51
|
Sun D, Nandety RS, Zhang Y, Reid MS, Niu L, Jiang CZ. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3353-65. [PMID: 27099376 PMCID: PMC4892726 DOI: 10.1093/jxb/erw155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2 Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing.
Collapse
Affiliation(s)
- Daoyang Sun
- Department of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Raja Sekhar Nandety
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, USA
| | - Yanlong Zhang
- Department of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Michael S Reid
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Lixin Niu
- Department of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
| |
Collapse
|
52
|
Mustafa R, Shafiq M, Mansoor S, Briddon RW, Scheffler BE, Scheffler J, Amin I. Virus-Induced Gene Silencing in Cultivated Cotton (Gossypium spp.) Using Tobacco Rattle Virus. Mol Biotechnol 2016; 58:65-72. [PMID: 26603442 DOI: 10.1007/s12033-015-9904-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The study described here has optimized the conditions for virus-induced gene silencing (VIGS) in three cultivated cotton species (Gossypium hirsutum, G. arboreum, and G. herbaceum) using a Tobacco rattle virus (TRV) vector. The system was used to silence the homolog of the Arabidopsis thaliana chloroplastos alterados 1 (AtCLA1) gene, involved in chloroplast development, in G. herbaceum, G. arboreum, and six commercial G. hirsutum cultivars. All plants inoculated with the TRV vector to silence CLA1 developed a typical albino phenotype indicative of silencing this gene. Although silencing in G. herbaceum and G. arboreum was complete, silencing efficiency differed for each G. hirsutum cultivar. Reverse transcriptase polymerase chain reaction (PCR) and real-time quantitative PCR showed a reduction in mRNA levels of the CLA1 homolog in all three species, with the highest efficiency (lowest CLA1 mRNA levels) in G. arboreum followed by G. herbaceum and G. hirsutum. The results indicate that TRV is a useful vector for VIGS in Gossypium species. However, selection of host cultivar is important. With the genome sequences of several cotton species recently becoming publicly available, this system has the potential to provide a very powerful tool for the rapid, large-scale reverse-genetic analysis of genes in Gossypium spp.
Collapse
Affiliation(s)
- Roma Mustafa
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| | - Muhammad Shafiq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, PO Box 36, Stoneville, MS, 38776, USA.
| | - Jodi Scheffler
- Genomics and Bioinformatics Research Unit, PO Box 36, Stoneville, MS, 38776, USA.
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| |
Collapse
|
53
|
Flores MA, Reyes MI, Robertson DN, Kjemtrup S. Persistent virus-induced gene silencing in asymptomatic accessions of Arabidopsis. Methods Mol Biol 2015; 1284:305-22. [PMID: 25757779 DOI: 10.1007/978-1-4939-2444-8_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Coupled with the advantages afforded by the model plant Arabidopsis, virus-induced gene silencing (VIGS) offers a rapid means to assess gene function. The geminivirus vector based on Cabbage leaf curl virus described here has the benefits of small insert size and persistent silencing of the target gene through the life cycle of the plant. Here, we show that genetic variation in the vast collection of Arabidopsis accessions can be leveraged to ameliorate viral symptomology that accompanies the VIGS procedure. The plasticity of phenotypes under different day lengths or temperature conditions can be exploited to achieve maximum silencing efficacy in either vegetative or inflorescence tissue, according to the question being asked. Protocols and vectors for Agro-infiltration of primary leaves, subapical pricking in older plants, and microprojectile bombardment are described.
Collapse
Affiliation(s)
- Miguel A Flores
- Department of Plant and Microbial Biology, North Carolina State University, Box 7612, Raleigh, NC, 27695-7612, USA
| | | | | | | |
Collapse
|
54
|
|
55
|
Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci Rep 2015; 5:11790. [PMID: 26134787 PMCID: PMC4488762 DOI: 10.1038/srep11790] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/04/2015] [Indexed: 11/08/2022] Open
Abstract
Cotton (Gossypium spp.) is an important economic crop and there is obvious heterosis in cotton, fertility has played an important role in this heterosis. However, the genes that exhibit critical roles in anther development and fertility are not well understood. Here, we report an acyl-CoA N-acyltransferase (EC2.3; GhACNAT) that plays a key role in anther development and fertility. Suppression of GhACNAT by virus-induced gene silencing in transgenic cotton (G. hirsutum L. cv. C312) resulted in indehiscent anthers that were full of pollen, diminished filaments and stamens, and plant sterility. We found GhACNAT was involved in lipid metabolism and jasmonic acid (JA) biosynthesis. The genes differentially expressed in GhACNAT-silenced plants and C312 were mainly involved in catalytic activity and transcription regulator activity in lipid metabolism. In GhACNAT-silenced plants, the expression levels of genes involved in lipid metabolism and jasmonic acid biosynthesis were significantly changed, the amount of JA in leaves and reproductive organs was significantly decreased compared with the amounts in C312. Treatments with exogenous methyl jasmonate rescued anther dehiscence and pollen release in GhACNAT-silenced plants and caused self-fertility. The GhACNAT gene may play an important role in controlling cotton fertility by regulating the pathways of lipid synthesis and JA biogenesis.
Collapse
|
56
|
Patil BL, Fauquet CM. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies. MOLECULAR PLANT PATHOLOGY 2015; 16:484-94. [PMID: 25220764 PMCID: PMC6638542 DOI: 10.1111/mpp.12205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
RNA silencing is a sequence-specific post-transcriptional gene inactivation mechanism that operates in diverse organisms and that can extend beyond its site of initiation, owing to the movement of the silencing signal, called non-autonomous gene silencing. Previous studies have shown that several factors manifest the movement of the silencing signal, such as the size (21 or 24 nucleotides) of the secondary small interfering RNA (siRNA) produced, the steady-state concentration of siRNAs and their cognate messenger RNA (mRNA) or a change in the sink-source status of plant parts affecting phloem translocation. Our study shows that both light intensity and temperature have a significant impact on the systemic movement of the silencing signal in transient agroinfiltration studies in Nicotiana benthamiana. At higher light intensities (≥ 450 μE/m(2)/s) and higher temperatures (≥ 30 °C), gene silencing was localized to leaf tissue that was infiltrated, without any systemic spread. Interestingly, in these light and temperature conditions (≥ 450 μE/m(2) /s and ≥ 30 °C), the N. benthamiana plants showed recovery from the viral symptoms. However, the reduced systemic silencing and reduced viral symptom severity at higher light intensities were caused by a change in the sink-source status of the plant, ultimately affecting the phloem translocation of small RNAs or the viral genome. In contrast, at lower light intensities (<300 μE/m(2)/s) with a constant temperature of 25 °C, there was strong systemic movement of the silencing signal in the N. benthamiana plants and reduced recovery from virus infections. The accumulation of gene-specific siRNAs was reduced at higher temperature as a result of a reduction in the accumulation of transcript on transient agroinfiltration of RNA interference (RNAi) constructs, mostly because of poor T-DNA transfer activity of Agrobacterium, possibly also accompanied by reduced phloem translocation.
