51
|
Katz E, Li JJ, Jaegle B, Ashkenazy H, Abrahams SR, Bagaza C, Holden S, Pires CJ, Angelovici R, Kliebenstein DJ. Genetic variation, environment and demography intersect to shape Arabidopsis defense metabolite variation across Europe. eLife 2021; 10:67784. [PMID: 33949309 PMCID: PMC8205490 DOI: 10.7554/elife.67784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/02/2021] [Indexed: 12/03/2022] Open
Abstract
Plants produce diverse metabolites to cope with the challenges presented by complex and ever-changing environments. These challenges drive the diversification of specialized metabolites within and between plant species. However, we are just beginning to understand how frequently new alleles arise controlling specialized metabolite diversity and how the geographic distribution of these alleles may be structured by ecological and demographic pressures. Here, we measure the variation in specialized metabolites across a population of 797 natural Arabidopsis thaliana accessions. We show that a combination of geography, environmental parameters, demography and different genetic processes all combine to influence the specific chemotypes and their distribution. This showed that causal loci in specialized metabolism contain frequent independently generated alleles with patterns suggesting potential within-species convergence. This provides a new perspective about the complexity of the selective forces and mechanisms that shape the generation and distribution of allelic variation that may influence local adaptation. Since plants cannot move, they have evolved chemical defenses to help them respond to changes in their surroundings. For example, where animals run from predators, plants may produce toxins to put predators off. This approach is why plants are such a rich source of drugs, poisons, dyes and other useful substances. The chemicals plants produce are known as specialized metabolites, and they can change a lot between, and even within, plant species. The variety of specialized metabolites is a result of genetic changes and evolution over millions of years. Evolution is a slow process, yet plants are able to rapidly develop new specialized metabolites to protect them from new threats. Even different populations of the same species produce many distinct metabolites that help them survive in their surroundings. However, the factors that lead plants to produce new metabolites are not well understood, and it is not known how this affects genetic variation. To gain a better understanding of this process, Katz et al. studied 797 European variants of a common weed species called Arabidopsis thaliana, which is widely studied. The investigation found that many factors affect the range of specialized metabolites in each variant. These included local geography and environment, as well as genetics and population history (demography). Katz et al. revealed a pattern of relationships between the variants that could mirror their evolutionary history as the species spread and adapted to new locations. These results highlight the complex network of factors that affect plant evolution. Rapid diversification is key to plant survival in new and changing environments and has resulted in a wide range of specialized metabolites. As such they are of interest both for studying plant evolution and for understanding their ecology. Expanding similar work to more populations and other species will broaden the scope of our ability to understand how plants adapt to their surroundings.
Collapse
Affiliation(s)
- Ella Katz
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Jia-Jie Li
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Benjamin Jaegle
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Haim Ashkenazy
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shawn R Abrahams
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Chris J Pires
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, United States
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, United States.,DynaMo Center of Excellence, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
52
|
Housh AB, Powell G, Scott S, Anstaett A, Gerheart A, Benoit M, Waller S, Powell A, Guthrie JM, Higgins B, Wilder SL, Schueller MJ, Ferrieri RA. Functional mutants of Azospirillum brasilense elicit beneficial physiological and metabolic responses in Zea mays contributing to increased host iron assimilation. THE ISME JOURNAL 2021; 15:1505-1522. [PMID: 33408368 PMCID: PMC8115672 DOI: 10.1038/s41396-020-00866-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
Iron (Fe), an essential element for plant growth, is abundant in soil but with low bioavailability. Thus, plants developed specialized mechanisms to sequester the element. Beneficial microbes have recently become a favored method to promote plant growth through increased uptake of essential micronutrients, like Fe, yet little is known of their mechanisms of action. Functional mutants of the epiphytic bacterium Azospirillum brasilense, a prolific grass-root colonizer, were used to examine mechanisms for promoting iron uptake in Zea mays. Mutants included HM053, FP10, and ipdC, which have varying capacities for biological nitrogen fixation and production of the plant hormone auxin. Using radioactive iron-59 tracing and inductively coupled plasma mass spectrometry, we documented significant differences in host uptake of Fe2+/3+ correlating with mutant biological function. Radioactive carbon-11, administered to plants as 11CO2, provided insights into shifts in host usage of 'new' carbon resources in the presence of these beneficial microbes. Of the mutants examined, HM053 exhibited the greatest influence on host Fe uptake with increased plant allocation of 11C-resources to roots where they were transformed and exuded as 11C-acidic substrates to aid in Fe-chelation, and increased C-11 partitioning into citric acid, nicotianamine and histidine to aid in the in situ translocation of Fe once assimilated.
Collapse
Affiliation(s)
- A B Housh
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO, 65211, USA
| | - G Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - S Scott
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - A Anstaett
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
- Burns & McDonnell, Inc. 425 S, Woods Mill Rd., Chesterfield, MO, USA, 63017
| | - A Gerheart
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO, 65211, USA
- Idaho State Police 5255 S. 5th Ave, Pocatello, ID, 83204, USA
| | - M Benoit
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - S Waller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - A Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - J M Guthrie
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
| | - B Higgins
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
| | - S L Wilder
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
| | - M J Schueller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO, 65211, USA
| | - R A Ferrieri
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA.
