51
|
BMSC-Derived Exosomes Ameliorate LPS-Induced Acute Lung Injury by miR-384-5p-Controlled Alveolar Macrophage Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9973457. [PMID: 34234888 PMCID: PMC8216833 DOI: 10.1155/2021/9973457] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common critical diseases. Bone marrow mesenchymal stem cell (BMSC) transplantation is previously shown to effectively rescue injured lung tissues. The therapeutic mechanism of BMSC-derived exosomes is not fully understood. Here, we investigated the BMSC-derived exosomal microRNAs (miRNAs) on effecting lipopolysaccharide- (LPS-) induced ALI and its mechanism. In vitro, rat alveolar macrophages were treated with or without exosomes in the presence of 10 μg/ml LPS for 24 h. Cell viability was determined with Cell Counting Kit-8 assay. Apoptotic ratio was determined with TUNEL and Annexin V-FITC/PI double staining. The levels of miR-384-5p and autophagy-associated genes were measured by RT-qPCR and western blot. Autophagy was observed by TEM and assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay. In vivo, we constructed LPS-induced ALI rat models. Exosomes were injected into rats via the caudal vein or trachea 4 h later after LPS treatment. The lung histological pathology was determined by H&E staining. Pulmonary vascular permeability was assessed by wet-to-dry weight ratio and Evans blue dye leakage assay, and inflammatory cytokines in serum and BALF were measured by ELISA. Furthermore, the therapeutic mechanism involved in miR-384-5p and Beclin-1 was determined. The results showed that BMSC-derived exosomes were taken up by the alveolar macrophages and attenuated LPS-induced alveolar macrophage viability loss and apoptosis. Exosomes effectively improved the survival rate of ALI rats within 7 days, which was associated with alleviating lung pathological changes and pulmonary vascular permeability and attenuating inflammatory response. Furthermore, this study for the first time found that miR-384-5p was enriched in BMSC-derived exosomes, and exosomal miR-384-5p resulted in relieving LPS-injured autophagy disorder in alveolar macrophages by targeting Beclin-1. Therefore, exosomal miR-384-5p could be demonstrated as a promising therapeutic strategy for ALI/ARDS.
Collapse
|
52
|
Hwang HS, Kim H, Han G, Lee JW, Kim K, Kwon IC, Yang Y, Kim SH. Extracellular Vesicles as Potential Therapeutics for Inflammatory Diseases. Int J Mol Sci 2021; 22:5487. [PMID: 34067503 PMCID: PMC8196952 DOI: 10.3390/ijms22115487] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EV) deliver cargoes such as nucleic acids, proteins, and lipids between cells and serve as an intercellular communicator. As it is revealed that most of the functions associated to EVs are closely related to the immune response, the important role of EVs in inflammatory diseases is emerging. EVs can be functionalized through EV surface engineering and endow targeting moiety that allows for the target specificity for therapeutic applications in inflammatory diseases. Moreover, engineered EVs are considered as promising nanoparticles to develop personalized therapeutic carriers. In this review, we highlight the role of EVs in various inflammatory diseases, the application of EV as anti-inflammatory therapeutics, and the current state of the art in EV engineering techniques.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.S.H.); (H.K.); (G.H.); (J.W.L.); (K.K.); (I.C.K.)
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Korea
| | - Hyosuk Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.S.H.); (H.K.); (G.H.); (J.W.L.); (K.K.); (I.C.K.)
| | - Geonhee Han
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.S.H.); (H.K.); (G.H.); (J.W.L.); (K.K.); (I.C.K.)
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Jong Won Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.S.H.); (H.K.); (G.H.); (J.W.L.); (K.K.); (I.C.K.)
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.S.H.); (H.K.); (G.H.); (J.W.L.); (K.K.); (I.C.K.)
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.S.H.); (H.K.); (G.H.); (J.W.L.); (K.K.); (I.C.K.)
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.S.H.); (H.K.); (G.H.); (J.W.L.); (K.K.); (I.C.K.)
