molecules used even if strain sensitivity also depended on the molecules tested. In conclusion, TFA-Z would be a promising candidate as non-toxic antifoulant and our results strengthen the need to perform antifouling bioassays with a panel of strains showing different response profiles.
Collapse
Affiliation(s)
- Mercedes Camps
- Laboratoire MAPIEM, EA 4323, Biofouling et Substances Naturelles Marines, Université du Sud Toulon-Var, 83162 La Valette-du-Var, France
| | | | | | | | | | | |
Collapse
|
77
|
Wei J, Yan L, Hu X, Chen X, Huang Y, Jing X. Non-specific and specific interactions on functionalized polymer surface studied by FT-SPR. Colloids Surf B Biointerfaces 2011; 83:220-8. [DOI: 10.1016/j.colsurfb.2010.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 11/25/2022]
|
78
|
Tahmourespour A, Salehi R, Kermanshahi RK, Eslami G. The anti-biofouling effect of Lactobacillus fermentum-derived biosurfactant against Streptococcus mutans. BIOFOULING 2011; 27:385-392. [PMID: 21526440 DOI: 10.1080/08927014.2011.575458] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biofouling in the oral cavity often causes serious problems. The ability of Streptococcus mutans to synthesize extracellular glucans from sucrose using glucosyltransferases (gtfs) is vital for the initiation and progression of dental caries. Recently, it was demonstrated that some biological compounds, such as secondary metabolites of probiotic bacteria, have an anti-biofouling effect. In this study, S. mutans was investigated for the anti-biofouling effect of Lactobacillus fermentum (L.f.)-derived biosurfactant. It was hypothesized that two enzymes produced by S. mutans, glucosyltransferases B and C, would be inhibited by the L.f.-biosurfactant. When these two enzymes were inhibited, fewer biofilms (or none) were formed. RNA was extracted from a 48-h biofilm of S. mutans formed in the presence or absence of L.f. biosurfactant, and the gene expression level of gtfB/C was quantified using the real-time polymerase chain reaction (RT-PCR). L.f. biosurfactant showed substantial anti-biofouling activity because it reduced the process of attachment and biofilm production and also showed a reduction in gtfB/C gene expression (P value < 0.05).
Collapse
Affiliation(s)
- A Tahmourespour
- Department of Basic Medical Sciences, Khorasgan Branch, Islamic Azad University, Isfahan, Iran.
| | | | | | | |
Collapse
|
79
|
Blihoghe D, Manzo E, Villela A, Cutignano A, Picariello G, Faimali M, Fontana A. Evaluation of the antifouling properties of 3-alyklpyridine compounds. BIOFOULING 2011; 27:99-109. [PMID: 21181570 DOI: 10.1080/08927014.2010.542587] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
One of the most promising alternative technologies to antifouling (AF) biocides based on toxic heavy metals lies in the development of natural eco-friendly biocides. The present study evaluates the AF potential of structurally different compounds containing a 3-alkylpyridine moiety. The products, namely poly 3-alkylpyridinium salts, saraine, and haminols, were either extracted or derived from natural sources (the sponges Haliclona sp. and Reniera sarai and the mollusc Haminoea fusari), or obtained by chemical synthesis. All the molecules tested showed generally good anti-settlement activity against larvae of the barnacle Amphibalanus (=Balanus) amphitrite (EC(50) values between 0.19 and 3.61 μg ml(-1) and low toxicity (LC(50) values ranging from 2.04 to over 100 μg ml(-1)) with non-target organisms. For the first time, the AF potential of a synthetic monomeric 3-alkylpyridine was demonstrated, suggesting that chemical synthesis is as a realistic way to produce large amounts of these compounds for future research and development of environmentally-friendly AF biocides.