- Chemistry Department, University of Missouri, Columbia, MO, 65211, USA.
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
53
|
Venegas-Molina J, Molina-Hidalgo FJ, Clicque E, Goossens A. Why and How to Dig into Plant Metabolite-Protein Interactions. TRENDS IN PLANT SCIENCE 2021; 26:472-483. [PMID: 33478816 DOI: 10.1016/j.tplants.2020.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Interaction between metabolites and proteins drives cellular regulatory processes within and between organisms. Recent reports highlight that numerous plant metabolites embrace multiple biological activities, beyond a sole role as substrates, products, or cofactors of enzymes, or as defense or growth-regulatory compounds. Though several technologies have been developed to identify and characterize metabolite-protein interactions, the systematic implementation of such methods in the plant field remains limited. Here, we discuss the plant metabolic space, with a specific focus on specialized metabolites and their roles, and review the technologies to study their interaction with proteins. We approach it both from a plant's perspective, to increase our understanding of plant metabolite-dependent regulatory networks, and from a human perspective, to empower agrochemical and drug discoveries.
Collapse
Affiliation(s)
- Jhon Venegas-Molina
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Francisco J Molina-Hidalgo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Elke Clicque
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
54
|
Arce CC, Theepan V, Schimmel BC, Jaffuel G, Erb M, Machado RA. Plant-associated CO 2 mediates long-distance host location and foraging behaviour of a root herbivore. eLife 2021; 10:65575. [PMID: 33875133 PMCID: PMC8057813 DOI: 10.7554/elife.65575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Insect herbivores use different cues to locate host plants. The importance of CO2 in this context is not well understood. We manipulated CO2 perception in western corn rootworm (WCR) larvae through RNAi and studied how CO2 perception impacts their interaction with their host plant. The expression of a carbon dioxide receptor, DvvGr2, is specifically required for dose-dependent larval responses to CO2. Silencing CO2 perception or scrubbing plant-associated CO2 has no effect on the ability of WCR larvae to locate host plants at short distances (<9 cm), but impairs host location at greater distances. WCR larvae preferentially orient and prefer plants that grow in well-fertilized soils compared to plants that grow in nutrient-poor soils, a behaviour that has direct consequences for larval growth and depends on the ability of the larvae to perceive root-emitted CO2. This study unravels how CO2 can mediate plant–herbivore interactions by serving as a distance-dependent host location cue. Living deep in the ground and surrounded by darkness, soil insects must rely on the chemicals released by plants to find the roots they feed on. Carbon dioxide, for example, is a by-product of plant respiration, which, above ground, is thought to attract moths to flowers and flies to apples; underground, however, its role is still unclear. This gaseous compound can travel through soil and potentially act as a compass for root-eating insects. Yet, it is also produced by decaying plants or animals, which are not edible. It is therefore possible that insects use this signal as a long-range cue to orient themselves, but then switch to another chemical when closer to their target to narrow in on an actual food source. To test this idea, Arce et al. investigated whether carbon dioxide guides the larvae of Western corn rootworm to maize roots. First, the rootworm genes responsible for sensing carbon dioxide were identified and switched off, making the larvae unable to detect this gas. When the genetically engineered rootworms were further than 9cm from maize roots, they were less able to locate that food source; closer to the roots, however, the insects could orient themselves towards the plant. This suggests that the insects use carbon dioxide at long distances but rely on another chemicals to narrow down their search at close range. To confirm this finding, Arce et al. tried absorbing the carbon dioxide using soda lime, leading to similar effects: carbon dioxide sensitive insects stopped detecting the roots at long but not short distances. Additional experiments then revealed that the compound could help insects find the best roots to feed on. Indeed, eating plants that grow on rich terrain – for instance, fertilized soils – helps insects to grow bigger and faster. These roots also release more carbon dioxide, in turn attracting rootworms more frequently. In the United States and Eastern Europe, Western corn rootworms inflict major damage to crops, highlighting the need to understand and manage the link between fertilization regimes, carbon dioxide release and how these pests find their food.
Collapse
Affiliation(s)
- Carla Cm Arce
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Vanitha Theepan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Geoffrey Jaffuel
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ricardo Ar Machado
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
55
|
Bao M, Li J, Chen H, Chen Z, Xu D, Wen Y. Enantioselective effects of imazethapyr on the secondary metabolites and nutritional value of wheat seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143759. [PMID: 33279196 DOI: 10.1016/j.scitotenv.2020.143759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The secondary metabolism of plants is key for mediating responses to environmental stress, but few studies have examined how the relationship between secondary metabolism and the stress response of plants is affected by exposure to chiral herbicides. Here, we studied the enantioselective disturbance of the chiral herbicide imazethapyr (IM) on the secondary metabolism and nutrient levels of wheat seedlings. The bioactive enantiomer R-IM significantly increased the contents of major secondary metabolites, including phenolic acids, flavonoids, and carotenoids but greatly inhibited the production of benzoxazine. The antioxidant system also responded strongly to R-IM; specifically, the activities of SOD, CAT, and GPX enzymes were all significantly induced, and the GSH content initially increased but then decreased. Furthermore, the nutrient levels of wheat seedlings were also affected; dietary fiber content decreased, while the contents of the microelements Fe, Mn, and Zn increased. In sum, this study provides new insight into the phytotoxic effects of IM and raises new questions on the role of secondary metabolites and nutrients in mediating enantioselective effects.
