51
|
Plouznikoff K, Asins MJ, de Boulois HD, Carbonell EA, Declerck S. Genetic analysis of tomato root colonization by arbuscular mycorrhizal fungi. ANNALS OF BOTANY 2019; 124:933-946. [PMID: 30753410 PMCID: PMC7145532 DOI: 10.1093/aob/mcy240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/27/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Arbuscular mycorrhizal fungi (AMF) play an important role in plant nutrition and protection against pests and diseases, as well as in soil structuration, nutrient cycling and, generally speaking, in sustainable agriculture, particularly under drought, salinity and low input or organic agriculture. However, little is known about the genetics of the AMF-plant association in tomato. The aim of this study was the genetic analysis of root AMF colonization in tomato via the detection of the quantitative trait loci (QTLs) involved. METHODS A population of 130 recombinant inbred lines derived from the wild species Solanum pimpinellifolium, genotyped for 1899 segregating, non-redundant single nucleotide polymorphisms (SNPs) from the SolCAP tomato panel, was characterized for intensity, frequency and arbuscular abundance of AMF colonization to detect the QTLs involved and to analyse the genes within their peaks (2-2.6 Mbp). KEY RESULTS The three AMF colonization parameters were highly correlated (0.78-0.97) and the best one, with the highest heritability (0.23), corresponded to colonization intensity. A total of eight QTLs in chromosomes 1, 3, 4, 5, 6, 8, 9 and 10 were detected. Seven of them simultaneously affected intensity and arbuscule abundance. The allele increasing the expression of the trait usually came from the wild parent in accordance with the parental means, and several epistatic interactions were found relevant for breeding purposes. SlCCaMK and SlLYK13 were found among the candidate genes. Carbohydrate transmembrane transporter activity, lipid metabolism and transport, metabolic processes related to nitrogen and phosphate-containing compounds, regulation of carbohydrates, and other biological processes involved in the plant defence were found to be over-represented within the QTL peaks. CONCLUSIONS Intensity is genetically the best morphological measure of tomato root AMF colonization. Wild alleles can improve AMF colonization, and the gene contents of AMF colonization QTLs might be important for explaining the establishment and functioning of the AMF-plant symbiosis.
Collapse
Affiliation(s)
- Katia Plouznikoff
- Université catholique de Louvain, Earth and Life Institute, Mycology, Louvain-la-Neuve, Belgium
| | - Maria J Asins
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | | | - Emilio A Carbonell
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Louvain-la-Neuve, Belgium
| |
Collapse
|
52
|
Dhanagond S, Liu G, Zhao Y, Chen D, Grieco M, Reif J, Kilian B, Graner A, Neumann K. Non-Invasive Phenotyping Reveals Genomic Regions Involved in Pre-Anthesis Drought Tolerance and Recovery in Spring Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:1307. [PMID: 31708943 PMCID: PMC6823269 DOI: 10.3389/fpls.2019.01307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/19/2019] [Indexed: 05/07/2023]
Abstract
With ongoing climate change, drought events are becoming more frequent and will affect biomass formation when occurring during pre-flowering stages. We explored growth over time under such a drought scenario, via non-invasive imaging and revealed the underlying key genetic factors in spring barley. By comparing with well-watered conditions investigated in an earlier study and including information on timing, QTL could be classified as constitutive, drought or recovery-adaptive. Drought-adaptive QTL were found in the vicinity of genes involved in dehydration tolerance such as dehydrins (Dhn4, Dhn7, Dhn8, and Dhn9) and aquaporins (e.g. HvPIP1;5, HvPIP2;7, and HvTIP2;1). The influence of phenology on biomass formation increased under drought. Accordingly, the main QTL during recovery was the region of HvPPD-H1. The most important constitutive QTL for late biomass was located in the vicinity of HvDIM, while the main locus for seedling biomass was the HvWAXY region. The disappearance of QTL marked the genetic architecture of tiller number. The most important constitutive QTL was located on 6HS in the region of 1-FEH. Stage and tolerance specific QTL might provide opportunities for genetic manipulation to stabilize biomass and tiller number under drought conditions and thereby also grain yield.
Collapse
Affiliation(s)
- Sidram Dhanagond
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Guozheng Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- BBCC – Innovation Center Gent, Gent Zwijnaarde, Belgium
| | - Yusheng Zhao
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Dijun Chen
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michele Grieco
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Benjamin Kilian
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Global Crop Diversity Trust (GCDT), Bonn, Germany
| | - Andreas Graner
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Plant Breeding Department, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Kerstin Neumann
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| |
Collapse
|
53
|
dos Santos A, do Amaral Júnior AT, Fritsche-Neto R, Kamphorst SH, Ferreira FRA, do Amaral JFT, Vivas JMS, Santos PHAD, de Lima VJ, Khan S, Schmitt KFM, Leite JT, Junior DRDS, Bispo RB, Santos TDO, de Oliveira UA, Guimarães LJM, Rodriguez O. Relative importance of gene effects for nitrogen-use efficiency in popcorn. PLoS One 2019; 14:e0222726. [PMID: 31557221 PMCID: PMC6762054 DOI: 10.1371/journal.pone.0222726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/05/2019] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to evaluate the effects of additive and non-additive genes on the efficiency of nitrogen (N) use and N responsiveness in inbred popcorn lines. The parents, hybrids and reciprocal crosses were evaluated in a 10x10 triple lattice design at two sites and two levels of N availability. To establish different N levels in the two experiments, fertilization was carried out at sowing, according to soil analysis reports. However, for the experiments with ideal nitrogen availability, N was sidedressed according to the crop requirement, whereas for the N-poor experiments sidedressing consisted of 30% of that applied in the N-rich environment. Two indices were evaluated, the Harmonic Mean of the Relative Performance (HMRP) and Agronomic Efficiency under Low Nitrogen Availability (AELN), both based on grain yield at both N levels. Both additive and non-additive gene effects were important for selection for N-use efficiency. Moreover, there was allelic complementarity between the lines and a reciprocal effect for N-use efficiency, indicating the importance of the choice of the parents used as male or female. The best hybrids were obtained from inbred popcorn lines with contrasting N-use efficiency and N responsiveness.
Collapse
Affiliation(s)
- Adriano dos Santos
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Antônio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
- * E-mail:
| | - Roberto Fritsche-Neto
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, SP, Brazil
| | - Samuel Henrique Kamphorst
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Fernando Rafael Alves Ferreira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - José Francisco Teixeira do Amaral
- Departamento de Engenharia Rural, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo (UFES), Alegre, ES, Brazil
| | - Janieli Maganha Silva Vivas
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Pedro Henrique Araújo Diniz Santos
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Valter Jário de Lima
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Shahid Khan
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Kátia Fabiane Medeiros Schmitt
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Jhean Torres Leite
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Divino Rosa dos Santos Junior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Rosimeire Barboza Bispo
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Talles de Oliveira Santos
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Uéliton Alves de Oliveira
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Lauro José Moreira Guimarães
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Centro Nacional de Pesquisa de Milho e Sorgo, Sete Lagoas, MG, Brazil
| | - Oscar Rodriguez
- Department of Agronomy and Horticulture, University of Nebraska, Nebraska, United States of America
| |
Collapse
|
54
|
Gao J, Wang S, Zhou Z, Wang S, Dong C, Mu C, Song Y, Ma P, Li C, Wang Z, He K, Han C, Chen J, Yu H, Wu J. Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4849-4864. [PMID: 30972421 DOI: 10.1093/jxb/erz171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/29/2019] [Indexed: 05/20/2023]
Abstract
It is predicted that high-temperature stress will increasingly affect crop yields worldwide as a result of climate change. In order to determine the genetic basis of thermotolerance of seed-set in maize under field conditions, we performed mapping of quantitative trait loci (QTLs) in a recombinant inbred line (RIL) population using a collection of 8329 specifically developed high-density single-nucleotide polymorphism (SNP) markers, combined with a genome-wide association study (GWAS) of 261 diverse maize lines using 259 973 SNPs. In total, four QTLs and 17 genes associated with 42 SNPs related to thermotolerance of seed-set were identified. Among them, four candidate genes were found in both linkage mapping and GWAS. Thermotolerance of seed-set was increased significantly in near-isogenic lines (NILs) that incorporated the four candidate genes in a susceptible parent background. The expression profiles of two of the four genes showed that they were induced by high temperatures in the maize tassel in a tolerant parent background. Our results indicate that thermotolerance of maize seed-set is regulated by multiple genes each of which has minor effects, with calcium signaling playing a central role. The genes identified may be exploited in breeding programs to improve seed-set and yield of maize under heat stress.
Collapse
Affiliation(s)
- Jingyang Gao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Songfeng Wang
- College of Life Sciences, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zijian Zhou
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shiwei Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chaopei Dong
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Cong Mu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yunxia Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Peipei Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chengcheng Li
- College of Life Sciences, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Kewei He
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chunyan Han
- College of Life Sciences, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jiafa Chen
- College of Life Sciences, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Haidong Yu
- College of Life Sciences, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jianyu Wu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
55
|
Rahman MA, Thomson MJ, De Ocampo M, Egdane JA, Salam MA, Shah-E-Alam M, Ismail AM. Assessing trait contribution and mapping novel QTL for salinity tolerance using the Bangladeshi rice landrace Capsule. RICE (NEW YORK, N.Y.) 2019; 12:63. [PMID: 31410650 PMCID: PMC6692794 DOI: 10.1186/s12284-019-0319-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Salinity is one of the most widespread abiotic stresses affecting rice productivity worldwide. The purpose of this study was to establish the relative importance of different traits associated with salinity tolerance in rice and to identify new quantitative trait loci (QTL) conferring tolerance to salinity at seedling stage. A total of 231 F2:3 plants derived from a cross between a sensitive variety BRRI dhan29 (BR29 hereafter) and Capsule, a salt tolerant Bangladeshi indica landrace, were evaluated under salt stress in a phytotron. RESULTS Out of the 231 F2 plants, 47 highly tolerant and 47 most sensitive lines were selected, representing the two extreme tails of the phenotypic distribution. These 94 plants were genotyped for 105 simple sequence repeat (SSR) and insertion/deletion (InDel) markers. A genetic linkage map spanning approximately 1442.9 cM of the 12 linkage groups with an average marker distance of 13.7 cM was constructed. QTL were identified on the long arm of chromosome 1 for Na+ concentration, K+ concentration, Na+-K+ ratio and survival; chromosome 3 for Na+ concentration, survival and overall phenotypic evaluation using the Standard Evaluation system (SES); and chromosome 5 for SES. A total of 6 pairwise epistatic interactions were also detected between QTL-linked and QTL-unlinked regions. Graphical genotyping indicated an association between the phenotypes of the extreme families and their QTL genotypes. Path coefficient analysis revealed that Na+ concentration, survival, Na+-K+ ratio and the overall phenotypic performance (SES score) are the major traits associated with salinity tolerance of Capsule. CONCLUSIONS Capsule provides an alternative source of salinity tolerance aside from Pokkali and Nona Bokra, the two Indian salt tolerant landraces traditionally used for breeding salt tolerant rice varieties. Pyramiding the new QTL identified in this study with previously discovered loci, such as Saltol, will facilitate breeding varieties that are highly tolerant of salt stress.
