51
|
Zamora-Quintero AY, Torres-Beltrán M, Guillén Matus DG, Oroz-Parra I, Millán-Aguiñaga N. Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001144. [PMID: 35213299 PMCID: PMC8941997 DOI: 10.1099/mic.0.001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the grey whale and bird species. Unique hypersaline environments, such as the Ojo de Liebre Lagoon, are underexplored in terms of their bacterial and chemical diversity, representing a potential source for new bioactive compounds with pharmacological properties. Actinobacteria are one of the most diverse and prolific taxonomic bacterial groups in terms of marine bioactive compounds. This study aimed to identify the culturable actinobacterial community inhabiting the Lagoon, as well as to test their potential as new sources of anticancer compounds with pharmacological potential. A selective isolation approach focused on spore-forming bacteria from 40 sediment samples generated a culture collection of 64 strains. The 16S rRNA gene analyses identified three phyla in this study, the Actinobacteria, Firmicutes and Proteobacteria, where the phylum Actinobacteria dominated (57%) the microbial community profiles. Within the Actinobacteria, nine different genera were isolated including the Actinomadura, Micromonospora, Nocardiopsis, Plantactinospora and Streptomyces sp. We observed seasonal differences on actinobacteria recovery. For instance, Micromonospora strains were recovered during the four sampling seasons, while Arthrobacter and Pseudokineococcus were only isolated in February 2018, and Blastococcus, Rhodococcus and Streptomyces were uniquely isolated in June 2018. Ethyl acetate crude extracts derived from actinobacterial cultures were generated and screened for cytotoxic activity against six cancer cell lines. Strains showed promising low percentages of viability on lung (H1299), cervical (SiHa), colon (Caco-2) and liver (HepG2) cancer lines. Molecular networking results suggest many of the metabolites produced by these strains are unknown and they might harbour novel chemistry. Our results showed the Ojo de Liebre Lagoon is a novel source for isolating diverse marine actinobacteria which produce promising bioactive compounds for potential biotechnological use as anticancer agents.
Collapse
Affiliation(s)
- Andrea Y. Zamora-Quintero
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Mónica Torres-Beltrán
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Dulce G. Guillén Matus
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Irasema Oroz-Parra
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Natalie Millán-Aguiñaga
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| |
Collapse
|
52
|
Qin M, Xu H, Zhao D, Zeng J, Wu QL. Aquaculture drives distinct patterns of planktonic and sedimentary bacterial communities: insights into co-occurrence pattern and assembly processes. Environ Microbiol 2022; 24:4079-4093. [PMID: 35099108 DOI: 10.1111/1462-2920.15922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 11/03/2022]
Abstract
Aquaculture would change the environmental condition in the lake ecosystem, affecting the structure and function of the aquatic ecosystem. However, little is known about the underlying mechanisms controlling the distribution patterns of bacterial community respond to aquaculture in water column and sediment. Here, we investigated the composition, co-occurrence patterns, and assembly processes of planktonic and sedimentary bacterial communities (PBC vs. SBC) from an aquaculture-influenced zone of the Eastern Lake Taihu, China. We found that aquaculture activity greatly influenced the diversity and composition of SBC by inducing excess nitrogen into the sediments. Meanwhile, network analysis revealed that aquaculture activity strengthened species interactions within the SBC network but weakened the species interactions within the PBC network. Aquaculture activity also increased the importance of deterministic processes governing the assembly of SBC by heightening the importance of environmental filtering, whereas it decreased the relative importance of deterministic processes within the assembly of PBC. In addition, ecological restoration with macrophytes increased the diversity of PBC and formed a more stable PBC network by increasing the number of network keystones. Overall, our results indicated that aquaculture drove distinct co-occurrence patterns and assembly mechanisms of PBC and SBC. This study has fundamental implications in the lake ecosystem for evaluating the microbially mediated ecological consequences of aquaculture.
Collapse
Affiliation(s)
- Mengyu Qin
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Huimin Xu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
53
|
Shi H, Wang K, Wang L, Sun S, Li B, Yao L. Case report of enterobacter hormaechei in sheep with respiratory disease and death. BMC Vet Res 2022; 18:57. [PMID: 35081969 PMCID: PMC8790845 DOI: 10.1186/s12917-022-03157-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Enterobacter hormaechei is typically a opportunistic pathogenic bacterium in humans, and no pathological change of of Enterobacter hormaechei in diseased sheep has previously been documented. Case presentation Three free-range, four-month-old female sheep were ill with respiratory disease and died three days after receiving treatment with ceftiofur sodium. A frozen lung sample of one sheep was studied using bacterium isolation, and lung samples of the other two sheep were collected and analyzed by histopathological examination and bacterium isolation. The 16S rRNA gene sequences and biochemical characteristics of the isolates were analyzed. All results showed the isolated strain to be Enterobacter hormaechei. Phylogenetic analysis of the 16S rRNA sequence showed three representative strains were most closely related to the strains isolated from calf. Antimicrobial sensitivity tests indicated that no sensitivity to the β-lactam antimicrobials involved in treatment of sheep respiratory disease in China. Detection of the genes responsible for β-lactam resistance showed that all three isolates from sheep harbor blaSHV and blaKPC. Interstitial pneumonia, bronchial epithelial cells shedding, and massive mucous secretion were observed in the lung histopathological sections. Immunohistochemical staining showed that specific staining was mainly limited to the alveoli and alveolar septum. Conclusions This appears to be the first report of pathological changes in lungs of sheep with respiratory disease and death associated with Enterobacter hormaechei.
Collapse
Affiliation(s)
- Hongfei Shi
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China.
| | - Kun Wang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Li Wang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Shiyu Sun
- Liao Ning Center for Animal Disease Control and Prevention, Shenyang, China
| | - Bozhen Li
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, PR China
| | - Lunguang Yao
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-Line of South-To-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, PR China.
| |
Collapse
|
54
|
Guo K, Wu N, Li W, Baattrup-Pedersen A, Riis T. Microbial biofilm community dynamics in five lowland streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149169. [PMID: 34329932 DOI: 10.1016/j.scitotenv.2021.149169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Stream biofilms are complex aggregates of diverse organism groups that play a vital role in global carbon and nitrogen cycles. Most of the current studies on stream biofilm focus on a limited number of organism groups (e.g., bacteria and algae), and few have included both prokaryote and eukaryote communities simultaneously. In this study, we incubated artificial substrates in five Danish lowland streams exhibiting different hydrological and physico-chemical conditions and explored the dynamics of community composition and diversity of the benthic biofilm, including both prokaryotes and eukaryotes. We found that few phyla in the prokaryote (Gammaproteobacteria and Bacteroidetes) and eukaryote (Cercozoa) communities accounted for over two-thirds of the total abundance at most of the sites. Both prokaryotic and eukaryotic diversity displayed the same temporal patterns, i.e., diversity peaked in July and January. We also found that hydrological and physico-chemical variables significantly explained the variation in the community composition at phylum level for both prokaryotes and eukaryotes. However, a large proportion of variation remained unexplained, which can be ascribed to important but unmeasured variables like light intensity and biological factors such as trophic and non-trophic interactions as revealed by network analysis. Therefore, we suggest that use of a multitrophic level perspective is needed to study biofilm i.e., the "microbial jungles", where high occurrences of trophic and non-trophic interactions are expected.
Collapse
Affiliation(s)
- Kun Guo
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, Denmark; School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, 315211 Ningbo, China.
| | - Wei Li
- Department of Land Resources and Environmental Sciences, Montana State University, 59717 Bozeman, MT, United States
| | | | - Tenna Riis
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, Denmark; WATEC, Aarhus University, Centre for Water Technology, 8000 Aarhus, Denmark
| |
Collapse
|
55
|
Mirzaee H, Ariens E, Blaskovich MAT, Clark RJ, Schenk PM. Biostimulation of Bacteria in Liquid Culture for Identification of New Antimicrobial Compounds. Pharmaceuticals (Basel) 2021; 14:1232. [PMID: 34959632 PMCID: PMC8706287 DOI: 10.3390/ph14121232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/05/2022] Open
Abstract
We hypothesized that environmental microbiomes contain a wide range of bacteria that produce yet uncharacterized antimicrobial compounds (AMCs) that can potentially be used to control pathogens. Over 600 bacterial strains were isolated from soil and food compost samples, and 68 biocontrol bacteria with antimicrobial activity were chosen for further studies based on inhibition assays against a wide range of food and plant pathogens. For further characterization of the bioactive compounds, a new method was established that used living pathogens in a liquid culture to stimulate bacteria to produce high amounts of AMCs in bacterial supernatants. A peptide gel electrophoresis microbial inhibition assay was used to concurrently achieve size separation of the antimicrobial peptides. Fifteen potential bioactive peptides were then further characterized by tandem MS, revealing cold-shock proteins and 50S ribosomal proteins. To identify non-peptidic AMCs, bacterial supernatants were analyzed by HPLC followed by GC/MS. Among the 14 identified bioactive compounds, 3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 2-acetyl-3-methyl-octahydropyrrolo[1,2-a]piperazine-1,4-dione were identified as new AMCs. Our work suggests that antimicrobial compound production in microbes is enhanced when faced with a threat from other microorganisms, and that this approach can rapidly lead to the development of new antimicrobials with the potential for upscaling.
Collapse
Affiliation(s)
- Hooman Mirzaee
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Emily Ariens
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Mark A. T. Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Richard J. Clark
- Peptide Chemical Biology Laboratory, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| |
Collapse
|
56
|
Fariq A, Yasmin A, Blazier JC, Jannat S. Identification of bacterial communities in extreme sites of Pakistan using high throughput barcoded amplicon sequencing. Biodivers Data J 2021; 9:e68929. [PMID: 34744475 PMCID: PMC8551136 DOI: 10.3897/bdj.9.e68929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
Microorganisms thrive nearly everywhere including extreme environments where few other forms of life can exist. Geochemistry of extreme sites plays a major role in shaping these microbial communities and microbes thriving in such harsh conditions are untapped sources of novel biomolecules. To understand the structure and composition of such microbial communities, culture-independent bacterial diversity was characterised for two extreme sites in Pakistan, Khewra salt range and Murtazaabad hot spring. Barcoded amplicon sequencing technique was used to study the microbial communities. Physicochemical analysis of these sites was also conducted to study the dynamics of microbial communities under stressed conditions. Metagenomic sequencing of salt range soil samples yielded of 40,433 16S rRNA sequences, while hot spring sediments produced 76,449 16S rRNA sequence reads. Proteobacteria were predominant in saline soil while Firmicutes were most abundant in hot spring sediment. The taxonomic analysis of saline samples revealed 914 operational taxonomic units (OTUs) while that of hot spring sequences were clustered into 726 distinct OTUs. OTUs from genus Alkalibacillus were most abundant in hot spring sediments, whereas Haloarcula were more prevalent in saline soil. Some unidentified sequences were also present at each taxonomic level. Multivariate analysis indicated that electrical conductivity and pH are the major environmental factors involved in modelling microbial communities. This study revealed a poly-extremophilic microbial community in the Murtazaabad hot spring and characterised the unexplored halophilic microbial diversity of saline soil of Pakistan.
Collapse
Affiliation(s)
- Anila Fariq
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan Department of Biotechnology, Fatima Jinnah Women University Rawalpindi Pakistan.,Department of Biotechnology, University of Kotli, AJK, Kotli, Pakistan Department of Biotechnology, University of Kotli, AJK Kotli Pakistan
| | - Azra Yasmin
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan Department of Biotechnology, Fatima Jinnah Women University Rawalpindi Pakistan
| | - John C Blazier
- Texas A&M Institute of Genome Sciences and SocietyTexas A&M University,, College Station, Texas, United States of America Texas A&M Institute of Genome Sciences and SocietyTexas A&M University, College Station, Texas United States of America
| | - Sammyia Jannat
- Department of Biotechnology, University of Kotli, AJK, Kotli, Pakistan Department of Biotechnology, University of Kotli, AJK Kotli Pakistan
| |
Collapse
|
57
|
Chen G, Kong C, Yang L, Zhuang M, Zhang Y, Wang Y, Ji J, Fang Z, Lv H. Genetic Diversity and Population Structure of the Xanthomonas campestris pv. campestris Strains Affecting Cabbages in China Revealed by MLST and Rep-PCR Based Genotyping. THE PLANT PATHOLOGY JOURNAL 2021; 37:476-488. [PMID: 34847634 PMCID: PMC8632610 DOI: 10.5423/ppj.oa.06.2021.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 05/09/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.