Collapse
Affiliation(s)
- Basavaprabhu L Patil
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO, 63132, USA; National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi, 110012, India
| | | |
Collapse
|
57
|
Ma X, Nicole MC, Meteignier LV, Hong N, Wang G, Moffett P. Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:919-32. [PMID: 25385769 DOI: 10.1093/jxb/eru447] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A major antiviral mechanism in plants is mediated by RNA silencing, which relies on the cleavage of viral dsRNA into virus-derived small interfering RNAs (vsiRNAs) by DICER-like enzymes. Members of the Argonaute (AGO) family of endonucleases then use these vsiRNA as guides to target viral RNA. This can result in a phenomenon known as recovery, whereby the plant silences viral gene expression and recovers from viral symptoms. Endogenous mRNAs can also be targeted by vsiRNAs in a phenomenon known as virus-induced gene silencing (VIGS). Although related to other RNA silencing mechanisms, it has not been established if recovery and VIGS are mediated by the same molecular mechanisms. We used tobacco rattle virus (TRV) carrying a fragment of the phytoene desaturase (PDS) gene (TRV-PDS) or expressing green fluorescent protein (TRV-GFP) as readouts for VIGS and recovery, respectively, in Arabidopsis ago mutants. Our results demonstrated roles for AGO2 and AGO4 in susceptibility to TRV, whereas VIGS of endogenous genes appeared to be largely mediated by AGO1. However, recovery appeared to be mediated by different components, as all the aforementioned mutants were able to recover from TRV-GFP inoculation. TRV RNAs from recovered plants associated less with ribosomes, suggesting that recovery involves translational repression of viral transcripts. Translationally repressed RNAs often accumulate in RNA processing bodies (PBs), where they are eventually processed by decapping enzymes. Consistent with this, we found that viral recovery induced increased PB formation and that a decapping mutant (DCP2) showed increased VIGS and virus RNA accumulation, indicating an important role for PBs in eliminating viral RNA.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, PR China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China Université de Sherbrooke, Département de Biologie, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Marie-Claude Nicole
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Louis-Valentin Meteignier
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, PR China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei 430070, PR China College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Peter Moffett
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard de l'Université, Sherbrooke J1K 2R1, QC, Canada
| |
Collapse
|
58
|
Tuttle JR, Haigler CH, Robertson DN. Virus-induced gene silencing of fiber-related genes in cotton. Methods Mol Biol 2015; 1287:219-34. [PMID: 25740368 DOI: 10.1007/978-1-4939-2453-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Virus-Induced Gene Silencing (VIGS) is a useful method for transient downregulation of gene expression in crop plants. The geminivirus Cotton leaf crumple virus (CLCrV) has been modified to serve as a VIGS vector for persistent gene silencing in cotton. Here the use of Green Fluorescent Protein (GFP) is described as a marker for identifying silenced tissues in reproductive tissues, a procedure that requires the use of transgenic plants. Suggestions are given for isolating and cloning combinations of target and marker sequences so that the total length of inserted foreign DNA is between 500 and 750 bp. Using this strategy, extensive silencing is achieved with only 200-400 bp of sequence homologous to an endogenous gene, reducing the possibility of off-target silencing. Cotyledons can be inoculated using either the gene gun or Agrobacterium and will continue to show silencing throughout fruit and fiber development. CLCrV is not transmitted through seed, and VIGS is limited to genes expressed in the maternally derived seed coat and fiber in the developing seed. This complicates the use of GFP as a marker for VIGS because cotton fibers must be separated from unsilenced tissue in the seed to determine if they are silenced. Nevertheless, fibers from a large number of seeds can be rapidly screened following placement into 96-well plates. Methods for quantifying the extent of silencing using semiquantitative RT-PCR are given.
Collapse
Affiliation(s)
- John R Tuttle
- Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC, 27695-7620, USA
| | | | | |
Collapse
|
59
|
Obrępalska-Stęplowska A, Renaut J, Planchon S, Przybylska A, Wieczorek P, Barylski J, Palukaitis P. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants. FRONTIERS IN PLANT SCIENCE 2015; 6:903. [PMID: 26579153 PMCID: PMC4625170 DOI: 10.3389/fpls.2015.00903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 05/08/2023]
Abstract
Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at C27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day) on the accumulation rate of the virus and satellite RNA (satRNA) in Nicotiana benthamiana plants infected by peanut stunt virus (PSV) with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV plus satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV plus satRNA-infected plants the shift in the temperature barely increased the level of stress-related proteins.
Collapse
Affiliation(s)
- Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
- *Correspondence: Aleksandra Obrępalska-Stęplowska
| | - Jenny Renaut
- Department Environmental Research and Innovation, Integrative Biology Facility, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Sebastien Planchon
- Department Environmental Research and Innovation, Integrative Biology Facility, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Arnika Przybylska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
| | - Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz UniversityPoznań, Poland
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women UniversitySeoul, South Korea
| |
Collapse
|
60
|
Zhang X, Wang L, Xu X, Cai C, Guo W. Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton. BMC PLANT BIOLOGY 2014; 14:345. [PMID: 25492847 PMCID: PMC4270029 DOI: 10.1186/s12870-014-0345-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/20/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development as well as biotic and abiotic stress responses. Knowledge about the MAPK gene family in cotton is limited, and systematic investigation of MAPK family proteins has not been reported. RESULTS By performing a bioinformatics homology search, we identified 28 putative MAPK genes in the Gossypium raimondii genome. These MAPK members were anchored onto 11 chromosomes in G. raimondii, with uneven distribution. Phylogenetic analysis showed that the MAPK candidates could be classified into the four known A, B, C and D groups, with more MAPKs containing the TEY phosphorylation site (18 members) than the TDY motif (10 members). Furthermore, 21 cDNA sequences of MAPKs with complete open reading frames (ORFs) were identified in G. hirsutum via PCR-based approaches, including 13 novel MAPKs and eight with homologs reported previously in tetraploid cotton. The expression patterns of 23 MAPK genes reveal their important roles in diverse functions in cotton, in both various developmental stages of vegetative and reproductive growth and in the stress response. Using a reverse genetics approach based on tobacco rattle virus-induced gene silencing (TRV-VIGS), we further verified that MPK9, MPK13 and MPK25 confer resistance to defoliating isolates of Verticillium dahliae in cotton. Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen. CONCLUSIONS This study presents a comprehensive identification of 28 mitogen-activated protein kinase genes in G. raimondii. Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified. This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| | - Liman Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| | - Xiaoyang Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, P. R. China.
| |
Collapse
|
61
|
Development of new potato virus X-based vectors for gene over-expression and gene silencing assay. Virus Res 2014; 191:62-9. [DOI: 10.1016/j.virusres.2014.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022]
|
62
|
Epigenetic dynamics: role of epimarks and underlying machinery in plants exposed to abiotic stress. Int J Genomics 2014; 2014:187146. [PMID: 25313351 PMCID: PMC4182684 DOI: 10.1155/2014/187146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022] Open
Abstract
Abiotic stress induces several changes in plants at physiological and molecular level. Plants have evolved regulatory mechanisms guided towards establishment of stress tolerance in which epigenetic modifications play a pivotal role. We provide examples of gene expression changes that are brought about by conversion of active chromatin to silent heterochromatin and vice versa. Methylation of CG sites and specific modification of histone tail determine whether a particular locus is transcriptionally active or silent. We present a lucid review of epigenetic machinery and epigenetic alterations involving DNA methylation, histone tail modifications, chromatin remodeling, and RNA directed epigenetic changes.