Collapse
Affiliation(s)
- Manxin Bao
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, United States
| | - Dongmei Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
56
|
The plant metabolome guides fitness-relevant foraging decisions of a specialist herbivore. PLoS Biol 2021; 19:e3001114. [PMID: 33600420 PMCID: PMC7924754 DOI: 10.1371/journal.pbio.3001114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/02/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.
Collapse
|
57
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
58
|
Israni B, Wouters FC, Luck K, Seibel E, Ahn SJ, Paetz C, Reinert M, Vogel H, Erb M, Heckel DG, Gershenzon J, Vassão DG. The Fall Armyworm Spodoptera frugiperda Utilizes Specific UDP-Glycosyltransferases to Inactivate Maize Defensive Benzoxazinoids. Front Physiol 2020; 11:604754. [PMID: 33408643 PMCID: PMC7781194 DOI: 10.3389/fphys.2020.604754] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The relationship between plants and insects is continuously evolving, and many insects rely on biochemical strategies to mitigate the effects of toxic chemicals in their food plants, allowing them to feed on well-defended plants. Spodoptera frugiperda, the fall armyworm (FAW), accepts a number of plants as hosts, and has particular success on plants of the Poaceae family such as maize, despite their benzoxazinoid (BXD) defenses. BXDs stored as inert glucosides are converted into toxic aglucones by plant glucosidases upon herbivory. DIMBOA, the main BXD aglucone released by maize leaves, can be stereoselectively re-glucosylated by UDP-glycosyltransferases (UGTs) in the insect gut, rendering it non-toxic. Here, we identify UGTs involved in BXD detoxification by FAW larvae and examine how RNAi-mediated manipulation of the larval glucosylation capacity toward the major maize BXD, DIMBOA, affects larval growth. Our findings highlight the involvement of members of two major UGT families, UGT33 and UGT40, in the glycosylation of BXDs. Most of the BXD excretion in the frass occurs in the form of glucosylated products. Furthermore, the DIMBOA-associated activity was enriched in the gut tissue, with a single conserved UGT33 enzyme (SfUGT33F28) being dedicated to DIMBOA re-glucosylation in the FAW gut. The knock-down of its encoding gene reduces larval performance in a strain-specific manner. This study thus reveals that a single UGT enzyme is responsible for detoxification of the major maize-defensive BXD in this pest insect.
Collapse
Affiliation(s)
- Bhawana Israni
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Felipe C Wouters
- Max Planck Institute for Chemical Ecology, Jena, Germany.,Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Elena Seibel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States
| | | | | | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|
59
|
van Doan C, Züst T, Maurer C, Zhang X, Machado RAR, Mateo P, Ye M, Schimmel BCJ, Glauser G, Robert CAM. Volatile-mediated defence regulation occurs in maize leaves but not in maize root. PLANT, CELL & ENVIRONMENT 2020:pce.13919. [PMID: 33073385 DOI: 10.1111/pce.13919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The above article was published in error by the publisher before a final editorial decision had been reached. It has therefore been removed temporarily while the editorial process concludes. The publisher apologizes for the inconvenience.
Collapse
|
60
|
Arriola ÍA, Figueiredo MA, Boanares D, França MGC, Isaias RMDS. Apoplast-symplast compartmentalization and functional traits of iron and aluminum in promeristematic tissues of nematode induced galls on Miconia spp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:360-368. [PMID: 32912482 DOI: 10.1016/j.plaphy.2020.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The nutritive tissues of galls induced by Ditylenchus gallaeformans (Nematoda) have promeristematic capacity, which may turn these galls into sinks of Al on their Melastomataceae Al-accumulating hosts. Such a sink of Al may affect gall growth and mineral nutrient intake. Based on the fact that galls are good models for plant developmental studies, we aimed to understand how Al-accumulating host plants in the Cerrado environment deal with Al toxicity in subcellular levels. Here, we used the ICP-OES method to check the variations on mineral nutrients, and the morin, hematoxylin, and Prussian blue stainings for Al and Fe histolocalization in galls induced on four Miconia species of the Brazilian Cerrado. We confirmed the new Al-accumulating feature for two Miconia species of the Cerrado environment. Furthermore, we found that Al accumulates in lesser concentrations in gall tissues than in non-galled tissues of the Miconia hosts. Staining methods indicated that the polyphenols avoid Al-binding to the apoplast and the nucleolus of the promeristematic cells, and mediated its binding to parenchyma cell walls. As well, we inferred that Fe3+ is transported by xylem and stored in gall parenchyma, where it is reduced to Fe2+, being available in gall nutritive cells. Our results demonstrated an Al compartmentalization between the apoplast and symplast of the inner cell layers in galls, as well as indicated the phenolics action against Al-toxicity and toward Fe availability for the diet of Ditylenchus gallaeformans.