Collapse
|
80
|
Paul VJ, Ritson-Williams R, Sharp K. Marine chemical ecology in benthic environments. Nat Prod Rep 2010; 28:345-87. [PMID: 21125086 DOI: 10.1039/c0np00040j] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA.
| | | | | |
Collapse
|
81
|
Salta M, Wharton JA, Stoodley P, Dennington SP, Goodes LR, Werwinski S, Mart U, Wood RJK, Stokes KR. Designing biomimetic antifouling surfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:4729-4754. [PMID: 20855318 DOI: 10.1098/rsta.2010.0195] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Marine biofouling is the accumulation of biological material on underwater surfaces, which has plagued both commercial and naval fleets. Biomimetic approaches may well provide new insights into designing and developing alternative, non-toxic, surface-active antifouling (AF) technologies. In the marine environment, all submerged surfaces are affected by the attachment of fouling organisms, such as bacteria, diatoms, algae and invertebrates, causing increased hydrodynamic drag, resulting in increased fuel consumption, and decreased speed and operational range. There are also additional expenses of dry-docking, together with increased fuel costs and corrosion, which are all important economic factors that demand the prevention of biofouling. Past solutions to AF have generally used toxic paints or coatings that have had a detrimental effect on marine life worldwide. The prohibited use of these antifoulants has led to the search for biologically inspired AF strategies. This review will explore the natural and biomimetic AF surface strategies for marine systems.
Collapse
Affiliation(s)
- Maria Salta
- National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Faÿ F, Linossier I, Carteau D, Dheilly A, Silkina A, Vallée-Rééhel K. Booster biocides and microfouling. BIOFOULING 2010; 26:787-798. [PMID: 20824571 DOI: 10.1080/08927014.2010.518234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Antifouling (AF) paints are used to prevent the attachment of living organisms to the submerged surfaces of ships, boats and aquatic structures, usually by the release of biocides. Apart from copper, organic booster biocides are the main active components in AF paints, but their use can have a negative impact on the marine environment. The direct effects of biocides on marine bacteria are poorly known. This work investigates the impact of two biocides, viz. diuron and tolylfluanid, on the growth and the viability of marine microorganisms and on their ability to form biofilms. The biocides in solution were found to inhibit growth of two strains of marine bacteria, viz. Pseudoalteromonas and Vibrio vulnificus, at a high concentration (1000 microg ml(-1)), but only a small effect on viability was observed. Confocal laser scanning microscopy (CLSM) showed that the booster biocides decreased biofilm formation by both bacteria. At a concentration of 10 microg ml(-1), the biocides inhibited cell attachment and reduced biofilm thickness on glass surfaces. The percentage of live cells in the biofilms was also reduced. The effect of the biocides on two diatoms, Fragilaria pinnata and Cylindrotheca closterium, was also evaluated in terms of growth rate, biomass, chlorophyll a content and attachment to glass. The results demonstrate that diuron and tolylfluanid are more active against diatoms than bacteria.
Collapse
Affiliation(s)
- Fabienne Faÿ
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), UE3884, Université de Bretagne Sud (UBS), Lorient, France.
| | | | | | | | | | | |
Collapse
|
83
|
Bressy C, Hellio C, Marechal JP, Tanguy B, Margaillan A. Bioassays and field immersion tests: a comparison of the antifouling activity of copper-free poly(methacrylic)-based coatings containing tertiary amines and ammonium salt groups. BIOFOULING 2010; 26:769-777. [PMID: 20818516 DOI: 10.1080/08927014.2010.516392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper focuses on the activity spectrum of three dimethylalkyl tertiary amines as potential active molecules and the corresponding ammonium salt-based antifouling (AF) paints. Bioassays (using marine bacteria, microalgae and barnacles) and field tests were combined to assess the AF activity of coatings. Bioassay results demonstrated that the ammonium salt-based paints did not inhibit the growth of microorganisms (except the dimethyldodecylammonium-based coatings) and that the tertiary amines were potent towards bacteria, diatoms, and barnacle larvae at non-toxic concentrations (therapeutic ratio, LC50/EC50, <1). The results from field tests indicated that the ammonium salt-based coatings inhibited the settlement of macrofouling and the dimethylhexadecylammonium-based coatings provided protection against slime in comparison with PVC blank panels. Thus, results from laboratory assays did not fully concur with the AF activity of the paints in the field trial.
