51
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
52
|
Brown AJ, Tsoulou C, Ward E, Gower E, Bhudia N, Chowdhury F, Dean TW, Faucher N, Gangar A, Dowell SJ. Pharmacological properties of acid N-thiazolylamide FFA2 agonists. Pharmacol Res Perspect 2015; 3:e00141. [PMID: 26236484 PMCID: PMC4492757 DOI: 10.1002/prp2.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
FFA2 is a receptor for short-chain fatty acids. Propionate (C3) and 4-chloro-α-(1-methylethyl)-N-2-thiazolyl-benzeneacetamide (4-CMTB), the prototypical synthetic FFA2 agonist, evoke calcium mobilization in neutrophils and inhibit lipolysis in adipocytes via this G-protein-coupled receptor. 4-CMTB contains an N-thiazolylamide motif but no acid group, and 4-CMTB and C3 bind to different sites on FFA2 and show allosteric cooperativity. Recently, FFA2 agonists have been described that contain both N-thiazolylamide and carboxylate groups, reminiscent of bitopic ligands. These are thought to engage the carboxylate-binding site on FFA2, but preliminary evidence suggests they do not bind to the same site as 4-CMTB even though both contain N-thiazolylamide. Here, we describe the characterization of four FFA2 ligands containing both N-thiazolylamide and carboxylate. (R)-3-benzyl-4-((4-(2-chlorophenyl)thiazol-2-yl)(methyl)amino)-4-oxobutanoic acid (compound 14) exhibits allosteric agonism with 4-CMTB but not C3. Three other compounds agonize FFA2 in [35S]GTPγS-incorporation or cAMP assays but behave as inverse agonists in yeast-based gene-reporter assays, showing orthosteric antagonism of C3 responses but allosteric antagonism of 4-CMTB responses. Thus, the bitopic-like FFA2 ligands engage the orthosteric site but do not compete at the site of 4-CMTB binding on an FFA2 receptor molecule. Compound 14 activates FFA2 on human neutrophils and mouse adipocytes, but appears not to inhibit lipolysis upon treatment of human primary adipocytes in spite of the presence of a functional FFA2 receptor in these cells. Hence, these new ligands may reveal differences in coupling of FFA2 between human and rodent adipose tissues.
Collapse
Affiliation(s)
- Andrew J Brown
- Biological Sciences, GlaxoSmithKline Stevenage, United Kingdom
| | | | - Emma Ward
- Biological Sciences, GlaxoSmithKline Stevenage, United Kingdom
| | - Elaine Gower
- Respiratory Therapy Area Unit, GlaxoSmithKline Stevenage, United Kingdom
| | - Nisha Bhudia
- Biological Sciences, GlaxoSmithKline Stevenage, United Kingdom
| | | | - Tony W Dean
- Chemical Sciences, GlaxoSmithKline Stevenage, United Kingdom
| | | | | | - Simon J Dowell
- Biological Sciences, GlaxoSmithKline Stevenage, United Kingdom
| |
Collapse
|
53
|
Krumm BE, Grisshammer R. Peptide ligand recognition by G protein-coupled receptors. Front Pharmacol 2015; 6:48. [PMID: 25852552 PMCID: PMC4360564 DOI: 10.3389/fphar.2015.00048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/27/2015] [Indexed: 01/07/2023] Open
Abstract
The past few years have seen spectacular progress in the structure determination of G protein-coupled receptors (GPCRs). We now have structural representatives from classes A, B, C, and F. Within the rhodopsin-like class A, most structures belong to the α group, whereas fewer GPCR structures are available from the β, γ, and δ groups, which include peptide GPCRs such as the receptors for neurotensin (β group), opioids, chemokines (γ group), and protease-activated receptors (δ group). Structural information on peptide GPCRs is restricted to complexes with non-peptidic drug-like antagonists with the exception of the chemokine receptor CXCR4 that has been crystallized in the presence of a cyclic peptide antagonist. Notably, the neurotensin receptor 1 is to date the only peptide GPCR whose structure has been solved in the presence of a peptide agonist. Although limited in number, the current peptide GPCR structures reveal great diversity in shape and electrostatic properties of the ligand binding pockets, features that play key roles in the discrimination of ligands. Here, we review these aspects of peptide GPCRs in view of possible models for peptide agonist binding.
Collapse
Affiliation(s)
- Brian E Krumm
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke - National Institutes of Health Rockville, MD, USA
| | - Reinhard Grisshammer
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke - National Institutes of Health Rockville, MD, USA
| |
Collapse
|
54
|
Wifling D, Löffel K, Nordemann U, Strasser A, Bernhardt G, Dove S, Seifert R, Buschauer A. Molecular determinants for the high constitutive activity of the human histamine H4 receptor: functional studies on orthologues and mutants. Br J Pharmacol 2015; 172:785-98. [PMID: 24903527 PMCID: PMC4301689 DOI: 10.1111/bph.12801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Some histamine H4 receptor ligands act as inverse agonists at the human H4 receptor (hH4 R), a receptor with exceptionally high constitutive activity, but as neutral antagonists or partial agonists at the constitutively inactive mouse H4 receptor (mH4 R) and rat H4 receptor (rH4 R). To study molecular determinants of constitutive activity, H4 receptor reciprocal mutants were constructed: single mutants: hH4 R-F169V, mH4 R-V171F, hH4 R-S179A, hH4 R-S179M; double mutants: hH4 R-F169V+S179A, hH4 R-F169V+S179M and mH4 R-V171F+M181S. EXPERIMENTAL APPROACH Site-directed mutagenesis with pVL1392 plasmids containing hH4 or mH4 receptors were performed. Wild-type or mutant receptors were co-expressed with Gαi2 and Gβ1 γ2 in Sf9 cells. Membranes were studied in saturation and competition binding assays ([(3) H]-histamine), and in functional [(35) S]-GTPγS assays with inverse, partial and full agonists of the hH4 receptor. KEY RESULTS Constitutive activity decreased from the hH4 receptor via the hH4 R-F169V mutant to the hH4 R-F169V+S179A and hH4 R-F169V+S179M double mutants. F169 alone or in concert with S179 plays a major role in stabilizing a ligand-free active state of the hH4 receptor. Partial inverse hH4 receptor agonists like JNJ7777120 behaved as neutral antagonists or partial agonists at species orthologues with lower or no constitutive activity. Some partial and full hH4 receptor agonists showed decreased maximal effects and potencies at hH4 R-F169V and double mutants. However, the mutation of S179 in the hH4 receptor to M as in mH4 receptor or A as in rH4 receptor did not significantly reduce constitutive activity. CONCLUSIONS AND IMPLICATIONS F169 and S179 are key amino acids for the high constitutive activity of hH4 receptors and may also be of relevance for other constitutively active GPCRs. LINKED ARTICLES This article is part of a themed issue on Histamine Pharmacology Update published in volume 170 issue 1. To view the other articles in this issue visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2013.170.issue-1/issuetoc.
Collapse
Affiliation(s)
- D Wifling
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Chilmonczyk Z, Bojarski AJ, Sylte I. Ligand-directed trafficking of receptor stimulus. Pharmacol Rep 2014; 66:1011-21. [DOI: 10.1016/j.pharep.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/28/2014] [Accepted: 06/05/2014] [Indexed: 01/14/2023]
|
56
|
He S, Tao YX. Defect in MAPK signaling as a cause for monogenic obesity caused by inactivating mutations in the melanocortin-4 receptor gene. Int J Biol Sci 2014; 10:1128-37. [PMID: 25332687 PMCID: PMC4202029 DOI: 10.7150/ijbs.10359] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is a Family A G protein-coupled receptor that plays an essential role in regulating energy homeostasis, including both energy intake and expenditure. Mutations leading to a reduced MC4R function confer a major gene effect for obesity. More than 170 distinct mutations have been identified in humans. In addition to the conventional Gs-stimulated cAMP pathway, the MC4R also activates MAPKs, especially ERK1/2. We also showed there is biased signaling in the two signaling pathways, with inverse agonists in the Gs-cAMP pathway acting as agonists for the ERK1/2 pathway. In the current study, we sought to determine whether defects in basal or agonist-induced ERK1/2 activation in MC4R mutants might potentially contribute to obesity pathogenesis in patients carrying these mutations. The constitutive and ligand-stimulated ERK1/2 activation were measured in wild type and 73 naturally occurring MC4R mutations. We showed that nineteen mutants had significantly decreased basal pERK1/2 level, and five Class V variants (where no functional defects have been identified previously), C40R, V50M, T112M, A154D and S295P, had impaired ligand-stimulated ERK1/2 activation. Our studies demonstrated for the first time that decreased basal or ligand-stimulated ERK1/2 signaling might contribute to obesity pathogenesis caused by mutations in the MC4R gene. We also observed biased signaling in 25 naturally occurring mutations in the Gs-cAMP and ERK1/2 pathways.