Collapse
Affiliation(s)
- M Akhlasur Rahman
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - Michael J Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Marjorie De Ocampo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - James A Egdane
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - M A Salam
- Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh
| | - M Shah-E-Alam
- Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abdelbagi M Ismail
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
56
|
Virlouvet L, El Hage F, Griveau Y, Jacquemot MP, Gineau E, Baldy A, Legay S, Horlow C, Combes V, Bauland C, Palafre C, Falque M, Moreau L, Coursol S, Méchin V, Reymond M. Water Deficit-Responsive QTLs for Cell Wall Degradability and Composition in Maize at Silage Stage. FRONTIERS IN PLANT SCIENCE 2019; 10:488. [PMID: 31105719 PMCID: PMC6494970 DOI: 10.3389/fpls.2019.00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The use of lignocellulosic biomass for animal feed or biorefinery requires the optimization of its degradability. Moreover, biomass crops need to be better adapted to the changing climate and in particular to periods of drought. Although the negative impact of water deficit on biomass yield has often been mentioned, its impact on biomass quality has only been recently reported in a few species. In the present study, we combined the mapping power of a maize recombinant inbred line population with robust near infrared spectroscopy predictive equations to track the response to water deficit of traits associated with biomass quality. The population was cultivated under two contrasted water regimes over 3 consecutive years in the south of France and harvested at silage stage. We showed that cell wall degradability and β-O-4-linked H lignin subunits were increased in response to water deficit, while lignin and p-coumaric acid contents were reduced. A mixed linear model was fitted to map quantitative trait loci (QTLs) for agronomical and cell wall-related traits. These QTLs were categorized as "constitutive" (QTL with an effect whatever the irrigation condition) or "responsive" (QTL involved in the response to water deficit) QTLs. Fifteen clusters of QTLs encompassed more than two third of the 213 constitutive QTLs and 13 clusters encompassed more than 60% of the 149 responsive QTLs. Interestingly, we showed that only half of the responsive QTLs co-localized with constitutive and yield QTLs, suggesting that specific genetic factors support biomass quality response to water deficit. Overall, our results demonstrate that water deficit favors cell wall degradability and that breeding of varieties that reconcile improved drought-tolerance and biomass degradability is possible.
Collapse
Affiliation(s)
- Laëtitia Virlouvet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Fadi El Hage
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Yves Griveau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marie-Pierre Jacquemot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Emilie Gineau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Aurélie Baldy
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sylvain Legay
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Christine Horlow
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Combes
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Bauland
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine Palafre
- Unité Expérimentale du Maïs, INRA, Saint-Martin-de-Hinx, France
| | - Matthieu Falque
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laurence Moreau
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Coursol
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Méchin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Matthieu Reymond
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
57
|
Nigro D, Gadaleta A, Mangini G, Colasuonno P, Marcotuli I, Giancaspro A, Giove SL, Simeone R, Blanco A. Candidate genes and genome-wide association study of grain protein content and protein deviation in durum wheat. PLANTA 2019; 249:1157-1175. [PMID: 30603787 DOI: 10.1007/s00425-018-03075-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/19/2018] [Indexed: 05/26/2023]
Abstract
Stable QTL for grain protein content co-migrating with nitrogen-related genes have been identified by the candidate genes and genome-wide association mapping approaches useful for marker-assisted selection. Grain protein content (GPC) is one of the most important quality traits in wheat, defining the nutritional and end-use properties and rheological characteristics. Over the years, a number of breeding programs have been developed aimed to improving GPC, most of them having been prevented by the negative correlation with grain yield. To overcome this issue, a collection of durum wheat germplasm was evaluated for both GPC and grain protein deviation (GPD) in seven field trials. Fourteen candidate genes involved in several processes related to nitrogen metabolism were precisely located on two high-density consensus maps of common and durum wheat, and six of them were found to be highly associated with both traits. The wheat collection was genotyped using the 90 K iSelect array, and 11 stable quantitative trait loci (QTL) for GPC were detected in at least three environments and the mean across environments by the genome-wide association mapping. Interestingly, seven QTL were co-migrating with N-related candidate genes. Four QTL were found to be significantly associated to increases of GPD, indicating that selecting for GPC could not affect final grain yield per spike. The combined approaches of candidate genes and genome-wide association mapping led to a better understanding of the genetic relationships between grain storage proteins and grain yield per spike, and provided useful information for marker-assisted selection programs.
Collapse
Affiliation(s)
- D Nigro
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| | - A Gadaleta
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy.
| | - G Mangini
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| | - P Colasuonno
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - I Marcotuli
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - A Giancaspro
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - S L Giove
- Department of Agricultural and Environmental Science, Research Unit of "Genetics and Plant Biotechnology", University of Bari, Bari, Italy
| | - R Simeone
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| | - A Blanco
- Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari, Bari, Italy
| |
Collapse
|
58
|
Dudziak K, Zapalska M, Börner A, Szczerba H, Kowalczyk K, Nowak M. Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress. Sci Rep 2019; 9:2743. [PMID: 30808876 PMCID: PMC6391441 DOI: 10.1038/s41598-019-39154-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/18/2019] [Indexed: 01/10/2023] Open
Abstract
Water shortage is a major environmental stress that causes the generation of reactive oxygen species (ROS). The increase in ROS production induces molecular responses, which are key factors in determining the level of plant tolerance to stresses, including drought. The aim of this study was to determine the expression levels of genes encoding MAPKs (MAPK3 and MAPK6), antioxidant enzymes (CAT, APX and GPX) and enzymes involved in proline biosynthesis (P5CS and P5CR) in Triticum aestivum L. seedlings in response to short-term drought conditions. A series of wheat intervarietal substitution lines (ISCSLs) obtained by the substitution of single chromosomes from a drought-sensitive cultivar into the genetic background of a drought-tolerant cultivar was used. This source material allowed the chromosomal localization of the genetic elements involved in the response to the analyzed stress factor (drought). The results indicated that the initial plant response to drought stress resulted notably in changes in the expression of MAPK6 and CAT and both the P5CS and P5CR genes. Our results showed that the substitution of chromosomes 3B, 5A, 7B and 7D had the greatest impact on the expression level of all tested genes, which indicates that they contain genetic elements that have a significant function in controlling tolerance to water deficits in the wheat genome.
Collapse
Affiliation(s)
- Karolina Dudziak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland
| | - Magdalena Zapalska
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Stadt Seeland, Gatersleben, Germany
| | - Hubert Szczerba
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna St., 20-704, Lublin, Poland
| | - Krzysztof Kowalczyk
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, Faculty of Agrobioengineering, University of Life Sciences in Lublin, 15 Akademicka St., 20-950, Lublin, Poland.
| |
Collapse
|
59
|
Dolferus R, Thavamanikumar S, Sangma H, Kleven S, Wallace X, Forrest K, Rebetzke G, Hayden M, Borg L, Smith A, Cullis B. Determining the Genetic Architecture of Reproductive Stage Drought Tolerance in Wheat Using a Correlated Trait and Correlated Marker Effect Model. G3 (BETHESDA, MD.) 2019; 9:473-489. [PMID: 30541928 PMCID: PMC6385972 DOI: 10.1534/g3.118.200835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
Water stress during reproductive growth is a major yield constraint for wheat (Triticum aestivum L). We previously established a controlled environment drought tolerance phenotyping method targeting the young microspore stage of pollen development. This method eliminates stress avoidance based on flowering time. We substituted soil drought treatments by a reproducible osmotic stress treatment using hydroponics and NaCl as osmolyte. Salt exclusion in hexaploid wheat avoids salt toxicity, causing osmotic stress. A Cranbrook x Halberd doubled haploid (DH) population was phenotyped by scoring spike grain numbers of unstressed (SGNCon) and osmotically stressed (SGNTrt) plants. Grain number data were analyzed using a linear mixed model (LMM) that included genetic correlations between the SGNCon and SGNTrt traits. Viewing this as a genetic regression of SGNTrt on SGNCon allowed derivation of a stress tolerance trait (SGNTol). Importantly, and by definition of the trait, the genetic effects for SGNTol are statistically independent of those for SGNCon. Thus they represent non-pleiotropic effects associated with the stress treatment that are independent of the control treatment. QTL mapping was conducted using a whole genome approach in which the LMM included all traits and all markers simultaneously. The marker effects within chromosomes were assumed to follow a spatial correlation model. This resulted in smooth marker profiles that could be used to identify positions of putative QTL. The most influential QTL were located on chromosome 5A for SGNTol (126cM; contributed by Halberd), 5A for SGNCon (141cM; Cranbrook) and 2A for SGNTrt (116cM; Cranbrook). Sensitive and tolerant population tail lines all showed matching soil drought tolerance phenotypes, confirming that osmotic stress is a valid surrogate screening method.
