51
|
Melin EO, Dereke J, Thunander M, Hillman M. Depression in type 1 diabetes was associated with high levels of circulating galectin-3. Endocr Connect 2018; 7:819-828. [PMID: 29760188 PMCID: PMC6000756 DOI: 10.1530/ec-18-0108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Neuroinflammatory responses are implicated in depression. The aim was to explore whether depression in patients with type 1 diabetes (T1D) was associated with high circulating galectin-3, controlling for metabolic variables, s-creatinine, life style factors, medication and cardiovascular complications. DESIGN Cross-sectional. METHODS Participants were T1D patients (n = 283, 56% men, age 18-59 years, diabetes duration ≥1 year). Depression was assessed by Hospital Anxiety and Depression Scale-depression subscale. Blood samples, anthropometrics and blood pressure were collected, and supplemented with data from medical records and the Swedish National Diabetes Registry. Galectin-3 ≥2.562 µg/l, corresponding to the 85th percentile, was defined as high galectin-3. RESULTS Median (quartile1, quartile3) galectin-3 (µg/l) was 1.3 (0.8, 2.9) for the 30 depressed patients, and 0.9 (0.5, 1.6) for the 253 non-depressed, P = 0.009. Depression was associated with high galectin-3 in all the 283 patients (adjusted odds ratio (AOR) 3.5), in the 161 men (AOR 3.4), and in the 122 women (AOR 3.9). HbA1c, s-lipids, s-creatinine, blood pressure, obesity, smoking, physical inactivity, cardiovascular complications and drugs (antihypertensive, lipid lowering, oral antidiabetic drugs and antidepressants) were not associated with high galectin-3. CONCLUSIONS This is the first study to show an association between depression and galectin-3. Depression was the only explored parameter associated with high circulating galectin-3 levels in 283 T1D patients. High galectin-3 levels might contribute to the increased risk for Alzheimer's disease, cardiovascular and all-cause mortality observed in persons with depression. Potentially, in the future, treatment targeting galactin-3 might improve the prognosis for patients with high galectin-3 levels.
Collapse
Affiliation(s)
- Eva Olga Melin
- Department of Clinical SciencesEndocrinology and Diabetes, Lund University, Faculty of Medicine, Lund, Sweden
- Department of Research and DevelopmentRegion Kronoberg, Växjö, Sweden
- Region KronobergPrimary Care, Växjö, Sweden
| | - Jonatan Dereke
- Department of Clinical Sciences LundLund University, Faculty of Medicine, Diabetes Research Laboratory, Lund, Sweden
| | - Maria Thunander
- Department of Clinical SciencesEndocrinology and Diabetes, Lund University, Faculty of Medicine, Lund, Sweden
- Department of Research and DevelopmentRegion Kronoberg, Växjö, Sweden
- Department of Internal MedicineEndocrinology and Diabetes, Central Hospital, Växjö, Sweden
| | - Magnus Hillman
- Department of Clinical Sciences LundLund University, Faculty of Medicine, Diabetes Research Laboratory, Lund, Sweden
| |
Collapse
|
52
|
Breaking Away: The Role of Homeostatic Drive in Perpetuating Depression. Methods Mol Biol 2018. [PMID: 29705846 DOI: 10.1007/978-1-4939-7828-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
We propose that the complexity of regulatory interactions modulating brain neurochemistry and behavior is such that multiple stable responses may be supported, and that some of these alternate regulatory programs may play a role in perpetuating persistent psychological dysfunction. To explore this, we constructed a model network representing major neurotransmission and behavioral mechanisms reported in literature as discrete logic circuits. Connectivity and information flow through this biobehavioral circuitry supported two distinct and stable regulatory programs. One such program perpetuated a depressive state with a characteristic neurochemical signature including low serotonin. Further analysis suggested that small irregularities in glutamate levels may render this pathology more directly accessible. Computer simulations mimicking selective serotonin reuptake inhibitor (SSRI) therapy in the presence of everyday stressors predicted recidivism rates similar to those reported clinically and highlighted the potentially significant benefit of concurrent behavioral stress management therapy.