Collapse
Affiliation(s)
- Shan He
- 1. Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519, USA. ; 2. Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei 430070, China
| | - Ya-Xiong Tao
- 1. Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5519, USA
| |
Collapse
|
57
|
Marini P, Cascio MG, King A, Pertwee RG, Ross RA. Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid CB2 receptors. Br J Pharmacol 2014; 169:887-99. [PMID: 23711022 DOI: 10.1111/bph.12191] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 01/06/2013] [Accepted: 02/16/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Although cannabinoid CB₂ receptor ligands have been widely characterized in recombinant systems in vitro, little pharmacological characterization has been performed in tissues natively expressing CB₂ receptors. The aim of this study was to compare the pharmacology of CB₂ receptor ligands in tissue natively expressing CB₂ receptors (human, rat and mouse spleen) and hCB₂-transfected CHO cells. EXPERIMENTAL APPROACH We tested the ability of well-known cannabinoid CB₂ receptor ligands to stimulate or inhibit [³⁵S]GTPγS binding to mouse, rat and human spleen membranes and to hCB₂-transfected CHO cell membranes. cAMP assays were also performed in hCB₂-CHO cells. KEY RESULTS The data presented demonstrate that: (i) CP 55,940, WIN 55,212-2 and JWH 133 behave as CB₂ receptor full agonists both in spleen and hCB₂-CHO cells, in both [³⁵S]GTPγS and cAMP assays; (ii) JWH 015 behaves as a low-efficacy agonist in spleen as well as in hCB₂-CHO cells when tested in the [³⁵S]GTPγS assay, while it displays full agonism when tested in the cAMP assay using hCB₂-CHO cells; (iii) (R)-AM 1241 and GW 405833 behave as agonists in the [³⁵S]GTPγS assay using spleen, instead it behaves as a low-efficacy inverse agonist in hCB₂-CHO cells; and (iv) SR 144528, AM 630 and JTE 907 behave as CB₂ receptor inverse agonists in all the tissues. CONCLUSION AND IMPLICATIONS Our results demonstrate that CB₂ receptor ligands can display differential pharmacology when assays are conducted in tissues that natively express CB₂ receptors and imply that conclusions from recombinant CB₂ receptors should be treated with caution.
Collapse
Affiliation(s)
- Pietro Marini
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | | | |
Collapse
|
58
|
Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism. Neuropharmacology 2014; 89:113-21. [PMID: 25229719 DOI: 10.1016/j.neuropharm.2014.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/25/2014] [Accepted: 09/01/2014] [Indexed: 11/21/2022]
Abstract
Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq-mediated signaling pathways.
Collapse
|
59
|
Kooistra AJ, de Graaf C, Timmerman H. The receptor concept in 3D: from hypothesis and metaphor to GPCR-ligand structures. Neurochem Res 2014; 39:1850-61. [PMID: 25103230 DOI: 10.1007/s11064-014-1398-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/17/2022]
Abstract
The first mentioning of the word "receptor" for the structure with which a bioactive compound should react for obtaining its specific influence on a physiological system goes back to the years around 1900. The receptor concept was adapted from the lock and key theory for the enzyme substrate and blockers interactions. Through the years the concept, in the beginning rather being a metaphor, not a model, was refined and became reality in recent years. Not only the structures of receptors were elucidated, also the receptor machineries were unraveled. Following a brief historical review we will describe how the recent breakthroughs in the experimental determination of G protein-coupled receptor (GPCR) crystal structures can be complemented by computational modeling, medicinal chemistry, biochemical, and molecular pharmacological studies to obtain new insights into the molecular determinants of GPCR-ligand binding and activation. We will furthermore discuss how this information can be used for structure-based discovery of novel GPCR ligands that bind specific (allosteric) binding sites with desired effects on GPCR functional activity.
Collapse
Affiliation(s)
- Albert J Kooistra
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | | | | |
Collapse
|
60
|
Schrage R, Holze J, Klöckner J, Balkow A, Klause AS, Schmitz AL, De Amici M, Kostenis E, Tränkle C, Holzgrabe U, Mohr K. New insight into active muscarinic receptors with the novel radioagonist [3H]iperoxo. Biochem Pharmacol 2014; 90:307-19. [DOI: 10.1016/j.bcp.2014.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 01/22/2023]
|
61
|
Jaber M, Maoz M, Kancharla A, Agranovich D, Peretz T, Grisaru-Granovsky S, Uziely B, Bar-Shavit R. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer. Cell Mol Life Sci 2014; 71:2517-33. [PMID: 24177339 PMCID: PMC11113706 DOI: 10.1007/s00018-013-1498-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/29/2013] [Accepted: 10/14/2013] [Indexed: 01/08/2023]
Abstract
Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1-PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome.
Collapse
Affiliation(s)
- Mohammad Jaber
- Sharett-Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Miriam Maoz
- Sharett-Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Arun Kancharla
- Sharett-Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Daniel Agranovich
- Sharett-Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Tamar Peretz
- Sharett-Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Sorina Grisaru-Granovsky
- Department of Obstetrics and Gynecology, Shaare-Zedek and Hadassah-Hebrew University Medical Centers, POB 12000, 91120 Jerusalem, Israel
| | - Beatrice Uziely
- Sharett-Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Rachel Bar-Shavit
- Sharett-Institute of Oncology, Hadassah-Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| |
Collapse
|
62
|
Cosentino S, Castiglioni L, Colazzo F, Nobili E, Tremoli E, Rosa P, Abbracchio MP, Sironi L, Pesce M. Expression of dual nucleotides/cysteinyl-leukotrienes receptor GPR17 in early trafficking of cardiac stromal cells after myocardial infarction. J Cell Mol Med 2014; 18:1785-96. [PMID: 24909956 PMCID: PMC4196654 DOI: 10.1111/jcmm.12305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/25/2014] [Indexed: 12/23/2022] Open
Abstract
GPR17 is a Gi-coupled dual receptor activated by uracil-nucleotides and cysteinyl-leukotrienes. These mediators are massively released into hypoxic tissues. In the normal heart, GPR17 expression has been reported. By contrast, its role in myocardial ischaemia has not yet been assessed. In the present report, the expression of GPR17 was investigated in mice before and at early stages after myocardial infarction by using immunofluorescence, flow cytometry and RT-PCR. Before induction of ischaemia, results indicated the presence of the receptor in a population of stromal cells expressing the stem-cell antigen-1 (Sca-1). At early stages after ligation of the coronary artery, the receptor was expressed in Sca-1+ cells, and cells stained with Isolectin-B4 and anti-CD45 antibody. GPR17+ cells also expressed mesenchymal marker CD44. GPR17 function was investigated in vitro in a Sca-1+/CD31− cell line derived from normal hearts. These experiments showed a migratory function of the receptor by treatment with UDP-glucose and leukotriene LTD4, two GPR17 pharmacological agonists. The GPR17 function was finally assessed in vivo by treating infarcted mice with Cangrelor, a pharmacological receptor antagonist, which, at least in part, inhibited early recruitment of GPR17+ and CD45+ cells. These findings suggest a regulation of heart-resident mesenchymal cells and blood-borne cellular species recruitment following myocardial infarction, orchestrated by GPR17.