Collapse
|
63
|
Ramegowda V, Mysore KS, Senthil-Kumar M. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. FRONTIERS IN PLANT SCIENCE 2014; 5:323. [PMID: 25071806 PMCID: PMC4085877 DOI: 10.3389/fpls.2014.00323] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/19/2014] [Indexed: 05/03/2023]
Abstract
Virus-induced gene silencing (VIGS) is an effective tool for gene function analysis in plants. Over the last decade, VIGS has been successfully used as both a forward and reverse genetics technique for gene function analysis in various model plants, as well as crop plants. With the increased identification of differentially expressed genes under various abiotic stresses through high-throughput transcript profiling, the application of VIGS is expected to be important in the future for functional characterization of a large number of genes. In the recent past, VIGS was proven to be an elegant tool for functional characterization of genes associated with abiotic stress responses. In this review, we provide an overview of how VIGS is used in different crop species to characterize genes associated with drought-, salt-, oxidative- and nutrient-deficiency-stresses. We describe the examples from studies where abiotic stress related genes are characterized using VIGS. In addition, we describe the major advantages of VIGS over other currently available functional genomics tools. We also summarize the recent improvements, limitations and future prospects of using VIGS as a tool for studying plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Venkategowda Ramegowda
- Department of Crop Physiology, University of Agricultural Sciences, GKVKBangalore, India
| | | | | |
Collapse
|
64
|
Gu Z, Huang C, Li F, Zhou X. A versatile system for functional analysis of genes and microRNAs in cotton. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:638-49. [PMID: 24521483 DOI: 10.1111/pbi.12169] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/26/2013] [Accepted: 01/02/2014] [Indexed: 05/20/2023]
Abstract
Cotton is an important economic crop worldwide. Due to its long growth cycle, large genome size and recalcitrance to stable transformation, traditional methods for the analysis of gene function in this crop are difficult and labour intensive. Here, we report a cotton leaf crumple virus (CLCrV)-based vector and its application in gene function analysis through virus-induced gene silencing (VIGS) and overexpression of microRNAs (miRNAs), small tandem target mimic (STTM) and artificial miRNA (amiRNA) in cotton via an Agrobacterium-mediated infiltration approach. Using this system, we were able to efficiently silence two endogenous genes, magnesium chelatase subunit I (CHLI) and elongation factor-1α (EF-1α), in Gossypium species and the Bacillus thuringiensis cry1A gene in transgenic cotton. Furthermore, our results show that this vector can be used to ectopically express endogenous miR156 in G. hirsutum, causing a reduction in miR156-targeted RNA transcripts resulting in the development of abnormal leaf phenotypes. Ectopic expression of miR165/166 STTM with this vector led to downward curling and crumpled leaves, and a significant increase in the miR165/166 target mRNAs. This versatile system is easy to use and can provide more uniform and persistent gene silencing in cotton, thereby providing a powerful approach for gene discovery in cotton.
Collapse
Affiliation(s)
- Zhouhang Gu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
65
|
Cai C, Zhang X, Niu E, Zhao L, Li N, Wang L, Ding L, Guo W. GhPSY, a phytoene synthase gene, is related to the red plant phenotype in upland cotton (Gossypium hirsutum L.). Mol Biol Rep 2014; 41:4941-52. [DOI: 10.1007/s11033-014-3360-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/31/2014] [Indexed: 12/31/2022]
|
66
|
Kawai T, Gonoi A, Nitta M, Kaido M, Yamagishi N, Yoshikawa N, Tao R. Virus-induced Gene Silencing in Apricot (Prunus armeniaca L.) and Japanese Apricot (P. mume Siebold ^|^amp; Zucc.) with the Apple Latent Spherical Virus Vector System. ACTA ACUST UNITED AC 2014. [DOI: 10.2503/jjshs1.ch-091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
67
|
Pang J, Zhu Y, Li Q, Liu J, Tian Y, Liu Y, Wu J. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense. PLoS One 2013; 8:e73211. [PMID: 24023833 PMCID: PMC3759462 DOI: 10.1371/journal.pone.0073211] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/17/2013] [Indexed: 11/29/2022] Open
Abstract
Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species). These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS) system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV) vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.
Collapse
Affiliation(s)
- Jinhuan Pang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
| | - Yue Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
| | - Jinzhi Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
| | - Yingchuan Tian
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiahe Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cotton Biology of CRI, CAAS, Anyang, Henan, China
- * E-mail:
| |
Collapse
|
68
|
Jyothsna P, Haq QMI, Jayaprakash P, Malathi VG. Molecular Evidence for the Occurrence of Abutilon mosaic virus, A New World Begomovirus in India. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:284-8. [PMID: 24426288 PMCID: PMC3784915 DOI: 10.1007/s13337-013-0139-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
During an investigation in the year 2010, on the weed reservoir of begomovirus, Abutilon pictum showing bright yellow mosaic symptoms was observed in Udhagamandalam, Tamil Nadu, India. The complete bipartite genome of a begomovirus was cloned and sequenced which revealed association of Abutilon mosaic virus (AbMV). Nicotiana benthamiana plants inoculated biolistically with the concatemers generated through rolling circle amplification of the cloned DNAs were asymptomatic; however three out of nine plants showed presence of viral DNA A. A recombination event in the ORF BC1 with ToLCNDV DNA B (HM989846) was detected. This is the first molecular evidence of AbMV in India.
Collapse
Affiliation(s)
- P. Jyothsna
- />Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Q. M. I. Haq
- />Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - P. Jayaprakash
- />Plant Breeding, IARI, Regional Station, Wellington, 643231 India
| | - V. G. Malathi
- />Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| |
Collapse
|
69
|
Hua J. Modulation of plant immunity by light, circadian rhythm, and temperature. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:406-13. [PMID: 23856082 DOI: 10.1016/j.pbi.2013.06.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 05/21/2023]
Abstract
Plants perceive and integrate intrinsic and extrinsic signals to execute appropriate responses for maximal survival and reproductive success. Plant immune responses are tightly controlled to ensure effective defenses against pathogens while minimizing their adverse effects on plant growth and development. Plant defenses induced in response to pathogen infection are modulated by abiotic signals such as light, circadian rhythm, and temperature. The modulation occurs on specific key components of plant immunity, indicating an intricate integration of biotic and abiotic signals. This review will summarize very recent studies revealing the intersection of plant defenses with light, circadian rhythm and temperature. In addition, it will discuss the adaptive value and evolutionary constraints of abiotic regulation of plant immunity.
Collapse
Affiliation(s)
- Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, NY 148530, United States.
| |
Collapse
|
70
|
Ramanna H, Ding XS, Nelson RS. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing. Methods Mol Biol 2013; 975:15-32. [PMID: 23386292 DOI: 10.1007/978-1-62703-278-0_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The exploding availability of genome and EST-based sequences from grasses requires a technology that allows rapid functional analysis of the multitude of genes that these resources provide. There are several techniques available to determine a gene's function. For gene knockdown studies, silencing through RNAi is a powerful tool. Gene silencing can be accomplished through stable transformation or transient expression of a fragment of a target gene sequence. Stable transformation in rice, maize, and a few other species, although routine, remains a relatively low-throughput process. Transformation in other grass species is difficult and labor-intensive. Therefore, transient gene silencing methods including Agrobacterium-mediated and virus-induced gene silencing (VIGS) have great potential for researchers studying gene function in grasses. VIGS in grasses already has been used to determine the function of genes during pathogen challenge and plant development. It also can be used in moderate-throughput reverse genetics screens to determine gene function. However, the number of viruses modified to serve as silencing vectors in grasses is limited, and the silencing phenotype induced by these vectors is not optimal: the phenotype being transient and with moderate penetration throughout the tissue. Here, we review the most recent information available for VIGS in grasses and summarize the strengths and weaknesses in current virus-grass host systems. We describe ways to improve current virus vectors and the potential of other grass-infecting viruses for VIGS studies. This work is necessary because VIGS for the foreseeable future remains a higher throughput and more rapid system to evaluate gene function than stable transformation.