Collapse
|
53
|
Abstract
Ketamine and its enantiomer S-ketamine (esketamine) are promising candidates to produce a rapid-onset antidepressant effect in treatment-resistant depression. Ketamine causes continued blockade of the glutamate N-methyl-D-aspartate (NMDA) receptor, though this might not primarily mediate the antidepressant effect. Alternative hypotheses include selectivity for the NMDA receptor subtype containing the NMDA receptor subunit 2B (NR2B), inhibition of the phosphorylation of the eukaryotic elongation factor 2 (eEF2) kinase, increased expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrKB), and activation of the mammalian target of rapamycin (mTOR) signaling pathway, alongside other independent actions attributed to the ketamine metabolism to R-hydroxynorketamine (R-HNK). The enantiomer S-ketamine (esketamine) displays approximately fourfold greater affinity for the glutamate NMDA receptor in vitro than R-ketamine. Proof-of-concept single-dose and repeat-dose studies with intravenous ketamine show a significant antidepressant and probably antisuicidal effect in the short term, with response rates over 60% as early as 4.5 h after a single dose, with a sustained effect after 24 h, and over 40% after 7 days. This response can be further sustained over several weeks with repeated doses (two to three doses per week). Tolerability seems acceptable in the short term, with transient elevation of blood pressure and mild and transient dissociative and psychotomimetic effects. Intranasal esketamine has shown a comparable antidepressant effect, which has resulted in the US FDA granting the drug a "breakthrough therapy" designation, and theoretically it may offer an improved tolerability profile. However, major concerns remain regarding an effective protocol to maintain the clinical antidepressant effect of ketamine seen with acute administration and the safety of ketamine and esketamine in the long term, specifically related to potential neurocognitive and urologic toxicity, together with the potential induction of substance use disorders. Ketamine and esketamine are not currently approved treatments for depression, but the clinical use of ketamine is increasing in a variety of practice settings internationally.
Collapse
|
54
|
Xiao ZY, Wang B, Fu W, Jin X, You Y, Tian SW, Kuang X. The Hippocampus is a Critical Site Mediating Antidepressant-like Activity of Apelin-13 in Rats. Neuroscience 2018; 375:1-9. [PMID: 29432881 DOI: 10.1016/j.neuroscience.2018.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/14/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022]
Abstract
The peptide apelin and its receptor APJ are found to express in multiple brain regions, especially in the regions such as the hippocampus and hypothalamus that play important roles in stress and depression. The distribution of apelin and APJ suggests that the apelinergic signaling may be a key mediator in the development of stress-related depressive behavior. We recently demonstrated that intracerebroventricular (i.c.v) injection of apelin-13 exerts an antidepressant-like activity in the rat forced swimming test (FST). However, the possible brain region mediating apelin-13's antidepressant-like activity remains unclear. In the present study, we determined whether the hippocampus and hypothalamus are the possible regions mediating antidepressant-like activity of apelin-13. We found that forced swimming exposure upregulated apelin and APJ protein expression levels in the hippocampus but not hypothalamus in rats. Further, intrahippocampal injection of apelin-13 exerted an antidepressant-like activity (as indicated by a decreased immobility behavior), and intrahippocampal infusion of APJ receptor antagonist F13A blocked the antidepressant-like activity produced by i.c.v injection of apelin-13 in the FST. Moreover, intrahypothalamic injection of apelin-13 did not affect the immobility behavior in the FST. These findings suggest that the hippocampus, but not hypothalamus, is a critical site mediating antidepressant-like activity of apelin-13 in rats.
Collapse
Affiliation(s)
- Zhi-Yong Xiao
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Wan Fu
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Jin
- Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yong You
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Shao-Wen Tian
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China.
| | - Xin Kuang
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
55
|
du Jardin KG, Liebenberg N, Cajina M, Müller HK, Elfving B, Sanchez C, Wegener G. S-Ketamine Mediates Its Acute and Sustained Antidepressant-Like Activity through a 5-HT 1B Receptor Dependent Mechanism in a Genetic Rat Model of Depression. Front Pharmacol 2018; 8:978. [PMID: 29379439 PMCID: PMC5775507 DOI: 10.3389/fphar.2017.00978] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022] Open
Abstract
Rationale: The mechanisms responsible for the unique antidepressant properties of ketamine have only been partly resolved. Recent preclinical reports implicate the neurotransmitter serotonin [5-hydroxytryptamine (5-HT)] in the antidepressant-like response of ketamine, and modulation of 5-HT1B receptors has been hypothesized to attain an important role. Objectives: To evaluate the role of endogenous stimulation of 5-HT1B heteroreceptors in the antidepressant-like activity of S-ketamine. Method: Flinders sensitive line (FSL) rats, a genetic model of depression, were depleted of endogenous 5-HT by 4-chloro-DL-phenylalanine methyl ester HCl administration (pCPA; 86 mg/kg/day for 3 days). In pCPA-pretreated and control FSL rats, the acute and sustained effects of a single dose of S-ketamine (15 mg/kg) and the selective 5-HT1B receptor agonist CP94253 (1–6 mg/kg) alone and in combination with S-ketamine were studied in the forced swim test (FST), a commonly used assay that detects antidepressant activity. Results: pCPA pretreatment decreased cortical 5-HT levels to ∼6% but did not affect the baseline behavioral phenotype of FSL rats. S-ketamine demonstrated acute and sustained antidepressant-like activity, both of which were abolished by 5-HT depletion. Combining S-ketamine with a sub-effective dose of CP94253 (1 mg/kg) rescued S-ketamine’s acute and sustained antidepressant-like effects, when CP94253 was administered 2 h prior to the FST. Co-administration of S-ketamine and CP94253 did not affect the plasma level of either compound, suggesting that the observed behavioral interaction could not be ascribed to a kinetic drug-drug interaction. Conclusion: 5-HT1B receptor activation during testing appears to be critical for S-ketamine’s antidepressant-like potentials in this model.