Collapse
Affiliation(s)
- Rudy Dolferus
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | | | - Harriet Sangma
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | - Sue Kleven
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | - Xiaomei Wallace
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | - Kerrie Forrest
- Department of Environment and Primary Industry, AgriBioSciences, La Trobe R&D Park, Bundoora, VIC 3083, Australia
| | - Gregory Rebetzke
- CSIRO Agriculture and Food, GPO Box 1700, Canberra ACT 2601, Australia
| | - Matthew Hayden
- Department of Environment and Primary Industry, AgriBioSciences, La Trobe R&D Park, Bundoora, VIC 3083, Australia
| | - Lauren Borg
- National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics & Applied Statistics, Faculty of Engineering & Information Sciences, University of Wollongong NSW 2522, Australia
| | - Alison Smith
- National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics & Applied Statistics, Faculty of Engineering & Information Sciences, University of Wollongong NSW 2522, Australia
| | - Brian Cullis
- National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics & Applied Statistics, Faculty of Engineering & Information Sciences, University of Wollongong NSW 2522, Australia
| |
Collapse
|
60
|
Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. PLANTS (BASEL, SWITZERLAND) 2019; 8:E34. [PMID: 30704089 PMCID: PMC6409995 DOI: 10.3390/plants8020034] [Citation(s) in RCA: 456] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022]
Abstract
Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO₂ or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan.
| | - Sundas Saher Mehmood
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xiling Zou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Xuekun Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Yan Lv
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| | - Jinsong Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China.
| |
Collapse
|
61
|
Islam MS, Ontoy J, Subudhi PK. Meta-Analysis of Quantitative Trait Loci Associated with Seedling-Stage Salt Tolerance in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2019; 8:E33. [PMID: 30699967 PMCID: PMC6409918 DOI: 10.3390/plants8020033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/15/2019] [Accepted: 01/27/2019] [Indexed: 12/23/2022]
Abstract
Soil and water salinity is one of the major abiotic stresses that reduce growth and productivity in major food crops including rice. The lack of congruence of salt tolerance quantitative trait loci (QTLs) in multiple genetic backgrounds and multiple environments is a major hindrance for undertaking marker-assisted selection (MAS). A genome-wide meta-analysis of QTLs controlling seedling-stage salt tolerance was conducted in rice using QTL information from 12 studies. Using a consensus map, 11 meta-QTLs for three traits with smaller confidence intervals were localized on chromosomes 1 and 2. The phenotypic variance of 3 meta-QTLs was ≥20%. Based on phenotyping of 56 diverse genotypes and breeding lines, six salt-tolerant genotypes (Bharathy, I Kung Ban 4-2 Mutant, Langmanbi, Fatehpur 3, CT-329, and IARI 5823) were identified. The perusal of the meta-QTL regions revealed several candidate genes associated with salt-tolerance attributes. The lack of association between meta-QTL linked markers and the level of salt tolerance could be due to the low resolution of meta-QTL regions and the genetic complexity of salt tolerance. The meta-QTLs identified in this study will be useful not only for MAS and pyramiding, but will also accelerate the fine mapping and cloning of candidate genes associated with salt-tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Md Shofiqul Islam
- School of Plant, Environment, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | - John Ontoy
- School of Plant, Environment, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | - Prasanta K Subudhi
- School of Plant, Environment, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
62
|
Nabateregga M, Mukankusi C, Raatz B, Edema R, Nkalubo S, Alladassi BME. Quantitative trait loci (QTL) mapping for intermittent drought tolerance in BRB 191 × SEQ 1027 Andean Intragene cross recombinant inbred line population of common bean ( Phaseolus vulgaris L.). ACTA ACUST UNITED AC 2019; 18:AJB-18-21-452. [PMID: 33281891 PMCID: PMC7691753 DOI: 10.5897/ajb2019.16768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/08/2019] [Indexed: 11/10/2022]
Abstract
Drought is a major constraint of common bean (Phaseolus vulgaris L.) production in Uganda where irrigation for the crop is very uncommon. This study aimed to identify quantitative trait loci (QTLs) underlying drought tolerance in 128 F5 RILs derived from an Andean intra-gene cross between drought-tolerant SEQ 1027 and BRB 191. Eighteen traits were evaluated under drought stress and non-stress conditions in the field for 2 years and in the greenhouse for 1 year, respectively. A linkage map spanning 486.29 cM was constructed using 53 single nucleotide polymorphic markers (SNP) markers obtained from the KASP genotyping assay. Eleven consistent QTLs were detected on five linkage groups at a threshold of Logarithm of Odds (LOD) ≥ 3.0. Four QTLs were constitutive, seven were adaptive and were associated with 100 seed weight, grain yield, chlorophyll content, harvest index, dry weight of leaf and stem biomass and yield production efficiency. The QTL associated with a 100 seed weight (sw3.1BS) was the most consistent with the highest percentage of variation explained (21%). Co-localization of five drought-related factors QTLs was detected on pv10 suggesting pleiotropic effects on this chromosome. Identification of molecular markers closely linked to the QTLs identified in this study will facilitate marker assisted breeding for drought tolerance.
Collapse
Affiliation(s)
- M Nabateregga
- College of Agricultural and Environmental Science, Department of Agricultural Production, Makerere University, P. O. Box 7062 Kampala, Uganda
| | - C Mukankusi
- International Centre for Tropical Agriculture (CIAT), P. O. Box 6247 Kampala, Uganda
| | - B Raatz
- CIAT-International Centre for Tropical Agriculture, Cali, Colombia
| | - R Edema
- College of Agricultural and Environmental Science, Department of Agricultural Production, Makerere University, P. O. Box 7062 Kampala, Uganda
| | - S Nkalubo
- National Crops Resources Research Institute, Namulonge, P. O. Box 7084, Kampala, Uganda
| | - B M E Alladassi
- College of Agricultural and Environmental Science, Department of Agricultural Production, Makerere University, P. O. Box 7062 Kampala, Uganda
| |
Collapse
|
63
|
Abdelrahman M, Burritt DJ, Tran LSP. The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses. Semin Cell Dev Biol 2018; 83:86-94. [DOI: 10.1016/j.semcdb.2017.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022]
|
64
|
jabbari M, Fakheri BA, Aghnoum R, Mahdi Nezhad N, Ataei R. GWAS analysis in spring barley (Hordeum vulgare L.) for morphological traits exposed to drought. PLoS One 2018; 13:e0204952. [PMID: 30261061 PMCID: PMC6160164 DOI: 10.1371/journal.pone.0204952] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/16/2018] [Indexed: 12/02/2022] Open
Abstract
Association analysis based on linkage disequilibrium has become a common and powerful approach for detection of QTLs underlying complex agronomic traits including drought tolerance. To determine marker/trait association, 148 modern European spring barley cultivars were evaluated under drought stress. Associations of morphological traits with AFLP/SSR markers were investigated based on the mixed linear model using the TASSEL3.0. Population structure was estimated using various methods including Bayesian clustering model by STRUCTURE software, PCoA analysis, NJ dendrogram and Hierarchical Clustering. Linkage disequilibrium patterns were explored among the whole genome and each chromosome separately. All the analysis for population structure divided the population into two sub-groups. Linkage disequilibrium analysis showed that by increasing genetic distance, LD decreases. Totally, 167 significant marker trait associations were found which delineated into 65 QTLs in both treatments. Two stable QTLs on 5H at 86.880 cM were detected for Internode Length and on 3H at 126.421 cM for flag leaf length in drought stress treatment. Fourteen QTLs were co-localized with previously reported QTLs and others were novel. The results indicate that these putative genomic regions contain genes that have pleiotropic effects on morphological traits in drought condition.
Collapse
Affiliation(s)
- Mitra jabbari
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Sistan and Baluchestan province, Iran
- * E-mail:
| | - Barat Ali Fakheri
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Sistan and Baluchestan province, Iran
| | - Reza Aghnoum
- Seed and Plant Improvement Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
| | - Nafiseh Mahdi Nezhad
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Sistan and Baluchestan province, Iran
| | - Reza Ataei
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
65
|
Masalia RR, Temme AA, Torralba NDL, Burke JM. Multiple genomic regions influence root morphology and seedling growth in cultivated sunflower (Helianthus annuus L.) under well-watered and water-limited conditions. PLoS One 2018; 13:e0204279. [PMID: 30235309 PMCID: PMC6147562 DOI: 10.1371/journal.pone.0204279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022] Open
Abstract
With climate change and an ever-increasing human population threatening food security, developing a better understanding of the genetic basis of crop performance under stressful conditions has become increasingly important. Here, we used genome-wide association studies to genetically dissect variation in seedling growth traits in cultivated sunflower (Helianthus annuus L.) under well-watered and water-limited (i.e., osmotic stress) conditions, with a particular focus on root morphology. Water limitation reduced seedling size and produced a shift toward deeper rooting. These effects varied across genotypes, and we identified 13 genomic regions that were associated with traits of interest across the two environments. These regions varied in size from a single marker to 186.2 Mbp and harbored numerous genes, some of which are known to be involved in the plant growth/development as well as the response to osmotic stress. In many cases, these associations corresponded to growth traits where the common allele outperformed the rare variant, suggesting that selection for increased vigor during the evolution of cultivated sunflower might be responsible for the relatively high frequency of these alleles. We also found evidence of pleiotropy across multiple traits, as well as numerous environmentally independent genetic effects. Overall, our results indicate the existence of genetic variation in root morphology and allocation and further suggest that the majority of alleles associated with these traits have consistent effects across environments.