Collapse
Affiliation(s)
- Simona Cosentino
- Laboratorio di Biologia e Biochimica dell'Aterotrombosi, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Shonberg J, Lopez L, Scammells PJ, Christopoulos A, Capuano B, Lane JR. Biased Agonism at G Protein-Coupled Receptors: The Promise and the Challenges-A Medicinal Chemistry Perspective. Med Res Rev 2014; 34:1286-330. [DOI: 10.1002/med.21318] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeremy Shonberg
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Laura Lopez
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Peter J. Scammells
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Arthur Christopoulos
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - Ben Capuano
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| | - J. Robert Lane
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University (Parkville Campus); Parkville Victoria Australia
| |
Collapse
|
64
|
Defining and characterizing drug/compound function. Biochem Pharmacol 2014; 87:40-63. [DOI: 10.1016/j.bcp.2013.07.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 12/25/2022]
|
65
|
The natural product magnolol as a lead structure for the development of potent cannabinoid receptor agonists. PLoS One 2013; 8:e77739. [PMID: 24204944 PMCID: PMC3813752 DOI: 10.1371/journal.pone.0077739] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Magnolol (4-allyl-2-(5-allyl-2-hydroxyphenyl)phenol), the main bioactive constituent of the medicinal plant Magnolia officinalis, and its main metabolite tetrahydromagnolol were recently found to activate cannabinoid (CB) receptors. We now investigated the structure-activity relationships of (tetrahydro)magnolol analogs with variations of the alkyl chains and the phenolic groups and could considerably improve potency. Among the most potent compounds were the dual CB1/CB2 full agonist 2-(2-methoxy-5-propyl-phenyl)-4-hexylphenol (61a, Ki CB1∶0.00957 µM; Ki CB2∶0.0238 µM), and the CB2-selective partial agonist 2-(2-hydroxy-5-propylphenyl)-4-pentylphenol (60, Ki CB1∶0.362 µM; Ki CB2∶0.0371 µM), which showed high selectivity versus GPR18 and GPR55. Compound 61b, an isomer of 61a, was the most potent GPR55 antagonist with an IC50 value of 3.25 µM but was non-selective. The relatively simple structures, which possess no stereocenters, are easily accessible in a four- to five-step synthetic procedure from common starting materials. The central reaction step is the well-elaborated Suzuki-Miyaura cross-coupling reaction, which is suitable for a combinatorial chemistry approach. The scaffold is versatile and may be fine-tuned to obtain a broad range of receptor affinities, selectivities and efficacies.
Collapse
|
66
|
Corder G, Doolen S, Donahue RR, Winter MK, Jutras BL, He Y, Hu X, Wieskopf JS, Mogil JS, Storm DR, Wang ZJ, McCarson KE, Taylor BK. Constitutive μ-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 2013; 341:1394-9. [PMID: 24052307 DOI: 10.1126/science.1239403] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Opioid receptor antagonists increase hyperalgesia in humans and animals, which indicates that endogenous activation of opioid receptors provides relief from acute pain; however, the mechanisms of long-term opioid inhibition of pathological pain have remained elusive. We found that tissue injury produced μ-opioid receptor (MOR) constitutive activity (MOR(CA)) that repressed spinal nociceptive signaling for months. Pharmacological blockade during the posthyperalgesia state with MOR inverse agonists reinstated central pain sensitization and precipitated hallmarks of opioid withdrawal (including adenosine 3',5'-monophosphate overshoot and hyperalgesia) that required N-methyl-D-aspartate receptor activation of adenylyl cyclase type 1. Thus, MOR(CA) initiates both analgesic signaling and a compensatory opponent process that generates endogenous opioid dependence. Tonic MOR(CA) suppression of withdrawal hyperalgesia may prevent the transition from acute to chronic pain.
Collapse
Affiliation(s)
- G Corder
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Clarke WP, Chavera TA, Silva M, Sullivan LC, Berg KA. Signalling profile differences: paliperidone versus risperidone. Br J Pharmacol 2013; 170:532-45. [PMID: 23826915 PMCID: PMC3791992 DOI: 10.1111/bph.12295] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Paliperidone is an active metabolite of the second-generation atypical antipsychotic, risperidone recently approved for the treatment of schizophrenia and schizoaffective disorder. Because paliperidone differs from risperidone by only a single hydroxyl group, questions have been raised as to whether there are significant differences in the effects elicited between these two drugs. EXPERIMENTAL APPROACH We compared the relative efficacies of paliperidone versus risperidone to regulate several cellular signalling pathways coupled to four selected GPCR targets that are important for either therapeutic or adverse effects: human dopamine D2 , human serotonin 2A receptor subtype (5-HT2A ), human serotonin 2C receptor subtype and human histamine H1 receptors. KEY RESULTS Whereas the relative efficacies of paliperidone and risperidone were the same for some responses, significant differences were found for several receptor-signalling systems, with paliperidone having greater or less relative efficacy than risperidone depending upon the receptor-response pair. Interestingly, for 5-HT2A -mediated recruitment of β-arrestin, 5-HT2A -mediated sensitization of ERK, and dopamine D2 -mediated sensitization of adenylyl cyclase signalling, both paliperidone and risperidone behaved as agonists. CONCLUSIONS AND IMPLICATIONS These results suggest that the single hydroxyl group of paliperidone promotes receptor conformations that can differ from those of risperidone leading to differences in the spectrum of regulation of cellular signal transduction cascades. Such differences in signalling at the cellular level could lead to differences between paliperidone and risperidone in therapeutic efficacy or in the generation of adverse effects.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Antipsychotic Agents/chemistry
- Antipsychotic Agents/pharmacology
- Arrestins/metabolism
- CHO Cells
- Cricetinae
- Cricetulus
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Drug Inverse Agonism
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Histamine Agonists/pharmacology
- Humans
- Isoxazoles/chemistry
- Isoxazoles/pharmacology
- Molecular Structure
- Paliperidone Palmitate
- Pyrimidines/chemistry
- Pyrimidines/pharmacology
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/genetics
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Histamine H1/drug effects
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/metabolism
- Risperidone/chemistry
- Risperidone/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Signal Transduction/drug effects
- Structure-Activity Relationship
- Transfection
- beta-Arrestins
Collapse
Affiliation(s)
- W P Clarke
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
68
|
Armstrong SP, Seeber RM, Ayoub MA, Feldman BJ, Pfleger KDG. Characterization of three vasopressin receptor 2 variants: an apparent polymorphism (V266A) and two loss-of-function mutations (R181C and M311V). PLoS One 2013; 8:e65885. [PMID: 23762448 PMCID: PMC3675069 DOI: 10.1371/journal.pone.0065885] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/30/2013] [Indexed: 02/01/2023] Open
Abstract
Arginine vasopressin (AVP) is released from the posterior pituitary and controls water homeostasis. AVP binding to vasopressin V2 receptors (V2Rs) located on kidney collecting duct epithelial cells triggers activation of Gs proteins, leading to increased cAMP levels, trafficking of aquaporin-2 water channels, and consequent increased water permeability and antidiuresis. Typically, loss-of-function V2R mutations cause nephrogenic diabetes insipidus (NDI), whereas gain-of-function mutations cause nephrogenic syndrome of inappropriate antidiuresis (NSIAD). Here we provide further characterization of two mutant V2Rs, R181C and M311V, reported to cause complete and partial NDI respectively, together with a V266A variant, in a patient diagnosed with NSIAD. Our data in HEK293FT cells revealed that for cAMP accumulation, AVP was about 500- or 30-fold less potent at the R181C and M311V mutants than at the wild-type receptor respectively (and about 4000- and 60-fold in COS7 cells respectively). However, in contrast to wild type V2R, the R181C mutant failed to increase inositol phosphate production, while with the M311V mutant, AVP exhibited only partial agonism in addition to a 37-fold potency decrease. Similar responses were detected in a BRET assay for β-arrestin recruitment, with the R181C receptor unresponsive to AVP, and partial agonism with a 23-fold decrease in potency observed with M311V in both HEK293FT and COS7 cells. Notably, the V266A V2R appeared functionally identical to the wild-type receptor in all assays tested, including cAMP and inositol phosphate accumulation, β-arrestin interaction, and in a BRET assay of receptor ubiquitination. Each receptor was expressed at comparable levels. Hence, the M311V V2R retains greater activity than the R181C mutant, consistent with the milder phenotype of NDI associated with this mutant. Notably, the R181C mutant appears to be a Gs protein-biased receptor incapable of signaling to inositol phosphate or recruiting β-arrestin. The etiology of NSIAD in the patient with V266A V2R remains unknown.