Collapse
Affiliation(s)
- Guo Chen
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Congcong Kong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Fang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Co-corresponding authors: Z. Fang, Phone, FAX) +86-01082105972, E-mail) . H. Lv, Phone, FAX) +86-01062135629, E-mail)
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Co-corresponding authors: Z. Fang, Phone, FAX) +86-01082105972, E-mail) . H. Lv, Phone, FAX) +86-01062135629, E-mail)
| |
Collapse
|
58
|
Comparative Genomic Analysis Determines the Functional Genes Related to Bile Salt Resistance in Lactobacillus salivarius. Microorganisms 2021; 9:microorganisms9102038. [PMID: 34683359 PMCID: PMC8539994 DOI: 10.3390/microorganisms9102038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/23/2022] Open
Abstract
Lactobacillus salivarius has drawn attention because of its promising probiotic functions. Tolerance to the gastrointestinal tract condition is crucial for orally administrated probiotics to exert their functions. However, previous studies of L. salivarius have only focused on the bile salt resistance of particular strains, without uncovering the common molecular mechanisms of this species. Therefore, in this study, we expanded our research to 90 L. salivarius strains to explore their common functional genes for bile salt resistance. First, the survival rates of the 90 L. salivarius strains in 0.3% bile salt solutions were determined. Comparative genomics analysis was then performed to screen for the potential functional genes related to bile salt tolerance. Next, real-time polymerase chain reaction and gene knockout experiments were conducted to further verify the tolerance-related functional genes. The results indicated that the strain-dependent bile salt tolerance of L. salivarius was mainly associated with four peptidoglycan synthesis-related genes, seven phosphotransferase system-related genes, and one chaperone-encoding gene involved in the stress response. Among them, the GATase1-encoding gene showed the most significant association with bile salt tolerance. In addition, four genes related to DNA damage repair and substance transport were redundant in the strains with high bile salt tolerance. Besides, cluster analysis showed that bile salt hydrolases did not contribute to the bile salt tolerance of L. salivarius. In this study, we determined the global regulatory genes, including LSL_1568, LSL_1716 and LSL_1709, for bile salt tolerance in L. salivarius and provided a potential method for the rapid screening of bile salt-tolerant L. salivarius strains, based on PCR amplification of functional genes.
Collapse
|
59
|
The identification and performance assessment of dominant bacterial species during linear alkylbenzene sulfonate (LAS)-biodegradation in a bioelectrochemical system. Bioprocess Biosyst Eng 2021; 44:2579-2590. [PMID: 34490522 DOI: 10.1007/s00449-021-02629-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
The anionic surfactant linear alkylbenzene sulfonate (LAS) is a major chemical constituent of detergent formulation. Regarding the recalcitrant nature of sulfonoaromatic compounds, discharging these substances into wastewater collection systems is a real environmental issue. A study on LAS biodegradation based on bioelectrochemical treatment and in the form of developing a single-chamber microbial fuel cell with air cathode is reported in the present work. Pretreatment study showed LAS concentration of 60 ppm resulted in the highest anaerobic LAS removal of 57%; so, this concentration was chosen to run the MFC. After the sustained anodic biofilm was formed, LAS degradation rate during 4 days in MFC was roughly 76% higher than that in the serum bottle, which indicated the role of the bioelectrochemical process in improving anaerobic LAS removal. Additionally, through 16S rRNA gene sequencing, the dominant bacterial species in the biofilm was identified as Pseudomonas zhaodongensis NEAU-ST5-21(T) with about 98.9% phylogenetic similarity and then a pathway was proposed for LAS anaerobic biodegradation. The MFC characteristics were assessed by pH monitoring as well as scanning electron microscopy and current density evolution.
Collapse
|
60
|
Tenebro CP, Trono DJVL, Vicera CVB, Sabido EM, Ysulat JA, Macaspac AJM, Tampus KA, Fabrigar TAP, Saludes JP, Dalisay DS. Multiple strain analysis of Streptomyces species from Philippine marine sediments reveals intraspecies heterogeneity in antibiotic activities. Sci Rep 2021; 11:17544. [PMID: 34475427 PMCID: PMC8413401 DOI: 10.1038/s41598-021-96886-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
The marine ecosystem has become the hotspot for finding antibiotic-producing actinomycetes across the globe. Although marine-derived actinomycetes display strain-level genomic and chemodiversity, it is unclear whether functional traits, i.e., antibiotic activity, vary in near-identical Streptomyces species. Here, we report culture-dependent isolation, antibiotic activity, phylogeny, biodiversity, abundance, and distribution of Streptomyces isolated from marine sediments across the west-central Philippines. Out of 2212 marine sediment-derived actinomycete strains isolated from 11 geographical sites, 92 strains exhibited antibacterial activities against multidrug-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The 16S rRNA and rpoB gene sequence analyses confirmed that antibiotic-producing strains belong to the genus Streptomyces, highlighting Streptomyces parvulus as the most dominant species and three possible new species. Antibiotic-producing Streptomyces strains were highly diverse in Southern Antique, and species diversity increase with marine sediment depth. Multiple strains with near-identical 16S rRNA and rpoB gene sequences displayed varying strength of antibiotic activities. The genotyping of PKS and NRPS genes revealed that closely related antibiotic-producing strains have similar BGC domains supported by their close phylogenetic proximity. These findings collectively suggest Streptomyces' intraspecies adaptive characteristics in distinct ecological niches that resulted in outcompeting other bacteria through differential antibiotic production.
Collapse
Affiliation(s)
- Chuckcris P Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Dana Joanne Von L Trono
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Carmela Vannette B Vicera
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
| | - Edna M Sabido
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
| | - Jovito A Ysulat
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Aaron Joseph M Macaspac
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Kimberly A Tampus
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Trisha Alexis P Fabrigar
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines
| | - Jonel P Saludes
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines.,Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, 5000, Iloilo City, Philippines.,Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), 1631, Bicutan, Taguig City, Philippines
| | - Doralyn S Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, 5000, Iloilo City, Philippines. .,Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, 5000, Iloilo City, Philippines. .,Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), 1631, Bicutan, Taguig City, Philippines.
| |
Collapse
|
61
|
Breitkreuz C, Reitz T, Schulz E, Tarkka MT. Drought and Plant Community Composition Affect the Metabolic and Genotypic Diversity of Pseudomonas Strains in Grassland Soils. Microorganisms 2021; 9:microorganisms9081677. [PMID: 34442756 PMCID: PMC8399733 DOI: 10.3390/microorganisms9081677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
Climate and plant community composition (PCC) modulate the structure and function of microbial communities. In order to characterize how the functional traits of bacteria are affected, important plant growth-promoting rhizobacteria of grassland soil communities, pseudomonads, were isolated from a grassland experiment and phylogenetically and functionally characterized. The Miniplot experiment was implemented to examine the mechanisms underlying grassland ecosystem changes due to climate change, and it investigates the sole or combined impact of drought and PCC (plant species with their main distribution either in SW or NE Europe, and a mixture of these species). We observed that the proportion and phylogenetic composition of nutrient-releasing populations of the Pseudomonas community are affected by prolonged drought periods, and to a minor extent by changes in plant community composition, and that these changes underlie seasonality effects. Our data also partly showed concordance between the metabolic activities and 16S phylogeny. The drought-induced shifts in functional Pseudomonas community traits, phosphate and potassium solubilization and siderophore production did not follow a unique pattern. Whereas decreased soil moisture induced a highly active phosphate-solubilizing community, the siderophore-producing community showed the opposite response. In spite of this, no effect on potassium solubilization was detected. These results suggest that the Pseudomonas community quickly responds to drought in terms of structure and function, the direction of the functional response is trait-specific, and the extent of the response is affected by plant community composition.
Collapse
Affiliation(s)
- Claudia Breitkreuz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; (T.R.); (E.S.); (M.T.T.)
- Correspondence: ; Tel.: +49-345-558-5416
| | - Thomas Reitz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; (T.R.); (E.S.); (M.T.T.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Elke Schulz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; (T.R.); (E.S.); (M.T.T.)
| | - Mika Tapio Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH-UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany; (T.R.); (E.S.); (M.T.T.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
62
|
Comparative Genomic Analysis of Extended-spectrum β-lactamase and mcr-1 Positive Escherichia coli from Gut Microbiota of Healthy Singaporeans. Appl Environ Microbiol 2021; 87:e0048821. [PMID: 34347523 DOI: 10.1128/aem.00488-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistant (MDR) Escherichia coli strains that carry extended-spectrum β-lactamases (ESBLs) or colistin resistance gene mcr-1 have been identified in the human gut at an increasing incidence worldwide. In this study, we isolated and characterized MDR Enterobacteriaceae from the gut microbiota of healthy Singaporeans and show that the detection rates for ESBL-producing and mcr-positive Enterobacteriaceae are 25.7% (28/109) and 7.3% (8/109), respectively. Whole-genome sequencing analysis of the 37 E. coli isolates assigned them into 25 sequence types and six different phylogroups, suggesting that the MDR E. coli gut colonizers are highly diverse. We then analysed the genetic context of the resistance genes and found that composite transposons played important roles in the co-transfer of blaCTX-M-15/55 and qnrS1, as well as the acquisition of mcr-1. Furthermore, comparative genomic analysis showed that 12 of the 37 MDR E. coli isolates showed high similarity to ESBL-producing E. coli isolates from raw meat products in local markets. By analyzing the core genome SNPs shared by these isolates, we identified possible clonal transmission of a MDR E. coli clone between human and raw meat, as well as a group of highly similar IncI2 (Delta) plasmids that might be responsible for the dissemination of mcr-1 in a much wider geographic region. Together, these results suggest that antibiotic resistance may be transmitted between different environmental settings by the expansion of MDR E. coli clones, as well as by the dissemination of resistance plasmids. Importance The human gut can harbor both antibiotic resistant and virulent E. coli which may subsequently cause infections. In this study, we found that MDR E. coli isolates from the gut of healthy Singaporeans carry a diverse range of antibiotic resistance mechanisms and virulence factor genes, and are highly diverse to each other. By comparing their genomes with the ESBL-producing E. coli isolates from raw meat products that were sampled at a similar time from local markets, we detected a MDR E. coli clone that was possibly transmitted between humans and raw meat products. Furthermore, we also found that a group of resistance plasmids might be responsible for the dissemination of colistin resistance gene mcr-1 in Singapore, Malaysia and Europe. Our findings call for better countermeasures to block the transmission of antibiotic resistance.
Collapse
|
63
|
Comparative Genomics Reveals Thermal Adaptation and a High Metabolic Diversity in " Candidatus Bathyarchaeia". mSystems 2021; 6:e0025221. [PMID: 34282939 PMCID: PMC8407382 DOI: 10.1128/msystems.00252-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Bathyarchaeia" is a phylogenetically diverse and widely distributed lineage often in high abundance in anoxic submarine sediments; however, their evolution and ecological roles in terrestrial geothermal habitats are poorly understood. In the present study, 35 Ca. Bathyarchaeia metagenome-assembled genomes (MAGs) were recovered from hot spring sediments in Tibet and Yunnan, China. Phylogenetic analysis revealed all MAGs of Ca. Bathyarchaeia can be classified into 7 orders and 15 families. Among them, 4 families have been first discovered in the present study, significantly expanding the known diversity of Ca. Bathyarchaeia. Comparative genomics demonstrated Ca. Bathyarchaeia MAGs from thermal habitats to encode a large variety of genes related to carbohydrate degradation, which are likely a metabolic adaptation of these organisms to a lifestyle at high temperatures. At least two families are potential methanogens/alkanotrophs, indicating a potential for the catalysis of short-chain hydrocarbons. Three MAGs from Family-7.3 are identified as alkanotrophs due to the detection of an Mcr complex. Family-2 contains the largest number of genes relevant to alkyl-CoM transformation, indicating the potential for methylotrophic methanogenesis, although their evolutionary history suggests the ancestor of Ca. Bathyarchaeia was unable to metabolize alkanes. Subsequent lineages have acquired the ability via horizontal gene transfer. Overall, our study significantly expands our knowledge and understanding of the metabolic capabilities, habitat adaptations, and evolution of Ca. Bathyarchaeia in thermal environments. IMPORTANCE Ca. Bathyarchaeia MAGs from terrestrial hot spring habitats are poorly revealed, though they have been studied extensively in marine ecosystems. In this study, we uncovered the metabolic capabilities and ecological role of Ca. Bathyarchaeia in hot springs and give a comprehensive comparative analysis between thermal and nonthermal habitats to reveal the thermal adaptability of Ca. Bathyarchaeia. Also, we attempt to determine the evolutionary history of methane/alkane metabolism in Ca. Bathyarchaeia, since it appears to be the first archaea beyond Euryarchaeota which contains the mcrABG genes. The reclassification of Ca. Bathyarchaeia and significant genomic differences among different lineages largely expand our knowledge on these cosmopolitan archaea, which will be beneficial in guiding the future studies.