Collapse
Affiliation(s)
- Rishi R. Masalia
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Andries A. Temme
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Nicole de leon Torralba
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
66
|
Sahebi M, Hanafi MM, Rafii MY, Mahmud TMM, Azizi P, Osman M, Abiri R, Taheri S, Kalhori N, Shabanimofrad M, Miah G, Atabaki N. Improvement of Drought Tolerance in Rice ( Oryza sativa L.): Genetics, Genomic Tools, and the WRKY Gene Family. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3158474. [PMID: 30175125 PMCID: PMC6106855 DOI: 10.1155/2018/3158474] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 11/17/2022]
Abstract
Drought tolerance is an important quantitative trait with multipart phenotypes that are often further complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperatures, nutrient deficiencies, and toxicities, may challenge crops simultaneously; therefore, breeding for drought tolerance is very complicated. Interdisciplinary researchers have been attempting to dissect and comprehend the mechanisms of plant tolerance to drought stress using various methods; however, the limited success of molecular breeding and physiological approaches suggests that we rethink our strategies. Recent genetic techniques and genomics tools coupled with advances in breeding methodologies and precise phenotyping will likely reveal candidate genes and metabolic pathways underlying drought tolerance in crops. The WRKY transcription factors are involved in different biological processes in plant development. This zinc (Zn) finger protein family, particularly members that respond to and mediate stress responses, is exclusively found in plants. A total of 89 WRKY genes in japonica and 97 WRKY genes in O. nivara (OnWRKY) have been identified and mapped onto individual chromosomes. To increase the drought tolerance of rice (Oryza sativa L.), research programs should address the problem using a multidisciplinary strategy, including the interaction of plant phenology and multiple stresses, and the combination of drought tolerance traits with different genetic and genomics approaches, such as microarrays, quantitative trait loci (QTLs), WRKY gene family members with roles in drought tolerance, and transgenic crops. This review discusses the newest advances in plant physiology for the exact phenotyping of plant responses to drought to update methods of analysing drought tolerance in rice. Finally, based on the physiological/morphological and molecular mechanisms found in resistant parent lines, a strategy is suggested to select a particular environment and adapt suitable germplasm to that environment.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamed M. Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M. Y. Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - T. M. M. Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Rambod Abiri
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nahid Kalhori
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M. Shabanimofrad
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Gous Miah
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Narges Atabaki
- Iran Azad University of Tehran Science & Reserach Branch, Hesarak, Tehran 1477893855, Iran
| |
Collapse
|
67
|
Arisz SA, Heo JY, Koevoets IT, Zhao T, van Egmond P, Meyer AJ, Zeng W, Niu X, Wang B, Mitchell-Olds T, Schranz ME, Testerink C. DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. PLANT PHYSIOLOGY 2018; 177:1410-1424. [PMID: 29907701 PMCID: PMC6084661 DOI: 10.1104/pp.18.00503] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Freezing limits plant growth and crop productivity, and plant species in temperate zones have the capacity to develop freezing tolerance through complex modulation of gene expression affecting various aspects of metabolism and physiology. While many components of freezing tolerance have been identified in model species under controlled laboratory conditions, little is known about the mechanisms that impart freezing tolerance in natural populations of wild species. Here, we performed a quantitative trait locus (QTL) study of acclimated freezing tolerance in seedlings of Boechera stricta, a highly adapted relative of Arabidopsis (Arabidopsis thaliana) native to the Rocky Mountains. A single QTL was identified that contained the gene encoding ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (BstDGAT1), whose expression is highly cold responsive. The primary metabolic enzyme DGAT1 catalyzes the final step in assembly of triacylglycerol (TAG) by acyl transfer from acyl-CoA to diacylglycerol. Freezing tolerant plants showed higher DGAT1 expression during cold acclimation than more sensitive plants, and this resulted in increased accumulation of TAG in response to subsequent freezing. Levels of oligogalactolipids that are produced by SFR2 (SENSITIVE TO FREEZING2), an indispensable element of freezing tolerance in Arabidopsis, were also higher in freezing-tolerant plants. Furthermore, overexpression of AtDGAT1 led to increased freezing tolerance. We propose that DGAT1 confers freezing tolerance in plants by supporting SFR2-mediated remodeling of chloroplast membranes.
Collapse
Affiliation(s)
- Steven A Arisz
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Jae-Yun Heo
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Iko T Koevoets
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Pieter van Egmond
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - A Jessica Meyer
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | | | | | - Baosheng Wang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
68
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
69
|
Gudys K, Guzy-Wrobelska J, Janiak A, Dziurka MA, Ostrowska A, Hura K, Jurczyk B, Żmuda K, Grzybkowska D, Śróbka J, Urban W, Biesaga-Koscielniak J, Filek M, Koscielniak J, Mikołajczak K, Ogrodowicz P, Krystkowiak K, Kuczyńska A, Krajewski P, Szarejko I. Prioritization of Candidate Genes in QTL Regions for Physiological and Biochemical Traits Underlying Drought Response in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2018; 9:769. [PMID: 29946328 PMCID: PMC6005862 DOI: 10.3389/fpls.2018.00769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/18/2018] [Indexed: 05/27/2023]
Abstract
Drought is one of the most adverse abiotic factors limiting growth and productivity of crops. Among them is barley, ranked fourth cereal worldwide in terms of harvested acreage and production. Plants have evolved various mechanisms to cope with water deficit at different biological levels, but there is an enormous challenge to decipher genes responsible for particular complex phenotypic traits, in order to develop drought tolerant crops. This work presents a comprehensive approach for elucidation of molecular mechanisms of drought tolerance in barley at the seedling stage of development. The study includes mapping of QTLs for physiological and biochemical traits associated with drought tolerance on a high-density function map, projection of QTL confidence intervals on barley physical map, and the retrievement of positional candidate genes (CGs), followed by their prioritization based on Gene Ontology (GO) enrichment analysis. A total of 64 QTLs for 25 physiological and biochemical traits that describe plant water status, photosynthetic efficiency, osmoprotectant and hormone content, as well as antioxidant activity, were positioned on a consensus map, constructed using RIL populations developed from the crosses between European and Syrian genotypes. The map contained a total of 875 SNP, SSR and CGs, spanning 941.86 cM with resolution of 1.1 cM. For the first time, QTLs for ethylene, glucose, sucrose, maltose, raffinose, α-tocopherol, γ-tocotrienol content, and catalase activity, have been mapped in barley. Based on overlapping confidence intervals of QTLs, 11 hotspots were identified that enclosed more than 60% of mapped QTLs. Genetic and physical map integration allowed the identification of 1,101 positional CGs within the confidence intervals of drought response-specific QTLs. Prioritization resulted in the designation of 143 CGs, among them were genes encoding antioxidants, carboxylic acid biosynthesis enzymes, heat shock proteins, small auxin up-regulated RNAs, nitric oxide synthase, ATP sulfurylases, and proteins involved in regulation of flowering time. This global approach may be proposed for identification of new CGs that underlies QTLs responsible for complex traits.
Collapse
Affiliation(s)
- Kornelia Gudys
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
- Department of Botany and Nature Protection, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Justyna Guzy-Wrobelska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Agnieszka Janiak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Michał A. Dziurka
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Agnieszka Ostrowska
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Barbara Jurczyk
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Katarzyna Żmuda
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Daria Grzybkowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Joanna Śróbka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Wojciech Urban
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Jolanta Biesaga-Koscielniak
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Maria Filek
- Department of Developmental Biology, Institute of Plant Physiology, Polish Academy of Sciences, Krakow, Poland
| | - Janusz Koscielniak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Krzysztof Mikołajczak
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Ogrodowicz
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Karolina Krystkowiak
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anetta Kuczyńska
- Department of Biotechnology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
70
|
Ortiz D, Litvin AG, Salas Fernandez MG. A cost-effective and customizable automated irrigation system for precise high-throughput phenotyping in drought stress studies. PLoS One 2018; 13:e0198546. [PMID: 29870560 PMCID: PMC5988304 DOI: 10.1371/journal.pone.0198546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/21/2018] [Indexed: 01/06/2023] Open
Abstract
The development of high-yielding crops with drought tolerance is necessary to increase food, feed, fiber and fuel production. Methods that create similar environmental conditions for a large number of genotypes are essential to investigate plant responses to drought in gene discovery studies. Modern facilities that control water availability for each plant remain cost-prohibited to some sections of the research community. We present an alternative cost-effective automated irrigation system scalable for a high-throughput and controlled dry-down treatment of plants. This system was tested in sorghum using two experiments. First, four genotypes were subjected to ten days of dry-down to achieve three final Volumetric Water Content (VWC) levels: drought (0.10 and 0.20 m3 m-3) and control (0.30 m3 m-3). The final average VWC was 0.11, 0.22, and 0.31 m3 m-3, respectively, and significant differences in biomass accumulation were observed between control and drought treatments. Second, 42 diverse sorghum genotypes were subjected to a seven-day dry-down treatment for a final drought stress of 0.15 m3 m-3 VWC. The final average VWC was 0.17 m3 m-3, and plants presented significant differences in photosynthetic rate during the drought period. These results demonstrate that cost-effective automation systems can successfully control substrate water content for each plant, to accurately compare their phenotypic responses to drought, and be scaled up for high-throughput phenotyping studies.
Collapse
Affiliation(s)
- Diego Ortiz
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Alexander G. Litvin
- Department of Horticulture, Iowa State University, Ames, Iowa, United States of America
| | | |
Collapse
|
71
|
Coneva V, Chitwood DH. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype. FRONTIERS IN PLANT SCIENCE 2018; 9:322. [PMID: 29593772 PMCID: PMC5861201 DOI: 10.3389/fpls.2018.00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/27/2018] [Indexed: 05/16/2023]
Abstract
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.
Collapse
|
72
|
Li Y, Ruperao P, Batley J, Edwards D, Khan T, Colmer TD, Pang J, Siddique KHM, Sutton T. Investigating Drought Tolerance in Chickpea Using Genome-Wide Association Mapping and Genomic Selection Based on Whole-Genome Resequencing Data. FRONTIERS IN PLANT SCIENCE 2018; 9:190. [PMID: 29515606 PMCID: PMC5825913 DOI: 10.3389/fpls.2018.00190] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 05/06/2023]
Abstract
Drought tolerance is a complex trait that involves numerous genes. Identifying key causal genes or linked molecular markers can facilitate the fast development of drought tolerant varieties. Using a whole-genome resequencing approach, we sequenced 132 chickpea varieties and advanced breeding lines and found more than 144,000 single nucleotide polymorphisms (SNPs). We measured 13 yield and yield-related traits in three drought-prone environments of Western Australia. The genotypic effects were significant for all traits, and many traits showed highly significant correlations, ranging from 0.83 between grain yield and biomass to -0.67 between seed weight and seed emergence rate. To identify candidate genes, the SNP and trait data were incorporated into the SUPER genome-wide association study (GWAS) model, a modified version of the linear mixed model. We found that several SNPs from auxin-related genes, including auxin efflux carrier protein (PIN3), p-glycoprotein, and nodulin MtN21/EamA-like transporter, were significantly associated with yield and yield-related traits under drought-prone environments. We identified four genetic regions containing SNPs significantly associated with several different traits, which was an indication of pleiotropic effects. We also investigated the possibility of incorporating the GWAS results into a genomic selection (GS) model, which is another approach to deal with complex traits. Compared to using all SNPs, application of the GS model using subsets of SNPs significantly associated with the traits under investigation increased the prediction accuracies of three yield and yield-related traits by more than twofold. This has important implication for implementing GS in plant breeding programs.