Collapse
MESH Headings
- Animals
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Arginine Vasopressin/metabolism
- Arrestins/genetics
- Arrestins/metabolism
- COS Cells
- Chlorocebus aethiops
- Cyclic AMP/metabolism
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/metabolism
- Diabetes Insipidus, Nephrogenic/pathology
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Gene Expression Regulation
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/pathology
- HEK293 Cells
- Humans
- Inappropriate ADH Syndrome/genetics
- Inappropriate ADH Syndrome/metabolism
- Inappropriate ADH Syndrome/pathology
- Inositol Phosphates/metabolism
- Mutation
- Polymorphism, Genetic
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Signal Transduction
- beta-Arrestins
Collapse
Affiliation(s)
- Stephen P. Armstrong
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Ruth M. Seeber
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Mohammed Akli Ayoub
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
- Protein Research Chair - Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Brian J. Feldman
- Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Kevin D. G. Pfleger
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
69
|
Maximov PY, Lee TM, Jordan VC. The discovery and development of selective estrogen receptor modulators (SERMs) for clinical practice. CURRENT CLINICAL PHARMACOLOGY 2013; 8:135-55. [PMID: 23062036 PMCID: PMC3624793 DOI: 10.2174/1574884711308020006] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 07/11/2012] [Accepted: 10/03/2012] [Indexed: 01/13/2023]
Abstract
Selective estrogen receptor modulators (SERMs) are structurally different compounds that interact with intracellular estrogen receptors in target organs as estrogen receptor agonists or antagonists. These drugs have been intensively studied over the past decade and have proven to be a highly versatile group for the treatment of different conditions associated with postmenopausal women's health, including hormone responsive cancer and osteoporosis. Tamoxifen, a failed contraceptive is currently used to treat all stages of breast cancer, chemoprevention in women at high risk for breast cancer and also has beneficial effects on bone mineral density and serum lipids in postmenopausal women. Raloxifene, a failed breast cancer drug, is the only SERM approved internationally for the prevention and treatment of postmenopausal osteoporosis and vertebral fractures. However, although these SERMs have many benefits, they also have some potentially serious adverse effects, such as thromboembolic disorders and, in the case of tamoxifen, uterine cancer. These adverse effects represent a major concern given that long-term therapy is required to prevent osteoporosis or prevent and treat breast cancer. The search for the 'ideal' SERM, which would have estrogenic effects on bone and serum lipids, neutral effects on the uterus, and antiestrogenic effects on breast tissue, but none of the adverse effects associated with current therapies, is currently under way. Ospemifene, lasofoxifene, bazedoxifene and arzoxifene, which are new SERM molecules with potentially greater efficacy and potency than previous SERMs, have been investigated for use in the treatment and prevention of osteoporosis. These drugs have been shown to be comparably effective to conventional hormone replacement therapy in animal models, with potential indications for an improved safety profile. Clinical efficacy data from ongoing phase III trials are available or are awaited for each SERM so that a true understanding of the therapeutic potential of these compounds can be obtained. In this article, we describe the discovery and development of the group of medicines called SERMs. The newer SERMs in late development: ospemifene, lasofoxifene, bazedoxifene, are arzoxifene are described in detail.
Collapse
Affiliation(s)
- Philipp Y Maximov
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd NW, Research Building, Suite E204A, Washington, DC 20057, USA
| | - Theresa M Lee
- Division of Hematology and Oncology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC 20057, USA
| | - V. Craig Jordan
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd NW, Research Building, Suite E204A, Washington, DC 20057, USA
| |
Collapse
|
70
|
Diaz C, Labit-Le Bouteiller C, Yvon S, Cambon-Kernëis A, Roasio A, Jamme MF, Aries A, Feuillerat C, Perret E, Guette F, Dieu P, Miloux B, Albène D, Hasel N, Kaghad M, Ferran E, Lupker J, Ferrara P. A Strategy Combining Differential Low-Throughput Screening and Virtual Screening (DLS-VS) Accelerating the Discovery of new Modulators for the Orphan GPR34 Receptor. Mol Inform 2013; 32:213-29. [PMID: 27481282 DOI: 10.1002/minf.201200047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/05/2012] [Indexed: 12/21/2022]
Abstract
The DLS-VS strategy was developed as an integrated method for identifying chemical modulators for orphan GPCRs. It combines differential low-throughput screening (DLS) and virtual screening (VS). The two cascaded techniques offer complementary advantages and allow the experimental testing of a minimal number of compounds. First, DLS identifies modulators specific for the considered receptor among a set of receptors, through the screening of a small library with diverse chemical compounds. Then, an active molecular model of the receptor is built by homology to a validated template, and it is progressively refined by rotamers modification for key side-chains, by VS of the already screened library, and by iterative selection of the model generating the best enrichment. The refined active model is finally used for the VS of a large chemical library and the selection of a small set of compounds for experimental testing. Applied to the orphan receptor GPR34, the DLS-VS strategy combined the experimental screening of 20 000 compounds and the virtual screening of 1 250 000 compounds. It identified one agonist and eight inverse agonists, showing a high chemical diversity. We describe the method. The strategy can be applied to other GPCRs.
Collapse
Affiliation(s)
- Constantino Diaz
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156.
| | - Christine Labit-Le Bouteiller
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Stéphane Yvon
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Aimée Cambon-Kernëis
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Annette Roasio
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Marie-Françoise Jamme
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Amélie Aries
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Claude Feuillerat
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Eric Perret
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Fréderique Guette
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Pierre Dieu
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Brigitte Miloux
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Danielle Albène
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Nathalie Hasel
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Mourad Kaghad
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Edgardo Ferran
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Jan Lupker
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Pascual Ferrara
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| |
Collapse
|
71
|
Kenakin T. New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. Br J Pharmacol 2013; 168:554-75. [PMID: 22994528 PMCID: PMC3579279 DOI: 10.1111/j.1476-5381.2012.02223.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/03/2012] [Accepted: 09/12/2012] [Indexed: 01/14/2023] Open
Abstract
The present-day concept of drug efficacy has changed completely from its original description as the property of agonists that causes tissue activation. The ability to visualize the multiple behaviours of seven transmembrane receptors has shown that drugs can have many efficacies and also that the transduction of drug stimulus to various cellular stimulus-response cascades can be biased towards some but not all pathways. This latter effect leads to agonist 'functional selectivity', which can be favourable for the improvement of agonist therapeutics. However, in addition, biased agonist potency becomes cell type dependent with the loss of the monotonic behaviour of stimulus-response mechanisms, leading to potential problems in agonist quantification. This has an extremely important effect on the discovery process for new agonists since it now cannot be assumed that a given screening or lead optimization assay will correctly predict therapeutic behaviour. This review discusses these ideas and how new approaches to quantifying agonist effect may be used to circumvent the cell type dependence of agonism. This article, written by a corresponding member of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), reviews our current understanding of the interaction of ligands with seven transmembrane receptors. Further information on these pharmacological concepts is being incorporated into the IUPHAR/BPS database GuideToPharmacology.org.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
72
|
Bohinc BN, Gesty-Palmer D. Arrestins in Bone. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:335-58. [DOI: 10.1016/b978-0-12-394440-5.00013-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
73
|
Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G. Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J Biol Chem 2012; 287:41195-209. [PMID: 23066016 PMCID: PMC3510819 DOI: 10.1074/jbc.m112.396259] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency such that acetate (C2) has been described as FFA2-selective, whereas propionate (C3) is non-selective. Although C2 was confirmed to be selective for human FFA2 over FFA3, this ligand was not selective between the mouse orthologs. Moreover, although C3 was indeed not selective between the human orthologs, it displayed clear selectivity for mouse FFA3 over mouse FFA2. This altered selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations, marked variation in ligand-independent constitutive activity was identified using a [35S]GTPγS assay. The orthologs with higher potency for the SCFAs, human FFA2 and mouse FFA3, displayed high constitutive activity in this assay, whereas the orthologs with lower potency for the agonist ligands, mouse FFA2 and human FFA3, did not. Sequence alignments of the second extracellular loop identified single negatively charged residues in FFA2 and FFA3 not conserved between species and predicted to form ionic lock interactions with arginine residues within the FFA2 or FFA3 agonist binding pocket to regulate constitutive activity and SCFA potency. Reciprocal mutation of these residues between species orthologs resulted in the induction (or repression) of constitutive activity and in most cases also yielded corresponding changes in SCFA potency.
Collapse
Affiliation(s)
- Brian D Hudson
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | | | |
Collapse
|
74
|
Crystal structures of a stabilized β1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 2012; 20:841-9. [PMID: 22579251 PMCID: PMC3384003 DOI: 10.1016/j.str.2012.03.014] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/06/2012] [Accepted: 03/03/2012] [Indexed: 01/02/2023]
Abstract
The β1-adrenoceptor (β1AR) is the site of action of beta blockers used in the treatment of cardiac-related illnesses. Two beta blockers, carvedilol and bucindolol, show distinctive activities compared to other beta blockers and have been proposed as treatments tailored to the Arg/Gly3898.56 polymorphism of the human β1AR. Both carvedilol and bucindolol are classified as biased agonists, because they stimulate G protein-independent signaling, while acting as either inverse or partial agonists of the G protein pathway. We have determined the crystal structures of a thermostabilized avian β1AR mutant bound to bucindolol and to carvedilol at 3.2 and 2.3 Å resolution, respectively. In comparison to other beta blockers, bucindolol and carvedilol interact with additional residues, in extracellular loop 2 and transmembrane helix 7, which may promote G protein-independent signaling. The structures also suggest that there may be a structural explanation for the pharmacological differences arising from the Arg/Gly3898.56 polymorphism.