Collapse
Affiliation(s)
- Ígor Abba Arriola
- Department of Botany, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627 CP 486. Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maurílio Assis Figueiredo
- Department of Geology, Universidade Federal de Ouro Preto, Campus Morro Do Cruzeiro, 35400-000, Ouro Preto, Brazil
| | - Daniela Boanares
- Department of Botany, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627 CP 486. Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcel Giovanni Costa França
- Department of Botany, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627 CP 486. Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rosy Mary Dos Santos Isaias
- Department of Botany, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627 CP 486. Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
61
|
Bruno P, Machado RAR, Glauser G, Köhler A, Campos-Herrera R, Bernal J, Toepfer S, Erb M, Robert CAM, Arce CCM, Turlings TCJ. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci Rep 2020; 10:8257. [PMID: 32427834 PMCID: PMC7237494 DOI: 10.1038/s41598-020-64945-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/28/2020] [Indexed: 12/30/2022] Open
Abstract
Natural enemies of herbivores are expected to adapt to the defence strategies of their preys or hosts. Such adaptations may also include their capacity to cope with plant metabolites that herbivores sequester as a defence. In this study, we evaluated the ability of Mexican entomopathogenic nematodes (EPN) to resist benzoxazinoids that are sequestered from maize roots by the western corn rootworm (WCR, Diabrotica virgifera virgifera; Coleoptera: Chrysomelidae), an important maize pest in America and Europe. From maize fields throughout Mexico, we retrieved 40 EPN isolates belonging to five different species, with a majority identified as Heterorhabditis bacteriophora. In the laboratory, all nematodes readily infected non-sequestering larvae of the banded cucumber beetle (D. balteata), while infectivity varied strongly for WCR larvae. While some H. bacteriophora isolates seemed negatively affected by benzoxazinoids, most showed to be resistant. Thus, EPN from Mexican maize fields can cope with these plant defence metabolites, but the results also indicate that WCR larvae possess other mechanisms that help to resist EPN. This work contributes to a better understanding of the capacity of herbivore natural enemies to resist plant defence metabolites. Furthermore, it identifies several benzoxazinoid-resistant EPN isolates that may be used to control this important maize pest.
Collapse
Affiliation(s)
- Pamela Bruno
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Angela Köhler
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Friedrich Schiller University Jena, Jena, Germany
| | - Raquel Campos-Herrera
- Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja), Logroño, La Rioja, Spain
| | - Julio Bernal
- Department of Entomology, Texas A&M University, Texas, USA
| | - Stefan Toepfer
- CABI, c/o Plant Protection and Soil Conservation Directorate, Hódmezővásárhely, Hungary
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Carla C M Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
62
|
Ehlers BK, Berg MP, Staudt M, Holmstrup M, Glasius M, Ellers J, Tomiolo S, Madsen RB, Slotsbo S, Penuelas J. Plant Secondary Compounds in Soil and Their Role in Belowground Species Interactions. Trends Ecol Evol 2020; 35:716-730. [PMID: 32414604 DOI: 10.1016/j.tree.2020.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022]
Abstract
Knowledge of the effect of plant secondary compounds (PSCs) on belowground interactions in the more diffuse community of species living outside the rhizosphere is sparse compared with what we know about how PSCs affect aboveground interactions. We illustrate here that PSCs from foliar tissue, root exudates, and leaf litter effectively influence such belowground plant-plant, plant-microorganism, and plant-soil invertebrate interactions. Climatic factors can induce PSC production and select for different plant chemical types. Therefore, climate change can alter both quantitative and qualitative PSC production, and how these compounds move in the soil. This can change the soil chemical environment, with cascading effects on both the ecology and evolution of belowground species interactions and, ultimately, soil functioning.
Collapse
Affiliation(s)
- Bodil K Ehlers
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Matty P Berg
- Community and Conservation Ecology Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands; Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Michael Staudt
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, 1919 Route de Mende, 34293 Montpellier, France
| | - Martin Holmstrup
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Marianne Glasius
- Department of Chemistry and Interdisciplinary Nanoscience Center, Langelandsgade 140, 8000 Århus, Denmark
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Sara Tomiolo
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Plant Ecology Group, Institute for Evolution and Ecology, Tübingen University, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - René B Madsen
- Department of Chemistry and Interdisciplinary Nanoscience Center, Langelandsgade 140, 8000 Århus, Denmark
| | - Stine Slotsbo
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.