Collapse
|
64
|
Phillips AA, Speth DR, Miller LG, Wang XT, Wu F, Medeiros PM, Monteverde DR, Osburn MR, Berelson WM, Betts HL, Wijker RS, Mullin SW, Johnson HA, Orphan VJ, Fischer WW, Geobiology Course 2017, Geobiology Course 2018, Sessions AL. Microbial succession and dynamics in meromictic Mono Lake, California. GEOBIOLOGY 2021; 19:376-393. [PMID: 33629529 PMCID: PMC8359280 DOI: 10.1111/gbi.12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/18/2020] [Accepted: 02/08/2021] [Indexed: 05/30/2023]
Abstract
Mono Lake is a closed-basin, hypersaline, alkaline lake located in Eastern Sierra Nevada, California, that is dominated by microbial life. This unique ecosystem offers a natural laboratory for probing microbial community responses to environmental change. In 2017, a heavy snowpack and subsequent runoff led Mono Lake to transition from annually mixed (monomictic) to indefinitely stratified (meromictic). We followed microbial succession during this limnological shift, establishing a two-year (2017-2018) water-column time series of geochemical and microbiological data. Following meromictic conditions, anoxia persisted below the chemocline and reduced compounds such as sulfide and ammonium increased in concentration from near 0 to ~400 and ~150 µM, respectively, throughout 2018. We observed significant microbial succession, with trends varying by water depth. In the epilimnion (above the chemocline), aerobic heterotrophs were displaced by phototrophic genera when a large bloom of cyanobacteria appeared in fall 2018. Bacteria in the hypolimnion (below the chemocline) had a delayed, but systematic, response reflecting colonization by sediment "seed bank" communities. Phototrophic sulfide-oxidizing bacteria appeared first in summer 2017, followed by microbes associated with anaerobic fermentation in spring 2018, and eventually sulfate-reducing taxa by fall 2018. This slow shift indicated that multi-year meromixis was required to establish a sulfate-reducing community in Mono Lake, although sulfide oxidizers thrive throughout mixing regimes. The abundant green alga Picocystis remained the dominant primary producer during the meromixis event, abundant throughout the water column including in the hypolimnion despite the absence of light and prevalence of sulfide. Our study adds to the growing literature describing microbial resistance and resilience during lake mixing events related to climatic events and environmental change.
Collapse
Affiliation(s)
- Alexandra A. Phillips
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Daan R. Speth
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Laurence G. Miller
- United States Geological Survey, Earth Systems Process DivisionMenlo ParkCAUSA
| | - Xingchen T. Wang
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
- Department of Earth and Environmental SciencesBoston CollegeChestnut HillMAUSA
| | - Fenfang Wu
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | | | - Danielle R. Monteverde
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Magdalena R. Osburn
- Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonILUSA
| | - William M. Berelson
- Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | | | - Reto S. Wijker
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Sean W. Mullin
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Hope A. Johnson
- Department of Biological ScienceCalifornia State University FullertonFullertonCAUSA
| | - Victoria J. Orphan
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Woodward W. Fischer
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Geobiology Course 2017
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Geobiology Course 2018
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Alex L. Sessions
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
65
|
Ding Y, Saw WY, Tan LWL, Moong DKN, Nagarajan N, Teo YY, Seedorf H. Emergence of tigecycline- and eravacycline-resistant Tet(X4)-producing Enterobacteriaceae in the gut microbiota of healthy Singaporeans. J Antimicrob Chemother 2021; 75:3480-3484. [PMID: 32853333 DOI: 10.1093/jac/dkaa372] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The recently discovered tigecycline-inactivating enzyme Tet(X4) can confer high-level tigecycline resistance on its hosts, which makes it a public health concern. This study focused on isolation and screening of Tet(X4)-positive Enterobacteriaceae from the gut microbiota of a cohort of healthy individuals in Singapore. METHODS MinION and Illumina sequencing was performed to obtain the complete genome sequences of Escherichia coli 2EC1-1 and 94EC. Subsequently, 109 human faecal samples were screened retrospectively for eravacycline-resistant Enterobacteriaceae strains, which were further tested for tet(X4) by PCR. The taxonomy of the isolated strains was determined by 16S rRNA gene PCR and Sanger sequencing. RESULTS Comparative genomic analysis of E. coli 2EC1-1 and 94EC revealed that both carry tet(X4), which is encoded by IncI1-type plasmids p2EC1-1 and p94EC-2, respectively. Retrospective screening of faecal samples collected from 109 healthy individuals showed that the faecal carriage rate of Tet(X4)-producing Enterobacteriaceae is 10.1% (95% CI = 5.1%-17.3%), suggesting that tet(X4) is widely distributed in the gut microbiota of healthy individuals in Singapore. CONCLUSIONS To the best of our knowledge, this is the first report on the prevalence of tet(X4) in the gut microbiota of a healthy human cohort, as well as the first description of this resistance mechanism outside of China. Our findings suggest that surveillance of tet(X4) in community settings is vital to monitor the spread of this resistance mechanism.
Collapse
Affiliation(s)
- Yichen Ding
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
| | - Woei-Yuh Saw
- Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, 3004, Victoria, Australia
| | - Linda Wei Lin Tan
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, 117549, Singapore
| | - Don Kyin Nwe Moong
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, 117549, Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore, A*STAR, 138672, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, 119077, Singapore
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, 117549, Singapore.,Genome Institute of Singapore, A*STAR, 138672, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, 119077, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, 117546, Singapore.,Life Sciences Institute, National University of Singapore, 117456, Singapore
| | - Henning Seedorf
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore.,Department of Biological Sciences, National University of Singapore, 117558, Singapore
| |
Collapse
|
66
|
Salamandane A, Vila-Boa F, Malfeito-Ferreira M, Brito L. High Fecal Contamination and High Levels of Antibiotic-Resistant Enterobacteriaceae in Water Consumed in the City of Maputo, Mozambique. BIOLOGY 2021; 10:biology10060558. [PMID: 34203039 PMCID: PMC8235334 DOI: 10.3390/biology10060558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary The high number of diarrheal disease cases in developing countries is related to sanitation conditions, consumption of untreated water, and poor individual and collective hygiene. In this study, the microbiological quality of water sold and consumed in the city of Maputo, Mozambique, and the antibiotic resistance profile of Enterobacteriaceae isolated from these samples were evaluated. The results showed the occurrence of microorganisms that indicate fecal contamination with enterococci, fecal coliforms, and Escherichia coli above the limit legally allowed for drinking water. The antibiotic resistance profile revealed the existence of antibiotic-resistant bacteria. These results show the need to improve the water supply system in the city of Maputo and to educate the population on hygiene to reduce health risks and promote well-being. Abstract In the city of Maputo, Mozambique, food and water are often sold on the streets. Street water is packaged, distributed, and sold not paying attention to good hygienic practices, and its consumption is often associated with the occurrence of diarrheal diseases. Coincidentally, the increase of diarrheal diseases promotes the inappropriate use of antibiotics that might cause the emergence of antibiotic-resistant bacterial strains. In this context, the present study aimed to assess the microbiological quality of water sold on the streets of Maputo, as well as the antibiotic resistance profile of selected Enterobacteriaceae isolates. The 118 water samples analyzed were from street home-bottled water (n = 81), municipal water distribution systems (tap water) (n = 25), and selected supply wells in several neighborhoods (n = 12). The samples were analyzed for total mesophilic microorganisms, fecal enterococci, fecal coliforms, Escherichia coli, and Vibrio spp. The results showed a high level of fecal contamination in all types of water samples. In home-bottled water, fecal coliforms were found in 88% of the samples, and E. coli in 66% of the samples. In tap water, fecal coliforms were found in 64%, and E. coli in 28% of the samples. In water from supply wells, fecal coliforms and E. coli were found in 83% of the samples. From 33 presumptive Vibrio spp. colonies, only three were identified as V. fluvialis. The remaining isolates belonged to Aeromonas spp. (n = 14) and Klebsiella spp. (n = 16). Of 44 selected Enterobacteriaceae isolates from water samples (28 isolates of E. coli and 16 isolates of Klebsiella spp.), 45.5% were not susceptible to the beta-lactams ampicillin and imipenem, 43.2% to amoxicillin, and 31.8% to amoxicillin/clavulanic acid. Regarding non-beta-lactam antibiotics, there was a high percentage of isolates with tolerance to tetracycline (52.3%) and azithromycin (31.8%). In conclusion, water in Maputo represents a risk for human health due to its high fecal contamination. This situation is made more serious by the fact that a relatively high percentage of isolates with multidrug resistance (40%) were found among Enterobacteriaceae. The dissemination of these results can raise awareness of the urgent need to reduce water contamination in Maputo and other cities in Mozambique.
Collapse
|
67
|
Rezaei Somee M, Dastgheib SMM, Shavandi M, Ghanbari Maman L, Kavousi K, Amoozegar MA, Mehrshad M. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci Rep 2021; 11:11316. [PMID: 34059729 PMCID: PMC8166890 DOI: 10.1038/s41598-021-90735-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
The Persian Gulf, hosting ca. 48% of the world's oil reserves, has been chronically exposed to natural oil seepage. Oil spill studies show a shift in microbial community composition in response to oil pollution; however, the influence of chronic oil exposure on the microbial community remains unknown. We performed genome-resolved comparative analyses of the water and sediment samples along Persian Gulf's pollution continuum (Strait of Hormuz, Asalouyeh, and Khark Island). Continuous exposure to trace amounts of pollution primed the intrinsic and rare marine oil-degrading microbes such as Oceanospirillales, Flavobacteriales, Alteromonadales, and Rhodobacterales to bloom in response to oil pollution in Asalouyeh and Khark samples. Comparative analysis of the Persian Gulf samples with 106 oil-polluted marine samples reveals that the hydrocarbon type, exposure time, and sediment depth are the main determinants of microbial response to pollution. High aliphatic content of the pollution enriched for Oceanospirillales, Alteromonadales, and Pseudomonadales whereas, Alteromonadales, Cellvibrionales, Flavobacteriales, and Rhodobacterales dominate polyaromatic polluted samples. In chronic exposure and oil spill events, the community composition converges towards higher dominance of oil-degrading constituents while promoting the division of labor for successful bioremediation.
Collapse
Affiliation(s)
- Maryam Rezaei Somee
- grid.46072.370000 0004 0612 7950Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Mohammad Mehdi Dastgheib
- grid.419140.90000 0001 0690 0331Biotechnology and Microbiology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Mahmoud Shavandi
- grid.419140.90000 0001 0690 0331Biotechnology and Microbiology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Leila Ghanbari Maman
- grid.46072.370000 0004 0612 7950Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Kaveh Kavousi
- grid.46072.370000 0004 0612 7950Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- grid.46072.370000 0004 0612 7950Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
68
|
Wang B, Huang J, Yang J, Jiang H, Xiao H, Han J, Zhang X. Bicarbonate uptake rates and diversity of RuBisCO genes in saline lake sediments. FEMS Microbiol Ecol 2021; 97:6149456. [PMID: 33629724 DOI: 10.1093/femsec/fiab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022] Open
Abstract
There is limited knowledge of microbial carbon fixation rate, and carbon-fixing microbial abundance and diversity in saline lakes. In this study, the inorganic carbon uptake rates and carbon-fixing microbial populations were investigated in the surface sediments of lakes with a full range of salinity from freshwater to salt saturation. The results showed that in the studied lakes light-dependent bicarbonate uptake contributed substantially (>70%) to total bicarbonate uptake, while the contribution of dark bicarbonate uptake (1.35-25.17%) cannot be ignored. The light-dependent bicarbonate uptake rates were significantly correlated with pH and turbidity, while dark bicarbonate uptake rates were significantly influenced by dissolved inorganic carbon, pH, temperature and salinity. Carbon-fixing microbial populations using the Calvin-Benson-Bassham pathway were widespread in the studied lakes, and they were dominated by the cbbL and cbbM gene types affiliated with Cyanobacteria and Proteobacteria, respectively. The cbbL and cbbM gene abundance and population structures were significantly affected by different environmental variables, with the cbbL and cbbM genes being negatively correlated with salinity and organic carbon concentration, respectively. In summary, this study improves our knowledge of the abundance, diversity and function of carbon-fixing microbial populations in the lakes with a full range of salinity.