Collapse
Affiliation(s)
- Yongle Li
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Pradeep Ruperao
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Tanveer Khan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Timothy D. Colmer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Jiayin Pang
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Tim Sutton
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- South Australian Research and Development Institute, Adelaide, SA, Australia
| |
Collapse
|
73
|
Wang X, Komatsu S. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean. J Proteomics 2018; 172:201-215. [PMID: 29133124 DOI: 10.1016/j.jprot.2017.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
Soybean is the important crop with abundant protein, vegetable oil, and several phytochemicals. With such predominant values, soybean is cultivated with a long history. However, flooding and drought stresses exert deleterious effects on soybean growth. The present review summarizes the morphological changes and affected events in soybean exposed to such extreme-water conditions. Sensitive organ in stressed soybean at different-developmental stages is presented based on protein profiles. Protein quality control and calcium homeostasis in the endoplasmic reticulum are discussed in soybean under both stresses. In addition, the way of calcium homeostasis in mediating protein folding and energy metabolism is addressed. Finally, stress response to flooding and drought is systematically demonstrated. This review concludes the recent findings of plant response to flooding and drought stresses in soybean employed proteomic approaches. BIOLOGICAL SIGNIFICANCE Soybean is considered as traditional-health food because of nutritional elements and pharmacological values. Flooding and drought exert deleterious effects to soybean growth. Proteomic approaches have been employed to elucidate stress response in soybean exposed to flooding and drought stresses. In this review, stress response is presented on organ-specific manner in the early-stage plant and soybean seedling exposed to combined stresses. The endoplasmic reticulum (ER) stress is induced by both stresses; and stress-response in the ER is addressed in the root tip of early-stage soybean. Moreover, calcium-response processes in stressed plant are described in the ER and in the cytosol. Additionally, stress-dependent response was discussed in flooded and drought-stressed plant. This review depicts stress response in the sensitive organ of stressed soybean and forms the basis to develop molecular markers related to plant defense under flooding and drought stresses.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
74
|
Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
75
|
Rouphael Y, Kyriacou MC, Colla G. Vegetable Grafting: A Toolbox for Securing Yield Stability under Multiple Stress Conditions. FRONTIERS IN PLANT SCIENCE 2018; 8:2255. [PMID: 29375615 PMCID: PMC5770366 DOI: 10.3389/fpls.2017.02255] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 05/28/2023]
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
76
|
Veselov DS, Sharipova GV, Veselov SY, Dodd IC, Ivanov I, Kudoyarova GR. Rapid changes in root HvPIP2;2 aquaporins abundance and ABA concentration are required to enhance root hydraulic conductivity and maintain leaf water potential in response to increased evaporative demand. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:143-149. [PMID: 32291028 DOI: 10.1071/fp16242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/23/2016] [Indexed: 05/13/2023]
Abstract
To address the involvement of abscisic acid (ABA) in regulating transpiration and root hydraulic conductivity (LpRoot) and their relative importance for maintaining leaf hydration, the ABA-deficient barley mutant Az34 and its parental wild-type (WT) genotype (cv. Steptoe) were grown in hydroponics and exposed to changes in atmospheric vapour pressure deficit (VPD) imposed by air warming. WT plants were capable of maintaining leaf water potential (ψL) that was likely due to increased LpRoot enabling higher water flow from the roots, which increased in response to air warming. The increased LpRoot and immunostaining for HvPIP2;2 aquaporins (AQPs) correlated with increased root ABA content of WT plants when exposed to increased air temperature. The failure of Az34 to maintain ψL during air warming may be due to lower LpRoot than WT plants, and an inability to respond to changes in air temperature. The correlation between root ABA content and LpRoot was further supported by increased root hydraulic conductivity in both genotypes when treated with exogenous ABA (10-5 M). Thus the ability of the root system to rapidly regulate ABA levels (and thence aquaporin abundance and hydraulic conductivity) seems important to maintain leaf hydration.
Collapse
Affiliation(s)
- Dmitry S Veselov
- Ufa Institute of Biology of Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450 054, Russia
| | - Guzel V Sharipova
- Ufa Institute of Biology of Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450 054, Russia
| | | | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancashire LA1 4YQ, UK
| | - Igor Ivanov
- Ufa Institute of Biology of Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450 054, Russia
| | - Guzel R Kudoyarova
- Ufa Institute of Biology of Russian Academy of Sciences, pr. Octyabrya, 69, Ufa 450 054, Russia
| |
Collapse
|
77
|
Marla SR, Shiva S, Welti R, Liu S, Burke JJ, Morris GP. Comparative Transcriptome and Lipidome Analyses Reveal Molecular Chilling Responses in Chilling-Tolerant Sorghums. THE PLANT GENOME 2017; 10. [PMID: 29293808 DOI: 10.3835/plantgenome2017.03.0025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chilling temperatures (0 to 15°C) are a major constraint for temperate cultivation of tropical-origin crops, including the cereal crop sorghum ( [L.] Moench). Northern Chinese sorghums have adapted to early-season chilling, but molecular mechanisms of chilling tolerance are unknown. We used RNA sequencing of seedlings to compare the chilling-responsive transcriptomes of a chilling-tolerant Chinese accession with a chilling-sensitive US reference line, and mass spectrometry to compare chilling-responsive lipidomes of four chilling-tolerant Chinese accessions with two US reference lines. Comparative transcriptomics revealed chilling-induced up-regulation of cold-response regulator C-repeat binding factor (CBF) transcription factor and genes involved in reactive oxygen detoxification, jasmonic acid (JA) biosynthesis, and lipid remodeling phospholipase Dα1 (α) gene in the chilling-tolerant Chinese line. Lipidomics revealed conserved chilling-induced increases in lipid unsaturation, as well as lipid remodeling of photosynthetic membranes that is specific to chilling-tolerant Chinese accessions. Our results point to CBF-mediated transcriptional regulation, galactolipid and phospholipid remodeling, and JA as potential molecular mechanisms underlying chilling adaptation in Chinese sorghums. These molecular systems underlying chilling response could be targeted in molecular breeding for chilling tolerance.
Collapse
|
78
|
Metabolic Signatures in Response to Abscisic Acid (ABA) Treatment in Brassica napus Guard Cells Revealed by Metabolomics. Sci Rep 2017; 7:12875. [PMID: 28993661 PMCID: PMC5634414 DOI: 10.1038/s41598-017-13166-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/19/2017] [Indexed: 11/08/2022] Open
Abstract
Drought can severely damage crops, resulting in major yield losses. During drought, vascular land plants conserve water via stomatal closure. Each stomate is bordered by a pair of guard cells that shrink in response to drought and the associated hormone abscisic acid (ABA). The activation of complex intracellular signaling networks underlies these responses. Therefore, analysis of guard cell metabolites is fundamental for elucidation of guard cell signaling pathways. Brassica napus is an important oilseed crop for human consumption and biodiesel production. Here, non-targeted metabolomics utilizing gas chromatography mass spectrometry (GC-MS/MS) and liquid chromatography mass spectrometry (LC-MS/MS) were employed for the first time to identify metabolic signatures in response to ABA in B. napus guard cell protoplasts. Metabolome profiling identified 390 distinct metabolites in B. napus guard cells, falling into diverse classes. Of these, 77 metabolites, comprising both primary and secondary metabolites were found to be significantly ABA responsive, including carbohydrates, fatty acids, glucosinolates, and flavonoids. Selected secondary metabolites, sinigrin, quercetin, campesterol, and sitosterol, were confirmed to regulate stomatal closure in Arabidopsis thaliana, B. napus or both species. Information derived from metabolite datasets can provide a blueprint for improvement of water use efficiency and drought tolerance in crops.
Collapse
|
79
|
Sita K, Sehgal A, HanumanthaRao B, Nair RM, Vara Prasad PV, Kumar S, Gaur PM, Farooq M, Siddique KHM, Varshney RK, Nayyar H. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1658. [PMID: 29123532 PMCID: PMC5662899 DOI: 10.3389/fpls.2017.01658] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/08/2017] [Indexed: 05/20/2023]
Abstract
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.
Collapse
Affiliation(s)
- Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | | | - P. V. Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Pooran M. Gaur
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
80
|
Tuberosa R, Frascaroli E, Salvi S. Leveraging plant genomics for better and healthier food. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
81
|
Gelli M, Konda AR, Liu K, Zhang C, Clemente TE, Holding DR, Dweikat IM. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum. BMC PLANT BIOLOGY 2017; 17:123. [PMID: 28697783 PMCID: PMC5505042 DOI: 10.1186/s12870-017-1064-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/25/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Quantitative trait loci (QTLs) detected in one mapping population may not be detected in other mapping populations at all the time. Therefore, before being used for marker assisted breeding, QTLs need to be validated in different environments and/or genetic backgrounds to rule out statistical anomalies. In this regard, we mapped the QTLs controlling various agronomic traits in a recombinant inbred line (RIL) population in response to Nitrogen (N) stress and validated these with the reported QTLs in our earlier study to find the stable and consistent QTLs across populations. Also, with Illumina RNA-sequencing we checked the differential expression of gene (DEG) transcripts between parents and pools of RILs with high and low nitrogen use efficiency (NUE) and overlaid these DEGs on to the common validated QTLs to find candidate genes associated with N-stress tolerance in sorghum. RESULTS An F7 RIL population derived from a cross between CK60 (N-stress sensitive) and San Chi San (N-stress tolerant) inbred sorghum lines was used to map QTLs for 11 agronomic traits tested under different N-levels. Composite interval mapping analysis detected a total of 32 QTLs for 11 agronomic traits. Validation of these QTLs revealed that of the detected, nine QTLs from this population were consistent with the reported QTLs in earlier study using CK60/China17 RIL population. The validated QTLs were located on chromosomes 1, 6, 7, 8, and 9. In addition, root transcriptomic profiling detected 55 and 20 differentially expressed gene (DEG) transcripts between parents and pools of RILs with high and low NUE respectively. Also, overlay of these DEG transcripts on to the validated QTLs found candidate genes transcripts for NUE and also showed the expected differential expression. For example, DEG transcripts encoding Lysine histidine transporter 1 (LHT1) had abundant expression in San Chi San and the tolerant RIL pool, whereas DEG transcripts encoding seed storage albumin, transcription factor IIIC (TFIIIC) and dwarfing gene (DW2) encoding multidrug resistance-associated protein-9 homolog showed abundant expression in CK60 parent, similar to earlier study. CONCLUSIONS The validated QTLs among different mapping populations would be the most reliable and stable QTLs across germplasm. The DEG transcripts found in the validated QTL regions will serve as future candidate genes for enhancing NUE in sorghum using molecular approaches.