Collapse
Affiliation(s)
- Hema Ramanna
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., Ardmore, OK, USA
| | | | | |
Collapse
|
71
|
Villanueva-Alonzo HJ, Us-Camas RY, López-Ochoa LA, Robertson D, Guerra-Peraza O, Minero-García Y, Moreno-Valenzuela OA. A new virus-induced gene silencing vector based on Euphorbia mosaic virus-Yucatan peninsula for NPR1 silencing in Nicotiana benthamiana and Capsicum annuum var. Anaheim. Biotechnol Lett 2013; 35:811-23. [PMID: 23546940 DOI: 10.1007/s10529-013-1146-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Virus-induced gene silencing is based on the sequence-specific degradation of RNA. Here, a gene silencing vector derived from EuMV-YP, named pEuMV-YP:ΔAV1, was used to silence ChlI and NPR1 genes in Nicotiana benthamiana. The silencing of the ChlI transcripts was efficient in the stems, petioles and leaves as reflected in tissue bleaching and reduced transcript levels. The silencing was stable, reaching the flowers and fruits, and was observed throughout the life cycle of the plants. Additionally, the silencing of the NPR1 gene was efficient in both N. benthamiana and Capsicum annuum. After silencing, the plants' viral symptoms increased to levels similar to those seen in wild-type plants. These results suggest that NPR1 plays a role in the compatible interactions of EuMV-YP N. benthamiana and EuMV-C. annum var. anaheim.
Collapse
Affiliation(s)
- Hernan J Villanueva-Alonzo
- Unidad de Bioquimica y Biologia Molecular de Plantas, Centro de Investigacion Cientifica de Yucatan AC, Calle 43 No. 130, Chuburna de Hidalgo, C.P. 97200 Merida, Yucatan, Mexico.
| | | | | | | | | | | | | |
Collapse
|
72
|
McGarry RC, Prewitt S, Ayre BG. Overexpression of FT in cotton affects architecture but not floral organogenesis. PLANT SIGNALING & BEHAVIOR 2013; 8:e23602. [PMID: 23333977 PMCID: PMC7030403 DOI: 10.4161/psb.23602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flowering marks the change from indeterminate to determinate plant growth, and this developmental transition involves the activity of the Arabidopsis FLOWERING LOCUS T (FT) gene product and its orthologs. We demonstrated that when FT is ectopically expressed from a viral vector in cotton, a process referred to as virus induced flowering (VIF), it uncouples flowering from photoperiodic regulation and promotes determinate growth in aerial organs. The accelerated switch to determinate growth affected cotton floral buds and sympodial growth, but did not disrupt floral organogenesis. These results can be interpreted in the context of the balance model, which argues that the balance of indeterminate and determinate growth is influenced by the relative abundance of indeterminate and determinate factors in the growing apices. These results emphasize the expanding role of FT in affecting general determinate growth.
Collapse
Affiliation(s)
- Roisin C McGarry
- Department of Biological Sciences; University of North Texas; Denton, TX USA
| | | | | |
Collapse
|
73
|
Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, Rosas-Díaz T, Lozano-Durán R. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing. Viruses 2013; 5:998-1022. [PMID: 23524390 PMCID: PMC3705308 DOI: 10.3390/v5030998] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023] Open
Abstract
The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular mechanisms underlying plant infection and resistance to infection by begomoviruses.
Collapse
Affiliation(s)
- Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +972-8-9489249; Fax: +972- 8 9489899
| | - Assaf Eybishtz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Dagan Sade
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Iris Sobol
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Eduardo Bejarano
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| | - Tábata Rosas-Díaz
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| | - Rosa Lozano-Durán
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| |
Collapse
|
74
|
Gao X, Shan L. Functional genomic analysis of cotton genes with agrobacterium-mediated virus-induced gene silencing. Methods Mol Biol 2013; 975:157-65. [PMID: 23386302 PMCID: PMC4395464 DOI: 10.1007/978-1-62703-278-0_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Cotton (Gossypium spp.) is one of the most agronomically important crops worldwide for its unique textile fiber production and serving as food and feed stock. Molecular breeding and genetic engineering of useful genes into cotton have emerged as advanced approaches to improve cotton yield, fiber quality, and resistance to various stresses. However, the understanding of gene functions and regulations in cotton is largely hindered by the limited molecular and biochemical tools. Here, we describe the method of an Agrobacterium infiltration-based virus-induced gene silencing (VIGS) assay to transiently silence endogenous genes in cotton at 2-week-old seedling stage. The genes of interest could be readily silenced with a consistently high efficiency. To monitor gene silencing efficiency, we have cloned cotton GrCla1 from G. raimondii, a homolog gene of Arabidopsis Cloroplastos alterados 1 (AtCla1) involved in chloroplast development, and inserted into a tobacco rattle virus (TRV) binary vector pYL156. Silencing of GrCla1 results in albino phenotype on the newly emerging leaves, serving as a visual marker for silencing efficiency. To further explore the possibility of using VIGS assay to reveal the essential genes mediating disease resistance to Verticillium dahliae, a fungal pathogen causing severe Verticillium wilt in cotton, we developed a seedling infection assay to inoculate cotton seedlings when the genes of interest are silenced by VIGS. The method we describe here could be further explored for functional genomic analysis of cotton genes involved in development and various biotic and abiotic stresses.
Collapse
Affiliation(s)
| | - Libo Shan
- Corresponding author: Libo Shan, Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Norman Borlaug Center 132, Texas A&M University, College Station, TX 77843, , Tel: 979-845-8818, Fax: 979-862-4790, http://ipgb.tamu.edu/libo-shan-ph-d/
| |
Collapse
|
75
|
Lange M, Yellina AL, Orashakova S, Becker A. Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems. Methods Mol Biol 2013; 975:1-14. [PMID: 23386291 DOI: 10.1007/978-1-62703-278-0_1] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The analysis of gene functions in non-model plant species is often hampered by the fact that stable genetic transformation to downregulate gene expression is laborious and time-consuming, or, for some species, even not achievable. Virus-induced gene silencing (VIGS) can serve as an alternative to mutant collections or stable transgenic plants to allow the characterization of gene functions in a wide range of angiosperm species, albeit in a transient way. VIGS vector systems have been developed from both RNA and DNA plant viral sources to specifically silence target genes in plants. VIGS is nowadays widely used in plant genetics for gene knockdown due to its ease of use and the short time required to generating phenotypes. Here, we summarize successfully targeted eudicot and monocot plant species along with their specific VIGS vector systems which are already available for researchers.
Collapse
Affiliation(s)
- Matthias Lange
- Plant Evodevo Group, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | | | | |
Collapse
|
76
|
Zhang B, Yang Y, Chen T, Yu W, Liu T, Li H, Fan X, Ren Y, Shen D, Liu L, Dou D, Chang Y. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae. PLoS One 2012; 7:e51091. [PMID: 23251427 PMCID: PMC3519487 DOI: 10.1371/journal.pone.0051091] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt.
Collapse
Affiliation(s)
- Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wengui Yu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tingli Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongjuan Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaohui Fan
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongzhe Ren
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Youhong Chang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
77
|
Qu J, Ye J, Geng YF, Sun YW, Gao SQ, Zhang BP, Chen W, Chua NH. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. PLANT PHYSIOLOGY 2012; 160:738-48. [PMID: 22837356 PMCID: PMC3461552 DOI: 10.1104/pp.112.198564] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/23/2012] [Indexed: 05/18/2023]
Abstract
Most of the world's natural fiber comes from cotton (Gossypium spp.), which is an important crop worldwide. Characterizing genes that regulate cotton yield and fiber quality is expected to benefit the sustainable production of natural fiber. Although a huge number of expressed sequence tag sequences are now available in the public database, large-scale gene function analysis has been hampered by the low-efficiency process of generating transgenic cotton plants. Tobacco rattle virus (TRV) has recently been reported to trigger virus-induced gene silencing (VIGS) in cotton leaves. Here, we extended the utility of this method by showing that TRV-VIGS can operate in reproductive organs as well. We used this method to investigate the function of KATANIN and WRINKLED1 in cotton plant development. Cotton plants with suppressed KATANIN expression produced shorter fibers and elevated weight ratio of seed oil to endosperm. By contrast, silencing of WRINKLED1 expression resulted in increased fiber length but reduced oil seed content, suggesting the possibility to increase fiber length by repartitioning carbon flow. Our results provide evidence that the TRV-VIGS system can be used for rapid functional analysis of genes involved in cotton fiber development.