Collapse
|
75
|
Hoffmann C, Nuber S, Zabel U, Ziegler N, Winkler C, Hein P, Berlot CH, Bünemann M, Lohse MJ. Comparison of the activation kinetics of the M3 acetylcholine receptor and a constitutively active mutant receptor in living cells. Mol Pharmacol 2012; 82:236-45. [PMID: 22564786 PMCID: PMC11037427 DOI: 10.1124/mol.112.077578] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/07/2012] [Indexed: 12/26/2022] Open
Abstract
Activation of G-protein-coupled receptors is the first step of the signaling cascade triggered by binding of an agonist. Here we compare the activation kinetics of the G(q)-coupled M(3) acetylcholine receptor (M(3)-AChR) with that of a constitutively active mutant receptor (M(3)-AChR-N514Y) using M(3)-AChR constructs that report receptor activation by changes in the fluorescence resonance energy transfer (FRET) signal. We observed a leftward shift in the concentration-dependent FRET response for acetylcholine and carbachol with M(3)-AChR-N514Y. Consistent with this result, at submaximal agonist concentrations, the activation kinetics of M(3)-AChR-N514Y were significantly faster, whereas at maximal agonist concentrations the kinetics of receptor activation were identical. Receptor deactivation was significantly faster with carbachol than with acetylcholine and was significantly delayed by the N514Y mutation. Receptor-G-protein interaction was measured by FRET between M(3)-AChR-yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP)-Gγ(2). Agonist-induced receptor-G-protein coupling was of a time scale similar to that of receptor activation. As observed for receptor deactivation, receptor-G-protein dissociation was slower for acetylcholine than that for carbachol. Acetylcholine-stimulated increases in receptor-G-protein coupling of M(3)-AChR-N514Y reached only 12% of that of M(3)-AChR and thus cannot be kinetically analyzed. G-protein activation was measured using YFP-tagged Gα(q) and CFP-tagged Gγ(2). Activation of G(q) was significantly slower than receptor activation and indistinguishable for the two agonists. However, G(q) deactivation was significantly prolonged for acetylcholine compared with that for carbachol. Consistent with decreased agonist-stimulated coupling to G(q), agonist-stimulated G(q) activation by M(3)-AChR-N514Y was not detected. Taken together, these results indicate that the N514Y mutation produces constitutive activation of M(3)-AChR by decreasing the rate of receptor deactivation, while having minimal effect on receptor activation.
Collapse
Affiliation(s)
- Carsten Hoffmann
- Department of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, Wuerzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Bolognini D, Cascio MG, Parolaro D, Pertwee RG. AM630 behaves as a protean ligand at the human cannabinoid CB2 receptor. Br J Pharmacol 2012; 165:2561-74. [PMID: 21615724 DOI: 10.1111/j.1476-5381.2011.01503.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We have investigated how pre-incubating hCB(2) CHO cells with the CB(2) receptor antagonists/inverse agonists, AM630 and SR144528, affects how these and other ligands target hCB(2) receptors in these cells or their membranes. EXPERIMENTAL APPROACH We tested the ability of AM630, SR144528 and of the CB(1) /CB(2) receptor agonists, CP55940 and R-(+)-WIN55212, to modulate forskolin-stimulated cAMP production in hCB(2) CHO cells or [(35) S]-GTPγS binding to membranes prepared from these cells, or to displace [(3) H]-CP55940 from whole cells and membranes. Assays were also performed with the CB(2) receptor partial agonist, Δ(9) -tetrahydrocannabivarin. Some cells were pre-incubated with AM630 or SR144528 and then washed extensively. KEY RESULTS AM630 behaved as a low-potency neutral competitive antagonist in AM630-pre-incubated cells, a low-potency agonist in SR144528-pre-incubated cells, and a much higher-potency inverse agonist/antagonist in vehicle-pre-incubated cells. AM630 pre-incubation (i) reduced the inverse efficacy of SR144528 without abolishing it; (ii) increased the efficacy of Δ(9) -tetrahydrocannabivarin; and (iii) did not affect the potency with which AM630 displaced [(3) H]-CP55940 from whole cells or its inverse agonist potency and efficacy in the [(35) S]-GTPγS membrane assay. CONCLUSIONS AND IMPLICATIONS These results suggest that AM630 is a protean ligand that can target a constitutively active form of the hCB(2) receptor (R*) with low affinity to produce agonism or neutral antagonism and a constitutively inactive form of this receptor (R) with much higher affinity to produce inverse agonism, and that the constitutive activity of whole cells is decreased less by pre-incubation with AM630 than with the higher-efficacy inverse agonist, SR144528. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
|
77
|
Halls ML. Constitutive formation of an RXFP1-signalosome: a novel paradigm in GPCR function and regulation. Br J Pharmacol 2012; 165:1644-1658. [PMID: 21557732 DOI: 10.1111/j.1476-5381.2011.01470.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The classical second messenger cAMP is important in diverse physiological processes, where its spatial and temporal compartmentalization allows precise control over multiple cellular events. Within this context, G-protein-coupled receptors (GPCRs) govern specialized pools of cAMP, which are functionally specific for the unique cellular effects attributed to a particular system. The relaxin receptor, RXFP1, is a GPCR that exerts pleiotropic physiological effects including a potent anti-fibrotic response, increased cancer metastases, and has efficacy as a vasodilator in heart failure. On a cellular level, relaxin stimulation of RXFP1 results in the activation of multiple G-protein pathways affecting cAMP accumulation. Specificity and diversity in the cAMP signal generated by RXFP1 is controlled by differential G-protein coupling dependent upon the background of cellular expression, and cAMP compartmentalization. Further complexity in cAMP signalling results from the constitutive assembly of an RXFP1-signalosome, which specifically responds to low concentrations of relaxin, and activates a distinct cAMP pathway. The RXFP1-signalosome is a higher-order protein complex that facilitates receptor sensitivity to attomolar concentration of peptide, exhibits constitutive activity and dual coupling to G-proteins and β-arrestins and reveals a concentration-biased agonism mediated by relaxin. The specific and directed formation of GPCR-centered signalosomes allows an even greater spatial and temporal control of cAMP, thus rationalizing the considerable physiological scope of this ubiquitous second messenger.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
78
|
Console-Bram L, Marcu J, Abood ME. Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:4-15. [PMID: 22421596 PMCID: PMC3378782 DOI: 10.1016/j.pnpbp.2012.02.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 02/06/2023]
Abstract
The CB1 and CB2 cannabinoid receptors are members of the G protein-coupled receptor (GPCR) family that are pharmacologically well defined. However, the discovery of additional sites of action for endocannabinoids as well as synthetic cannabinoid compounds suggests the existence of additional cannabinoid receptors. Here we review this evidence, as well as the current nomenclature for classifying a target as a cannabinoid receptor. Basic pharmacological definitions, principles and experimental conditions are discussed in order to place in context the mechanisms underlying cannabinoid receptor activation. Constitutive (agonist-independent) activity is observed with the overexpression of many GPCRs, including cannabinoid receptors. Allosteric modulators can alter the pharmacological responses of cannabinoid receptors. The complex molecular architecture of each of the cannabinoid receptors allows for a single receptor to recognize multiple classes of compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. Importantly, the basic biology of the endocannabinoid system will continue to be revealed by ongoing investigations.
Collapse
Affiliation(s)
- Linda Console-Bram
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA 19140
| | - Jahan Marcu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA 19140,Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA 19140
| | - Mary E. Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA 19140,Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA 19140
| |
Collapse
|
79
|
Wang L, Ma C, Wipf P, Xie XQ. Linear and Nonlinear Support Vector Machine for the Classification of Human 5-HT1A Ligand Functionality. Mol Inform 2012; 31:85-95. [PMID: 27478180 DOI: 10.1002/minf.201100126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/11/2011] [Indexed: 11/06/2022]
Abstract
Upon binding to a receptor, agonists and antagonists can induce distinct biological functions and thus lead to significantly different pharmacological responses. Thus, in silico prediction or in vitro characterization of ligand agonistic or antagonistic functionalities is an important step toward identifying specific pharmacological therapeutics. In this study, we investigated the molecular properties of agonists and antagonists of human 5-hydroxytryptamine receptor subtype 1A (5-HT1A ). Subsequently, intrinsic functions of these ligands (agonists/antagonists) were modeled by support vector machine (SVM), using five 2D molecular fingerprints and the 3D Topomer distance. Five kernel functions, including linear, polynomial, RBF, Tanimoto and a novel Topomer kernel based on Topomer 3D similarity were used to develop linear and nonlinear classifiers. These classifiers were validated through cross-validation, yielding a classification accuracy ranging from 80.4 % to 92.3 %. The performance of different kernels and fingerprints was analyzed and discussed. Linear and nonlinear models were further interpreted through the illustration of underlying classification mechanism. The computation protocol has been automated and demonstrated through our online service. This study expands the scope and applicability of similarity-based methods in cheminformatics, which are typically used for the identification of active molecules against a target protein. Our findings provide a good starting point for further systematic classifications of other GPCR ligands and for the data mining of large chemical libraries.