Collapse
Affiliation(s)
- Malleswari Gelli
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Anji Reddy Konda
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Kan Liu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Chi Zhang
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| | - Thomas E Clemente
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - David R Holding
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, 68588, USA
| | - Ismail M Dweikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA.
| |
Collapse
|
82
|
Kordrostami M, Rabiei B, Hassani Kumleh H. Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:529-544. [PMID: 28878492 PMCID: PMC5567701 DOI: 10.1007/s12298-017-0440-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 05/13/2023]
Abstract
Changes in the antioxidant enzymes, lipid peroxidation, sodium and potassium, chlorophyll, H2O2 and proline content were monitored in the leaves of 42 rice varieties which were not yet well-documented for the salinity tolerance under different salinity levels. The tolerant varieties (FL478, Hassani, Shahpasand, Gharib and Nemat) showed signs of tolerance (lower Na+/K+ ratio, high proline accumulation, less membrane damage, lower H2O2 production, and higher superoxide dismutase and catalase activity) very well. The positive relationship between the level of salt tolerance and the amount of proline accumulation in the rice varieties support the important role of proline under the salt stress. The varieties were genotyped for 12 microsatellite markers that were closely linked to SalTol QTL. The results of association analysis indicated that RM1287, RM8094, RM3412 and AP3206 markers had the high value of R2 for the regression models of the studied traits. It shows the important role of SalTol in controlling physio-biochemical traits. The results can be used in the future marker assisted selection (MAS) directly, if the results are confirmed.
Collapse
Affiliation(s)
- Mojtaba Kordrostami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| | - Babak Rabiei
- Department of Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| | - Hassan Hassani Kumleh
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| |
Collapse
|
83
|
Wang H, Qin F. Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1110. [PMID: 28713401 PMCID: PMC5491614 DOI: 10.3389/fpls.2017.01110] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
Crops are often cultivated in regions where they will face environmental adversities; resulting in substantial yield loss which can ultimately lead to food and societal problems. Thus, significant efforts have been made to breed stress tolerant cultivars in an attempt to minimize these problems and to produce more stability with respect to crop yields across broad geographies. Since stress tolerance is a complex and multi-genic trait, advancements with classical breeding approaches have been challenging. On the other hand, molecular breeding, which is based on transgenics, marker-assisted selection and genome editing technologies; holds great promise to enable farmers to better cope with these challenges. However, identification of the key genetic components underlying the trait is critical and will serve as the foundation for future crop genetic improvement. Recently, genome-wide association studies have made significant contributions to facilitate the discovery of natural variation contributing to stress tolerance in crops. From these studies, the identified loci can serve as targets for genomic selection or editing to enable the molecular design of new cultivars. Here, we summarize research progress on this issue and focus on the genetic basis of drought tolerance as revealed by genome-wide association studies and quantitative trait loci mapping. Although many favorable loci have been identified, elucidation of their molecular mechanisms contributing to increased stress tolerance still remains a challenge. Thus, continuous efforts are still required to functionally dissect this complex trait through comprehensive approaches, such as system biological studies. It is expected that proper application of the acquired knowledge will enable the development of stress tolerant cultivars; allowing agricultural production to become more sustainable under dynamic environmental conditions.
Collapse
Affiliation(s)
- Hongwei Wang
- Agricultural College, Yangtze UniversityJingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
| | - Feng Qin
- College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
84
|
Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, Busov V. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:692-705. [PMID: 27813246 DOI: 10.1111/tpj.13413] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 05/07/2023]
Abstract
Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) gene with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.
Collapse
Affiliation(s)
- Madhumita Dash
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Yordan S Yordanov
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Tatyana Georgieva
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | | | - Elena Yordanova
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Victor Busov
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
85
|
Zhang X, Shabala S, Koutoulis A, Shabala L, Zhou M. Meta-analysis of major QTL for abiotic stress tolerance in barley and implications for barley breeding. PLANTA 2017; 245:283-295. [PMID: 27730410 DOI: 10.1007/s00425-016-2605-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/04/2016] [Indexed: 05/24/2023]
Abstract
We projected meta-QTL (MQTL) for drought, salinity, and waterlogging tolerance to the physical map of barley through meta-analysis. The positions of these MQTL were refined and candidate genes were identified. Drought, salinity and waterlogging are three major abiotic stresses limiting barley yield worldwide. Breeding for abiotic stress-tolerant crops has drawn increased attention, and a large number of quantitative trait loci (QTL) for drought, salinity, and waterlogging tolerance in barley have been detected. However, very few QTL have been successfully used in marker-assisted selection (MAS) in breeding. In this study, we summarized 632 QTL for drought, salinity and waterlogging tolerance in barley. Among all these QTL, only 195 major QTL were used to conduct meta-analysis to refine QTL positions for MAS. Meta-analysis was used to map the summarized major QTL for drought, salinity, and waterlogging tolerance from different mapping populations on the barley physical map. The positions of identified meta-QTL (MQTL) were used to search for candidate genes for drought, salinity, and waterlogging tolerance in barley. Both MQTL3H.4 and MQTL6H.2 control drought tolerance in barley. Fine-mapped QTL for salinity tolerance, HvNax4 and HvNax3, were validated on MQTL1H.4 and MQTL7H.2, respectively. MQTL2H.1 and MQTL5H.3 were also the target regions for improving salinity tolerance in barley. MQTL4H.4 is the main region controlling waterlogging tolerance in barley with fine-mapped QTL for aerenchyma formation under waterlogging conditions. Detected and refined MQTL and candidate genes are crucial for future successful MAS in barley breeding.
Collapse
Affiliation(s)
- Xuechen Zhang
- School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, Tasmania, TAS 7249, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, Tasmania, TAS 7249, Australia
| | - Anthony Koutoulis
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, Tasmania, TAS 7249, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, P.O. Box 46, Kings Meadows, Tasmania, TAS 7249, Australia.
| |
Collapse
|
86
|
Zang X, Geng X, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Ni Z, Yao Y, Xin M, Hu Z, Sun Q, Peng H. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC PLANT BIOLOGY 2017; 17:14. [PMID: 28088182 PMCID: PMC5237568 DOI: 10.1186/s12870-016-0958-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/20/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND The yield of wheat (Triticum aestivum L.), an important crop, is adversely affected by heat stress in many regions of the world. However, the molecular mechanisms underlying thermotolerance are largely unknown. RESULTS A novel ferritin gene, TaFER, was identified from our previous heat stress-responsive transcriptome analysis of a heat-tolerant wheat cultivar (TAM107). TaFER was mapped to chromosome 5B and named TaFER-5B. Expression pattern analysis revealed that TaFER-5B was induced by heat, polyethylene glycol (PEG), H2O2 and Fe-ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA). To confirm the function of TaFER-5B in wheat, TaFER-5B was transformed into the wheat cultivar Jimai5265 (JM5265), and the transgenic plants exhibited enhanced thermotolerance. To examine whether the function of ferritin from mono- and dico-species is conserved, TaFER-5B was transformed into Arabidopsis, and overexpression of TaFER-5B functionally complemented the heat stress-sensitive phenotype of a ferritin-lacking mutant of Arabidopsis. Moreover, TaFER-5B is essential for protecting cells against heat stress associated with protecting cells against ROS. In addition, TaFER-5B overexpression also enhanced drought, oxidative and excess iron stress tolerance associated with the ROS scavenging. Finally, TaFER-5B transgenic Arabidopsis and wheat plants exhibited improved leaf iron content. CONCLUSIONS Our results suggest that TaFER-5B plays an important role in enhancing tolerance to heat stress and other abiotic stresses associated with the ROS scavenging.
Collapse
Affiliation(s)
- Xinshan Zang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Xiaoli Geng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Fei Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Zhenshan Liu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Liyuan Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Yue Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Xuejun Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, NO.2 Yuanmingyuan Xi Road, Haidian District, Beijing, 100193 China
| |
Collapse
|
87
|
QTL Analysis for Drought Tolerance in Wheat: Present Status and Future Possibilities. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7010005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
88
|
Sita K, Sehgal A, HanumanthaRao B, Nair RM, Vara Prasad PV, Kumar S, Gaur PM, Farooq M, Siddique KHM, Varshney RK, Nayyar H. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 29123532 DOI: 10.3389/flps.2017.01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.
Collapse
Affiliation(s)
- Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | | | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
89
|
Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species. Int J Genomics 2016; 2016:3460416. [PMID: 28025636 PMCID: PMC5153469 DOI: 10.1155/2016/3460416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/23/2016] [Accepted: 11/08/2016] [Indexed: 12/01/2022] Open
Abstract
In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.