Collapse
|
78
|
Tuttle JR, Haigler CH, Robertson D. Method: low-cost delivery of the cotton leaf crumple virus-induced gene silencing system. PLANT METHODS 2012; 8:27. [PMID: 22853641 PMCID: PMC3441267 DOI: 10.1186/1746-4811-8-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/19/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND We previously developed a virus-induced gene silencing (VIGS) vector for cotton from the bipartite geminivirusCotton leaf crumple virus (CLCrV). The original CLCrV VIGS vector was designed for biolistic delivery by a gene gun. This prerequisite limited the use of the system to labs with access to biolistic equipment. Here we describe the adaptation of this system for delivery by Agrobacterium (Agrobacterium tumefaciens). We also describe the construction of two low-cost particle inflow guns. RESULTS The biolistic CLCrV vector was transferred into two Agrobacterium binary plasmids. Agroinoculation of the binary plasmids into cotton resulted in silencing and GFP expression comparable to the biolistic vector. Two homemade low-cost gene guns were used to successfully inoculate cotton (G. hirsutum) and N. benthamiana with either the CLCrV VIGS vector or the Tomato golden mosaic virus (TGMV) VIGS vector respectively. CONCLUSIONS These innovations extend the versatility of CLCrV-based VIGS for analyzing gene function in cotton. The two low-cost gene guns make VIGS experiments affordable for both research and teaching labs by providing a working alternative to expensive commercial gene guns.
Collapse
Affiliation(s)
- John Richard Tuttle
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dominique Robertson
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
79
|
Haigler CH, Betancur L, Stiff MR, Tuttle JR. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. FRONTIERS IN PLANT SCIENCE 2012; 3:104. [PMID: 22661979 PMCID: PMC3356883 DOI: 10.3389/fpls.2012.00104] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/03/2012] [Indexed: 05/17/2023]
Abstract
Cotton fibers are single-celled extensions of the seed epidermis. They can be isolated in pure form as they undergo staged differentiation including primary cell wall synthesis during elongation and nearly pure cellulose synthesis during secondary wall thickening. This combination of features supports clear interpretation of data about cell walls and cellulose synthesis in the context of high throughput modern experimental technologies. Prior contributions of cotton fiber to building fundamental knowledge about cell walls will be summarized and the dynamic changes in cell wall polymers throughout cotton fiber differentiation will be described. Recent successes in using stable cotton transformation to alter cotton fiber cell wall properties as well as cotton fiber quality will be discussed. Futurec prospects to perform experiments more rapidly through altering cotton fiberwall properties via virus-induced gene silencing will be evaluated.
Collapse
Affiliation(s)
- Candace H. Haigler
- Department of Crop Science, North Carolina State University,Raleigh, NC, USA
- Department of Plant Biology, North Carolina State University,Raleigh, NC, USA
| | - Lissete Betancur
- Department of Plant Biology, North Carolina State University,Raleigh, NC, USA
| | - Michael R. Stiff
- Department of Crop Science, North Carolina State University,Raleigh, NC, USA
| | - John R. Tuttle
- Department of Crop Science, North Carolina State University,Raleigh, NC, USA
| |
Collapse
|
80
|
McGarry RC, Ayre BG. Geminivirus-mediated delivery of florigen promotes determinate growth in aerial organs and uncouples flowering from photoperiod in cotton. PLoS One 2012; 7:e36746. [PMID: 22615805 PMCID: PMC3352926 DOI: 10.1371/journal.pone.0036746] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/11/2012] [Indexed: 01/09/2023] Open
Abstract
Background Plant architecture and the timing and distribution of reproductive structures are fundamental agronomic traits shaped by patterns of determinate and indeterminate growth. Florigen, encoded by FLOWERING LOCUS T (FT) in Arabidopsis and SINGLE FLOWER TRUSS (SFT) in tomato, acts as a general growth hormone, advancing determinate growth. Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a highly inbred, compact day-neutral plant that is managed as an annual row-crop. This dramatic change in plant architecture provides a unique opportunity to analyze the transition from perennial to annual growth. Methodology/Principal Findings To explore these architectural changes, we addressed the role of day-length upon flowering in an ancestral, perennial accession and in a domesticated variety of cotton. Using a disarmed Cotton leaf crumple virus (CLCrV) as a transient expression system, we delivered FT to both cotton accessions. Ectopic expression of FT in ancestral cotton mimicked the effects of day-length, promoting photoperiod-independent flowering, precocious determinate architecture, and lanceolate leaf shape. Domesticated cotton infected with FT demonstrated more synchronized fruiting and enhanced “annualization”. Transient expression of FT also facilitated simple crosses between wild photoperiodic and domesticated day-neutral accessions, effectively demonstrating a mechanism to increase genetic diversity among cultivated lines of cotton. Virus was not detected in the F1 progeny, indicating that crosses made by this approach do not harbor recombinant DNA molecules. Conclusions These findings extend our understanding of FT as a general growth hormone that regulates shoot architecture by advancing organ-specific and age-related determinate growth. Judicious manipulation of FT could benefit cotton architecture to improve crop management.
Collapse
Affiliation(s)
- Roisin C. McGarry
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Brian G. Ayre
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
- * E-mail:
| |
Collapse
|
81
|
Temperature-dependent survival of Turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires dcl2, AGO2, and HEN1. J Virol 2012; 86:6847-54. [PMID: 22496240 DOI: 10.1128/jvi.00497-12] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
While RNA silencing is a potent antiviral defense in plants, well-adapted plant viruses are known to encode suppressors of RNA silencing (VSR) that can neutralize the effectiveness of RNA silencing. As a result, most plant genes involved in antiviral silencing were identified by using debilitated viruses lacking silencing suppression capabilities. Therefore, it remains to be resolved whether RNA silencing plays a significant part in defending plants against wild-type viruses. We report here that, at a higher plant growth temperature (26°C) that permits rigorous replication of Turnip crinkle virus (TCV) in Arabidopsis, plants containing loss-of-function mutations within the Dicer-like 2 (DCL2), Argonaute 2 (AGO2), and HEN1 RNA methyltransferase genes died of TCV infection, whereas the wild-type Col-0 plants survived to produce viable seeds. To account for the critical role of DCL2 in ensuring the survival of wild-type plants, we established that higher temperature upregulates the activity of DCL2 to produce viral 22-nucleotide (nt) small interfering RNAs (vsRNAs). We further demonstrated that DCL2-produced 22-nt vsRNAs were fully capable of silencing target genes, but that this activity was suppressed by the TCV VSR. Finally, we provide additional evidence supporting the notion that TCV VSR suppresses RNA silencing through directly interacting with AGO2. Together, these results have revealed a specialized RNA silencing pathway involving DCL2, AGO2, and HEN1 that provides the host plants with a competitive edge against adapted viruses under environmental conditions that facilitates robust virus reproduction.