Collapse
Affiliation(s)
- C Bressy
- Laboratoire Matériaux Polymères-Interfaces-Environnement Marin, E.A. 4323. Université du Sud Toulon Var, La Valette du Var, France.
| | | | | | | | | |
Collapse
|
84
|
Rosenhahn A, Schilp S, Kreuzer HJ, Grunze M. The role of "inert" surface chemistry in marine biofouling prevention. Phys Chem Chem Phys 2010; 12:4275-86. [PMID: 20407695 DOI: 10.1039/c001968m] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The settlement and colonization of marine organisms on submerged man-made surfaces is a major economic problem for many marine industries. The most apparent detrimental effects of biofouling are increased fuel consumption of ships, clogging of membranes and heat exchangers, disabled underwater sensors, and growth of biofoulers in aquaculture systems. The presently common-but environmentally very problematic-way to deal with marine biofouling is to incorporate biocides, which use biocidal products in the surface coatings to kill the colonizing organisms, into the surface coatings. Since the implementation of the International Maritime Organization Treaty on biocides in 2008, the use of tributyltin (TBT) is restricted and thus environmentally benign but effective surface coatings are required. In this short review, we summarize the different strategies which are pursued in academia and industry to better understand the mechanisms of biofouling and to develop strategies which can be used for industrial products. Our focus will be on chemically "inert" model surface coatings, in particular oligo- and poly(ethylene glycol) (OEG and PEG) functionalized surface films. The reasons for choosing this class of chemistry as an example are three-fold: Firstly, experiments on spore settlement on OEG and PEG coatings help to understand the mechanism of non-fouling of highly hydrated interfaces; secondly, these studies defy the common assumption that surface hydrophilicity-as measured by water contact angles-is an unambiguous and predictive tool to determine the fouling behavior on the surface; and thirdly, choosing this system is a good example for "interfacial systems chemistry": it connects the behavior of unicellular marine organisms with the antifouling properties of a hydrated surface coating with structural and electronic properties as derived from ab initio quantum mechanical calculations using the electronic wave functions of oxygen, hydrogen, and carbon. This short review is written to outline for non-experts the hierarchical structure in length- and timescale of marine biofouling and the role of surface chemistry in fouling prevention. Experts in the field are referred to more specialized recent reviews.
Collapse
Affiliation(s)
- Axel Rosenhahn
- Applied Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
85
|
Plouguerné E, Ioannou E, Georgantea P, Vagias C, Roussis V, Hellio C, Kraffe E, Stiger-Pouvreau V. Anti-microfouling activity of lipidic metabolites from the invasive brown alga Sargassum muticum (Yendo) Fensholt. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:52-61. [PMID: 19468792 DOI: 10.1007/s10126-009-9199-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/02/2009] [Indexed: 05/22/2023]
Abstract
The purification of the chloroform extract from the brown invasive macroalga Sargassum muticum, through a series of chromatographic separations, yielded 12 fractions that were tested against strains of bacteria, microalgae, and fungi involved in marine biofilm formation. The chemical composition of four (a, c, g, and k) out of the six fractions that exhibited anti-microfouling activity was investigated. Fraction a contained saturated and unsaturated linear hydrocarbons (C12-C27). Arachidonic acid was identified as the major metabolite in fraction c whereas fraction g contained mainly palmitic, linolenic, and palmitoleic acids. Fraction k was submitted to further purification yielding the fraction kAcaF1e that was composed of galactoglycerolipids, active against the growth of two of the four bacterial strains (Shewanella putrefaciens and Polaribacter irgensii) and all tested fungi. These promising results, in particular the isolation and the activity of galactoglycerolipids, attest the potential of the huge biomass of S. muticum as a source of new environmentally friendly antifouling compounds.
Collapse
Affiliation(s)
- Erwan Plouguerné
- Université Européenne de Bretagne, Université de Brest, EA LEBHAM 3877, European Institute for Marine Sciences (IUEM), Place N. Copernic, 29280 Plouzané, France.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Gladis F, Eggert A, Karsten U, Schumann R. Prevention of biofilm growth on man-made surfaces: evaluation of antialgal activity of two biocides and photocatalytic nanoparticles. BIOFOULING 2010; 26:89-101. [PMID: 20390559 DOI: 10.1080/08927010903278184] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As algal growth on man-made surfaces impacts their appearance, biocides and surfaces with self-cleaning properties are widely used in the building and paint industries. The objective of this study was to evaluate the antialgal activity of two biocides (triazine and isothiazoline) and photocatalytic nanoparticles of zinc oxide (20-60 nm). An aeroterrestrial green, microalgal strain of the genus Stichococcus was chosen as the test organism. By comparing a set of different structural and physiological performance parameters, lethal and also sublethal (chronic) effects were determined. Even though the herbicide triazine effectively inhibited growth (EC50 = 1.6 micromol l(-1)) and photosynthetic performance, structural properties (eg membrane integrity) were unaffected at the EC100 (250 micromol l(-1)), hence this herbicide did not kill the algal cells. In contrast, and due to their multiple modes of action, isothiazoline and the photocatalytic nanoparticles (the latter activated with low UV radiation) severely impacted all performance and structural parameters.