| |
Collapse
|
63
|
Abstract
Acute and precise signal perception and transduction are essential for plant defense against insects. Insect elicitors-that is, the biologically active molecules from insects' oral secretion (which contains regurgitant and saliva), frass, ovipositional fluids, and the endosymbionts-are recognized by plants and subsequently induce a local or systematic defense response. On the other hand, insects secrete various types of effectors to interfere with plant defense at multiple levels for better adaptation. Jasmonate is a main regulator involved in plant defense against insects and integrates with multiple pathways to make up the intricate defense network. Jasmonate signaling is strictly regulated in plants to avoid the hypersensitive defense response and seems to be vulnerable to assault by insect effectors at the same time. Here, we summarize recently identified elicitors, effectors, and their target proteins in plants and discuss their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Bo Mao
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
64
|
Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nat Biotechnol 2020; 38:600-608. [PMID: 32066956 DOI: 10.1038/s41587-020-0419-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023]
Abstract
The western corn rootworm (WCR) decimates maize crops worldwide. One potential way to control this pest is treatment with entomopathogenic nematodes (EPNs) that harbor bacterial symbionts that are pathogenic to insects. However, WCR larvae sequester benzoxazinoid secondary metabolites that are produced by maize and use them to increase their resistance to the nematodes and their symbionts. Here we report that experimental evolution and selection for bacterial symbionts that are resistant to benzoxazinoids improve the ability of a nematode-symbiont pair to kill WCR larvae. We isolated five Photorhabdus symbionts from different nematodes and increased their benzoxazinoid resistance through experimental evolution. Benzoxazinoid resistance evolved through multiple mechanisms, including a mutation in the aquaporin-like channel gene aqpZ. We reintroduced benzoxazinoid-resistant Photorhabdus strains into their original EPN hosts and identified one nematode-symbiont pair that was able to kill benzoxazinoid-sequestering WCR larvae more efficiently. Our results suggest that modification of bacterial symbionts might provide a generalizable strategy to improve biocontrol of agricultural pests.
Collapse
|
65
|
Schandry N, Becker C. Allelopathic Plants: Models for Studying Plant-Interkingdom Interactions. TRENDS IN PLANT SCIENCE 2020; 25:176-185. [PMID: 31837955 DOI: 10.1016/j.tplants.2019.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 05/24/2023]
Abstract
Allelopathy is a biochemical interaction between plants in which a donor plant releases secondary metabolites, allelochemicals, that are detrimental to the growth of its neighbours. Traditionally considered as bilateral interactions between two plants, allelopathy has recently emerged as a cross-kingdom process that can influence and be modulated by the other organisms in the plant's environment. Here, we review the current knowledge on plant-interkingdom interactions, with a particular focus on benzoxazinoids. We highlight how allelochemical-producing plants influence not only their plant neighbours but also insects, fungi, and bacteria that live on or around them. We discuss challenges that need to be overcome to study chemical plant-interkingdom interactions, and we propose experimental approaches to address how biotic and chemical processes impact plant health.
Collapse
Affiliation(s)
- Niklas Schandry
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria; Institute of Genetics, Faculty of Biology, Biocenter Martinsried, LMU Munich, 82152 Martinsried-Planegg, Germany.
| |
Collapse
|
66
|
Batyrshina ZS, Yaakov B, Shavit R, Singh A, Tzin V. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC PLANT BIOLOGY 2020; 20:19. [PMID: 31931716 PMCID: PMC6958765 DOI: 10.1186/s12870-019-2214-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/22/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Young wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are equally critical in providing an efficient defense for wheat seedlings against aphids-an economically costly pest in cereal production. RESULTS In this study, we compared the transcriptome, metabolome, benzoxazinoids, and trichome density of three selected wheat genotypes, with a focus on differences related to defense mechanisms. We chose diverse wheat genotypes: two tetraploid wheat genotypes, domesticated durum 'Svevo' and wild emmer 'Zavitan,' and one hexaploid bread wheat, 'Chinese Spring.' The full transcriptomic analysis revealed a major difference between the three genotypes, while the clustering of significantly different genes suggested a higher similarity between the two domesticated wheats than between either and the wild wheat. A pathway enrichment analysis indicated that the genes associated with primary metabolism, as well as the pathways associated with defense such as phytohormones and specialized metabolites, were different between the three genotypes. Measurement of benzoxazinoid levels at the three time points (11, 15, and 18 days after germination) revealed high levels in the two domesticated genotypes, while in wild emmer wheat, they were below detection level. In contrast to the benzoxazinoid levels, the trichome density was dramatically higher in the wild emmer than in the domesticated wheat. Lastly, we tested the bird cherry-oat aphid's (Rhopalosiphum padi) performance and found that Chinese Spring is more resistant than the tetraploid genotypes. CONCLUSIONS Our results show that benzoxazinoids play a more significant defensive role than trichomes. Differences between the abundance of defense mechanisms in the wild and domesticated plants were observed in which wild emmer possesses high physical defenses while the domesticated wheat genotypes have high chemical defenses. These findings provide new insights into the defense adaptations of wheat plants against aphids.