Collapse
|
82
|
Huang C, Qian Y, Li Z, Zhou X. Virus-induced gene silencing and its application in plant functional genomics. SCIENCE CHINA-LIFE SCIENCES 2012; 55:99-108. [PMID: 22415680 DOI: 10.1007/s11427-012-4280-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Abstract
Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because it is simple, rapid and transformation-free. It has been used to perform both forward and reverse genetics to identify plant functional genes. Many viruses have been developed into virus-induced gene silencing vectors and gene functions involved in development, biotic and abiotic stresses, metabolism, and cellular signaling have been reported. In this review, we discuss the development and application of virus-induced gene silencing in plant functional genomics.
Collapse
Affiliation(s)
- Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|
83
|
Abstract
Virus-induced gene silencing (VIGS) has emerged as a powerful method for studying gene function. VIGS is induced by infecting a plant with a plant virus that has had its genome modified to include a sequence from the host gene to be silenced. DNAβ and DNA1 are satellite and single-stranded DNA molecules associated with begomoviruses (family Geminiviridae). We converted DNAβ and DNA1 into gene-silencing vectors. The VIGS vectors can induce silencing efficiently in many solanaceous plants. Here, we describe procedures for the use of these two gene-silencing vectors for VIGS in different hosts.
Collapse
Affiliation(s)
- Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
84
|
Senthil-Kumar M, Mysore KS. New dimensions for VIGS in plant functional genomics. TRENDS IN PLANT SCIENCE 2011; 16:656-65. [PMID: 21937256 DOI: 10.1016/j.tplants.2011.08.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/07/2011] [Accepted: 08/22/2011] [Indexed: 05/18/2023]
Abstract
Virus-induced gene silencing (VIGS) is an efficient tool for gene function studies. It has been used to perform both forward and reverse genetics to identify plant genes involved in several plant processes. However, this technology has not yet been used to its full potential. This can be attributed to several of its limitations such as inability to silence genes during seed germination and the non-stable nature of silencing. However, several recent studies have shown that these limitations can now be overcome. In this review, we will discuss the limitations of VIGS and suitable solutions. In addition, we also describe the recent improvements and future prospects of using VIGS in plant biology.
Collapse
Affiliation(s)
- Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | |
Collapse
|
85
|
GAO Y, ZHANG YL, ZHANG XF, HAN CG, YU JL, LI DW. Development and Optimization of Tobacco necrosis virus A Induced Gene Silencing in Nicotiana benthamiana*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
86
|
Senthil-Kumar M, Mysore KS. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:797-806. [PMID: 21265998 DOI: 10.1111/j.1467-7652.2011.00589.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Virus-induced gene silencing (VIGS) is one of the commonly used RNA silencing methods in plant functional genomics. It is widely known that VIGS can occur for about 3 weeks. A few reports show that duration of VIGS can be prolonged for up to 3 months. Increasing the duration of endogenous gene silencing and developing a method for nonintegration-based persistent VIGS in progeny seedlings will widen the application of VIGS. We used three marker genes that provoke visible phenotypes in plants upon silencing to study persistence and transmittance of VIGS to progeny in two plant species, Nicotiana benthamiana and tomato. We used a Tobacco rattle virus (TRV)-based VIGS vector and showed that the duration of gene silencing by VIGS can occur for more than 2 years and that TRV is necessary for longer duration VIGS. Also, inoculation of TRV-VIGS constructs by both Agrodrench and leaf infiltration greatly increased the effectiveness and duration of VIGS. Our results also showed transmittance of VIGS to progeny seedlings via seeds. A longer silencing period will facilitate detailed study of target genes in plant development and stress tolerance. Further, the transmittance of VIGS to progeny will be useful in studying the effect of gene silencing in young seedlings. Our results provide a new dimension for the application of VIGS in plants.
Collapse
|
87
|
Abstract
Virus-induced gene silencing (VIGS) is a technology that exploits an RNA-mediated antivirus defense mechanism in plants and has been shown to have great potential in plant reverse genetics. When the virus vector carries sequences of plant genes, virus infection triggers VIGS that results in the degradation of endogenous mRNAs homologous to the plant genes. The system is well established in Nicotiana benthamiana and several reliable VIGS vectors have been developed for other plant species including important agricultural crops. Here, we describe the use of VIGS technology to determine gene function and plant virus vectors for induction of VIGS in plants.
Collapse
|
88
|
Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba JI, Sueda K, Burgyán J, Masuta C. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 2011; 7:e1002021. [PMID: 21573143 PMCID: PMC3088725 DOI: 10.1371/journal.ppat.1002021] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/23/2011] [Indexed: 12/25/2022] Open
Abstract
Symptoms on virus-infected plants are often very specific to the given virus. The molecular mechanisms involved in viral symptom induction have been extensively studied, but are still poorly understood. Cucumber mosaic virus (CMV) Y satellite RNA (Y-sat) is a non-coding subviral RNA and modifies the typical symptom induced by CMV in specific hosts; Y-sat causes a bright yellow mosaic on its natural host Nicotiana tabacum. The Y-sat-induced yellow mosaic failed to develop in the infected Arabidopsis and tomato plants suggesting a very specific interaction between Y-sat and its host. In this study, we revealed that Y-sat produces specific short interfering RNAs (siRNAs), which interfere with a host gene, thus inducing the specific symptom. We found that the mRNA of tobacco magnesium protoporphyrin chelatase subunit I (ChlI, the key gene involved in chlorophyll synthesis) had a 22-nt sequence that was complementary to the Y-sat sequence, including four G-U pairs, and that the Y-sat-derived siRNAs in the virus-infected plant downregulate the mRNA of ChlI by targeting the complementary sequence. ChlI mRNA was also downregulated in the transgenic lines that express Y-sat inverted repeats. Strikingly, modifying the Y-sat sequence in order to restore the 22-nt complementarity to Arabidopsis and tomato ChlI mRNA resulted in yellowing symptoms in Y-sat-infected Arabidopsis and tomato, respectively. In 5'-RACE experiments, the ChlI transcript was cleaved at the expected middle position of the 22-nt complementary sequence. In GFP sensor experiments using agroinfiltration, we further demonstrated that Y-sat specifically targeted the sensor mRNA containing the 22-nt complementary sequence of ChlI. Our findings provide direct evidence that the identified siRNAs derived from viral satellite RNA directly modulate the viral disease symptom by RNA silencing-based regulation of a host gene.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/virology
- Base Sequence
- Capsicum/genetics
- Capsicum/virology
- Chlorophyll/biosynthesis
- Chlorophyll/genetics
- Cucumber Mosaic Virus Satellite/genetics
- Cucumber Mosaic Virus Satellite/metabolism
- Cucumovirus/metabolism
- Cucumovirus/pathogenicity
- Down-Regulation
- Gene Expression Regulation, Plant
- Genes, Plant
- Host-Pathogen Interactions
- Lyases/genetics
- Lyases/metabolism
- Solanum lycopersicum/genetics
- Solanum lycopersicum/virology
- Molecular Sequence Data
- Phenotype
- Plant Diseases/genetics
- Plant Diseases/virology
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/virology
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Nicotiana/enzymology
- Nicotiana/genetics
- Nicotiana/virology
Collapse
Affiliation(s)
- Hanako Shimura
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | | | - Takeaki Ishihara
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | - Nobutoshi Myojo
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | - Jun-ichi Inaba
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | - Kae Sueda
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | | | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| |
Collapse
|
89
|
Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:293-305. [PMID: 21219508 PMCID: PMC3078967 DOI: 10.1111/j.1365-313x.2011.04491.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cotton is an important cash crop worldwide, and is a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. Given the recent availability of the whole-genome sequence of cotton, it is necessary to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully developed an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with various genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we developed a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct, MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, using gene silencing assays, we have shown that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton, and have developed high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton.