Collapse
Affiliation(s)
- Lirong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Chemical Methodologies & Library Development (UP-CMLD), Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA tel.: +1-412-383-5276; fax: +1-412-383-7436
| | - Chao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Chemical Methodologies & Library Development (UP-CMLD), Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA tel.: +1-412-383-5276; fax: +1-412-383-7436.,Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Chemical Methodologies & Library Development (UP-CMLD), Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA tel.: +1-412-383-5276; fax: +1-412-383-7436.,Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, Center for Chemical Methodologies & Library Development (UP-CMLD), Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA tel.: +1-412-383-5276; fax: +1-412-383-7436. .,Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
80
|
Śleszyńska M, Wierzba TH, Malinowski K, Tůmová T, Lammek B, Slaninová J, Prahl A. Novel Bradykinin Analogues Modified in the N-Terminal Part of the Molecule with a Variety of Acyl Substituents. Int J Pept Res Ther 2012; 18:117-124. [PMID: 22593719 PMCID: PMC3332343 DOI: 10.1007/s10989-011-9285-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2011] [Indexed: 12/03/2022]
Abstract
In the current work we present some pharmacological characteristics of ten new analogues of bradykinin (Arg–Pro–Pro–Gly–Phe–Ser–Pro–Phe–Arg) modified in the N-terminal part of the molecule with a variety of acyl substituents. Of the many acylating agents used previously with B2 receptor antagonists, the following residues were chosen: 1-adamantaneacetic acid (Aaa), 1-adamantanecarboxylic acid (Aca), 4-tert-butylbenzoic acid (t-Bba), 4-aminobenzoic acid (Aba), 12-aminododecanoic acid (Adc), succinic acid (Sua), 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 3-(4-hydroxyphenyl)propionic acid and 6-hydroxy-2-naphthoic acid. Biological activity of the compounds was assessed in the in vivo rat blood pressure test and the in vitro rat uterus test. Surprisingly, N-terminal substitution of the bradykinin peptide chain itself with aforementioned groups resulted in antagonists of bradykinin in the pressor test and suppressed agonistic potency in the uterotonic test. These interesting findings need further studies as they can be helpful for designing more potent B2 receptor blockers.
Collapse
Affiliation(s)
- Małgorzata Śleszyńska
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdańsk, Poland
| | - Tomasz H. Wierzba
- Department of Physiology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Krzysztof Malinowski
- Department of Physiology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Tereza Tůmová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo sq. 2, 166 10 Prague 6, Czech Republic
| | - Bernard Lammek
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdańsk, Poland
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo sq. 2, 166 10 Prague 6, Czech Republic
| | - Adam Prahl
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdańsk, Poland
| |
Collapse
|
81
|
Abstract
A unifying mechanism by which G protein-coupled receptors (GPCRs) signal in cell type-dependent and G protein-independent ways has developed over the past decade. GPCR kinases (GRKs) are mediators of homologous desensitization: GRK phosphorylation of the receptors leads to the subsequent binding of β-arrestins, which partially quenches receptor coupling to G proteins. For some receptors, this GRK-mediated phosphorylation stimulates additional signaling through the scaffolding action of β-arrestin. These downstream signals are configured by β-arrestin conformation, which is dictated by the GRK phosphoacceptors on the receptors in a barcode-like fashion. Furthermore, each of the GRKs can potentially phosphorylate different serine and threonine residues on a given receptor, and the phosphorylation pattern can be biased by the receptor conformation established by bound ligand. Finally, the arrangement of potential GRK phosphorylation sites-and thus the conformation of β-arrestin and its effect on downstream signaling-can differ substantially between even closely related GPCRs stimulated by the same agonist. The diversity of the barcoding to flexible β-arrestin explains the multidimensional nature of signaling in the superfamily and represents new opportunities for drug discovery.
Collapse
Affiliation(s)
- Stephen B Liggett
- Cardiopulmonary Genomics Program, Departments of Medicine and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
82
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
83
|
Takahashi K, Makita N, Manaka K, Hisano M, Akioka Y, Miura K, Takubo N, Iida A, Ueda N, Hashimoto M, Fujita T, Igarashi T, Sekine T, Iiri T. V2 vasopressin receptor (V2R) mutations in partial nephrogenic diabetes insipidus highlight protean agonism of V2R antagonists. J Biol Chem 2011; 287:2099-106. [PMID: 22144672 DOI: 10.1074/jbc.m111.268797] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Pediatrics, The University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Ulloa-Aguirre A, Crépieux P, Poupon A, Maurel MC, Reiter E. Novel pathways in gonadotropin receptor signaling and biased agonism. Rev Endocr Metab Disord 2011; 12:259-74. [PMID: 21526415 DOI: 10.1007/s11154-011-9176-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropins play a central role in the control of male and female reproduction. Selective agonists and antagonists of gonadotropin receptors would be of great interest for the treatment of infertility or as non steroidal contraceptive. However, to date, only native hormones are being used in assisted reproduction technologies as there is no pharmacological agent available to manipulate gonadotropin receptors. Over the last decade, there has been a growing perception of the complexity associated with gonadotropin receptors' cellular signaling. It is now clear that the Gs/cAMP/PKA pathway is not the sole mechanism that must be taken into account in order to understand these hormones' biological actions. In parallel, consistent with the emerging paradigm of biased agonism, several examples of ligand-mediated selective signaling pathway activation by gonadotropin receptors have been reported. Small molecule ligands, modulating antibodies interacting with the hormones and glycosylation variants of the native glycoproteins have all demonstrated their potential to trigger such selective signaling. Altogether, the available data and emerging concepts give rise to intriguing opportunities towards a more efficient control of reproductive function and associated disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
85
|
Salon JA, Lodowski DT, Palczewski K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 2011; 63:901-37. [PMID: 21969326 PMCID: PMC3186081 DOI: 10.1124/pr.110.003350] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination.
Collapse
Affiliation(s)
- John A Salon
- Department of Molecular Structure, Amgen Incorporated, Thousand Oaks, California, USA
| | | | | |
Collapse
|
86
|
Damian M, Marie J, Leyris JP, Fehrentz JA, Verdié P, Martinez J, Banères JL, Mary S. High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem 2011; 287:3630-41. [PMID: 22117076 DOI: 10.1074/jbc.m111.288324] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite its central role in signaling and the potential therapeutic applications of inverse agonists, the molecular mechanisms underlying G protein-coupled receptor (GPCR) constitutive activity remain largely to be explored. In this context, ghrelin receptor GHS-R1a is a peculiar receptor in the sense that it displays a strikingly high, physiologically relevant, constitutive activity. To identify the molecular mechanisms responsible for this high constitutive activity, we have reconstituted a purified GHS-R1a monomer in a lipid disc. Using this reconstituted system, we show that the isolated ghrelin receptor per se activates G(q) in the absence of agonist, as assessed through guanosine 5'-O-(thiotriphosphate) binding experiments. The measured constitutive activity is similar in its extent to that observed in heterologous systems and in vivo. This is the first direct evidence for the high constitutive activity of the ghrelin receptor being an intrinsic property of the protein rather than the result of influence of its cellular environment. Moreover, we show that the isolated receptor in lipid discs recruits arrestin-2 in an agonist-dependent manner, whereas it interacts with μ-AP2 in the absence of ligand or in the presence of ghrelin. Of importance, these differences are linked to ligand-specific GHS-R1a conformations, as assessed by intrinsic fluorescence measurements. The distinct ligand requirements for the interaction of purified GHS-R1a with arrestin and AP2 provide a new rationale to the differences in basal and agonist-induced internalization observed in cells.