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.S.H.); (H.K.); (G.H.); (J.W.L.); (K.K.); (I.C.K.)
| |
Collapse
|
53
|
Zhou L, Hao Q, Sugita S, Naito Y, He H, Yeh CC, Lee JW. Role of CD44 in increasing the potency of mesenchymal stem cell extracellular vesicles by hyaluronic acid in severe pneumonia. Stem Cell Res Ther 2021; 12:293. [PMID: 34016170 PMCID: PMC8136222 DOI: 10.1186/s13287-021-02329-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Background Although promising, clinical translation of human mesenchymal stem or stromal cell-derived extracellular vesicles (MSC EV) for acute lung injury is potentially limited by significant production costs. The current study was performed to determine whether pretreatment of MSC EV with high molecular weight hyaluronic acid (HMW HA) would increase the therapeutic potency of MSC EV in severe bacterial pneumonia. Methods In vitro experiments were performed to determine the binding affinity of HMW HA to MSC EV and its uptake by human monocytes, and whether HMW HA primed MSC EV would increase bacterial phagocytosis by the monocytes. In addition, the role of CD44 receptor on MSC EV in the therapeutic effects of HMW HA primed MSC EV were investigated. In Pseudomonas aeruginosa (PA) pneumonia in mice, MSC EV primed with or without HMW HA were instilled intravenously 4 h after injury. After 24 h, the bronchoalveolar lavage fluid, blood, and lungs were analyzed for levels of bacteria, inflammation, MSC EV trafficking, and lung pathology. Results MSC EV bound preferentially to HMW HA at a molecular weight of 1.0 MDa compared with HA with a molecular weight of 40 KDa or 1.5 MDa. HMW HA primed MSC EV further increased MSC EV uptake and bacterial phagocytosis by monocytes compared to treatment with MSC EV alone. In PA pneumonia in mice, instillation of HMW HA primed MSC EV further reduced inflammation and decreased the bacterial load by enhancing the trafficking of MSC EV to the injured alveolus. CD44 siRNA pretreatment of MSC EV prior to incubation with HMW HA eliminated its trafficking to the alveolus and therapeutic effects. Conclusions HMW HA primed MSC EV significantly increased the potency of MSC EV in PA pneumonia in part by enhancing the trafficking of MSC EV to the sites of inflammation via the CD44 receptor on MSC EV which was associated with increased antimicrobial activity. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02329-2.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Qi Hao
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Shinji Sugita
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Yoshifumi Naito
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Hongli He
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Che-Chung Yeh
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Jae-Woo Lee
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA.
| |
Collapse
|
54
|
Wang YL, Zheng CM, Lee YH, Cheng YY, Lin YF, Chiu HW. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. Int J Mol Sci 2021; 22:4787. [PMID: 33946416 PMCID: PMC8124422 DOI: 10.3390/ijms22094787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
With rapid industrialization, humans produce an increasing number of products. The composition of these products is usually decomposed. However, some substances are not easily broken down and gradually become environmental pollutants. In addition, these substances may cause bioaccumulation, since the substances can be fragmented into micro- and nanoparticles. These particles or their interactions with other toxic matter circulate in humans via the food chain or air. Whether these micro- and nanoparticles interfere with extracellular vesicles (EVs) due to their similar sizes is unclear. Micro- and nanoparticles (MSs and NSs) induce several cell responses and are engulfed by cells depending on their size, for example, particulate matter with a diameter ≤2.5 μm (PM2.5). Autophagy is a mechanism by which pathogens are destroyed in cells. Some artificial materials are not easily decomposed in organisms. How do these cells or tissues respond? In addition, autophagy operates through two pathways (increasing cell death or cell survival) in tumorigenesis. Many MSs and NSs have been found that induce autophagy in various cells and tissues. As a result, this review focuses on how these particles interfere with cells and tissues. Here, we review MSs, NSs, and PM2.5, which result in different autophagy-related responses in various tissues or cells.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan;
| | - Ya-Yun Cheng
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
55
|
Therapeutic Applications of Stem Cells and Extracellular Vesicles in Emergency Care: Futuristic Perspectives. Stem Cell Rev Rep 2021; 17:390-410. [PMID: 32839921 PMCID: PMC7444453 DOI: 10.1007/s12015-020-10029-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine (RM) is an interdisciplinary field that aims to repair, replace or regenerate damaged or missing tissue or organs to function as close as possible to its physiological architecture and functions. Stem cells, which are undifferentiated cells retaining self-renewal potential, excessive proliferation and differentiation capacity into offspring or daughter cells that form different lineage cells of an organism, are considered as an important part of the RM approaches. They have been widely investigated in preclinical and clinical studies for therapeutic purposes. Extracellular vesicles (EVs) are the vital mediators that regulate the therapeutic effects of stem cells. Besides, they carry various types of cargo between cells which make them a significant contributor of intercellular communication. Given their role in physiological and pathological conditions in living cells, EVs are considered as a new therapeutic alternative solution for a variety of diseases in which there is a high unmet clinical need. This review aims to summarize and identify therapeutic potential of stem cells and EVs in diseases requiring acute emergency care such as trauma, heart diseases, stroke, acute respiratory distress syndrome and burn injury. Diseases that affect militaries or societies including acute radiation syndrome, sepsis and viral pandemics such as novel coronavirus disease 2019 are also discussed. Additionally, featuring and problematic issues that hamper clinical translation of stem cells and EVs are debated in a comparative manner with a futuristic perspective. Graphical Abstract.