Collapse
Affiliation(s)
- Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haiyi Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jibin Han
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| | - Xiying Zhang
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining 81008, China
| |
Collapse
|
69
|
Yoon DJ, Cho ES, Hwang CY, Nam YD, Park SL, Lim SI, Seo MJ. Nocardioides luti sp. nov., belonging to the family Nocardioidaceae isolated from kaolinite, exhibiting the biosynthesis potential of alkylresorcinol. Antonie van Leeuwenhoek 2021; 114:983-995. [PMID: 33864547 DOI: 10.1007/s10482-021-01570-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022]
Abstract
A novel Gram-staining-positive, short rod-shaped, non-motile, and non-pigmented actinobacterial strain (KIGAM211T) was isolated from kaolinite, a soft white clay mineral, collected from Sancheong in the Republic of Korea. On the basis of 16S rRNA gene sequence analysis, strain KIGAM211T was determined to belong to the genus Nocardioides and was most closely related to N. ungokensis UKS-03T (97.5% similarity). Cells could grow between 4 and 35 °C (optimum 30 °C), 0-3% (w/v) NaCl concentration (optimum 0%) and pH 5.5-8.5 (optimum 7.0) on R2A agar. Morphological appearance of colonies was cream-white, arranged singly or in groups. Biochemical characterization of strain KAGAM211T indicated that it could hydrolyze casein, gelatin, Tweens 40 and tyrosine. Furthermore, the strain was positive for both oxidase and catalase activity. Strain KIGAM211T was characterized chemotaxonomically by MK-8 (H4) as the predominant menaquinone and phosphatidylglycerol (PG) and phosphatidylinositol (PI) as the major polar lipids. Major fatty acids were iso-C16:0 and C18:1 ω9c. The Ortholog average nucleotide identity (OrthoANI) and in silico DNA-DNA hybridization (isDDH) values between strain KIGAM211T and its most closely related strains of the Nocardioides genus were < 82% and < 24%, respectively, suggesting that strain KIGAM211T represent a novel species. The whole genome size of KIGAM211T was 4.52 Mb, comprising a total of 4,294 genes with DNA G + C content of 72.3 mol%. The genome of strain KIGAM211T also comprises the biosynthetic gene cluster for alkylresorcinol as secondary metabolite. The results of physiological, taxonomical, phylogenetic, and whole genome analyses allowed for differentiation of strain KIGAM211T from the recognized Nocardioides species. Therefore, strain KIGAM211T is considered to represent a novel species, for which the name Nocardioides luti sp. nov. (type strain KIGAM211T = KCTC 49364T = JCM 33859T) is proposed.
Collapse
Affiliation(s)
- Deok Jun Yoon
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Eui-Sang Cho
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Chi Young Hwang
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - So-Lim Park
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Seong-Il Lim
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea.
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon, 22012, Republic of Korea.
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Institute for New Drug Development, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
70
|
Pan HU, Zhou J, Dawa Z, Dai Y, Zhang Y, Yang H, Wang C, Liu H, Zhou H, Lu X, Tian Y. Diversity of Culturable Bacteria Isolated from Highland Barley Cultivation Soil in Qamdo, Tibet Autonomous Region. Pol J Microbiol 2021; 70:87-97. [PMID: 33815530 PMCID: PMC8008761 DOI: 10.33073/pjm-2021-008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The soil bacterial communities have been widely investigated. However, there has been little study of the bacteria in Qinghai-Tibet Plateau, especially about the culturable bacteria in highland barley cultivation soil. Here, a total of 830 individual strains were obtained at 4°C and 25°C from a highland barley cultivation soil in Qamdo, Tibet Autonomous Region, using fifteen kinds of media. Seventy-seven species were obtained, which belonged to 42 genera and four phyla; the predominant phylum was Actinobacteria (68.82%), followed by Proteobacteria (15.59%), Firmicutes (14.29%), and Bacteroidetes (1.30%). The predominant genus was Streptomyces (22.08%, 17 species), followed by Bacillus (6.49%, five species), Micromonospora (5.19%, four species), Microbacterium (5.19%, four species), and Kribbella (3.90%, three species). The most diverse isolates belonged to a high G+C Gram-positive group; in particular, the Streptomyces genus is a dominant genus in the high G+C Gram-positive group. There were 62 species and 33 genera bacteria isolated at 25°C (80.52%), 23 species, and 18 genera bacteria isolated at 4°C (29.87%). Meanwhile, only eight species and six genera bacteria could be isolated at 25°C and 4°C. Of the 77 species, six isolates related to six genera might be novel taxa. The results showed abundant bacterial species diversity in the soil sample from the Qamdo, Tibet Autonomous Region.
Collapse
Affiliation(s)
- H U Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.,Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jie Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Zhuoma Dawa
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yanna Dai
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yifan Zhang
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hui Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
71
|
Solbach MD, Bonkowski M, Dumack K. Novel Endosymbionts in Rhizarian Amoebae Imply Universal Infection of Unrelated Free-Living Amoebae by Legionellales. Front Cell Infect Microbiol 2021; 11:642216. [PMID: 33763389 PMCID: PMC7982676 DOI: 10.3389/fcimb.2021.642216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Legionellales-infected water is a frequent cause of local outbreaks of Legionnaires’ disease and Pontiac fever. Decontaminations are difficult because Legionellales reproduce in eukaryotic microorganisms (protists). Most often, Legionellales have been isolated from amoebae; however, the culture-based sampling methods are taxonomically biased. Sequencing studies show that amoebae in the cercozoan class Thecofilosea are dominant in soils and wastewater treatment plants, prompting us to screen their capability to serve as potential hosts of endosymbiotic bacteria. Environmental isolates of Thecofilosea contained a surprising richness of endosymbiotic Legionellales, including Legionella. Considering the widespread dispersal of Legionellales in apparently unrelated amoeboid protist taxa, it appears that the morphotype and not the evolutionary origin of amoebae determines their suitability as hosts for Legionellales. We further provide a protocol for gnotobiotic cultivation of Legionellales and their respective hosts, facilitating future genomic and transcriptomic research of host–symbiont relationships.
Collapse
Affiliation(s)
- Marcel Dominik Solbach
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Michael Bonkowski
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Kenneth Dumack
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
72
|
Genderjahn S, Lewin S, Horn F, Schleicher AM, Mangelsdorf K, Wagner D. Living Lithic and Sublithic Bacterial Communities in Namibian Drylands. Microorganisms 2021; 9:235. [PMID: 33498742 PMCID: PMC7911874 DOI: 10.3390/microorganisms9020235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Dryland xeric conditions exert a deterministic effect on microbial communities, forcing life into refuge niches. Deposited rocks can form a lithic niche for microorganisms in desert regions. Mineral weathering is a key process in soil formation and the importance of microbial-driven mineral weathering for nutrient extraction is increasingly accepted. Advances in geobiology provide insight into the interactions between microorganisms and minerals that play an important role in weathering processes. In this study, we present the examination of the microbial diversity in dryland rocks from the Tsauchab River banks in Namibia. We paired culture-independent 16S rRNA gene amplicon sequencing with culture-dependent (isolation of bacteria) techniques to assess the community structure and diversity patterns. Bacteria isolated from dryland rocks are typical of xeric environments and are described as being involved in rock weathering processes. For the first time, we extracted extra- and intracellular DNA from rocks to enhance our understanding of potentially rock-weathering microorganisms. We compared the microbial community structure in different rock types (limestone, quartz-rich sandstone and quartz-rich shale) with adjacent soils below the rocks. Our results indicate differences in the living lithic and sublithic microbial communities.
Collapse
Affiliation(s)
- Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
| | - Simon Lewin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
| | - Anja M. Schleicher
- GFZ German Research Centre for Geosciences, Section Organic Geochemistry, Telegrafenberg, 14473 Potsdam, Germany;
| | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Section Anorganic Chemistry, Telegrafenberg, 14473 Potsdam, Germany;
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
73
|
Abadi VAJM, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B. Diversity and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize. J Appl Microbiol 2021; 131:898-912. [PMID: 33331107 DOI: 10.1111/jam.14975] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/15/2023]
Abstract
AIMS The present study aimed at gaining an insight into the abundance and genetic diversity of culturable N-fixing epiphyte bacteria on the phyllosphere of maize in arid and semi-arid regions of Iran. METHODS AND RESULTS Leaf samples of the maize variety, 'single cross 704' (Zea mays L.) were collected from different locations in Iran. The community of culturable N-fixing epiphyte bacteria present was examined by 16S rRNA sequencing, BOXAIR-polymerase chain reaction (PCR) and restricted fragment length polymorphisms analysis of 16S rRNA gene (16S-RFLP). Approximately, 31·82% of the 242 isolates were identified as N-fixers by cultivation of bacteria in Rennie medium and detection of their nifH gene. The N-fixers were affiliated with four bacterial phyla: Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. 16S rRNA sequencing detected 16 genera and 24 different species in the identified phyla. The most dominant genus was Bacillus and the species identified were B. pumilus, B. amyloliquefaciens, B. subtilis, B. paralicheniformis, B. licheniformis, B. niabensis and B. megaterium. In total, 22 RFLP groups were present among the isolates originally identified as N-fixing bacteria. BOXAIR-PCR showed that there was a low similarity level among the N-fixing bacteria isolates, and genetic differentiation of individual strains was relatively great. CONCLUSIONS Our findings suggest that nitrogen-fixing epiphyte bacteria on the phyllosphere of maize may provide significant nitrogen input into arid and semi-arid ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY This research implies that phyllosphere epiphyte diazotrophs have much to offer in sustainable agriculture and can be an alternative to chemical N-fertilizers for providing nitrogen to crops arid and semi-arid regions.
Collapse
Affiliation(s)
- V A J M Abadi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - H A Rahmani
- Soil and Water Research Institute, Agriculture Research, Education and Extension Organization, Karaj, Iran
| | - H K Dolatabad
- Soil and Water Research Institute, Agriculture Research, Education and Extension Organization, Karaj, Iran
| | - M Shamshiripour
- Soil and Water Research Institute, Agriculture Research, Education and Extension Organization, Karaj, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| |
Collapse
|
74
|
Delpiazzo R, Barcellos M, Barros S, Betancor L, Fraga M, Gil J, Iraola G, Morsella C, Paolicchi F, Pérez R, Riet-Correa F, Sanguinetti M, Silva A, da Silva Silveira C, Calleros L. Accurate and fast identification of Campylobacter fetus in bulls by real-time PCR targeting a 16S rRNA gene sequence. Vet Anim Sci 2020; 11:100163. [PMID: 33490713 PMCID: PMC7807152 DOI: 10.1016/j.vas.2020.100163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Campylobacter fetus is an important animal pathogen that causes infectious infertility, embryonic mortality and abortions in cattle and sheep flocks. There are two recognized subspecies related with reproductive disorders in livestock: Campylobacter fetus subsp. fetus (Cff) and Campylobacter fetus subsp. venerealis (Cfv). Rapid and reliable detection of this pathogenic species in bulls is of upmost importance for disease control in dairy and beef herds as they are asymptomatic carriers. The aim of the present work was to assess the performance a real-time PCR (qPCR) method for the diagnosis of Campylobacter fetus in samples from bulls, comparing it with culture and isolation methods. 520 preputial samples were both cultured in Skirrow's medium and analyzed by qPCR. The estimated sensitivity of qPCR was 90.9% (95% CI, 69.4%–100%), and the specificity was 99.4% (95% CI, 98.6% - 100%). The proportion of C. fetus positive individuals was 2.1% by isolation and 2.5% by qPCR. Isolates were identified by biochemical tests as Cfv (n = 9) and Cff (n = 2). Our findings support the use of qPCR for fast and accurate detection of C. fetus directly from field samples of preputial smegma of bulls. The qPCR method showed to be suitable for massive screenings because it can be performed in pooled samples without losing accuracy and sensitivity.
Collapse
Affiliation(s)
- Rafael Delpiazzo
- Departamento de Salud de los Sistemas Pecuarios, Facultad de Veterinaria, Universidad de la República Oriental del Uruguay, Estación Experimental "Dr. Mario A. Cassinoni", Ruta 3 Km. 363, Paysandú, Uruguay
| | - Maila Barcellos
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo, Uruguay
| | - Sofía Barros
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo, Uruguay
| | - Laura Betancor
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Dr. Alfredo Navarro 3051, Montevideo, Uruguay
| | - Martín Fraga
- Plataforma de Investigación en Salud Animal, Estación Experimental INIA La Estanzuela. Ruta 50 Km. 11, Colonia, Uruguay
| | - Jorge Gil
- Departamento de Salud de los Sistemas Pecuarios, Facultad de Veterinaria, Universidad de la República Oriental del Uruguay, Estación Experimental "Dr. Mario A. Cassinoni", Ruta 3 Km. 363, Paysandú, Uruguay
| | - Gregorio Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago de Chile, Chile
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Saffron Walden CB10 1SA, United Kingdom
| | - Claudia Morsella
- Laboratorio de Bacteriología, Estación Experimental Agropecuaria, INTA Balcarce. Ruta 226 Km. 73.5, Balcarce, Buenos Aires, Argentina
| | - Fernando Paolicchi
- Laboratorio de Bacteriología, Estación Experimental Agropecuaria, INTA Balcarce. Ruta 226 Km. 73.5, Balcarce, Buenos Aires, Argentina
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo, Uruguay
| | - Franklin Riet-Correa
- Plataforma de Investigación en Salud Animal, Estación Experimental INIA La Estanzuela. Ruta 50 Km. 11, Colonia, Uruguay
| | - Margarita Sanguinetti
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo, Uruguay
| | - Alfonso Silva
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo, Uruguay
| | - Caroline da Silva Silveira
- Plataforma de Investigación en Salud Animal, Estación Experimental INIA La Estanzuela. Ruta 50 Km. 11, Colonia, Uruguay
| | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo, Uruguay
- Corresponding author:
| |
Collapse
|
75
|
Staphylococcus hominis YJILJH and Staphylococcus epidermidis YJ101 promote the growth of white clover (Trifolium repens L.) by increasing available phosphorus. Symbiosis 2020. [DOI: 10.1007/s13199-020-00739-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
76
|
Das S, Sreejith S, Babu J, Francis C, Midhun JS, Aswani R, Sebastain KS, Radhakrishnan EK, Mathew J. Genome sequencing and annotation of multi-virulent Aeromonas veronii XhG1.2 isolated from diseased Xiphophorus hellerii. Genomics 2020; 113:991-998. [PMID: 33144215 DOI: 10.1016/j.ygeno.2020.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
The present study was intended to elucidate the genomic basis of antibiotic resistance and hyper-virulence of the fish pathogen Aeromonas veronii XhG1.2 characterized in our previous work. The identity of XhG1.2 was confirmed through 16S rDNA sequence analysis and whole genome sequence analysis. The top-hit species distribution analysis of XhG1.2 sequence data revealed major hits against the Aeromonas veronii. The identification of virulence genes using the VFDB showed the genome of XhG1.2 to have the genes coding for the virulence factors viz. aerolysin, RtxA, T2SS, T3SS and T6SS. The presence of antibiotic resistance predicted through the CARD database analysis showed it to have the CephA3, OXA-12, adeF and pulvomycin resistance genes. By the phylogenetic and comparative genomic analysis, A. veronii species were found to have genes for toxin production. This also confirmed the pathogenicity and drug resistance of A. veronii XhG1.2 and also its potential to cause disease in diverse ornamental fishes.