Collapse
Affiliation(s)
- F Gladis
- Department of Applied Ecology, Institute of Biological Sciences, University of Rostock, Rostock, Germany.
| | | | | | | |
Collapse
|
87
|
Olsen SM, Pedersen LT, Dam-Johansen K, Kiil S. A passive apparatus for controlled-flux delivery of biocides: hydrogen peroxide as an example. BIOFOULING 2010; 26:213-222. [PMID: 19937491 DOI: 10.1080/08927010903419622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new test method has been developed to estimate the required release rate of hydrogen peroxide (H2O2) to prevent marine biofouling. The technique exploits a well-defined concentration gradient of biocide across a cellulose acetate membrane. A controlled flux of H2O2, an environmentally friendly biocide, was obtained. Larvae of the barnacle, Balanus improvisus, were subjected to known release rates of H2O2 from a surface, under laboratory conditions. It was found that the distribution of settled larvae was not significantly different from the controls when H2O2 fluxes of 5-8 microg cm(-2) day(-1) were applied. However, release rates of 40 microg cm(-2) day(-1) significantly displaced the distribution of settled larvae towards the area of the chamber farthest away from the membrane. Membrane tests in seawater (Jyllinge Harbour, Denmark) for over 16 weeks showed that release rates of H2O2 of approximately 2800 microg cm(-2) day(-1) deterred biofouling efficiently. A H2O2 release rate of about 224 microg cm(-2) day(-1) resulted in some slime formation, but it was less than that on the H2O2-free control. It appears that to obtain efficient resistance to biofouling in natural seawater requires much higher membrane release rates of H2O2 (factor of between 5 and 50) than laboratory membrane exposure assays using barnacle larvae.
Collapse
|
88
|
Qian PY, Xu Y, Fusetani N. Natural products as antifouling compounds: recent progress and future perspectives. BIOFOULING 2010; 26:223-34. [PMID: 19960389 DOI: 10.1080/08927010903470815] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since early 2008, an increasing number of countries have ratified an international treaty to ban the application of antifouling (AF) coatings based on organotin compounds (eg tributyltin (TBT) and triphenyltin). As a result, the demand for environmentally friendly, non-toxic or low-toxicity AF compounds and technologies (green AF agents) has become an urgent reality. Marine coatings based on Cu2O and various other biocides have a negative impact on the environment and they must eventually be replaced by new, effective, and environmentally friendly AF compounds. This mini-review describes important AF compounds discovered from a variety of organisms from 2004 until mid 2009, and discusses recent and general trends in the discovery of AF compounds. Finally, a perspective on the future of AF compound development is presented. The discussion is aimed at updating scientists and engineers on the current challenges facing AF research.