Collapse
Affiliation(s)
- Xiquan Gao
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Terry Wheeler
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Texas Agricultural Experiment Station at Lubbock, Lubbock, TX, USA
| | - Zhaohu Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China 100094
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Corresponding author: Libo Shan, Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Norman Borlaug Center 132, Texas A&M University, College Station, TX 77843, , Tel: 979-845-8818, Fax: 979-862-4790, http://ipgb.tamu.edu/libo-shan-ph-d/
| |
Collapse
|
90
|
Huang CJ, Zhang T, Li FF, Zhang XY, Zhou XP. Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alphasatellite. J Zhejiang Univ Sci B 2011; 12:83-92. [PMID: 21265040 PMCID: PMC3030953 DOI: 10.1631/jzus.b1000157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 11/29/2010] [Indexed: 11/11/2022]
Abstract
Virus-induced gene silencing (VIGS) is a recently developed technique for characterizing the function of plant genes by gene transcript suppression and is increasingly used to generate transient loss-of-function assays. Here we report that the 2mDNA1, a geminivirus satellite vector, can induce efficient gene silencing in Nicotiana tabacum with Tobacco curly shoot virus. We have successfully silenced the β-glucuronidase (GUS) gene in GUS transgenic N. tabacum plants and the sulphur desaturase (Su) gene in five different N. tabacum cultivars. These pronounced and severe silencing phenotypes are persistent and ubiquitous. Once initiated in seedlings, the silencing phenotype lasted for the entire life span of the plants and silencing could be induced in a variety of tissues and organs including leaf, shoot, stem, root, and flower, and achieved at any growth stage. This system works well between 18-32 °C. We also silenced the NtEDS1 gene and demonstrated that NtEDS1 is essential for N gene mediated resistance against Tobacco mosaic virus in N. tabacum. The above results indicate that this system has great potential as a versatile VIGS system for routine functional analysis of genes in N. tabacum.
Collapse
|
91
|
Abstract
Virus-induced gene silencing (VIGS) provides an attractive tool for high-throughput analysis of the functional effects of gene knockdown. Virus genomes are engineered to include fragments of target host genes, and the infected plant recognizes and silences the target genes as part of its viral defense mechanism. The consequences of gene inactivation, even of key metabolic, regulatory, or embryo-lethal genes, can thus be readily analyzed. A number of viral vectors have been developed for VIGS; one of the most frequently employed is based on tobacco rattle virus (TRV) due to its wide host range, efficiency, ease of application, and limited disease symptoms. TRV-based VIGS comprises two vectors. One (RNA2) includes a multiple cloning site into which fragments of target genes can be inserted. We have shown that the TRV/VIGS system can simultaneously silence as many as five independent genes. TRV is a mosaic-type virus, and silencing also occurs in a mosaic pattern. It is therefore desirable to have a reporter that can show where target genes have been silenced. The photobleaching induced by silencing phytoene desaturase (PDS) and the loss of purple pigmentation induced by silencing chalcone synthase (CHS) have successfully been used to indicate the location of coordinate silencing of other target genes. In this chapter, we outline our protocols for the use of VIGS for analysis of gene function, focusing particularly on the use of TRV with petunia and tomato.
Collapse
Affiliation(s)
- Cai-Zhong Jiang
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, USA.
| | | | | |
Collapse
|
92
|
Lacomme C. Milestones in the development and applications of plant virus vector as gene silencing platforms. Curr Top Microbiol Immunol 2011; 375:89-105. [PMID: 22033699 DOI: 10.1007/82_2011_186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the main post-genomics challenges facing scientists remains the identification of gene function in a large number of plant species. Plant viruses offer great potential in linking genes to phenotypes through epigenetic expression or knockdown of selected genes. The past decade has seen the development and ever increasing applications of a gene knockdown technique termed virus-induced gene silencing (VIGS). VIGS recapitulates an RNA-mediated antiviral defense mechanism, mediating a homology-based post-transcriptional degradation of selected plant RNAs, leading to a loss-of-function phenotype. Due to its rapidity and increasing number of virus vectors developed as gene silencing platforms, VIGS has become a powerful technology to determine the function of genes in an increasing number of crop species, where the routinely available transgenesis or mutagenesis approaches are often not amenable to large genomes and complex genetic backgrounds.
Collapse
Affiliation(s)
- Christophe Lacomme
- Virology and Zoology Section, Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh, EH12 9FJ, UK,
| |
Collapse
|
93
|
Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF. Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 2010; 8:139. [PMID: 21078138 PMCID: PMC2992495 DOI: 10.1186/1741-7007-8-139] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 11/15/2010] [Indexed: 12/16/2022] Open
Abstract
Background Understanding the evolutionary genetics of modern crop phenotypes has a dual relevance to evolutionary biology and crop improvement. Modern upland cotton (Gossypium hirsutum L.) was developed following thousands of years of artificial selection from a wild form, G. hirsutum var. yucatanense, which bears a shorter, sparser, layer of single-celled, ovular trichomes ('fibre'). In order to gain an insight into the nature of the developmental genetic transformations that accompanied domestication and crop improvement, we studied the transcriptomes of cotton fibres from wild and domesticated accessions over a developmental time course. Results Fibre cells were harvested between 2 and 25 days post-anthesis and encompassed the primary and secondary wall synthesis stages. Using amplified messenger RNA and a custom microarray platform designed to interrogate expression for 40,430 genes, we determined global patterns of expression during fibre development. The fibre transcriptome of domesticated cotton is far more dynamic than that of wild cotton, with over twice as many genes being differentially expressed during development (12,626 versus 5273). Remarkably, a total of 9465 genes were diagnosed as differentially expressed between wild and domesticated fibres when summed across five key developmental time points. Human selection during the initial domestication and subsequent crop improvement has resulted in a biased upregulation of components of the transcriptional network that are important for agronomically advanced fibre, especially in the early stages of development. About 15% of the differentially expressed genes in wild versus domesticated cotton fibre have no homology to the genes in databases. Conclusions We show that artificial selection during crop domestication can radically alter the transcriptional developmental network of even a single-celled structure, affecting nearly a quarter of the genes in the genome. Gene expression during fibre development within accessions and expression alteration arising from evolutionary change appears to be 'modular' - complex genic networks have been simultaneously and similarly transformed, in a coordinated fashion, as a consequence of human-mediated selection. These results highlight the complex alteration of the global gene expression machinery that resulted from human selection for a longer, stronger and finer fibre, as well as other aspects of fibre physiology that were not consciously selected. We illustrate how the data can be mined for genes that were unwittingly targeted by aboriginal and/or modern domesticators during crop improvement and/or which potentially control the improved qualities of domesticated cotton fibre. See Commentary: http://www.biomedcentral.com/1741-7007/8/137
Collapse
Affiliation(s)
- Ryan A Rapp
- Department of Ecology, 251 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
94
|
Purkayastha A, Mathur S, Verma V, Sharma S, Dasgupta I. Virus-induced gene silencing in rice using a vector derived from a DNA virus. PLANTA 2010; 232:1531-40. [PMID: 20872012 DOI: 10.1007/s00425-010-1273-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/02/2010] [Indexed: 05/08/2023]
Abstract
Virus-induced gene silencing (VIGS) is a method of rapid and transient gene silencing in plants using viral vectors. A VIGS vector for gene silencing in rice has been developed from Rice tungro bacilliform virus (RTBV), a rice-infecting virus containing DNA as the genetic material. A full-length RTBV DNA cloned as a partial dimer in a binary plasmid accumulated in rice plants when inoculated through Agrobacterium (agroinoculation) within 2 weeks and produced detectable levels of RTBV coat protein. Deletion of two of the four viral ORFs did not compromise the ability of the cloned RTBV DNA to accumulate in rice plants. To modify the cloned RTBV DNA as a VIGS vector (pRTBV-MVIGS), the tissue-specific RTBV promoter was replaced by the constitutively expressed maize ubiquitin promoter, sequences comprising the tRNA-binding site were incorporated to ensure reverse transcription-mediated replication, sequences to ensure optimal context for translation initiation of the viral genes were added and a multi-cloning site for the ease of cloning DNA fragments was included. The silencing ability of pRTBV-MVIGS was tested using the rice phytoene desaturase (pds) gene on rice. More than half of the agroinoculated rice plants showed white streaks in leaves within 21 days post-inoculation (dpi), which continued to appear in all emerging leaves till approximately 60-70 dpi. Compared to control samples, real-time PCR showed only 10-40% accumulation of pds transcripts in the leaves showing the streaks. This is the first report of the construction of a VIGS vector for rice which can be introduced by agroinoculation.