Collapse
Affiliation(s)
- Soumya Das
- School of Biosciences, Mahatma Gandhi University, P.D.Hills PO, Kottayam 686 560, India
| | - S Sreejith
- School of Biosciences, Mahatma Gandhi University, P.D.Hills PO, Kottayam 686 560, India
| | - Jilna Babu
- Centre for Bioinformatics, Mahatma Gandhi University, P.D.Hills PO, Kottayam 686 560, India
| | - Celen Francis
- Centre for Bioinformatics, Mahatma Gandhi University, P.D.Hills PO, Kottayam 686 560, India
| | - J S Midhun
- School of Biosciences, Mahatma Gandhi University, P.D.Hills PO, Kottayam 686 560, India
| | - R Aswani
- School of Biosciences, Mahatma Gandhi University, P.D.Hills PO, Kottayam 686 560, India
| | - K S Sebastain
- Department of Zoology, Govt. College, Kottayam 686013, Kerala, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, P.D.Hills PO, Kottayam 686 560, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, P.D.Hills PO, Kottayam 686 560, India.
| |
Collapse
|
77
|
Bacterial Communities Associated with the Biofilms Formed in High-Altitude Brackish Water Pangong Tso Located in the Himalayan Plateau. Curr Microbiol 2020; 77:4072-4084. [PMID: 33079205 DOI: 10.1007/s00284-020-02244-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Pangong Tso is a long and narrow lake situated at an altitude of ~ 4266 m amsl in the Himalayan Plateau on the side of the India/China border. Biofilm has been observed in a small area near the shore of Pangong Tso. Bacterial communities of the lake sediment, water and biofilms were studied using amplicon sequencing of V3-V4 region of the 16S rRNA gene. The standard QIIME pipeline was used for analysis. The metabolic potential of the community was predicted using functional prediction tool Tax4Fun. Bacterial phyla Proteobacteria, followed by Bacteroidetes, Acidobacteria, Planctomycetes, Actinobacteria, and Firmicutes, were found to be dominant across these samples. Shannon's and Simpson's alpha diversity analysis revealed that sediment communities are the most diverse, and water communities are the least diverse. Principal Coordinates based beta diversity analysis showed significant variation in the bacterial communities of the water, sediment and biofilm samples. Bacterial phyla Verrucomicrobia, Deinococcus-Thermus and Cyanobacteria were explicitly enriched in the biofilm samples. Predictive functional profiling of these bacterial communities showed a higher abundance of genes involved in photosynthesis, biosynthesis of secondary metabolites, carbon fixation in photosynthetic organisms and glyoxylate and dicarboxylate metabolism in the biofilm sample. In conclusion, the Pangong Tso bacterial communities are quite similar to other saline and low-temperature lakes in the Tibetan Plateau. Bacterial community structure of the biofilm samples was significantly different from that of the water and sediment samples and enrichment of saprophytic communities was observed in the biofilm samples, indicating an important succession event in this high-altitude lake.
Collapse
|
78
|
Jiao C, Zhao D, Zeng J, Guo L, Yu Z. Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140010. [PMID: 32563874 DOI: 10.1016/j.scitotenv.2020.140010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Both the planktonic bacterial community (PBC) and benthic bacterial community (BBC) are important for biogeochemical processes in freshwater lakes. Despite their ecological significance, little is known about their seasonal co-occurrence patterns and the ecological processes that drive them. In this study, we aimed to investigate the ecological associations among bacterial taxa and assembly processes of PBC and BBC in different seasons. We used 16S rRNA gene high-throughput sequencing of a total of 150 water and sediment samples collected from multiple lakes distributed in an urban region of China during winter and summer. Our results revealed that PBC showed stronger seasonal variations in co-occurrence patterns than BBC, suggesting that BBC had greater temporal stability than PBC. Winter PBC network was characterized by higher connectivity and complexity, and thereby the formation of a highly stable community structure; whereas lower connectivity arising from the presence of fewer predicted keystone taxa (hubs and connectors in a network) was destabilizing to summer PBC network. In addition, the phylum Firmicutes identified as a putative keystone taxon of PBC in both seasons played a non-negligible role in maintaining network structure which may result from strong functional associations with other bacterioplankton. Temperature and pH were the best explanatory factors predicting the seasonal co-occurrence patterns of PBC and BBC, respectively. Normalized stochasticity ratio based on null-model analysis indicated that deterministic processes overwhelmed stochastic processes in governing the assembly of PBC and BBC in both seasons. However, we observed a greater influence of ecological stochasticity on BBC assembly than PBC assembly in both seasons. Taken together, these findings provide insights into understanding the impacts of habitat heterogeneity and seasonal variability on microbial assemblage patterns in lake ecosystems.
Collapse
Affiliation(s)
- Congcong Jiao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lin Guo
- Department of Biological and Environmental Sciences, Texas A&M University, Commerce, TX 76129, USA
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
79
|
Cambon MC, Lafont P, Frayssinet M, Lanois A, Ogier JC, Pagès S, Parthuisot N, Ferdy JB, Gaudriault S. Bacterial community profile after the lethal infection of Steinernema-Xenorhabdus pairs into soil-reared Tenebrio molitor larvae. FEMS Microbiol Ecol 2020; 96:5704397. [PMID: 31942980 DOI: 10.1093/femsec/fiaa009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
The host microbiota may have an impact on pathogens. This is often studied in laboratory-reared hosts but rarely in individuals whose microbiota looks like that of wild animals. In this study, we modified the gut microbiota of the insect Tenebrio molitor by rearing larvae in soil sampled from the field. We showed by high throughput sequencing methods that this treatment modifies the gut microbiota so that it is more diversified than that of laboratory-reared insects, and closely resembled the one of soil-dwelling insects. To describe what the entomopathogenic bacterial symbiont Xenorhabdus (Enterobacteriaceae), vectored by the soil-dwelling nematode Steinernema, might experience in natural conditions, we studied the infestation of the soil-reared T. molitor larvae with three Steinernema-Xenorhabdus pairs. We performed the infestation at 18°C, which delays the emergence of new infective juveniles (IJs), the soil-dwelling nematode forms, but which is a temperature compatible with natural infestation. We analyzed by high throughput sequencing methods the composition of the bacterial community within the insect cadavers before the first emergences of IJs. These bacterial communities were generally characterized by one or two non-symbiont taxa. Even for highly lethal Steinernema-Xenorhabdus pairs, the symbiont does not dominate the bacterial community within the insect cadaver.
Collapse
Affiliation(s)
- Marine C Cambon
- Laboratoire Evolution et Diversité Biologique, CNRS-IRD-Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse, France.,Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Pierre Lafont
- Laboratoire Evolution et Diversité Biologique, CNRS-IRD-Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse, France
| | - Marie Frayssinet
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Anne Lanois
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Jean-Claude Ogier
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Sylvie Pagès
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Nathalie Parthuisot
- Laboratoire Evolution et Diversité Biologique, CNRS-IRD-Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse, France
| | - Jean-Baptiste Ferdy
- Laboratoire Evolution et Diversité Biologique, CNRS-IRD-Université Paul Sabatier, 118 route de Narbonne, 31077 Toulouse, France
| | - Sophie Gaudriault
- Laboratoire Diversité, Génome et Interactions Microorganismes Insectes, INRA-Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
80
|
Huang J, Yang J, Jiang H, Wu G, Liu W, Wang B, Xiao H, Han J. Microbial Responses to Simulated Salinization and Desalinization in the Sediments of the Qinghai-Tibetan Lakes. Front Microbiol 2020; 11:1772. [PMID: 32849396 PMCID: PMC7426462 DOI: 10.3389/fmicb.2020.01772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Uncovering microbial response to salinization or desalinization is of great importance to understanding of the influence of global climate change on lacustrine microbial ecology. In this study, to simulate salinization and desalinization, sediments from Erhai Lake (salinity 0.3-0.8 g/L) and Chaka Lake (salinity 299.3-350.7 g/L) on the Qinghai-Tibetan Plateau were transplanted into different lakes with a range of salinity of 0.3-299.3 g/L, followed by in situ incubation for 50 days and subsequent geochemical and microbial analyses. Desalinization was faster than salinization in the transplanted sediments. The salinity of the transplanted sediment increased and decreased in the salinization and desalinization simulation experiments, respectively. The TOC contents of the transplanted sediments were lower than that of their undisturbed counterparts in the salinization experiments, whereas they had a strong negative linear relationship with salinity in the desalinization experiments. Microbial diversity decreased in response to salinization and desalinization, and microbial community dissimilarity significantly (P < 0.01) increased with salinity differences between the transplanted sediments and their undisturbed counterparts. Microbial groups belonging to Gammaproteobacteria and Actinobacteria became abundant in salinization whereas Bacteroidetes and Chloroflexi became dominant in desalinization. Among the predicted microbial functions, hydrogenotrophic methanogenesis, methanogenesis through CO2 reduction with H2, nitrate/nitrogen respiration, and nitrification increased in salinization; in desalinization, enhancement was observed for respiration of sulfur compounds, sulfate respiration, sulfur respiration, thiosulfate respiration, hydrocarbon degradation, chemoheterotrophy, and fermentation, whereas depressing was found for aerobic ammonia oxidation, nitrate/nitrogen respiration, nitrification, nitrite respiration, manganese oxidation, aerobic chemoheterotrophy, and phototrophy. Such microbial variations could be explained by changes of transplantation, salinity, and covarying variables. In summary, salinization and desalinization had profound influence on the geochemistry, microbial community, and function in lakes.
Collapse
Affiliation(s)
- Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Urumqi, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Haiyi Xiao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jibin Han
- Key Laboratory of Salt Lake Geology and Environment of Qinghai Province, Qinghai Institute of Salt Lakes, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
81
|
Isolation and diversity of sediment bacteria in the hypersaline aiding lake, China. PLoS One 2020; 15:e0236006. [PMID: 32649724 PMCID: PMC7351256 DOI: 10.1371/journal.pone.0236006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Halophiles are relatively unexplored as potential sources of novel species.
However, little is known about the culturable bacterial diversity thrive in
hypersaline lakes. In this work, a total of 343 bacteria from sediment samples
of Aiding Lake, China, were isolated using nine different media supplemented
with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria
recovered from the different media varied, indicating the need to optimize the
isolation conditions. The results showed an unexpected level of bacterial
diversity, with four phyla (Actinobacteria,
Firmicutes, Proteobacteria, and
Rhodothermaeota), fourteen orders
(Actinopolysporales, Alteromonadales,
Bacillales, Balneolales,
Chromatiales, Glycomycetales,
Jiangellales, Micrococcales,
Micromonosporales, Oceanospirillales,
Pseudonocardiales, Rhizobiales,
Streptomycetales, and
Streptosporangiales), including 17 families, 43 genera
(including two novel genera), and 71 species (including four novel species). The
predominant phyla included Actinobacteria and Firmicutes and the predominant
genera included Actinopolyspora,
Gracilibacillus, Halomonas,
Nocardiopsis, and Streptomyces. To our
knowledge, this is the first time that members of phylum
Rhodothermaeota were identified in sediment samples from a
salt lake.