Collapse
Affiliation(s)
- Kristian G du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nico Liebenberg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Heidi K Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Lundbeck US LLC, Paramus, NJ, United States
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
56
|
Donello JE, Banerjee P, Li YX, Guo YX, Yoshitake T, Zhang XL, Miry O, Kehr J, Stanton PK, Gross AL, Burgdorf JS, Kroes RA, Moskal JR. Positive N-Methyl-D-Aspartate Receptor Modulation by Rapastinel Promotes Rapid and Sustained Antidepressant-Like Effects. Int J Neuropsychopharmacol 2018; 22:247-259. [PMID: 30544218 PMCID: PMC6403082 DOI: 10.1093/ijnp/pyy101] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Modulation of glutamatergic synaptic transmission by N-methyl-D-aspartate receptors can produce rapid and sustained antidepressant effects. Rapastinel (GLYX-13), initially described as a N-methyl-D-aspartate receptor partial glycine site agonist, exhibits rapid antidepressant effect in rodents without the accompanying dissociative effects of N-methyl-D-aspartate receptor antagonists. METHODS The relationship between rapastinel's in vitro N-methyl-D-aspartate receptor pharmacology and antidepressant efficacy was determined by brain microdialysis and subsequent pharmacological characterization of therapeutic rapastinel concentrations in N-methyl-D-aspartate receptor-specific radioligand displacement, calcium mobilization, and medial prefrontal cortex electrophysiology assays. RESULTS Brain rapastinel concentrations of 30 to 100 nM were associated with its antidepressant-like efficacy and enhancement of N-methyl-D-aspartate receptor-dependent neuronal intracellular calcium mobilization. Modulation of N-methyl-D-aspartate receptors by rapastinel was independent of D-serine concentrations, and glycine site antagonists did not block rapastinel's effect. In rat medial prefrontal cortex slices, 100 nM rapastinel increased N-methyl-D-aspartate receptor-mediated excitatory postsynaptic currents and enhanced the magnitude of long-term potentiation without any effect on miniature EPSCs or paired-pulse facilitation responses, indicating postsynaptic action of rapastinel. A critical amino acid within the NR2 subunit was identified as necessary for rapastinel's modulatory effect. CONCLUSION Rapastinel brain concentrations associated with antidepressant-like activity directly enhance medial prefrontal cortex N-methyl-D-aspartate receptor activity and N-methyl-D-aspartate receptor-mediated synaptic plasticity in vitro. At therapeutic concentrations, rapastinel directly enhances N-methyl-D-aspartate receptor activity through a novel site independent of the glycine coagonist site. While both rapastinel and ketamine physically target N-methyl-D-aspartate receptors, the 2 molecules have opposing actions on N-methyl-D-aspartate receptors. Modest positive modulation of N-methyl-D-aspartate receptors by rapastinel represents a novel pharmacological approach to promote well-tolerated, rapid, and sustained improvements in mood disorders.
Collapse
Affiliation(s)
- John E Donello
- Allergan, Plc, Irvine, California,Correspondence: John Donello, PhD, 2525 Dupont Dr., Irvine, CA 92612.
| | | | | | | | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Omid Miry
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Pronexus Analytical AB, Bromma, Sweden
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | | | - Jeffery S Burgdorf
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois,Aptinyx, Inc., Evanston, Illinois
| | - Roger A Kroes
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois,Aptinyx, Inc., Evanston, Illinois
| | - Joseph R Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois,Aptinyx, Inc., Evanston, Illinois
| |
Collapse
|
57
|
Barnett Burns S, Almeida D, Turecki G. The Epigenetics of Early Life Adversity: Current Limitations and Possible Solutions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:343-425. [DOI: 10.1016/bs.pmbts.2018.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
58
|
Taylor JH, Landeros-Weisenberger A, Coughlin C, Mulqueen J, Johnson JA, Gabriel D, Reed MO, Jakubovski E, Bloch MH. Ketamine for Social Anxiety Disorder: A Randomized, Placebo-Controlled Crossover Trial. Neuropsychopharmacology 2018; 43:325-333. [PMID: 28849779 PMCID: PMC5729569 DOI: 10.1038/npp.2017.194] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Abstract
Many patients with social anxiety disorder (SAD) experience inadequate symptom relief from available treatments. Ketamine is a potent N-methyl-D-aspartate receptor antagonist with a potentially novel mechanism of action for the treatment of anxiety disorders. Therefore, we conducted a double-blind, randomized, placebo-controlled crossover trial in 18 adults with DSM-5 SAD and compared the effects between intravenous ketamine (0.5 mg/kg over 40 min) and placebo (normal saline) on social phobia symptoms. Ketamine and placebo infusions were administered in a random order with a 28-day washout period between infusions. Ratings of anxiety were assessed 3-h post-infusion and followed for 14 days. We used linear mixed models to assess the impact of ketamine and placebo on anxiety symptoms. Outcomes were blinded ratings on the Liebowitz Social Anxiety Scale (LSAS) and self-reported anxiety on a visual analog scale (VAS-Anxiety). We also used the Wilcoxon signed-rank test to compare the proportion of treatment responders. Based on prior studies, we defined response as a greater than 35% LSAS reduction and 50% VAS-Anxiety reduction. We found ketamine resulted in a significantly greater reduction in anxiety relative to placebo on the LSAS (Time × Treatment: F9,115=2.6, p=0.01) but not the VAS-Anxiety (Time × Treatment: F10,141=0.4, p=0.95). Participants were significantly more likely to exhibit a treatment response after ketamine infusion relative to placebo in the first 2 weeks following infusion measured on the LSAS (33.33% response ketamine vs 0% response placebo, Wilcoxon signed-rank test z=2.24, p=0.025) and VAS (88.89% response ketamine vs 52.94% response placebo, Wilcoxon signed-rank test z=2.12, p=0.034). In conclusion, this proof-of-concept trial provides initial evidence that ketamine may be effective in reducing anxiety.
Collapse
Affiliation(s)
- Jerome H Taylor
- Child Study Center, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA,Department of Psychiatry, University of Pennsylvania, Neuropsychiatry Section, 3400 Spruce Street, Gates Pavilion 10th Floor, Philadelphia, PA 19104, USA, Tel: +1 267 536 9405, Fax: +1 203 907 2727, E-mail:
| | | | | | | | | | | | - Margot O Reed
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Michael H Bloch
- Child Study Center, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, New Haven, CT, USA
| |
Collapse
|
59
|
Wallach J, Brandt SD. 1,2-Diarylethylamine- and Ketamine-Based New Psychoactive Substances. Handb Exp Pharmacol 2018; 252:305-352. [PMID: 30196446 DOI: 10.1007/164_2018_148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While phencyclidine (PCP) and ketamine remain the most well-studied and widely known dissociative drugs, a number of other agents have appeared since the late 1950s and early 1960s, when the pharmacological potential of this class was first realized. For example, hundreds of compounds have been pursued as part of legitimate research efforts to explore these agents. Some of these found their way out of the research labs and onto illicit markets of the 1960s and following decades as PCP analogs. Other "illicit analogs" apparently never appeared in the scientific literature prior to their existence on clandestine markets, thus originating as novel innovations in the minds of clandestine chemists and their colleagues. Like so much else in this world, new technologies changed this dynamic. In the 1990s individuals separated by vast geographical distances could now communicate nearly instantaneously with ease through the Internet. Some individuals used this newly found opportunity to discuss the chemistry and psychoactive effects of dissociative drugs as well as to collaborate on the design and development of novel dissociative compounds. Similar to modern pharmaceutical companies and academic researchers, these seekers tinkered with the structure of their leads pursuing goals such as improved duration of action, analgesic effects, and reduced toxicity. Whether all these goals were achieved for any individual compound remains to be seen, but their creations have been let out of the bag and are now materialized as defined compositions of matter. Moreover, these creations now exist not only in and of themselves but live on further as permutations into various novel analogs and derivatives. In some cases these compounds have made their way to academic labs where potential clinical applications have been identified. These compounds reached wider distribution when other individuals picked up on these discussions and began to market them as "research chemicals" or "legal highs". The result is a continuously evolving game that is being played between legislatures, law enforcement, and research chemical market players. Two structurally distinct classes that have appeared as dissociative-based new psychoactive substances (NPS) are the 1,2-diarylethylamines and β-keto-arylcyclohexylamines. Examples of the former include diphenidine and various analogs such as fluorolintane and N-ethyl-lanicemine, and examples of the latter are analogs of ketamine such as methoxetamine, deschloroketamine, and 2-fluoro-2-deschloroketamine. The subject of this chapter is the introduction to some of the dissociative NPS from these classes and their known pharmacology that have emerged on the market in recent years.