Collapse
|
90
|
Genetic Diversity and Association Mapping for Agromorphological and Grain Quality Traits of a Structured Collection of Durum Wheat Landraces Including subsp. durum, turgidum and diccocon. PLoS One 2016; 11:e0166577. [PMID: 27846306 PMCID: PMC5113043 DOI: 10.1371/journal.pone.0166577] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Association mapping was performed for 18 agromorphological and grain quality traits in a set of 183 Spanish landraces, including subspecies durum, turgidum and dicoccon, genotyped with 749 DArT (Diversity Array Technology) markers. Large genetic and phenotypic variability was detected, being the level of diversity among the chromosomes and genomes heterogeneous, and sometimes complementary, among subspecies. Overall, 356 were monomorphic in at least one subspecies, mainly in dicoccon, and some of them coincidental between subspecies, especially between turgidum and dicoccon. Several of those fixed markers were associated to plant responses to environmental stresses or linked to genes subjected to selection during tetraploid wheat domestication process. A total of 85 stable MTAs (marker–trait associations) have been identified for the agromorphological and quality parameters, some of them common among subspecies and others subspecies-specific. For all the traits, we have found MTAs explaining more than 10% of the phenotypic variation in any of the three subspecies. The number of MTAs on the B genome exceeded that on the A genome in subsp. durum, equalled in turgidum and was below in dicoccon. The validation of several adaptive and quality trait MTAs by combining the association mapping with an analysis of the signature of selection, identifying the putative gene function of the marker, or by coincidences with previous reports, showed that our approach was successful for the detection of MTAs and the high potential of the collection to identify marker–trait associations. Novel MTAs not previously reported, some of them subspecies specific, have been described and provide new information about the genetic control of complex traits.
Collapse
|
91
|
Identification of manganese efficiency candidate genes in winter barley (Hordeum vulgare) using genome wide association mapping. BMC Genomics 2016; 17:775. [PMID: 27716061 PMCID: PMC5050567 DOI: 10.1186/s12864-016-3129-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Manganese (Mn) has several essential functions in plants, including a role as cofactor in the oxygen evolving complex (OEC) of photosystem II (PSII). Manganese deficiency is a major plant nutritional disorder in winter cereals resulting in significant yield reductions and winter kill in more severe cases. Among the winter cereals, genotypes of winter barley are known to differ considerably in tolerance to Mn deficiency, but the genes controlling the Mn deficiency trait remains elusive. RESULTS Experiments were conducted using 248 barley varieties, cultivated in six distinct environments prone to induce Mn deficiency. High-throughput phenotyping for Mn deficiency was performed by chlorophyll a (Chl a) fluorescence analysis to quantify the quantum yield efficiency of PSII. High-throughput phenotyping in combination with ICP-OES based multi-element analyses allowed detection of marker-trait associations by genome wide association (GWA) mapping. Several key candidate genes were identified, including PSII subunit proteins, germin like proteins and Mn superoxide dismutase. The putative roles of the encoded proteins in Mn dependent metabolic processes are discussed. CONCLUSIONS Fifty-four candidate genes were identified by Chl a fluorescence phenotyping and association genetics. Tolerance of plants to Mn deficiency, which is referred to as Mn efficiency, appeared to be a complex trait involving many genes. Moreover, the trait appeared to be highly dependent on the environmental conditions in field. This study provides the basis for an improved understanding of the parameters influencing Mn efficiency and is valuable in future plant breeding aiming at producing new varieties with improved tolerance to cultivation in soil prone to induce Mn deficiency.
Collapse
|
92
|
Millet EJ, Welcker C, Kruijer W, Negro S, Coupel-Ledru A, Nicolas SD, Laborde J, Bauland C, Praud S, Ranc N, Presterl T, Tuberosa R, Bedo Z, Draye X, Usadel B, Charcosset A, Van Eeuwijk F, Tardieu F. Genome-Wide Analysis of Yield in Europe: Allelic Effects Vary with Drought and Heat Scenarios. PLANT PHYSIOLOGY 2016; 172:749-764. [PMID: 27436830 PMCID: PMC5047082 DOI: 10.1104/pp.16.00621] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/12/2016] [Indexed: 05/18/2023]
Abstract
Assessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables simulated by a crop model in current (35 years × 55 sites) and future conditions into six scenarios of temperature and water deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+5°C); (4) analyzing the genetic variation of plant performance for each environmental scenario. Forty-eight quantitative trait loci (QTLs) of yield were identified by association genetics using a multi-environment multi-locus model. Eight and twelve QTLs were associated to tolerances to heat and drought stresses because they were specific to hot and dry scenarios, respectively, with low or even negative allelic effects in favorable scenarios. Twenty-four QTLs improved yield in favorable conditions but showed nonsignificant effects under stress; they were therefore associated with higher sensitivity. Our approach showed a pattern of QTL effects expressed as functions of environmental variables and scenarios, allowing us to suggest hypotheses for mechanisms and candidate genes underlying each QTL. It can be used for assessing the performance of genotypes and the contribution of genomic regions under current and future stress situations and to accelerate breeding for drought-prone environments.
Collapse
Affiliation(s)
- Emilie J Millet
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Claude Welcker
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Willem Kruijer
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Sandra Negro
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Aude Coupel-Ledru
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Stéphane D Nicolas
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Jacques Laborde
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Cyril Bauland
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Sebastien Praud
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Nicolas Ranc
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Thomas Presterl
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Roberto Tuberosa
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Zoltan Bedo
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Xavier Draye
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Björn Usadel
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Alain Charcosset
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - Fred Van Eeuwijk
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| | - François Tardieu
- INRA, Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, 34060 Montpellier, France (E.J.M., C.W., A.C.-L., F.T.);Biometris - Applied Statistics, Department of Plant Science, Wageningen University, 6700AA Wageningen, Netherlands (W.K., F.V.E.);INRA, UMR 0320 / UMR 8120 Génétique Quantitative et Evolution, 91190 Gif-sur-Yvette, France (S.N, S.D.N., C.B., A.C.); INRA, SMH Maïs, Centre de recherche de Bordeaux Aquitaine, 40390 Saint-Martin-De-Hinx, France (J.L.); Centre de Recherche de Chappes, Biogemma, 63720 Chappes, France (S.P.); Syngenta France SAS, 12, Chemin de l'Hobit, BP 27, 31790, Saint-Sauveur, France (N.R.); KWS Saat SE, 37555 Einbeck, Germany (T.P.); Department of Agricultural Sciences, University of Bologna, 40127 Bologna, Italy (R.T.);MTA ATK/ AI CAR HAS, Martonvasar 2462, Hungary (Z.B.);UCL ELIA, 1348 Louvain-la-Neuve, Belgium (X.D.); andInstitute for Botany and Molecular Genetics, BioSC, RWTH Aachen University, 52074 Aachen, Germany (B.U.)
| |
Collapse
|
93
|
DROUGHT RESISTANCE AND PRODUCTIVITY OF WHEAT AND SOYBEAN ISOGENIC LINES WITH DIFFERENT PHOTOPERIODIC SENSITIVITY. EUREKA: LIFE SCIENCES 2016. [DOI: 10.21303/2504-5695.2016.00226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The results of the study of drought tolerance of isogenic (NILs – near isogenic lines) by genes PPD (photoperiod) wheat lines and isogenic by genes ЕЕ (early maturation) soybean lines, that control the photoperiodic sensitivity are presented. In field experiments the photoperiodic sensitivity of the lines when grown under natural long days (16 hours at a latitude of Kharkov) and under artificial short-day (9 hours) is determined. The results showed that line PРD-D1A and PPD-A1a wheat and soybean lines L 71-920 had a weak photoperiodic sensitivity (weak PPDS) and line PPD-B1a wheat and soybean lines L 71-920 - strong photoperiodic sensitivity (strong PPDS). Wheat and soybean lines with weak PPDS were more productive. When simulating drought action on seed germination (20% strength mannitol solution - rapid method), it was showed that the seeds of soybean and wheat lines with weak PPDS have a higher germination than seeds of the lines with strong PPDS. When simulating soil drought (30% FMC – field moisture capacity of the soil) under growing experiment, it was revealed that the biomass accumulation indices of plants, leaf relative water content (RWC) and proline content in leaves lines with weak PPDS were higher than in the photoperiodic lines with strong PPDS. So, all used methods for determining drought tolerance showed that the low photoperiodic sensitivity lines are more resistant to drought.
It is assumed that wheat genes PPD and soybean genes EE can participate in the formation of resistance to drought. Genotypes with low photoperiodic sensitivity should be used in breeding soybean and wheat drought resistance.
Collapse
|
94
|
Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome 2016; 60:26-45. [PMID: 27996306 DOI: 10.1139/gen-2016-0017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Wheat crops frequently experience a combination of abiotic stresses in the field, but most quantitative trait loci (QTL) studies have focused on the identification of QTLs for traits under single stress field conditions. A recombinant inbred line (RIL) population derived from SeriM82 × Babax was used to map QTLs under well-irrigated, heat, drought, and a combination of heat and drought stress conditions in two years. A total of 477 DNA markers were used to construct linkage groups that covered 1619.6 cM of the genome, with an average distance of 3.39 cM between adjacent markers. Moderate to relatively high heritability estimates (0.60-0.70) were observed for plant height (PHE), grain yield (YLD), and grain per square meter (GM2). The most important QTLs for days to heading (DHE), thousand grain weight (TGW), and YLD were detected on chromosomes 1B, 1D-a, and 7D-b. The prominent QTLs related to canopy temperature were on 3B. Results showed that common QTLs for DHE, YLD, and TGW on 7D-b were validated in heat and drought trials. Three QTLs for chlorophyll content in SPAD unit (on 1A/6B), leaf rolling (ROL) (on 3B/4A), and GM2 (on 1B/7D-b) showed significant epistasis × environment interaction. Six heat- or drought-specific QTLs (linked to 7D-acc/cat-10, 1B-agc/cta-9, 1A-aag/cta-8, 4A-acg/cta-3, 1B-aca/caa-3, and 1B-agc/cta-9 for day to maturity (DMA), SPAD, spikelet compactness (SCOM), TGW, GM2, and GM2, respectively) were stable and validated over two years. The major DHE QTL linked to 7D-acc/cat-10, with no QTL × environment (QE) interaction increased TGW and YLD. This QTL (5.68 ≤ LOD ≤ 10.5) explained up to 19.6% variation in YLD in drought, heat, and combined stress trials. This marker as a candidate could be used for verification in other populations and identifying superior allelic variations in wheat cultivars or its wild progenitors to increase the efficiency of selection of high yielding lines adapted to end-season heat and drought stress conditions.