Collapse
|
82
|
Debnath SC, Chen C, Khan I, Wang WJ, Zheng DQ, Xu JZ, Wang PM. Flavobacterium salilacus sp. nov., isolated from surface water of a hypersaline lake, and descriptions of Flavobacterium salilacus subsp. altitudinum subsp. nov. and Flavobacterium salilacus subsp. salilacus subsp. nov. Int J Syst Evol Microbiol 2020; 70:4250-4260. [PMID: 32568031 DOI: 10.1099/ijsem.0.004281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two yellow-pigmented, Gram-stain-negative, aerobic, rod-shaped bacteria were isolated from the water of the hypersaline Chaka Salt Lake (strain SaA2.12T) and sediment of Qinghai Lake (strain LaA7.5T), PR China. According to the 16S rRNA phylogeny, the isolates belong to the genus Flavobacterium, showing the highest 16S rRNA sequence similarities to Flavobacterium arcticum SM1502T(97.6-97.7 %) and Flavobacterium suzhouense XIN-1T(96.5-96.6 %). Moreover, strains SaA2.12T and LaA7.5T showed 99.73 % 16S rRNA sequence similarity to each other. Major fatty acids, respiratory quinones and polar lipids detected in these isolates were iso-C15 : 0, menaquinone-6 and phosphatidylethanolamine, respectively. Strains SaA2.12T and LaA7.5T showed significant unique characteristics between them as well as between the closest phylogenetic members. The highest digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between SaA2.12T and its closest neighbours were 25.3 and 82.8 %, respectively; whereas these values (highest) between LaA7.5T and its closest members were 25.2 and 82.8 %, respectively. The dDDH and ANI values between strains SaA2.12T and LaA7.5T were calculated as 75.9 and 97.2 %, respectively. Therefore, based on polyphasic data, we propose that strain SaA2.12T represents a novel species with the name Flavobacterium salilacus sp. nov., with the type strain SaA2.12T (=KCTC 72220T=MCCC 1K03618T) and strain LaA7.5T as a subspecies within novel Flavobacterium salilacus with the name Flavobacterium salilacus subsp. altitudinum subsp. nov., with the type strain LaA7.5T (=KCTC 72806T=MCCC 1K04372T). These propositions automatically create Flavobacterium salilacus subsp. salilacus subsp. nov. with SaA2.12T (=KCTC 72220T=MCCC 1K03618T) as the type strain.
Collapse
Affiliation(s)
| | - Can Chen
- Ocean College, Zhejiang University, Zhoushan, PR China
| | - Ishrat Khan
- Ocean College, Zhejiang University, Zhoushan, PR China
| | - Wen-Jie Wang
- Ocean College, Zhejiang University, Zhoushan, PR China
| | | | - Jin-Zhong Xu
- Ocean College, Zhejiang University, Zhoushan, PR China
| | - Pin-Mei Wang
- Ocean College, Zhejiang University, Zhoushan, PR China
| |
Collapse
|
83
|
Bacterial community composition and potential pathogens along the Pinheiros River in the southeast of Brazil. Sci Rep 2020; 10:9331. [PMID: 32518363 PMCID: PMC7283273 DOI: 10.1038/s41598-020-66386-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
The Pinheiros River in São Paulo, Brazil, crosses through the capital city and has its confluence with the River Tiete, which comprises several reservoirs along its course. Although Pinheiros River is considered one of the heaviest polluted rivers in Brazil, little is known about its bacterial composition, their metabolic functions or how these communities are affected by the physicochemical parameters of the river. In this study, we used the 16S rRNA gene Illumina MiSeq sequencing to profile the bacterial community from the water surface at 11 points along the course of the River. Taxonomical composition revealed an abundance of Proteobacteria phyla, followed by Firmicutes and Bacteroidetes, with a total of 233 classified bacterial families and 558 known bacterial genera. Among the 35 potentially pathogenic bacteria identified, Arcobacter was the most predominant genus. The disrupted physicochemical parameters detected in this study may possibly contribute to the composition and distribution of the bacterial community in the Pinheiros River. Predictive functional analysis suggests the River is abundant in motility genes, including bacterial chemotaxis and flagellar assembly. These results provide novel and detailed insights into the bacterial communities and putative function of the surface water in the Pinheiros River.
Collapse
|
84
|
Huang J, Yang J, Jiang H, Wu G, Xie Z, Dong H. Surviving onshore soil microbial communities differ among the Qing-Tibetan lakes with different salinity. FEMS Microbiol Ecol 2020; 95:5582604. [PMID: 31589308 DOI: 10.1093/femsec/fiz156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/03/2019] [Indexed: 11/12/2022] Open
Abstract
Little is known about the onshore microbial contribution to the microbial communities in nearby lakes and its response to salinity. In this study, transplanting experiments were established by caging onshore soils with dialysis bags followed by in situ 50-day incubation in nearby lakes with different salinity on the Qinghai-Tibetan Plateau. At the end of the experiment, geochemical and microbial analyses were performed on the original soils, caged soils and lake waters and sediments at the incubation sites. The results showed that the salinity increased significantly (P < 0.05) in the caged soils and such salinity increases showed significant (P < 0.05) positive correlation with the salinity of the studied lakes. The microbial community composition and predicted functions in the caged soils were significantly (P < 0.05) changed in comparison with their corresponding original soils, and such variation could be mainly explained by the succession of members of the Proteobacteria, Bacteroidetes and Actinobacteria from the original soils to their corresponding caged soils. The onshore microbial contribution appeared to be limited (up to 11.2% for sediment and negligible for water, respectively) to nearby lake microbial communities. Nevertheless, the survival of onshore soil microbial communities was mainly limited by the salinity of the receiving lakes.
Collapse
Affiliation(s)
- Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zhanling Xie
- College of Ecology-Environment Engineering, Qinghai University, Xining, 810016, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.,Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 5056, USA
| |
Collapse
|
85
|
Yang J, Jiang H, Liu W, Huang L, Huang J, Wang B, Dong H, Chu RK, Tolic N. Potential utilization of terrestrially derived dissolved organic matter by aquatic microbial communities in saline lakes. ISME JOURNAL 2020; 14:2313-2324. [PMID: 32483305 PMCID: PMC7608266 DOI: 10.1038/s41396-020-0689-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Lakes receive large amounts of terrestrially derived dissolved organic matter (tDOM). However, little is known about how aquatic microbial communities interact with tDOM in lakes. Here, by performing microcosm experiments we investigated how microbial community responded to tDOM influx in six Tibetan lakes of different salinities (ranging from 1 to 358 g/l). In response to tDOM addition, microbial biomass increased while dissolved organic carbon (DOC) decreased. The amount of DOC decrease did not show any significant correlation with salinity. However, salinity influenced tDOM transformation, i.e., microbial communities from higher salinity lakes exhibited a stronger ability to utilize tDOM of high carbon numbers than those from lower salinity. Abundant taxa and copiotrophs were actively involved in tDOM transformation, suggesting their vital roles in lacustrine carbon cycle. Network analysis indicated that 66 operational taxonomic units (OTUs, affiliated with Alphaproteobacteria, Actinobacteria, Bacteroidia, Bacilli, Gammaproteobacteria, Halobacteria, Planctomycetacia, Rhodothermia, and Verrucomicrobiae) were associated with degradation of CHO compounds, while four bacterial OTUs (affiliated with Actinobacteria, Alphaproteobacteria, Bacteroidia and Gammaproteobacteria) were highly associated with the degradation of CHOS compounds. Network analysis further revealed that tDOM transformation may be a synergestic process, involving cooperation among multiple species. In summary, our study provides new insights into a microbial role in transforming tDOM in saline lakes and has important implications for understanding the carbon cycle in aquatic environments.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China. .,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China.
| | - Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083, Beijing, China. .,Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA.
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nikola Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
86
|
Aravena P, Pulgar R, Ortiz-Severín J, Maza F, Gaete A, Martínez S, Serón E, González M, Cambiazo V. PCR-RFLP Detection and Genogroup Identification of Piscirickettsia salmonis in Field Samples. Pathogens 2020; 9:pathogens9050358. [PMID: 32397152 PMCID: PMC7281544 DOI: 10.3390/pathogens9050358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/01/2023] Open
Abstract
Piscirickettsia salmons, the causative agent of piscirickettsiosis, is genetically divided into two genomic groups, named after the reference strains as LF-89-like or EM-90-like. Phenotypic differences have been detected between the P. salmonis genogroups, including antibiotic susceptibilities, host specificities and pathogenicity. In this study, we aimed to develop a rapid, sensitive and cost-effective assay for the differentiation of the P. salmonis genogroups. Using an in silico analysis of the P. salmonis 16S rDNA digestion patterns, we have designed a genogroup-specific assay based on PCR-restriction fragment length polymorphism (RFLP). An experimental validation was carried out by comparing the restriction patterns of 13 P. salmonis strains and 57 field samples obtained from the tissues of dead or moribund fish. When the bacterial composition of a set of field samples, for which we detected mixtures of bacterial DNA, was analyzed by a high-throughput sequencing of the 16S rRNA gene amplicons, a diversity of taxa could be identified, including pathogenic and commensal bacteria. Despite the presence of mixtures of bacterial DNA, the characteristic digestion pattern of the P. salmonis genogroups could be detected in the field samples without the need of a microbiological culture and bacterial isolation.
Collapse
Affiliation(s)
- Pamela Aravena
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
| | - Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
| | - Javiera Ortiz-Severín
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
| | - Felipe Maza
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
| | - Alexis Gaete
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
| | - Sebastián Martínez
- Laboratorio Especialidades Técnicas Marinas (ETECMA), Puerto Montt 5500001, Chile; (S.M.); (E.S.)
| | - Ervin Serón
- Laboratorio Especialidades Técnicas Marinas (ETECMA), Puerto Montt 5500001, Chile; (S.M.); (E.S.)
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile; (P.A.); (R.P.); (J.O.-S.); (F.M.); (A.G.); (M.G.)
- FONDAP Center for Genome Regulation, Santiago 8370415, Chile
- Correspondence:
| |
Collapse
|
87
|
Hernández I, Sant C, Martínez R, Fernández C. Design of Bacterial Strain-Specific qPCR Assays Using NGS Data and Publicly Available Resources and Its Application to Track Biocontrol Strains. Front Microbiol 2020; 11:208. [PMID: 32210925 PMCID: PMC7077341 DOI: 10.3389/fmicb.2020.00208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/29/2020] [Indexed: 11/29/2022] Open
Abstract
Biological control is emerging as a feasible alternative to chemical pesticides in agriculture. Measuring the microbial biocontrol agent (mBCA) populations in the environment is essential for an accurate environmental and health risk assessment and for optimizing the usage of an mBCA-based plant protection product. We hereby show a workflow to obtain a large number of qPCR markers suitable for robust strain-specific quantification. The workflow starts from whole genome sequencing data and consists of four stages: (i) identifying the strain-specific sequences, (ii) designing specific primer/probe sets for qPCR, and (iii) empirically verifying the performance of the assays. The first two stages involve exclusively computer work, but they are intended for researchers with little or no bioinformatic background: Only a knowledge of the BLAST suite tools and work with spreadsheets are required; a familiarity with the Galaxy environment and next-generation sequencing concepts are strongly advised. All bioinformatic work can be implemented using publicly available resources and a regular desktop computer (no matter the operating system) connected to the Internet. The workflow was tested with five bacterial strains from four different genera under development as mBCAs and yielded thousands of candidate markers and a triplex qPCR assay for each candidate mBCA. The qPCR assays were successfully tested in soils of different natures, water from different sources, and with samples from different plant tissues. The mBCA detection limits and population dynamics in the different matrices are similar to those in qPCR assays designed by other means. In summary, a new accessible, cost-effective, and robust workflow to obtain a large number of strain-specific qPCR markers is presented.