Collapse
Affiliation(s)
- Marjorie Damian
- Institut des Biomolécules Max Mousseron, CNRS UMR 5247, Université de Montpellier 1, Faculté de Pharmacie, 15 avenue Charles Flahaut, BP 14491, 34093 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Provasi D, Artacho MC, Negri A, Mobarec JC, Filizola M. Ligand-induced modulation of the free-energy landscape of G protein-coupled receptors explored by adaptive biasing techniques. PLoS Comput Biol 2011; 7:e1002193. [PMID: 22022248 PMCID: PMC3192824 DOI: 10.1371/journal.pcbi.1002193] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 07/27/2011] [Indexed: 01/14/2023] Open
Abstract
Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Marta Camacho Artacho
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ana Negri
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Juan Carlos Mobarec
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Marta Filizola
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
88
|
Andresen BT. A pharmacological primer of biased agonism. Endocr Metab Immune Disord Drug Targets 2011; 11:92-8. [PMID: 21476970 PMCID: PMC3182416 DOI: 10.2174/187153011795564179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/15/2011] [Indexed: 01/14/2023]
Abstract
Biased agonism is one of the fastest growing topics in G protein-coupled receptor pharmacology; moreover, biased agonists are used in the clinic today: carvedilol (Coreg®) is a biased agonist of beta-adrenergic receptors. However, there is a general lack of understanding of biased agonism when compared to traditional pharmacological terminology. Therefore, this review is designed to provide a basic introduction to classical pharmacology as well as G protein-coupled receptor signal transduction in order to clearly explain biased agonism for the non-scientist clinician and pharmacist. Special emphasis is placed on biased agonists of the beta-adrenergic receptors, as these drugs are highly prescribed, and a hypothetical scenario based on current clinical practices and proposed mechanisms for treating disease is discussed in order to demonstrate the need for a more thorough understanding of biased agonism in clinical settings. Since biased agonism provides a novel mechanism for treating disease, greater emphasis is being placed to develop biased agonists; therefore, it is important for biased agonism to be understood in equal measure of traditional pharmacological concepts. This review, along with many others, can be used to teach the basic concepts of biased agonism, and this review also serves to introduce the subsequent reviews that examine, in more depth, the relevance of biased agonism towards the angiotensin type 1 receptor, parathyroid hormone receptor, and natural biased ligands towards chemokine receptors.
Collapse
Affiliation(s)
- Bradley T Andresen
- Department of Internal Medicine, Division of Endocrinology, University of Missouri, MO 65201, USA.
| |
Collapse
|
89
|
Khilnani G, Khilnani AK. Inverse agonism and its therapeutic significance. Indian J Pharmacol 2011; 43:492-501. [PMID: 22021988 PMCID: PMC3195115 DOI: 10.4103/0253-7613.84947] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 01/10/2011] [Accepted: 07/01/2011] [Indexed: 01/14/2023] Open
Abstract
A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H(1) and H(2) antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D(2) receptors antagonist), antihypertensive (AT(1) receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT(2A) inverse agonist, attenuates psychosis in patients with Parkinson's disease with psychosis and is devoid of extrapyramidal side effects. This dissociation is also evident from the development of anxioselective benzodiazepines devoid of habit-forming potential. Hemopressin is a peptide ligand that acts as an antagonist as well as inverse agonist. This agent acts as an antinociceptive agent in different in vivo models of pain. Treatment of obesity by drugs having inverse agonist activity at CB(1/2) receptors is also underway. An exciting development is evaluation of β-blockers in chronic bronchial asthma-a condition akin to congestive heart failure where β-blockade has become the standard mode of therapy. Synthesis and evaluation of selective agents is underway. Therefore, inverse agonism is an important aspect of drug-receptor interaction and has immense untapped therapeutic potential.
Collapse
|
90
|
Seely KA, Prather PL, James LP, Moran JH. Marijuana-based drugs: innovative therapeutics or designer drugs of abuse? Mol Interv 2011; 11:36-51. [PMID: 21441120 DOI: 10.1124/mi.11.1.6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The principal psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), activates CB1 cannabinoid receptors (CB1Rs). Unfortunately, pharmacological research into the design of effective THC analogs has been hampered by psychiatric side effects. THC-based drug design of a less academic nature, however, has led to the marketing of "synthetic marijuana," labeled as K2 or "Spice," among other terms, which elicits psychotropic actions via CB1R activation. Because of structural dissimilarity to THC, the active ingredients of K2/Spice preparations are widely unregulated. The K2/Spice "phenomenon" provides a context for considering whether marijuana-based drugs will truly provide innovative therapeutics or merely perpetuate drug abuse.
Collapse
Affiliation(s)
- Kathryn A Seely
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
91
|
Pop N, Igel P, Brennauer A, Cabrele C, Bernhardt G, Seifert R, Buschauer A. Functional reconstitution of human neuropeptide Y (NPY) Y2and Y4receptors in Sf9 insect cells. J Recept Signal Transduct Res 2011; 31:271-85. [DOI: 10.3109/10799893.2011.583253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
92
|
Navani DM, Sirohi S, Madia PA, Yoburn BC. The role of opioid antagonist efficacy and constitutive opioid receptor activity in the opioid withdrawal syndrome in mice. Pharmacol Biochem Behav 2011; 99:671-5. [PMID: 21736895 DOI: 10.1016/j.pbb.2011.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/13/2011] [Accepted: 06/22/2011] [Indexed: 11/18/2022]
Abstract
On the basis of efficacy, opioid antagonists are classified as inverse opioid agonists (e.g. naltrexone) or neutral opioid antagonists (e.g. 6β-naltrexol). This study examined the interaction between naltrexone and 6β-naltrexol in the precipitated opioid withdrawal syndrome in morphine dependent mice. Furthermore, the possible contribution of constitutive opioid receptor activity to precipitated withdrawal was evaluated using increasing levels of morphine dependence. In the first experiment, low doses of 6β-naltrexol antagonized naltrexone precipitated withdrawal while high doses acted additively. All doses of naltrexone increased 6β-naltrexol's potency to precipitate withdrawal. The next experiment examined changes in antagonist potency to precipitate withdrawal with increasing morphine dependence. Mice were exposed to morphine for 1-6 days and then withdrawal was precipitated. Naltrexone was more potent than 6β-naltrexol at all the time points. The ED(50) of both drugs decreased at the same rate suggesting that increased dependence produced no change in constitutive opioid receptor activity. Taken together these results indicate that the functional efficacy of 6β-naltrexol is dose-dependent and that constitutive opioid receptor activity did not change as opioid dependence increased from 1 to 6 days.
Collapse
Affiliation(s)
- Dipesh M Navani
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
93
|
Pyne NJ, Pyne S. Selectivity and specificity of sphingosine 1-phosphate receptor ligands: "off-targets" or complex pharmacology? Front Pharmacol 2011; 2:26. [PMID: 21687518 PMCID: PMC3108476 DOI: 10.3389/fphar.2011.00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/20/2011] [Indexed: 01/19/2023] Open
Abstract
A recent perspective published in Frontiers of Pharmacology by Salomone and Waeber (2011) discussed the selectivity and specificity of sphingosine 1-phosphate (S1P) receptor ligands. This perspective surveyed the use of various S1P receptor ligands and attempted to reconcile a number of inconsistencies in the predicted biological outcomes: these were interpreted as “off-target” effects. Therefore the perspective cautioned against the use of these S1P receptor ligands. Here we highlight the complex pharmacology of S1P receptors, which along with “inside-out” signaling might provide an alternative explanation for “off-target” effects.
Collapse
Affiliation(s)
- Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | | |
Collapse
|
94
|
Pyne NJ, Pyne S. Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: out of the shadow? Trends Pharmacol Sci 2011; 32:443-50. [PMID: 21612832 DOI: 10.1016/j.tips.2011.04.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/20/2011] [Accepted: 04/26/2011] [Indexed: 12/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs) can form platforms in which protein signalling components specific for each receptor are shared (owing to close proximity) to produce an integrated response upon engagement of ligands. RTK-GPCR signalling platforms respond to growth factors and GPCR agonists to increase gain over and above that which is normally produced by separate receptors. They can also function to change the spatial context of signalling in response to growth factor activation. The function of RTK-GPCR signalling platforms can be modulated with conformational-specific inhibitors that stabilise defined GPCR states to abrogate both GPCR agonist- and growth factor-stimulated cell responses. In this paper, we provide an opinion of the biology and unusual pharmacology of RTK-GPCR signalling platforms and make comparisons with a more traditional model of crosstalk between RTKs and GPCRs.