Collapse
Affiliation(s)
- Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Anuradha Singh
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
67
|
Huang W, Bont Z, Hervé MR, Robert CAM, Erb M. Impact of Seasonal and Temperature-Dependent Variation in Root Defense Metabolites on Herbivore Preference in Taraxacum officinale. J Chem Ecol 2019; 46:63-75. [PMID: 31832894 PMCID: PMC6954900 DOI: 10.1007/s10886-019-01126-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
Plants experience seasonal fluctuations in abiotic and biotic factors such as herbivore attack rates. If and how root defense expression co-varies with seasonal fluctuations in abiotic factors and root herbivore attack rates is not well understood. Here, we evaluated seasonal changes in defensive root latex chemistry of Taraxacum officinale plants in the field and correlated the changes with seasonal fluctuations in abiotic factors and damage potential by Melolontha melolontha, a major natural enemy of T. officinale. We then explored the causality and consequences of these relationships under controlled conditions. The concentration of the defensive sesquiterpene lactone taraxinic acid β-D glucopyranosyl ester (TA-G) varied substantially over the year and was most strongly correlated to mean monthly temperature. Both temperature and TA-G levels were correlated with annual fluctuations in potential M. melolontha damage. Under controlled conditions, plants grown under high temperature produced more TA-G and were less attractive for M. melolontha. However, temperature-dependent M. melolontha feeding preferences were not significantly altered in TA-G deficient transgenic lines. Our results suggest that fluctuations in temperature leads to variation in the production of a root defensive metabolites that co-varies with expected attack of a major root herbivore. Temperature-dependent herbivore preference, however, is likely to be modulated by other phenotypic alterations.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland. .,CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Zoe Bont
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Maxime R Hervé
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland.,Inra, Agrocampus Ouest, IGEPP - UMR-A 1349, University of Rennes, F-35000, Rennes, France
| | - Christelle A M Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland.
| |
Collapse
|
68
|
Abstract
Certain adapted insect herbivores utilize plant toxins for self-defense against their own enemies. These adaptations structure ecosystems and limit our capacity to use biological control agents to manage specialized agricultural pests. We show that entomopathogenic nematodes that are exposed to the western corn rootworm, an important agricultural pest that sequesters defense metabolites from maize, can evolve resistance to these defenses. Resisting the plant defense metabolites likely allows the nematodes to infect and kill the western corn rootworm more efficiently. These findings illustrate how predators can counter the plant-based resistance strategies of specialized insect herbivores. Breeding or engineering biological control agents that resist plant defense metabolites may improve their capacity to kill important agricultural pests such as the western corn rootworm. Plants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sometimes sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 y are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective toward the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for 5 generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity toward the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity toward a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a potential target for the improvement of biological control agents.
Collapse
|
69
|
Pan Y, Zhao SW, Tang XL, Wang S, Wang X, Zhang XX, Zhou JJ, Xi JH. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Holotrichia parallela larvae feeding. Genome 2019; 63:1-12. [PMID: 31533014 DOI: 10.1139/gen-2019-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The larvae of Holotrichia parallela, a destructive belowground herbivore, causes tremendous damages to maize plants. However, little is known if there are any defense mechanisms in maize roots to defend themselves against this herbivore. In the current research, we carried out RNA-sequencing to investigate the changes in gene transcription level in maize roots after H. parallela larvae infestation. A total of 644 up-regulated genes and 474 down-regulated genes was found. In addition, Gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Weighted gene co-expression network analysis (WGCNA) indicated that peroxidase genes may be the hub genes that regulate maize defenses to H. parallela larvae attack. We also found 105 transcription factors, 44 hormone-related genes, and 62 secondary metabolism-related genes within differentially expressed genes (DEGs). Furthermore, the expression profiles of 12 DEGs from the transcriptome analysis were confirmed by quantitative real-time PCR experiments. This transcriptome analysis provides insights into the molecular mechanisms of the underground defense in maize roots to H. parallela larvae attack and will help to select target genes of maize for defense against belowground herbivory.
Collapse
Affiliation(s)
- Yu Pan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shi-Wen Zhao
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xin-Long Tang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xin-Xin Zhang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jing-Jiang Zhou
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
70
|
Zhang X, Machado RA, Doan CV, Arce CC, Hu L, Robert CA. Entomopathogenic nematodes increase predation success by inducing cadaver volatiles that attract healthy herbivores. eLife 2019; 8:46668. [PMID: 31509107 PMCID: PMC6739876 DOI: 10.7554/elife.46668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Herbivore natural enemies protect plants by regulating herbivore populations. Whether they can alter the behavior of their prey to increase predation success is unknown. We investigate if and how infection by the entomopathogenic nematode Heterorhabditis bacteriophora changes the behavior of healthy larvae of the western corn rootworm (Diabrotica virgifera), a major pest of maize. We found that nematode-infected rootworm cadavers are attractive to rootworm larvae, and that this behavior increases nematode reproductive success. Nematode-infected rootworms release distinct volatile bouquets, including the unusual volatile butylated hydroxytoluene (BHT). BHT alone attracts rootworms, and increases nematode reproductive success. A screen of different nematode and herbivore species shows that attraction of healthy hosts to nematode-infected cadavers is widespread and likely involves species-specific volatile cues. This study reveals a new facet of the biology of herbivore natural enemies that boosts their predation success by increasing the probability of host encounters.