Collapse
Affiliation(s)
| | - Clara Sant
- Futureco Bioscience S.A., Barcelona, Spain
| | | | | |
Collapse
|
88
|
Yang J, Jiang H, Sun X, Chen J, Xie Z, Dong H. Minerals play key roles in driving prokaryotic and fungal communities in the surface sediments of the Qinghai-Tibetan lakes. FEMS Microbiol Ecol 2020; 96:5780223. [DOI: 10.1093/femsec/fiaa035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 03/02/2020] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
There is limited knowledge of the relative influences of deterministic and stochastic processes on prokaryotic and fungal communities in lake sediments. In this study, we surveyed the prokaryotic and fungal community compositions and their influencing factors in 23 surface sediments from six lakes on the Qinghai-Tibetan Plateau (QTP) with the use of Illumina sequencing. The results showed the distribution of prokaryotic and fungal communities in the studied QTP lake sediments was shaped by different assembly processes, with prokaryotes primarily governed by variable selection and homogenizing dispersal (accounting for 57.9% and 37.3% of the observed variations) and fungi being mainly regulated by variable selection, non-dominant processes and homogenizing dispersal (38.3%, 43.7% and 13.7%, respectively). Regarding the variable selection, mineralogical variables played key roles in shaping prokaryotic and fungal community structures. Collectively, these findings expand current knowledge concerning the influences of deterministic (e.g. variable selection) and stochastic processes (e.g. homogenizing dispersal and non-dominant processes) on the prokaryotic and fungal distribution in the QTP lakes.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaoxi Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Junsong Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zhanling Xie
- College of Ecology-Environment Engineering, Qinghai University, Xining, 810016, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio, 45056, USA
| |
Collapse
|
89
|
Haloi S, Sarmah S, Gogoi SB, Medhi T. Characterization of Pseudomonas sp. TMB2 produced rhamnolipids for ex-situ microbial enhanced oil recovery. 3 Biotech 2020; 10:120. [PMID: 32117681 PMCID: PMC7024075 DOI: 10.1007/s13205-020-2094-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 01/23/2020] [Indexed: 10/25/2022] Open
Abstract
The present study describes the ex-situ production of a biosurfactant by Pseudomonas sp. TMB2 for its potential application in enhancing oil recovery. The physicochemical parameters such as temperature and pH were optimized as 30 °C and 7.2, respectively, for their maximum laboratory scale production in mineral salt medium containing glucose and sodium nitrate as best carbon and nitrogen sources. The surface activity of the resulting culture broth was declined from 71.9 to 33.4 mN/m having the highest emulsification activity against kerosene oil. The extracted biosurfactant was characterized chemically as glycolipid by Fourier-transform infrared spectroscopy and 1H and 13C nuclear magnetic resonance spectroscopy analyses. The presence of mono-rhamnolipids (Rha-C8:2, Rha-C10, Rha-C10-C10, and Rha-C10-C12:1) and di-rhamnolipids (Rha-Rha-C12-C10, Rha-Rha-C10-C10, and Rha-Rha-C10-C12:1) congeners were determined by liquid chromatography-mass spectroscopy analysis. The thermostability and degradation pattern of the candidate biosurfactant were tested by thermogravimetry assay and differential scanning calorimetry studies for its suitability in ex-situ oil recovery technology. The rhamnolipid based slug, prepared in 4000 ppm brine solution reduced the interfacial tension between liquid paraffin oil and aqueous solution to 0.8 mN/m from 39.1 mN/m at critical micelle concentration of 120 mg/L. The flooding test was performed using conventional core plugs belonging to oil producing horizons of Upper Assam Basin and recovered 16.7% of original oil in place after secondary brine flooding with microscopic displacement efficiency of 27.11%.
Collapse
Affiliation(s)
- Saurav Haloi
- Applied Biochemistry Lab, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Shilpi Sarmah
- Department of Petroleum Technology, Dibrugarh University, Dibrugarh, India
| | - Subrata B. Gogoi
- Department of Petroleum Technology, Dibrugarh University, Dibrugarh, India
| | - Tapas Medhi
- Applied Biochemistry Lab, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
90
|
Maurya N, Jangra M, Tambat R, Nandanwar H. Alliance of Efflux Pumps with β-Lactamases in Multidrug-Resistant Klebsiella pneumoniae Isolates. Microb Drug Resist 2020; 25:1155-1163. [PMID: 31613200 PMCID: PMC6807647 DOI: 10.1089/mdr.2018.0414] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nosocomial infections caused by Klebsiella pneumoniae are primarily characterized by a high prevalence of extended-spectrum β-lactamases (ESBL's) and a soaring pace of carbapenemase dissemination. Availability of limited antimicrobial agents as a therapeutic option for multidrug-resistant bacteria raises an alarming concern. This study aimed at the molecular characterization of multidrug-resistant K. pneumoniae clinical isolates and studied the role of efflux pumps in β-lactam resistance. Thirty-three isolates confirmed as ESBL-positive K. pneumoniae that harbored resistance genes to major classes of antibiotics. The results showed that CTX-M15 was the preeminent β-lactamase along with carbapenemases in ESBL-positive isolates. However, the efficacy of different antibiotics varied in the presence of lactamase inhibitors and efflux pump inhibitors (EPIs). Those showing increased efficacy of antibiotics with EPI were further explored for the expression of efflux pump genes and expressed a significantly different level of efflux pumps. We found that an isolate had higher expression of kpnF (SMR family) and kdeA (MATE family) pump genes relative to RND family pump genes. No mutations were observed in the genes for porins. Together, the findings suggest that β-lactamases are not the only single factor responsible for providing resistance against the existing β-lactam drugs. Resistance may increase many folds by simultaneous expression of RND family (the most prominent family in Gram-negative bacteria) and other efflux pump family.
Collapse
Affiliation(s)
- Navdezda Maurya
- Bioactive Screening & Clinical Microbiology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Manoj Jangra
- Bioactive Screening & Clinical Microbiology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rushikesh Tambat
- Bioactive Screening & Clinical Microbiology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hemraj Nandanwar
- Bioactive Screening & Clinical Microbiology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
91
|
Das P, Behera BK, Chatterjee S, Das BK, Mohapatra T. De novo transcriptome analysis of halotolerant bacterium Staphylococcus sp. strain P-TSB-70 isolated from East coast of India: In search of salt stress tolerant genes. PLoS One 2020; 15:e0228199. [PMID: 32040520 PMCID: PMC7010390 DOI: 10.1371/journal.pone.0228199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
In the present study, we identified salt stress tolerant genes from the marine bacterium Staphylococcus sp. strain P-TSB-70 through transcriptome sequencing. In favour of whole-genome transcriptome profiling of Staphylococcus sp. strain P-TSB-70 (GenBank Accn. No. KP117091) which tolerated upto 20% NaCl stress, the strain was cultured in the laboratory condition with 20% NaCl stress. Transcriptome analyses were performed by SOLiD4.0 sequencing technology from which 10280 and 9612 transcripts for control and treated, respectively, were obtained. The coverage per base (CPB) statistics were analyzed for both the samples. Gene ontology (GO) analysis has been categorized at varied graph levels based on three primary ontology studies viz. cellular components, biological processes, and molecular functions. The KEGG analysis of the assembled transcripts using KAAS showed presumed components of metabolic pathways which perhaps implicated in diverse metabolic pathways responsible for salt tolerance viz. glycolysis/gluconeogenesis, oxidative phosphorylation, glutathione metabolism, etc. further involving in salt tolerance. Overall, 90 salt stress tolerant genes were identified as of 186 salt-related transcripts. Several genes have been found executing normally in the TCA cycle pathway, integral membrane proteins, generation of the osmoprotectants, enzymatic pathway associated with salt tolerance. Recognized genes fit diverse groups of salt stress genes viz. abc transporter, betaine, sodium antiporter, sodium symporter, trehalose, ectoine, and choline, that belong to different families of genes involved in the pathway of salt stress. The control sample of the bacterium showed elevated high proportion of transcript contigs (29%) while upto 20% salt stress treated sample of the bacterium showed a higher percentage of transcript contigs (31.28%). A total of 1,288 and 1,133 transcript contigs were measured entirely as novel transcript contigs in both control and treated samples, respectively. The structure and function of 10 significant salt stress tolerant genes of Staphylococcus sp. have been analyzed in this study. The information acquired in the present study possibly used to recognize and clone the salt stress tolerant genes and support in developing the salt stress-tolerant plant varieties to expand the agricultural productivity in the saline system.
Collapse
Affiliation(s)
- Priyanka Das
- Fishery Resource and Environmental Management Division, Biotechnology Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Bijay Kumar Behera
- Fishery Resource and Environmental Management Division, Biotechnology Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
- * E-mail:
| | - Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, University of Burdwan, Burdwan, West Bengal, India
| | - Basanta Kumar Das
- Fishery Resource and Environmental Management Division, Biotechnology Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | - Trilochan Mohapatra
- Secretary, DARE and Director General, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
92
|
Chen S, Xu Y, Helfant L. Geographical Isolation, Buried Depth, and Physicochemical Traits Drive the Variation of Species Diversity and Prokaryotic Community in Three Typical Hypersaline Environments. Microorganisms 2020; 8:microorganisms8010120. [PMID: 31963126 PMCID: PMC7022874 DOI: 10.3390/microorganisms8010120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
The prokaryotic community composition, species diversity and the distribution patterns at various taxonomic levels in a salt lake (Chaka salt lake), solar salterns (Taipei saltworks and Dongfang saltworks), and salt mines (Yuanyongjing salt mine, Xiangyan salt mine, and Dinyuan salt mine) were investigated using clone library or Illumina MiSeq sequencing. The clone library approach revealed that the salt lake harbors low species diversity (H’ = 0.98) as compared to the solar saltern (H’ = 4.36) and salt mine (H’ = 3.57). The dominant group in the salt lake is a species from the genus Haloparvum which constitutes about 85% of the total sequences analyzed. The species diversities in salt salterns and salt mines are richer than in the salt lake, and the dominant group is less significant in terms of total percentage. High-throughput sequencing showed that geographical isolation greatly impacted on the microbial community (phyla level) and species diversity (operational taxonomic units (OTUs) level) of salt mines. Species of the genus Natronomonas are found in all three types of environments investigated. In addition, the microbial community and species diversity of different stratums of the salt mine are very similar. Furthermore, species of the genus Halorubrum flourish in the newest stratum of salt mine and have become the dominant group. This study provides some new knowledge on the species diversity and prokaryotic community composition of three typical hypersaline environments.
Collapse
Affiliation(s)
- Shaoxing Chen
- College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, China
- College of Life Sciences, Honghe University, No.1 Xuefu Road, Mengzi 661100, China
- Correspondence: ; Tel.: +86-553-3869297
| | - Yao Xu
- College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, China
| | - Libby Helfant
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| |
Collapse
|
93
|
Wang Z, Duan L, Liu F, Hu Y, Leng C, Kan Y, Yao L, Shi H. First report of Enterobacter hormaechei with respiratory disease in calves. BMC Vet Res 2020; 16:1. [PMID: 31900161 PMCID: PMC6942294 DOI: 10.1186/s12917-019-2207-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background Enterobacter hormaechei is commonly considered a causative pathogen for nosocomial infections and it does not usually cause diseases in animals. However, researchers have recently dissociated the pathogenic Enterobacter hormaechei from foxes and piglets. Here, the Enterobacter hormaechei was first found to be associated with respiratory disease in unweaned calves in China. Case presentation A 2-month-old calf was severely sick and diagnosed with respiratory infection by a rural veterinarian, and it died 5 days after treatment with penicillin G. The lung sample was then run through histopathological analysis and pathogen isolation. The sequence analysis and biochemical tests results showed the isolated bacterium strain to be Enterobacter hormaechei, and drug sensitivity tests showed resistance to all β-lactam antimicrobials and sensitivity to quinolones. Thickened alveoli septum, inflammatory cell infiltration, and erythrocyte diapedesis around the pulmonary alveoli septum were visible in lung histopathological sections. One week later, at the same farm, another calf showed similar clinical signs, and the Enterobacter hormaechei strain was isolated from its nasal discharge; after a week of treatment with enrofloxacin, as suggested by the results of drug sensitivity tests, this calf fully recovered. Conclusions To the best of our knowledge, this is the first case report of calves with respiratory disease that was associated with E. hormaechei, and multi-drug resistance was observed in isolates.
Collapse
Affiliation(s)
- Zhicheng Wang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, People's Republic of China
| | - Lisha Duan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, People's Republic of China
| | - Fei Liu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, People's Republic of China
| | - Yun Hu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, People's Republic of China
| | - Chaoliang Leng
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, People's Republic of China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, People's Republic of China.
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, People's Republic of China.
| | - Hongfei Shi
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry, China-UK-NYNU-RRes Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, People's Republic of China.
| |
Collapse
|
94
|
Shifts in microbial community composition in tannery-contaminated soil in response to increased gamma radiation. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01541-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Purpose
Contaminated sites from man-made activities such as old-fashioned tanneries are inhabited by virulent microorganisms that exhibit more resistance against extreme and toxic environmental conditions. We investigated the effect of different Gamma radiation doses on microbial community composition in the sediment of an old-fashioned tannery.
Methods
Seven samples collected from the contaminated sites received different gamma radiation doses (I = 0.0, II = 5, III = 10, VI = 15, V = 20, VI = 25, and VII = 30 kGy) as an acute exposure. The shift in microbial community structure was assessed using the high throughput 454 pyrosequencing. Variations in diversity, richness, and the shift in operational taxonomic units (OTUs) were investigated using statistical analysis.
Result
Our results showed that the control sample (I) had the highest diversity, richness, and OTUs when compared with the irradiated samples. Species of Halocella, Parasporobacterium, and Anaerosporobacter had the highest relative abundance at the highest radiation dose of 30 kGy. Members of the Firmicutes also increased by 20% at the highest radiation dose when compared with the control sample (0.0 kGy). Representatives of Synergistetes decreased by 25% while Bacteroidetes retained a steady distribution across the range of gamma radiation intensities.
Conclusion
This study provides information about potential “radioresistant” and/or “radiotolerant” microbial species that are adapted to elevated level of chemical toxicity such as Cr and Sr in tannery. These species can be of a high biotechnological and environmental importance.