Collapse
Affiliation(s)
- Sirous Tahmasebi
- a Seed and Plant Improvement Division, Agricultural and Natural Resources Research Center of Fars Province, Darab, Iran.,b Department of Crop Production and Plant Breeding, School of Agriculture, 7144165186, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- b Department of Crop Production and Plant Breeding, School of Agriculture, 7144165186, Shiraz University, Shiraz, Iran
| | - Hassan Pakniyat
- b Department of Crop Production and Plant Breeding, School of Agriculture, 7144165186, Shiraz University, Shiraz, Iran
| | - C Lynne McIntyre
- c CSIRO Agriculture, Queensland Bioscience Precinct, St. Lucia, QLD, 4068, Australia
| |
Collapse
|
95
|
Khan A, Sovero V, Gemenet D. Genome-assisted Breeding For Drought Resistance. Curr Genomics 2016; 17:330-42. [PMID: 27499682 PMCID: PMC4955035 DOI: 10.2174/1389202917999160211101417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 11/30/2022] Open
Abstract
Drought stress caused by unpredictable precipitation poses a major threat to food production worldwide, and its impact is only expected to increase with the further onset of climate change. Understanding the effect of drought stress on crops and plants' response is critical for developing improved varieties with stable high yield to fill a growing food gap from an increasing population depending on decreasing land and water resources. When a plant encounters drought stress, it may use multiple response types, depending on environmental conditions, drought stress intensity and duration, and the physiological stage of the plant. Drought stress responses can be divided into four broad types: drought escape, drought avoidance, drought tolerance, and drought recovery, each characterized by interacting mechanisms, which may together be referred to as drought resistance mechanisms. The complex nature of drought resistance requires a multi-pronged approach to breed new varieties with stable and enhanced yield under drought stress conditions. High throughput genomics and phenomics allow marker-assisted selection (MAS) and genomic selection (GS), which offer rapid and targeted improvement of populations and identification of parents for rapid genetic gains and improved drought-resistant varieties. Using these approaches together with appropriate genetic diversity, databases, analytical tools, and well-characterized drought stress scenarios, weather and soil data, new varieties with improved drought resistance corresponding to grower preferences can be introduced into target regions rapidly.
Collapse
Affiliation(s)
- Awais Khan
- International Potato Center (CIP), Avenida La Molina 1895, Lima 12,Peru
| | - Valpuri Sovero
- International Potato Center (CIP), Avenida La Molina 1895, Lima 12,Peru
| | - Dorcus Gemenet
- International Potato Center (CIP), Avenida La Molina 1895, Lima 12,Peru
| |
Collapse
|
96
|
Hasan Y, Briggs W, Matschegewski C, Ordon F, Stützel H, Zetzsche H, Groen S, Uptmoor R. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1273-1288. [PMID: 26993486 DOI: 10.1007/s00122-016-2702-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/05/2016] [Indexed: 05/19/2023]
Abstract
QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.
Collapse
Affiliation(s)
- Yaser Hasan
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - William Briggs
- Syngenta Seeds BV, Westeinde 62, BK 1601, Enkhuizen, The Netherlands
| | - Claudia Matschegewski
- Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Frank Ordon
- Julius Kuehn-Institute, Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Zetzsche
- Julius Kuehn-Institute, Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Simon Groen
- Syngenta Seeds BV, Westeinde 62, BK 1601, Enkhuizen, The Netherlands
| | - Ralf Uptmoor
- Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.
| |
Collapse
|
97
|
Abstract
Manganese efficiency is a quantitative abiotic stress trait controlled by several genes each with a small effect. Manganese deficiency leads to yield reduction in winter barley ( L.). Breeding new cultivars for this trait remains difficult because of the lack of visual symptoms and the polygenic features of the trait. Hence, Mn efficiency is a potential suitable trait for a genomic selection (GS) approach. A collection of 248 winter barley varieties was screened for Mn efficiency using Chlorophyll (Chl ) fluorescence in six environments prone to induce Mn deficiency. Two models for genomic prediction were implemented to predict future performance and breeding value of untested varieties. Predictions were obtained using multivariate mixed models: best linear unbiased predictor (BLUP) and genomic best linear unbiased predictor (G-BLUP). In the first model, predictions were based on the phenotypic evaluation, whereas both phenotypic and genomic marker data were included in the second model. Accuracy of predicting future phenotype, , and accuracy of predicting true breeding values, , were calculated and compared for both models using six cross-validation (CV) schemes; these were designed to mimic plant breeding programs. Overall, the CVs showed that prediction accuracies increased when using the G-BLUP model compared with the prediction accuracies using the BLUP model. Furthermore, the accuracies [] of predicting breeding values were more accurate than accuracy of predicting future phenotypes []. The study confirms that genomic data may enhance the prediction accuracy. Moreover it indicates that GS is a suitable breeding approach for quantitative abiotic stress traits.
Collapse
|
98
|
Driedonks N, Rieu I, Vriezen WH. Breeding for plant heat tolerance at vegetative and reproductive stages. PLANT REPRODUCTION 2016; 29:67-79. [PMID: 26874710 PMCID: PMC4909801 DOI: 10.1007/s00497-016-0275-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/21/2016] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Thermotolerant crop research. Global warming has become a serious worldwide threat. High temperature is a major environmental factor limiting crop productivity. Current adaptations to high temperature via alterations to technical and management systems are insufficient to sustain yield. For this reason, breeding for heat-tolerant crops is in high demand. This review provides an overview of the effects of high temperature on plant physiology, fertility and crop yield and discusses the strategies for breeding heat-tolerant cultivars. Generating thermotolerant crops seems to be a challenging task as heat sensitivity is highly variable across developmental stages and processes. In response to heat, plants trigger a cascade of events, switching on numerous genes. Although breeding has made substantial advances in developing heat-tolerant lines, the genetic basis and diversity of heat tolerance in plants remain largely unknown. The development of new varieties is expensive and time-consuming, and knowledge of heat tolerance mechanisms would aid the design of strategies to screen germplasm for heat tolerance traits. However, gains in heat tolerance are limited by the often narrow genetic diversity. Exploration and use of wild relatives and landraces in breeding can increase useful genetic diversity in current crops. Due to the complex nature of plant heat tolerance and its immediate global concern, it is essential to face this breeding challenge in a multidisciplinary holistic approach involving governmental agencies, private companies and academic institutions.
Collapse
Affiliation(s)
- Nicky Driedonks
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Wim H Vriezen
- Bayer CropScience Vegetable Seeds, PO Box 4005, 6080 AA, Haelen, The Netherlands
| |
Collapse
|
99
|
Morina F, Jovanović L, Prokić L, Veljović-Jovanović S, Smith JAC. Physiological basis of differential zinc and copper tolerance of Verbascum populations from metal-contaminated and uncontaminated areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10005-20. [PMID: 26865485 DOI: 10.1007/s11356-016-6177-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/25/2016] [Indexed: 05/20/2023]
Abstract
Metal contamination represents a strong selective pressure favoring tolerant genotypes and leading to differentiation between plant populations. We investigated the adaptive capacity of early-colonizer species of Verbascum recently exposed to Zn- and Cu-contaminated soils (10-20 years). Two Verbascum thapsus L. populations from uncontaminated sites (NMET1, NMET2), one V. thapsus from a zinc-contaminated site (MET1), and a Verbascum lychnitis population from an open-cast copper mine (MET2) were exposed to elevated Zn or Cu in hydroponic culture under glasshouse conditions. MET populations showed considerably higher tolerance to both Zn and Cu than NMET populations as assessed by measurements of growth and net photosynthesis, yet they accumulated higher tissue Zn concentrations in the shoot. Abscisic acid (ABA) concentration increased with Zn and Cu treatment in the NMET populations, which was correlated to stomatal closure, decrease of net photosynthesis, and nutritional imbalance, indicative of interference with xylem loading and divalent-cation homeostasis. At the cellular level, the sensitivity of NMET2 to Zn and Cu was reflected in significant metal-induced ROS accumulation and ion leakage from roots as well as strong induction of peroxidase activity (POD, EC 1.11.1.7), while Zn had no significant effect on ABA concentration and POD activity in MET1. Interestingly, MET2 had constitutively higher root ABA concentration and POD activity. We propose that ABA distribution between shoots and roots could represent an adaptive mechanism for maintaining low ABA levels and unaffected stomatal conductance. The results show that metal tolerance can occur in Verbascum populations after relatively short time of exposure to metal-contaminated soil, indicating their potential use for phytostabilization.
Collapse
Affiliation(s)
- Filis Morina
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia.
| | | | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia
| | - Sonja Veljović-Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | | |
Collapse
|
100
|
Vigueira CC, Small LL, Olsen KM. Long-term balancing selection at the Phosphorus Starvation Tolerance 1 (PSTOL1) locus in wild, domesticated and weedy rice (Oryza). BMC PLANT BIOLOGY 2016; 16:101. [PMID: 27101874 PMCID: PMC4840956 DOI: 10.1186/s12870-016-0783-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/14/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND The ability to grow in phosphorus-depleted soils is an important trait for rice cultivation in many world regions, especially in the tropics. The Phosphorus Starvation Tolerance 1 (PSTOL1) gene has been identified as underlying the ability of some cultivated rice varieties to grow under low-phosphorus conditions; however, the gene is absent from other varieties. We assessed PSTOL1 presence/absence in a geographically diverse sample of wild, domesticated and weedy rice and sequenced the gene in samples where it is present. RESULTS We find that the presence/absence polymorphism spans cultivated, weedy and wild Asian rice groups. For the subset of samples that carry PSTOL1, haplotype sequences suggest long-term selective maintenance of functional alleles, but with repeated evolution of loss-of-function alleles through premature stops and frameshift mutations. The loss-of-function alleles have evolved convergently in multiple rice species and cultivated rice varieties. Greenhouse assessments of plant growth under low- and high-phosphorus conditions did not reveal significant associations with PSTOL1 genotype variation; however, the striking signature of balancing selection at this locus suggests that further phenotypic characterizations of PSTOL1 allelic variants is warranted and may be useful for crop improvement. CONCLUSIONS These findings suggest balancing selection for both functional and non-functional PSTOL1 alleles that predates and transcends Asian rice domestication, a pattern that may reflect fitness tradeoffs associated with geographical variation in soil phosphorus content.
Collapse
Affiliation(s)
| | - Linda L. Small
- />Department of Biology, Washington University, St. Louis, MO USA
| | - Kenneth M. Olsen
- />Department of Biology, Washington University, St. Louis, MO USA
| |
Collapse
|