Collapse
|
56
|
Shi J, Zhao YC, Niu ZF, Fan HJ, Hou SK, Guo XQ, Sang L, Lv Q. Mesenchymal stem cell-derived small extracellular vesicles in the treatment of human diseases: Progress and prospect. World J Stem Cells 2021; 13:49-63. [PMID: 33584979 PMCID: PMC7859991 DOI: 10.4252/wjsc.v13.i1.49] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could differentiate into multiple tissues. MSC-based therapy has become an attractive and promising strategy for treating human diseases through immune regulation and tissue repair. However, accumulating data have indicated that MSC-based therapeutic effects are mainly attributed to the properties of the MSC-sourced secretome, especially small extracellular vesicles (sEVs). sEVs are signaling vehicles in intercellular communication in normal or pathological conditions. sEVs contain natural contents, such as proteins, mRNA, and microRNAs, and transfer these functional contents to adjacent cells or distant cells through the circulatory system. MSC-sEVs have drawn much attention as attractive agents for treating multiple diseases. The properties of MSC-sEVs include stability in circulation, good biocompatibility, and low toxicity and immunogenicity. Moreover, emerging evidence has shown that MSC-sEVs have equal or even better treatment efficacies than MSCs in many kinds of disease. This review summarizes the current research efforts on the use of MSC-sEVs in the treatment of human diseases and the existing challenges in their application from lab to clinical practice that need to be considered.
Collapse
Affiliation(s)
- Jie Shi
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yu-Chen Zhao
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Zhi-Fang Niu
- General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Hao-Jun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shi-Ke Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiao-Qin Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Lu Sang
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| |
Collapse
|
57
|
MSC Based Therapies to Prevent or Treat BPD-A Narrative Review on Advances and Ongoing Challenges. Int J Mol Sci 2021; 22:ijms22031138. [PMID: 33498887 PMCID: PMC7865378 DOI: 10.3390/ijms22031138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting.
Collapse
|
58
|
Hu W, Song X, Yu H, Sun J, Wang H, Zhao Y. Clinical Translational Potentials of Stem Cell-Derived Extracellular Vesicles in Type 1 Diabetes. Front Endocrinol (Lausanne) 2021; 12:682145. [PMID: 35095751 PMCID: PMC8789747 DOI: 10.3389/fendo.2021.682145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific disease characterized by the deficiency of insulin caused by the autoimmune destruction of pancreatic islet β cells. Stem cell-based therapies play essential roles in immunomodulation and tissue regeneration, both of which hold great promise for treating many autoimmune dysfunctions. However, their clinical translational potential has been limited by ethical issues and cell transplant rejections. Exosomes are small extracellular vesicles (EVs) released by almost all types of cells, performing a variety of cell functions through the delivery of their molecular contents such as proteins, DNAs, and RNAs. Increasing evidence suggests that stem cell-derived EVs exhibit similar functions as their parent cells, which may represent novel therapeutic agents for the treatment of autoimmune diseases including T1D. In this review, we summarize the current research progresses of stem cell-derived EVs for the treatment of T1D.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Hongjun Wang
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Throne Biotechnologies Inc., Paramus, NJ, United States
- *Correspondence: Yong Zhao,
| |
Collapse
|
59
|
Zhang D, Song D, Shi L, Sun X, Zheng Y, Zeng Y, Wang X. Mechanisms of interactions between lung-origin telocytes and mesenchymal stem cells to treat experimental acute lung injury. Clin Transl Med 2020; 10:e231. [PMID: 33377639 PMCID: PMC7724099 DOI: 10.1002/ctm2.231] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury is a serious form and major cause of patient death and still needs efficient therapies. The present study evidenced that co-transplantation of mesenchymal stem cells (MSCs) and telocytes (TCs) improved the severity of experimental lung tissue inflammation, edema, and injury, where TCs increased MSCs migration into the lung and the capacity of MSCs proliferation and movement. Of molecular mechanisms, Osteopontin-dominant networks were active in MSCs and TCs, and might play supportive and nutrimental roles in the interaction between MSCs and TCs, especially activated TCs by lipopolysaccharide. The interaction between epidermal growth factor and its receptor from MSCs and TCs could play critical roles in communications between MSCs and TCs, responsible for MSCs proliferation and movement, especially after inflammatory activation. Our studies provide the evidence that TCs possess nutrimental and supportive roles in implanted MSCs, and co-transplantation of MSCs and TCs can be a new alternative in the therapy of acute lung injury.