Collapse
Affiliation(s)
- Xi Zhang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Cong Van Doan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Carla Cm Arce
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Lingfei Hu
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | |
Collapse
|
71
|
Abstract
Understanding the processes that underpin the mechanism of biofilm formation, dispersal, and inhibition is critical to allow exploitation and to understand how microbes thrive in the environment. Here, we reveal that the formation of an extracellular iron chelate restricts the expansion of a biofilm. The countering benefit to self-restriction of growth is protection of an environmental niche. These findings highlight the complex options and outcomes that bacteria need to balance to modulate their local environment to maximize colonization, and therefore survival. Biofilm formation by Bacillus subtilis is a communal process that culminates in the formation of architecturally complex multicellular communities. Here we reveal that the transition of the biofilm into a nonexpanding phase constitutes a distinct step in the process of biofilm development. Using genetic analysis we show that B. subtilis strains lacking the ability to synthesize pulcherriminic acid form biofilms that sustain the expansion phase, thereby linking pulcherriminic acid to growth arrest. However, production of pulcherriminic acid is not sufficient to block expansion of the biofilm. It needs to be secreted into the extracellular environment where it chelates Fe3+ from the growth medium in a nonenzymatic reaction. Utilizing mathematical modeling and a series of experimental methodologies we show that when the level of freely available iron in the environment drops below a critical threshold, expansion of the biofilm stops. Bioinformatics analysis allows us to identify the genes required for pulcherriminic acid synthesis in other Firmicutes but the patchwork presence both within and across closely related species suggests loss of these genes through multiple independent recombination events. The seemingly counterintuitive self-restriction of growth led us to explore if there were any benefits associated with pulcherriminic acid production. We identified that pulcherriminic acid producers can prevent invasion by neighboring communities through the generation of an “iron-free” zone, thereby addressing the paradox of pulcherriminic acid production by B. subtilis.
Collapse
|
72
|
Huang W, Gfeller V, Erb M. Root volatiles in plant-plant interactions II: Root volatiles alter root chemistry and plant-herbivore interactions of neighbouring plants. PLANT, CELL & ENVIRONMENT 2019; 42:1964-1973. [PMID: 30754075 PMCID: PMC6849603 DOI: 10.1111/pce.13534] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 05/23/2023]
Abstract
Volatile organic compounds (VOCs) emitted by plant roots can influence the germination and growth of neighbouring plants. However, little is known about the effects of root VOCs on plant-herbivore interactions of neighbouring plants. The spotted knapweed (Centaurea stoebe) constitutively releases high amounts of sesquiterpenes into the rhizosphere. Here, we examine the impact of C. stoebe root VOCs on the primary and secondary metabolites of sympatric Taraxacum officinale plants and the resulting plant-mediated effects on a generalist root herbivore, the white grub Melolontha melolontha. We show that exposure of T. officinale to C.stoebe root VOCs does not affect the accumulation of defensive secondary metabolites but modulates carbohydrate and total protein levels in T. officinale roots. Furthermore, VOC exposure increases M. melolontha growth on T. officinale plants. Exposure of T. officinale to a major C. stoebe root VOC, the sesquiterpene (E)-β-caryophyllene, partially mimics the effect of the full root VOC blend on M. melolontha growth. Thus, releasing root VOCs can modify plant-herbivore interactions of neighbouring plants. The release of VOCs to increase the susceptibility of other plants may be a form of plant offense.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | | | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
73
|
Gfeller V, Huber M, Förster C, Huang W, Köllner TG, Erb M. Root volatiles in plant-plant interactions I: High root sesquiterpene release is associated with increased germination and growth of plant neighbours. PLANT, CELL & ENVIRONMENT 2019; 42:1950-1963. [PMID: 30737807 PMCID: PMC6850102 DOI: 10.1111/pce.13532] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 05/08/2023]
Abstract
Volatile organic compounds (VOCs) emitted by plant leaves can influence the physiology of neighbouring plants. In contrast to leaf VOCs, little is known about the role of root VOCs in plant-plant interactions. Here, we characterize constitutive root VOC emissions of the spotted knapweed (Centaurea stoebe) and explore the impact of these VOCs on the germination and growth of different sympatric plant species. We show that C. stoebe roots emit high amounts of sesquiterpenes, with estimated release rates of (E)-β-caryophyllene above 3 μg g-1 dw hr-1 . Sesquiterpene emissions show little variation between different C. stoebe populations but vary substantially between different Centaurea species. Through root transcriptome sequencing, we identify six root-expressed sesquiterpene synthases (TPSs). Two root-specific TPSs, CsTPS4 and CsTPS5, are sufficient to produce the full blend of emitted root sesquiterpenes. VOC-exposure experiments demonstrate that C. stoebe root VOCs have neutral to positive effects on the germination and growth of different sympatric neighbours. Thus, constitutive root sesquiterpenes produced by two C. stoebe TPSs are associated with facilitation of sympatric neighbouring plants. The release of root VOCs may thus influence plant community structure in nature.