Collapse
Affiliation(s)
- Pei-Yuan Qian
- KAUST Global Partnership Program, Department of Biology, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | | | | |
Collapse
|
89
|
D'Souza F, Bruin A, Biersteker R, Donnelly G, Klijnstra J, Rentrop C, Willemsen P. Bacterial assay for the rapid assessment of antifouling and fouling release properties of coatings and materials. J Ind Microbiol Biotechnol 2009; 37:363-70. [PMID: 20039190 DOI: 10.1007/s10295-009-0681-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/08/2009] [Indexed: 11/25/2022]
Abstract
An assay has been developed to accurately quantify the growth and release behaviour of bacterial biofilms on several test reference materials and coatings, using the marine bacterium Cobetia marina as a model organism. The assay can be used to investigate the inhibition of bacterial growth and release properties of many surfaces when compared to a reference. The method is based upon the staining of attached bacterial cells with the nucleic acid-binding, green fluorescent SYTO 13 stain. A strong linear correlation exists between the fluorescence of the bacterial suspension measured (RFU) using a plate reader and the total bacterial count measured with epifluorescence microscopy. This relationship allows the fluorescent technique to be used for the quantification of bacterial cells attached to surfaces. As the bacteria proliferate on the surface over a period of time, the relative fluorescence unit (RFU) measured using the plate reader also shows an increase with time. This was observed on all three test surfaces (glass, Epikote and Silastic T2) over a period of 4 h of bacterial growth, followed by a release assay, which was carried out by the application of hydrodynamic shear forces using a custom-made rotary device. Different fixed rotor speeds were tested, and based on the release analysis, 12 knots was used to provide standard shear force. The assay developed was then applied for assessing three different antifouling coatings of different surface roughness. The novel assay allows the rapid and sensitive enumeration of attached bacteria directly on the coated surface. This is the first plate reader assay technique that allows estimation of irreversibly attached bacterial cells directly on the coated surface without their removal from the surface or extraction of a stain into solution.
Collapse
Affiliation(s)
- Fraddry D'Souza
- Corrosion and Antifouling, TNO Science and Industry, Bevesierweg MML (Harssens), Den Helder, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
90
|
Tello E, Castellanos L, Arevalo-Ferro C, Duque C. Cembranoid diterpenes from the Caribbean sea whip Eunicea knighti. JOURNAL OF NATURAL PRODUCTS 2009; 72:1595-1602. [PMID: 19778088 DOI: 10.1021/np9002492] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Three new cembranoid diterpenes, knightol (1), knightol acetate (2), and knightal (3), along with the known asperdiol (4) and asperdiol acetate (5), were isolated as major compounds from the sea whip Eunicea knighti collected from the Colombian Caribbean. The structures and absolute configurations of 1-5 were determined on the basis of spectroscopic analyses and by a combination of chemical and NMR methods, multiple correlations observed in a ROESY experiment, and using the modified Mosher method. Additionally, five semisynthetic compounds, 6-10, obtained during the chemical transformations of the natural compounds are here reported for the first time. All compounds were tested for antimicrobial activity against marine bacteria associated with heavily fouled surfaces and were also screened for antiquorum sensing (QS) activity. Compounds 1, 3, and 8 showed significant antimicrobial activity against bacterial isolates, and 1, 3, 7, and 8 showed excellent anti-QS inhibition activity measured by means of bioluminescence inhibition with biosensor model systems.
Collapse
Affiliation(s)
- Edisson Tello
- Departamento de Quimica, Universidad Nacional de Colombia, Bogota, Colombia
| | | | | | | |
Collapse
|
91
|
Viano Y, Bonhomme D, Camps M, Briand JF, Ortalo-Magné A, Blache Y, Piovetti L, Culioli G. Diterpenoids from the Mediterranean brown alga Dictyota sp. evaluated as antifouling substances against a marine bacterial biofilm. JOURNAL OF NATURAL PRODUCTS 2009; 72:1299-304. [PMID: 19548693 DOI: 10.1021/np900102f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Four new cyclized diterpenes, one xenicane (1) and three dolabellanes (2-4), were isolated, along with seven previously reported metabolites [3beta-hydroxydilophol (5), dictyols E (6) and C (7), hydroxycrenulide (8), 9-acetoxy-15-hydroxy-1,6-dollabelladiene (9), hydroxyacetyldictyolal (10), and fucoxanthin], from a Mediterranean species of Dictyota sp. collected in Le Brusc Lagoon (French Mediterranean coast). Their structures, as well as their relative configurations, were determined through extensive spectrometric (IR, HRESIMS, 1D and 2D NMR) data analysis and molecular modeling studies and by comparison with those reported in literature. Some of the isolated metabolites were evaluated for their antiadhesion activity against a marine bacterial biofilm (Pseudoalteromonas sp. D41).
Collapse
Affiliation(s)
- Yannick Viano
- Universite du Sud Toulon-Var, Avenue de l'Universite, BP 20132, F-83957 La Garde Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|