Collapse
Affiliation(s)
- Ding Zhang
- Zhongshan Hospital Institute of Clinical ScienceZhongshan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Pulmonary and Critical Care MedicineHuashan HospitalFudan UniversityShanghaiChina
| | - Dongli Song
- Zhongshan Hospital Institute of Clinical ScienceZhongshan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lin Shi
- Zhongshan Hospital Institute of Clinical ScienceZhongshan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xiaoru Sun
- Zhongshan Hospital Institute of Clinical ScienceZhongshan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yonghua Zheng
- Department of Respiratory MedicineShanghai Jinshan Tinglin HospitalShanghaiChina
| | - Yiming Zeng
- Department of Pulmonary and Critical Care MedicineClinical Center for Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujian ProvinceChina
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical ScienceZhongshan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
60
|
Massa M, Croce S, Campanelli R, Abbà C, Lenta E, Valsecchi C, Avanzini MA. Clinical Applications of Mesenchymal Stem/Stromal Cell Derived Extracellular Vesicles: Therapeutic Potential of an Acellular Product. Diagnostics (Basel) 2020; 10:diagnostics10120999. [PMID: 33255416 PMCID: PMC7760121 DOI: 10.3390/diagnostics10120999] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
In the last decade, the secreting activity of mesenchymal stem/stromal cells (MSCs) has been widely investigated, due to its possible therapeutic role. In fact, MSCs release extracellular vesicles (EVs) containing relevant biomolecules such as mRNAs, microRNAs, bioactive lipids, and signaling receptors, able to restore physiological conditions where regenerative or anti-inflammatory actions are needed. An actual advantage would come from the therapeutic use of EVs with respect to MSCs, avoiding the possible immune rejection, the lung entrapment, improving the safety, and allowing the crossing of biological barriers. A number of concerns still have to be solved regarding the mechanisms determining the beneficial effect of MSC-EVs, the possible alteration of their properties as a consequence of the isolation/purification methods, and/or the best approach for a large-scale production for clinical use. Most of the preclinical studies have been successful, reporting for MSC-EVs a protecting role in acute kidney injury following ischemia reperfusion, a potent anti-inflammatory and anti-fibrotic effects by reducing disease associated inflammation and fibrosis in lung and liver, and the modulation of both innate and adaptive immune responses in graft versus host disease (GVHD) as well as autoimmune diseases. However, the translation of MSC-EVs to the clinical stage is still at the initial phase. Herein, we discuss the therapeutic potential of an acellular product such as MSC derived EVs (MSC-EVs) in acute and chronic pathologies.
Collapse
Affiliation(s)
- Margherita Massa
- Biochemistry, Biotechnology and Advanced Diagnostics Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (M.M.); (C.A.)
| | - Stefania Croce
- General Surgery Department, Fondazione IRCCS Policlinico S. Matteo, Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, Biochemistry, Biotechnology and Advanced Diagnostics Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Carlotta Abbà
- Biochemistry, Biotechnology and Advanced Diagnostics Laboratory, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (M.M.); (C.A.)
| | - Elisa Lenta
- Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
- Correspondence:
| |
Collapse
|
61
|
Trivisonno A, Nachira D, Boškoski I, Porziella V, Di Rocco G, Baldari S, Toietta G. Regenerative medicine approaches for the management of respiratory tract fistulas. Stem Cell Res Ther 2020; 11:451. [PMID: 33097096 PMCID: PMC7583298 DOI: 10.1186/s13287-020-01968-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Respiratory tract fistulas (or fistulae) are abnormal communications between the respiratory system and the digestive tract or the adjacent organs. The origin can be congenital or, more frequently, iatrogenic and the clinical presentation is heterogeneous. Respiratory tract fistulas can lead to severely reduced health-related quality of life and short survival. Therapy mainly relies on endoscopic surgical interventions but patients often require prolonged hospitalization and may develop complications. Therefore, more conservative regenerative medicine approaches, mainly based on lipotransfer, have also been investigated. Adipose tissue can be delivered either as unprocessed tissue, or after enzymatic treatment to derive the cellular stromal vascular fraction. In the current narrative review, we provide an overview of the main tissue/cell-based clinical studies for the management of various types of respiratory tract fistulas or injuries. Clinical experience is limited, as most of the studies were performed on a small number of patients. Albeit a conclusive proof of efficacy cannot be drawn, the reviewed studies suggest that grafting of adipose tissue-derived material may represent a minimally invasive and conservative treatment option, alternative to more aggressive surgical procedures. Knowledge on safety and tolerability acquired in prior studies can lead to the design of future, larger trials that may exploit innovative procedures for tissue processing to further improve the clinical outcome.