Collapse
Affiliation(s)
- Valentin Gfeller
- Institute of Plant SciencesUniversity of Bern3013BernSwitzerland
| | - Meret Huber
- Department of BiochemistryMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Christiane Förster
- Department of BiochemistryMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Wei Huang
- Institute of Plant SciencesUniversity of Bern3013BernSwitzerland
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical GardenChinese Academy of SciencesWuhan430074HubeiChina
| | - Tobias G. Köllner
- Department of BiochemistryMax Planck Institute for Chemical Ecology07745JenaGermany
| | - Matthias Erb
- Institute of Plant SciencesUniversity of Bern3013BernSwitzerland
| |
Collapse
|
74
|
Dai J, Qiu W, Wang N, Wang T, Nakanishi H, Zuo Y. From Leguminosae/Gramineae Intercropping Systems to See Benefits of Intercropping on Iron Nutrition. FRONTIERS IN PLANT SCIENCE 2019; 10:605. [PMID: 31139203 PMCID: PMC6527889 DOI: 10.3389/fpls.2019.00605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/25/2019] [Indexed: 05/26/2023]
Abstract
To achieve sustainable development with a growing population while sustaining natural resources, a sustainable intensification of agriculture is necessary. Intercropping is useful for low-input/resource-limited agricultural systems. Iron (Fe) deficiency is a worldwide agricultural problem owing to the low solubility and bioavailability of Fe in alkaline and calcareous soils. Here, we summarize the effects of intercropping systems on Fe nutrition. Several cases showed that intercropping with graminaceous plants could be used to correct Fe nutrition of Leguminosae such as peanut and soybean or fruits such as Psidium guajava L., Citrus, grape and pear in calcareous soils. Intercropping systems have strong positive effects on the physicochemical and biochemical characteristics of soil and the microbial community due to interspecific differences and interactions in the rhizosphere. Rhizosphere interactions can increase the bioavailability of Fe with the help of phytosiderophores. Enriched microorganisms may also facilitate the Fe nutrition of crops. A peanut/maize intercropping system could help us understand the dynamics in rhizosphere and molecular mechanism. However, the role of microbiome in regulating Fe acquisition of root and the mechanisms underlying these phenomena in other intercropping system except peanut/maize need further work, which will help better utilize intercropping to increase the efficiency of Fe foraging.
Collapse
Affiliation(s)
- Jing Dai
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wei Qiu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| | - Nanqi Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| | - Tianqi Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuanmei Zuo
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| |
Collapse
|
75
|
Pereira AE, Coudron TA, Shelby K, French BW, Bernklau EJ, Bjostad LB, Hibbard BE. Comparative Susceptibility of Western Corn Rootworm (Coleoptera: Chrysomelidae) Neonates to Selected Insecticides and Bt Proteins in the Presence and Absence of Feeding Stimulants. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:842-851. [PMID: 30668732 DOI: 10.1093/jee/toy415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 06/09/2023]
Abstract
The susceptibility of western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae to nine insecticides from five different classes and to Bt proteins eCry3.1Ab and mCry3A in the presence or absence of feeding stimulants, was estimated in filter paper and diet toxicity assays, respectively. The use of a synthetic feeding stimulant blend of the sugars glucose, sucrose, and fructose plus linoleic acid at a ratio of 30:4:4:0.3 mg/ml of distilled water was evaluated to determine whether they increase the efficacy of insecticides and Bt proteins. The efficacy of thiamethoxam diluted in solutions with feeding stimulants was significantly increased when compared to thiamethoxam dilutions in water (>60-fold). Differences in the efficacy of the other insecticide classes when diluted in feeding stimulant solutions were no greater than fivefold when compared to the insecticides diluted in water. The presence of corn root juice as a natural feeding stimulant diminished toxicity of the insecticides, except for thiamethoxam, even though larval fresh weight was higher when fed on root juice compared to feeding stimulant or water. The use of feeding stimulants in diet toxicity assays did not enhance efficacy of eCry3.1Ab nor mCry3A proteins. Feeding stimulants can be recommended in combination with thiamethoxam to increase larval mortality. These results are discussed in terms of applicability of feeding stimulants to improve susceptibility of western corn rootworm larvae to pesticides in general.
Collapse
Affiliation(s)
| | - Thomas A Coudron
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO
| | - Kent Shelby
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO
| | - B Wade French
- North Central Agricultural Research Laboratory, USDA/ARS, Brookings, SD
| | - Elisa J Bernklau
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| | - Louis B Bjostad
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| | | |
Collapse
|
76
|
|