51
|
Yacoob C, Lange MD, Cohen K, Lathia K, Feng J, Glenn J, Carbonetti S, Oliver B, Vigdorovich V, Sather DN, Stamatatos L. B cell clonal lineage alterations upon recombinant HIV-1 envelope immunization of rhesus macaques. PLoS Pathog 2018; 14:e1007120. [PMID: 29933399 PMCID: PMC6033445 DOI: 10.1371/journal.ppat.1007120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/05/2018] [Accepted: 05/24/2018] [Indexed: 01/07/2023] Open
Abstract
Broadly neutralizing HIV-1 antibodies (bNAbs) isolated from infected subjects display protective potential in animal models. Their elicitation by immunization is thus highly desirable. The HIV-1 envelope glycoprotein (Env) is the sole viral target of bnAbs, but is also targeted by binding, non-neutralizing antibodies. Env-based immunogens tested so far in various animal species and humans have elicited binding and autologous neutralizing antibodies but not bNAbs (with a few notable exceptions). The underlying reasons for this are not well understood despite intensive efforts to characterize the binding specificities of the elicited antibodies; mostly by employing serologic methodologies and monoclonal antibody isolation and characterization. These approaches provide limited information on the ontogenies and clonal B cell lineages that expand following Env-immunization. Thus, our current understanding on how the expansion of particular B cell lineages by Env may be linked to the development of non-neutralizing antibodies is limited. Here, in addition to serological analysis, we employed high-throughput BCR sequence analysis from the periphery, lymph nodes and bone marrow, as well as B cell- and antibody-isolation and characterization methods, to compare in great detail the B cell and antibody responses elicited in non-human primates by two forms of the clade C HIV Env 426c: one representing the full length extracellular portion of Env while the other lacking the variable domains 1, 2 and 3 and three conserved N-linked glycosylation sites. The two forms were equally immunogenic, but only the latter elicited neutralizing antibodies by stimulating a more restricted expansion of B cells to a narrower set of IGH/IGK/IGL-V genes that represented a small fraction (0.003-0.02%) of total B cells. Our study provides new information on how Env antigenic differences drastically affect the expansion of particular B cell lineages and supports immunogen-design efforts aiming at stimulating the expansion of cells expressing particular B cell receptors.
Collapse
Affiliation(s)
- Christina Yacoob
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Miles Darnell Lange
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Kristen Cohen
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Kanan Lathia
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Junli Feng
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Jolene Glenn
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
| | - Sara Carbonetti
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Brian Oliver
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Vladimir Vigdorovich
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - David Noah Sather
- The Center for Infectious Disease Research, Seattle, Washington, United States of America
- * E-mail: (DNS); (LS)
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, Washington, United States of America
- University of Washington, Department of Global Health, Seattle, Washington, United States of America
- * E-mail: (DNS); (LS)
| |
Collapse
|
52
|
Wang X, Zhou D, Wang G, Huang L, Zheng Q, Li C, Cheng Z. A novel multi-variant epitope ensemble vaccine against avian leukosis virus subgroup J. Vaccine 2017; 35:6685-6690. [DOI: 10.1016/j.vaccine.2017.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
|
53
|
Autran B, Combadière B, Launay O, Legrand R, Locht C, Tangy F, Verger P, Garçon N. Séance bi-académique de l’Académie nationale de médecine et de l’Académie des Sciences: « Confiance et défiance vis-à-vis des vaccins ». BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2017; 201:259-272. [PMID: 32226055 PMCID: PMC7095193 DOI: 10.1016/s0001-4079(19)30502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/10/2023]
Abstract
SUMMARYThe explosion of vaccines during the 20th century allowed the control of numerous infectious plagues but multiple challenges oppose conservation and extension of these successes. The hesitation of modern societies in front of vaccinations requires researches in life, human and social sciences in order to reach a better understanding of vaccines mechanism of action and to improve the tolerance and acceptability of vaccines and additives. The ageing of the populations and the increase of subjects at risk also require to improve the immunogenicity and the efficiency of existing vaccines. The constant emergence of new epidemics or the development of the antibio-resistance imposes innovation and development of new vaccines. The recent difficulties faced by the development of vaccines against malaria, tuberculosis or AIDS illustrate the necessity of moving beyond classical recipes and of elaborating new vectors and new adjuvants, of better understanding the heterogeneity of vaccine immunity and of developing alternative routes of immunization. Multidisciplinary researches using the most recent advances in molecular, structural and cellular biology, in microbiology, immunology and of genetic engineering to answer these worldwide challenges.
Collapse
Affiliation(s)
- Brigitte Autran
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, Centre, d'Immunologie et des Maladies Infectieuses (CIMI-, Paris, UMRS 1135), Paris, F-75013, France
- Département d'Immunologie, Hôpitaux Universitaires Pitié-Salpêtrière C. Foix, AP-HP, Paris, France
- Comité de Pilotage de CoRevac, Institut Thématique Immunité-Infection-Inflammation-Microbiologie, AVIESAN, Paris, France
| | - Béhazine Combadière
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, Centre, d'Immunologie et des Maladies Infectieuses (CIMI-, Paris, UMRS 1135), Paris, F-75013, France
- Comité de Pilotage de CoRevac, Institut Thématique Immunité-Infection-Inflammation-Microbiologie, AVIESAN, Paris, France
| | - Odile Launay
- Comité de Pilotage de CoRevac, Institut Thématique Immunité-Infection-Inflammation-Microbiologie, AVIESAN, Paris, France
- Centre d'investigation clinique Cochin Pasteur
- Fédération de maladies infectieuses et tropicales, Université Paris Descartes, AP-HP, Hôpital Cochin
| | - Roger Legrand
- CEA, Université Paris Sud, Inserm U1184, Infrastructure IDMIT, Fontenay-aux-Roses, France
| | - Camille Locht
- Centre d'Infection et Immunité de Lille, Institut Pasteur de Lille; Université de Lille; Inserm U1019; CNRS UMR-8204
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569
| | | | | |
Collapse
|