Collapse
|
95
|
Zupančič J, Turk M, Črnigoj M, Ambrožič Avguštin J, Gunde-Cimerman N. The dishwasher rubber seal acts as a reservoir of bacteria in the home environment. BMC Microbiol 2019; 19:300. [PMID: 31856722 PMCID: PMC6924085 DOI: 10.1186/s12866-019-1674-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
Background In modern lifestyles, people make their everyday tasks easier by using household appliances, for example dishwashers. Previous studies showed massive contamination of dishwasher rubber seals with fungi, thus bacterial community, able to survive under harsh conditions, remain undetermined. Methods Bacteria that colonise the extreme environment of household dishwasher rubber seals were investigated using cultivation-dependent and metagenomic approaches. All bacterial isolates were tested for resistance to seven selected antibiotics. Same time bacterial diversity of tap water, connected to the dishwashers was investigated. Results All 30 dishwashers investigated were colonised by various bacteria. Cultivation approaches resulted in 632 bacterial isolates in total, belonging to four phyla, eight classes, 40 genera and 74 species. The majority were Gram-positive, as solely Firmicutes (dominated by the Bacillus cereus group) and Actinobacteria. Gammaproteobacteria were primarily represented by Stenotrophomonas maltophilia, Pseudomonas aeruginosa and Escherichia coli. Metagenomic assessment of the bacterial biodiversity of the dishwasher rubber seals confirmed the predominance of Gram-positive bacteria, as primarily Actinobacteria, followed by Proteobacteria dominated by Gammaproteobacteria, and by pathogenic species such as Escherichia sp., Acinetobacter baumannii, Pseudomonas sp., Stenotrophomonas maltophilia, and Enterobacter sp.. Metagenomic assessment of bacterial biodiversity in the tap water connected to dishwashers revealed predominance of Gram-negative bacteria, in particular Proteobacteria, mainly represented by Tepidimonas sp.. Actinobacteria showed low numbers while no Firmicutes were detected in the tap water. The bacterial diversity of tap water was also lower, 23 genera compared to 39 genera on dishwasher rubber seals. Only 13 out of 49 genera identified by metagenomics approach was found in both environments, of those Gordonia was enriched while half of 13 genera were depleted in dishwashers compared to tap water. Conclusions These data indicate that colonisation of dishwasher rubber seals probably depends primarily on the bacterial input from the dirty vessels, and much less on the bacteria in the tap water. Based on the antibiotic resistance data, the dishwasher rubber seal bacterial isolates do not represent a serious threat for the spread of antibiotic resistance into the household environment. Nevertheless dishwashers cannot be ignored as potential sources of human infections, in particular for immuno-compromised individuals.
Collapse
Affiliation(s)
- Jerneja Zupančič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Martina Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Črnigoj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
| |
Collapse
|
96
|
Wibowo JT, Kellermann MY, Versluis D, Putra MY, Murniasih T, Mohr KI, Wink J, Engelmann M, Praditya DF, Steinmann E, Schupp PJ. Biotechnological Potential of Bacteria Isolated from the Sea Cucumber Holothuria leucospilota and Stichopus vastus from Lampung, Indonesia. Mar Drugs 2019; 17:E635. [PMID: 31717405 PMCID: PMC6891442 DOI: 10.3390/md17110635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
In order to minimize re-discovery of already known anti-infective compounds, we focused our screening approach on understudied, almost untapped marine environments including marine invertebrates and their associated bacteria. Therefore, two sea cucumber species, Holothuria leucospilota and Stichopus vastus, were collected from Lampung (Indonesia), and 127 bacterial strains were identified by partial 16S rRNA-gene sequencing analysis and compared with the NCBI database. In addition, the overall bacterial diversity from tissue samples of the sea cucumbers H. leucospilota and S. vastus was analyzed using the cultivation-independent Illumina MiSEQ analysis. Selected bacterial isolates were grown to high densities and the extracted biomass was tested against a selection of bacteria and fungi as well as the hepatitis C virus (HCV). Identification of putative bioactive bacterial-derived compounds were performed by analyzing the accurate mass of the precursor/parent ions (MS1) as well as product/daughter ions (MS2) using high resolution mass spectrometry (HRMS) analysis of all active fractions. With this attempt we were able to identify 23 putatively known and two previously unidentified precursor ions. Moreover, through 16S rRNA-gene sequencing we were able to identify putatively novel bacterial species from the phyla Actinobacteria, Proteobacteria and also Firmicutes. Our findings suggest that sea cucumbers like H. leucospilota and S. vastus are promising sources for the isolation of novel bacterial species that produce compounds with potentially high biotechnological potential.
Collapse
Affiliation(s)
- Joko T. Wibowo
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
- Research Center for Oceanography LIPI, Jl. Pasir Putih Raya 1, Pademangan, Jakarta Utara 14430, Indonesia; (M.Y.P.); (T.M.)
| | - Matthias Y. Kellermann
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
| | - Dennis Versluis
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
| | - Masteria Y. Putra
- Research Center for Oceanography LIPI, Jl. Pasir Putih Raya 1, Pademangan, Jakarta Utara 14430, Indonesia; (M.Y.P.); (T.M.)
| | - Tutik Murniasih
- Research Center for Oceanography LIPI, Jl. Pasir Putih Raya 1, Pademangan, Jakarta Utara 14430, Indonesia; (M.Y.P.); (T.M.)
| | - Kathrin I. Mohr
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.I.M.); (J.W.)
| | - Joachim Wink
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.I.M.); (J.W.)
| | - Michael Engelmann
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany; (M.E.); (D.F.P.); (E.S.)
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Dimas F. Praditya
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany; (M.E.); (D.F.P.); (E.S.)
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
- Research Center for Biotechnology, Indonesian Institute of Science, Jl. Raya Bogor KM 46, 16911 Cibinong, Indonesia
| | - Eike Steinmann
- TWINCORE-Centre for Experimental and Clinical Infection Research (Institute of Experimental Virology) Hannover. Feodor-Lynen-Str. 7-9, 30625 Hannover, Germany; (M.E.); (D.F.P.); (E.S.)
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Peter J. Schupp
- Carl-von-Ossietzky University Oldenburg, Institute for Chemistry and Biology of the Marine Environment (ICBM), Schleusenstraße 1, D-26382 Wilhelmshaven, Germany; (M.Y.K.); (D.V.)
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, D-26129 Oldenburg, Germany
| |
Collapse
|
97
|
Khosravi H, Dolatabad HK. Identification and molecular characterization of Azotobacter chroococcum and Azotobacter salinestris using ARDRA, REP, ERIC, and BOX. Mol Biol Rep 2019; 47:307-316. [PMID: 31659690 DOI: 10.1007/s11033-019-05133-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/03/2019] [Indexed: 11/28/2022]
Abstract
Azotobacter chroococcum and A. salinestris do not possess significant and distinct morphological and physiological differences and are often mistaken with each other in microbiological research. In this study, 12 isolates of Azotobacter isolated by standard protocol from soils were identified morphologically and physiologically as A. chroococcum. The isolates were more closely investigated for the molecular differentiation and diversity of A. chroococcum and A. salinestris. For this purpose, the ARDRA technique including HpaII, RsaI, and AluI restriction enzymes, and REP, ERIC, and BOX markers were used. The nifD and nifH genes were also utilized to evaluate the molecular identification of these two species. The 16S rDNA evaluation showed that only four out of the 12 isolates were identified as A. chroococcum and the rest were A. salinestris. The results revealed that HpaII was able to differentiate A. chroococcum from A. salinestris whereas RsaI and AluI were not able to separate them. Moreover, BOX and REP markers were able to differentiate between A. chroococcum and A. salinestris. However, ERIC marker and nifD and nifH genes were unable to separate these species. According to the results, HpaII restriction enzyme is suggested to save time and cost. BOX and REP markers are recommended for differentiation and clear discrimination not only between A. chroococcum and A. salinestris but also among their strains.
Collapse
Affiliation(s)
- Houshang Khosravi
- Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran. .,Soil Biology Department, Soil and Water Research Institute, P.O. BOX: 31785-311, Karaj, Iran.
| | - Hossein Kari Dolatabad
- Soil and Water Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
98
|
Im H, Kwon H, Cho G, Kwon J, Choi SY, Mitchell RJ. Viscosity has dichotomous effects on Bdellovibrio bacteriovorus HD100 predation. Environ Microbiol 2019; 21:4675-4684. [PMID: 31498968 DOI: 10.1111/1462-2920.14799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 09/05/2019] [Indexed: 11/28/2022]
Abstract
Bdellovibrio bacteriovorus HD100 is a highly motile predatory bacterium that consumes other Gram-negative bacteria for its sustenance. Here, we describe the impacts the media viscosity has both on the motility of predator and its attack rates. Experiments performed in polyethylene glycol (PEG) solutions, a linear polymer, found a viscosity of 10 mPa s (5% PEG) negatively impacted predation over a 24-h period. When the viscosity was increased to 27 mPa s (10% PEG), predation was nearly abolished. Tests with three other B. bacteriovorus strains, i.e., 109J and two natural isolates, found identical results. Short-term (2-h) experiments, however, found attack rates were improved in 1% PEG, which had a viscosity of 5.4 mPa s, using bioluminescent prey and their viabilities. In contrast, when experiments were performed in dextran, a branched polymer, no increase in predation was seen even though the viscosity was a comparable 5.1 mPa s. The enhanced attack rates in this solution coincided with a 31% increase in B. bacteriovorus HD100 swimming speeds (62 μm s-1 in 1% PEG vs. 47.5 μm s-1 in HEPES-salt).
Collapse
Affiliation(s)
- Hansol Im
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Heeun Kwon
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Gayoung Cho
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Jisoo Kwon
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seong Yeol Choi
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- Division of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| |
Collapse
|
99
|
Zulkefli NS, Kim KH, Hwang SJ. Effects of Microbial Activity and Environmental Parameters on the Degradation of Extracellular Environmental DNA from a Eutrophic Lake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183339. [PMID: 31510040 PMCID: PMC6765872 DOI: 10.3390/ijerph16183339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022]
Abstract
Extracellular DNA (exDNA) pool in aquatic environments is a valuable source for biomonitoring and bioassessment. However, degradation under particular environmental conditions can hamper exDNA detectability over time. In this study, we analyzed how different biotic and abiotic factors affect the degradation rate of extracellular environmental DNA using 16S rDNA sequences extracted from the sediment of a eutrophic lake and Anabaena variabilis cultured in the laboratory. We exposed the extracted exDNA to different levels of temperature, light, pH, and bacterial activity, and quantitatively analyzed the concentration of exDNA during 4 days. The solution containing bacteria for microbial activity treatment was obtained from the lake sediment using four consecutive steps of filtration; two mesh filters (100 μm and 60 μm mesh) and two glass fiber filters (2.7 μm and 1.2 μm pore-sized). We found that temperature individually and in combination with bacterial abundance had significant positive effects on the degradation of exDNA. The highest degradation rate was observed in samples exposed to high microbial activity, where exDNA was completely degraded within 1 day at a rate of 3.27 day−1. Light intensity and pH had no significant effects on degradation rate of exDNA. Our results indicate that degradation of exDNA in freshwater ecosystems is driven by the combination of both biotic and abiotic factors and it may occur very fast under particular conditions.
Collapse
Affiliation(s)
| | - Keon-Hee Kim
- Human & Eco-Care Center, Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea.
| | - Soon-Jin Hwang
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
100
|
Changes in the Substrate Source Reveal Novel Interactions in the Sediment-Derived Methanogenic Microbial Community. Int J Mol Sci 2019; 20:ijms20184415. [PMID: 31500341 PMCID: PMC6770359 DOI: 10.3390/ijms20184415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Methanogenesis occurs in many natural environments and is used in biotechnology for biogas production. The efficiency of methane production depends on the microbiome structure that determines interspecies electron transfer. In this research, the microbial community retrieved from mining subsidence reservoir sediment was used to establish enrichment cultures on media containing different carbon sources (tryptone, yeast extract, acetate, CO2/H2). The microbiome composition and methane production rate of the cultures were screened as a function of the substrate and transition stage. The relationships between the microorganisms involved in methane formation were the major focus of this study. Methanogenic consortia were identified by next generation sequencing (NGS) and functional genes connected with organic matter transformation were predicted using the PICRUSt approach and annotated in the KEGG. The methane production rate (exceeding 12.8 mg CH4 L−1 d−1) was highest in the culture grown with tryptone, yeast extract, and CO2/H2. The analysis of communities that developed on various carbon sources casts new light on the ecophysiology of the recently described bacterial phylum Caldiserica and methanogenic Archaea representing the genera Methanomassiliicoccus and Methanothrix. Furthermore, it is hypothesized that representatives of Caldiserica may support hydrogenotrophic methanogenesis.
Collapse
|