Collapse
Affiliation(s)
- Arunima Purkayastha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | | | |
Collapse
|
95
|
Abstract
Reverse genetics has proven to be a powerful approach to elucidating gene function in plants, particularly in Arabidopsis. Virus-induced gene silencing (VIGS) is one such method and achieves reductions in target gene expression as the vector moves into newly formed tissues of inoculated plants. VIGS is especially useful for plants that are recalcitrant for transformation and for genes that cause embryo lethality. VIGS provides rapid, transient knockdowns as a complement to other reverse genetics tools and can be used to screen sequences for RNAi prior to stable transformation. High-throughput, forward genetic screening is also possible by cloning libraries of short gene fragments directly into a VIGS plasmid DNA vector, inoculating, and then looking for a phenotype of interest. VIGS is especially useful for studying genes in crop species, which currently have few genetic resources. VIGS facilitates a rapid comparison of knockdown phenotypes of the same gene in different breeding lines or mutant backgrounds, as the same vector is easily inoculated into different plants. In this chapter, we briefly discuss how to choose or construct a VIGS vector and then how to design and carry out effective experiments using VIGS.
Collapse
|
96
|
Pandey P, Choudhury NR, Mukherjee SK. A geminiviral amplicon (VA) derived from Tomato leaf curl virus (ToLCV) can replicate in a wide variety of plant species and also acts as a VIGS vector. Virol J 2009; 6:152. [PMID: 19788728 PMCID: PMC2761890 DOI: 10.1186/1743-422x-6-152] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/29/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Tomato leaf curl virus (ToLCV) belongs to the genus begomoviridae of the family Geminiviridae. The 2.7 kb DNA genome of the virus encodes all the information required for viral DNA replication, transcription and transmission across the plant cells. However, all of the genome sequences are not required for viral DNA replication. We attempted to reveal the minimal essential region required for DNA replication and stable maintenance. The phenomenon of Virus Induced Gene Silencing (VIGS) has recently been observed with several geminiviruses. We investigated whether the minimal replicating region was also capable of producing siRNAs in planta and a VIGS vector could be constructed using the same minimal sequences. RESULTS We have constructed vectors containing various truncated portions of the Tomato leaf curl virus (ToLCV) genome and established that a segment spanning from common region (CR) to AC3 (ORF coding for a replication enhancer) was the minimal portion which could efficiently replicate in a variety of both monocot and dicot plants. A viral amplicon (VA) vector was constructed using this region that produced siRNAs from various sites of the vector, in a temporal manner in plants, and hence can be used as a VIGS vector. The tomato endogene PCNA was silenced using this vector. Introduction of a mutation in the ORF AC2 (a silencing suppressor) increased the silencing efficiency of the newly constructed vector several folds. CONCLUSION Our study reveals that the vector is capable of replicating in diverse plant species and is highly efficient in silencing endogenes like PCNA of the host plant, thus acting as a VIGS vector. We observed that the geminiviral ORF AC2 functioned as a silencing suppressor and a null mutation in this ORF increased the efficiency of silencing several fold. This is the first report of construction of improved VIGS vector by mutation of the resident silencing suppressor gene. The present study opens up the possibility of using such VIGS vectors in silencing the host genes in a broad range of plant hosts.
Collapse
Affiliation(s)
- Prerna Pandey
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi - 110 067, India
| | - Nirupam R Choudhury
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi - 110 067, India
| | - Sunil K Mukherjee
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi - 110 067, India
| |
Collapse
|
97
|
Liu J, Richerson K, Nelson RS. Growth Conditions for Plant Virus–Host Studies. ACTA ACUST UNITED AC 2009; Chapter 16:Unit16A.1. [DOI: 10.1002/9780471729259.mc16a01s14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian‐Zhong Liu
- Plant Biology Division, Samuel Roberts Noble Foundation Ardmore Oklahoma
- University of California‐Berkeley Albany California
| | - Kristy Richerson
- Plant Biology Division, Samuel Roberts Noble Foundation Ardmore Oklahoma
- Andreae Team, Inc Ardmore Oklahoma
| | - Richard S. Nelson
- Plant Biology Division, Samuel Roberts Noble Foundation Ardmore Oklahoma
| |
Collapse
|
98
|
Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:133-9. [PMID: 19179104 PMCID: PMC3139470 DOI: 10.1016/j.pbi.2008.12.006] [Citation(s) in RCA: 657] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/09/2008] [Accepted: 12/11/2008] [Indexed: 05/18/2023]
Abstract
Gene expression driven by developmental and stress cues often depends on nucleosome histone post-translational modifications and sometimes on DNA methylation. A number of studies have shown that these DNA and histone modifications play a key role in gene expression and plant development under stress. Most of these stress-induced modifications are reset to the basal level once the stress is relieved, while some of the modifications may be stable, that is, may be carried forward as 'stress memory' and may be inherited across mitotic or even meiotic cell divisions. Epigenetic stress memory may help plants more effectively cope with subsequent stresses. Comparative studies on stress-responsive epigenomes and transcriptomes will enhance our understanding of stress adaptation of plants.
Collapse
Affiliation(s)
- Viswanathan Chinnusamy
- Water Technology Centre, Indian Agricultural Research Institute, New Delhi 110012, India
| | | |
Collapse
|
99
|
Are small RNAs a big help to plants? ACTA ACUST UNITED AC 2009; 52:212-23. [DOI: 10.1007/s11427-009-0034-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 11/24/2008] [Indexed: 01/19/2023]
|
100
|
Mangrauthia SK, Singh Shakya VP, Jain RK, Praveen S. Ambient temperature perception in papaya for papaya ringspot virus interaction. Virus Genes 2009; 38:429-34. [PMID: 19247826 DOI: 10.1007/s11262-009-0336-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
Abstract
Temperature dramatically affects the host-virus interaction. Outbreaks of viral diseases are frequently associated with the ambient temperature required for host development. Using papaya as a host and Papaya ringspot virus (PRSV) as a pathogen, we studied the effect of temperature on the intensity of disease symptoms and virus accumulation. The phenotypic expression of symptoms and viral accumulation were found to be maximum at ambient temperature (26-31 degrees C) of papaya cultivation. However, there was a drastic difference, 10 degrees C above and below the ambient temperature. The underlying mechanism of these well-known observations are not yet understood completely; however, these observations might help find answers in RNA silencing mechanism of plants. Since viral-derived silencing suppressor proteins play a significant role in RNA silencing mechanism, here we show that PRSV-derived Helper component proteinase (HC-Pro) protein has an affinity for small RNAs in a temperature-dependent manner. This suggested the probable role of HC-Pro in the temperature-regulated host-virus relationship.
Collapse
|