Collapse
Affiliation(s)
- Angelo Trivisonno
- Department of Surgical Science, University of Rome “La Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy
| | - Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Ivo Boškoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Venanzio Porziella
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
62
|
Harrell CR, Jovicic N, Djonov V, Volarevic V. Therapeutic Use of Mesenchymal Stem Cell-Derived Exosomes: From Basic Science to Clinics. Pharmaceutics 2020; 12:pharmaceutics12050474. [PMID: 32456070 PMCID: PMC7313713 DOI: 10.3390/pharmaceutics12050474] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSC) are, due to their immunosuppressive and regenerative properties, used as new therapeutic agents in cell-based therapy of inflammatory and degenerative diseases. A large number of experimental and clinical studies revealed that most of MSC-mediated beneficial effects were attributed to the effects of MSC-sourced exosomes (MSC-Exos). MSC-Exos are nano-sized extracellular vesicles that contain MSC-derived bioactive molecules (messenger RNA (mRNA), microRNAs (miRNAs)), enzymes, cytokines, chemokines, and growth factors) that modulate phenotype, function and homing of immune cells, and regulate survival and proliferation of parenchymal cells. In this review article, we emphasized current knowledge about molecular and cellular mechanisms that were responsible for MSC-Exos-based beneficial effects in experimental models and clinical trials. Additionally, we elaborated on the challenges of conventional MSC-Exos administration and proposed the use of new bioengineering and cellular modification techniques which could enhance therapeutic effects of MSC-Exos in alleviation of inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, FL 34684, USA;
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 2 Baltzerstrasse, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), Università di Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Correspondence: ; Tel.: +381-34306800; Fax: +381-34306800
| |
Collapse
|
63
|
Worthington EN, Hagood JS. Therapeutic Use of Extracellular Vesicles for Acute and Chronic Lung Disease. Int J Mol Sci 2020; 21:ijms21072318. [PMID: 32230828 PMCID: PMC7177288 DOI: 10.3390/ijms21072318] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) possess regenerative properties and have been shown to improve outcomes and survival in acute and chronic lung diseases, but there have been some safety concerns raised related to MSC-based therapy. Subsequent studies have demonstrated that many of the regenerative effects of MSCs can be attributed to the MSC-derived secretome, which contains soluble factors and extracellular vesicles (EVs). MSC-derived extracellular vesicles (MSC-derived EVs) replicate many of the beneficial effects of MSCs and contain a variety of bioactive factors that are transferred to recipient cells, mediating downstream signaling. MSC-derived EV therapy holds promise as a safe and effective treatment for pulmonary disease, but there remain many scientific and clinical questions that will need to be addressed before EVs are widely applied as a therapy. To date, the use of MSC-derived EVs as a treatment for lung disease has been conducted primarily in in vitro or pre-clinical animal models. In this review, we will discuss the current published research investigating the use of EVs as a potential therapeutic for acute lung injury/acute respiratory distress syndrome (ALI/ARDS), bronchopulmonary dysplasia (BPD), idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH), asthma, and silicosis.
Collapse
|
64
|
Svolacchia F, Svolacchia L. Use of microfiltered vs only disaggregated mesenchymal stem cells from adipose tissue in regenerative medicine. SCRIPTA MEDICA 2020. [DOI: 10.5937/scriptamed51-24968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Clinical use of adult mesenchymal stem cells (MSCa) in medicine and regenerative surgery is constantly evolving. Adipose tissue-derived stem cells (ADSc) are capable of inducing the production of new extracellular matrix (ECM), deposition of new collagen and early revascularisation. Methods: Flow cytometry was performed for 2 mL of cell colonies harvested from adipose tissue (AT). Comparation has been made of at disaggregated only and the same at disaggregated and microfiltered at 50 mm, 100 mm and 200 mm. Signs of inflammation after dermo-epidermal regeneration session through the mesotherapy method were observed and compared. Results: Even after filtration, significant number of ADSc was collected. An increase in the size of the filter did not always translate into an increase in the number of cells that were found in the microfiltrate. In the non-filtered at disaggregated in both cases, highest number of cells was found, as expected, but at the expense of more pronounced inflammation. Sampling with the 16 Gauge needle produces superior results compared to the cannula in all cases. Conclusion: With this method in medicine and regenerative surgery it will be easier to exploit the growth factors, mRNA, MicroRNA, lipids and bioactive peptides emitted in the MSCa signalling micro-vesicles as they are isolated from the inflammatory component.
Collapse
|