Collapse
Affiliation(s)
- Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| | | |
Collapse
|
95
|
Rosethorne EM, Charlton SJ. Agonist-biased signaling at the histamine H4 receptor: JNJ7777120 recruits β-arrestin without activating G proteins. Mol Pharmacol 2011; 79:749-57. [PMID: 21134907 DOI: 10.1124/mol.110.068395] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The G(i/o)-coupled histamine H(4) receptor is highly expressed in hemopoietic cells and is a promising new target for the treatment of chronic inflammatory diseases. 1-[(5-Chloro-1H-indol-2-yl)carbonyl]-4-methyl-piperazine (JNJ7777120) has been described as a selective antagonist at the H(4) receptor and is widely used to characterize the physiological role of the H(4) receptor. We have investigated the pharmacological properties of JNJ7777120 using two distinct downstream signaling measurements, G protein activation and β-arrestin recruitment. The H(4) receptor agonists histamine and clobenpropit, but not JNJ7777120, were able to induce [(35)S]GTPγS binding in membranes prepared from U2OS-H(4) cells. Thioperamide, a dual H(3)/H(4) receptor antagonist, and JNJ7777120 were both able to inhibit the [(35)S]GTPγS binding induced by clobenpropit. Agonists and antagonists specific for other members of the histamine receptor family had no effect in this assay format. Histamine and clobenpropit increased β-arrestin recruitment to the H(4) receptor in a concentration-dependent manner. This β-arrestin recruitment could be inhibited by preincubation with thioperamide. We were surprised to find that preincubation with the H(4)-selective antagonist JNJ7777120 potentiated rather than antagonized the response to a submaximal concentration of clobenpropit. JNJ7777120 treatment alone resulted in an increase in β-arrestin recruitment, which again could be inhibited by preincubation with thioperamide. Schild analysis demonstrated competitive antagonism between thioperamide and both clobenpropit and JNJ7777120. Histamine and clobenpropit had comparable potencies for both [(35)S]GTPγS binding and β-arrestin recruitment, suggesting little difference in the levels of receptor reserve between the two assays. In conclusion, we have demonstrated that JNJ7777120 recruits β-arrestin to the H(4) receptor, independent of G protein activation.
Collapse
|
96
|
A novel highly selective adenosine A1 receptor agonist VCP28 reduces ischemia injury in a cardiac cell line and ischemia-reperfusion injury in isolated rat hearts at concentrations that do not affect heart rate. J Cardiovasc Pharmacol 2011; 56:282-92. [PMID: 20571427 DOI: 10.1097/fjc.0b013e3181eb8563] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cardioprotective effects of a novel adenosine A1 receptor agonist N6-(2,2,5,5-tetramethylpyrrolidin-1-yloxyl-3-ylmethyl) adenosine (VCP28) were compared with the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) in a H9c2(2-1) cardiac cell line-simulated ischemia (SI) model (12 hours) and a global ischemia (30 minutes) and reperfusion (60 minutes) model in isolated rat heart model. H9c2(2-1) cells were treated with CPA and VCP28 at the start of ischemia for entire ischemic duration, whereas isolated rat hearts were treated at the onset of reperfusion for 15 minutes. In the H9c2(2-1) cells SI model, CPA and VCP28 (100 nM) significantly (P < 0.05, n = 5-6) reduced the proportion of nonviable cells (30.88% +/- 2.49% and 16.17% +/- 3.77% of SI group, respectively) and lactate dehydrogenase efflux. In isolated rat hearts, CPA and VCP28 significantly (n = 6-8, P < 0.05) improved post-ischemic contractility (dP/dt(max), 81.69% +/- 10.96%, 91.07% +/- 19.87% of baseline, respectively), left ventricular developed pressure, and end diastolic pressure and reduced infarct size. The adenosine A1 receptor antagonist abolished the cardioprotective effects of CPA and VCP28 in SI model and isolated rat hearts. In conclusion, the adenosine A1 receptor agonist VCP28 has equal cardioprotective effects to the prototype A1 agonist CPA at concentrations that have no effect on heart rate.
Collapse
|
97
|
Wan M, Godson C, Guiry PJ, Agerberth B, Haeggström JZ. Leukotriene B4/antimicrobial peptide LL-37 proinflammatory circuits are mediated by BLT1 and FPR2/ALX and are counterregulated by lipoxin A4 and resolvin E1. FASEB J 2011; 25:1697-705. [PMID: 21307335 DOI: 10.1096/fj.10-175687] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In humans, the antimicrobial peptide LL-37 and leukotriene B(4) (LTB(4)) are important proinflammatory mediators, whereas lipoxin A(4) (LXA(4)) and resolvin E1 (RvE1) possess anti-inflammatory, proresolving properties. Previously, we reported that LTB(4) triggers LL-37 release from human neutrophils (PMNs) and, conversely, that LL-37 promotes LTB(4) production from these cells. Here we show that this effect of LL-37 is mediated via the GPCR FPR2/ALX. LL-37 (5-30 μg/ml) induces intracellular calcium mobilization in a dose-dependent manner, and the signal transduction leading to LTB(4) release involves p38 MAP kinase and phosphorylation of cPLA(2). LXA(4), an endogenous lipid ligand of FPR2/ALX, and a stable LXA(4) analog [benzo-LXA(4)] were ineffective as stimuli at the concentrations of 0.1-10 nM for LTB(4) release from PMNs. Likewise, the BLT1 ligand RvE1, a derivative of eicosapentaenoic acid, inhibited LTB(4)-induced LL-37 production from PMNs at 1-100 nM, whereas chemerin, a peptide ligand of the RvE1 receptor ChemR23, failed to block LTB(4)-induced LL-37 release at the same concentrations. Hence, in human neutrophils, binding of LL-37 to FPR2/ALX promotes LTB(4) production, which can bind to BLT1 and elicit further LL-37 release. This proinflammatory circuit might be inhibited by LXA(4) and RvE(1) acting at FPR2/ALX and BLT1, respectively, leading to dampened mediator release.
Collapse
Affiliation(s)
- Min Wan
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
98
|
Grazia Perrone M, Scilimati A. β(3)-Adrenoceptor agonists and (antagonists as) inverse agonists history, perspective, constitutive activity, and stereospecific binding. Methods Enzymol 2011; 484:197-230. [PMID: 21036234 DOI: 10.1016/b978-0-12-381298-8.00011-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
β(3)-Adrenergic receptor (β(3)-AR) is expressed in several tissues and is considered a drug target for the treatment of several pathologies such as obesity, type 2 diabetes, cachexia, metabolic syndrome, heart failure, anxiety and depressive disorders, preterm labor, overactive bladder, control colon motility, and of coadjuvants in colon cancer therapy. It is a seven-transmembrane domain (7TD) G-protein coupled receptor and is usually coupled to a Gs-protein (Gi-protein in very few cases), and its stimulation increases the production of cAMP. A lot of β(3)-AR agonists have been uncovered and extensively characterized. Conversely, very little is known about β(3)-AR inverse agonists that would suppress the agonist-independent activity (constitutive activity) of the receptor by stabilizing it in its inactive state. This chapter attempts to outline (a) the importance of the β(3)-AR as a therapeutic target through the disquisition of its role in human health (physiology) and disease (pathology); (b) the description of β(3)-AR structure [amino acid sequence and 7TD organization]; (c) the medicinal chemistry of β(3)-AR: 7TD amino acid-ligand specific interactions, β-adrenoreceptor subtype selectivity, stereospecific interactions and biological activity relationships, inverse agonism and blockage of β(3)-adrenoceptor constitutive activity; and (d) β(3)-AR inverse agonists. The detailed procedure to prepare and assess the biological activity/selectivity of the more potent and selective β(3)-AR inverse agonists (SP-1e and SP-1g) up to now known is also described.
Collapse
|
99
|
Beltramo M, Brusa R, Mancini I, Scandroglio P. Detecting constitutive activity and protean agonism at cannabinoid-2 receptor. Methods Enzymol 2011; 484:31-51. [PMID: 21036225 DOI: 10.1016/b978-0-12-381298-8.00002-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Since the cannabinoid system is involved in regulating several physiological functions such as locomotor activity, cognition, nociception, food intake, and inflammatory reaction, it has been the subject of intense study. Research on the pharmacology of this system has enormously progressed in the last 20years. One intriguing aspect that emerged from this research is that cannabinoid receptors (CBs) express a high level of constitutive activity. Investigation on this particular aspect of receptor pharmacology has largely focused on CB1, the CB subtype highly expressed in several brain regions. More recently, research on constitutive activity on the other CB subtype, CB2, was stimulated by the increasing interest on its potential as target for the treatment of various pathologies (e.g., pain and inflammation). There are several possible implications of constitutive activity on the therapeutic action of both agonists and antagonists, and consequently, it is important to have valuable methods to study this aspect of CB2 pharmacology. In the present chapter, we describe three methods to study constitutive activity at CB2: two classical methods relying on the detection of changes in cAMP level and GTPγS binding and a new one based on cell impedance measurement. In addition, we also included a section on detection of protean agonism, which is an interesting pharmacological phenomenon strictly linked to constitutive activity.
Collapse
|
100
|
The Constitutive Activity of 5-HT2C Receptors as an Additional Modality of Interaction of the Serotonergic System. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|