Collapse
Affiliation(s)
- Jason Wallach
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA.
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
60
|
Prefrontal Connectivity and Glutamate Transmission: Relevance to Depression Pathophysiology and Ketamine Treatment. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:566-574. [PMID: 29034354 DOI: 10.1016/j.bpsc.2017.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Prefrontal global brain connectivity with global signal regression (GBCr) was proposed as a robust biomarker of depression, and was associated with ketamine's mechanism of action. Here, we investigated prefrontal GBCr in treatment-resistant depression (TRD) at baseline and following treatment. Then, we conducted a set of pharmacological challenges in healthy subjects to investigate the glutamate neurotransmission correlates of GBCr. METHODS In study A, we used functional magnetic resonance imaging (fMRI) to compare GBCr between 22 TRD and 29 healthy control. Then, we examined the effects of ketamine and midazolam on GBCr in TRD patients 24h post-treatment. In study B, we acquired repeated fMRI in 18 healthy subjects to determine the effects of lamotrigine (a glutamate release inhibitor), ketamine, and lamotrigine-by-ketamine interaction. RESULTS In study A, TRD patients showed significant reduction in dorsomedial and dorsolateral prefrontal GBCr compared to healthy control. In TRD patients, GBCr in the altered clusters significantly increased 24h following ketamine (effect size = 1.0 [0.3 1.8]), but not midazolam (effect size = 0.5 [-0.6 1.3]). In study B, oral lamotrigine reduced GBCr 2h post-administration, while ketamine increased medial prefrontal GBCr during infusion. Lamotrigine significantly reduced the ketamine-induced GBCr surge. Exploratory analyses showed elevated ventral prefrontal GBCr in TRD and significant reduction of ventral prefrontal GBCr during ketamine infusion in healthy subjects. CONCLUSIONS This study provides first replication of the ability of ketamine to normalize depression-related prefrontal dysconnectivity. It also provides indirect evidence that these effects may be triggered by the capacity of ketamine to enhance glutamate neurotransmission.
Collapse
|
61
|
Brooks SJ, Lochner C, Shoptaw S, Stein DJ. Using the research domain criteria (RDoC) to conceptualize impulsivity and compulsivity in relation to addiction. PROGRESS IN BRAIN RESEARCH 2017; 235:177-218. [PMID: 29054288 DOI: 10.1016/bs.pbr.2017.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nomenclature for mental disorder was updated in 2013 with the publication of the fifth edition of the Diagnostic and Statistical Manual (DSM-5). In DSM-5, substance use disorders are framed as more dimensional. First, the distinction between abuse and dependence is replaced by substance use. Second, the addictions section now covers both substances and behavioral addictions. This contemporary move toward dimensionality and transdiagnosis in the addictions and other disorders embrace accumulating cognitive-affective neurobiological evidence that is reflected in the United States' National Institutes of Health Research Domain Criteria (NIH RDoC). The RDoC calls for the further development of transdiagnostic approaches to psychopathy and includes five domains to improve research. Additionally, the RDoC suggests that these domains can be measured in terms of specific units of analysis. In line with these suggestions, recent publications have stimulated updated neurobiological conceptualizations of two transdiagnostic concepts, namely impulsivity and compulsivity and their interactions that are applicable to addictive disorders. However, there has not yet been a review to examine the constructs of impulsivity and compulsivity in relation to addiction in light of the research-oriented RDoC. By doing so it may become clearer as to whether impulsivity and compulsivity function antagonistically, complementarily or in some other way at the behavioral, cognitive, and neural level and how this relationship underpins addiction. Thus, here we consider research into impulsivity and compulsivity in light of the transdiagnostic RDoC to help better understand these concepts and their application to evidence-based clinical intervention for addiction.
Collapse
Affiliation(s)
- Samantha J Brooks
- University of Cape Town, Cape Town, South Africa; Uppsala University, Uppsala, Sweden.
| | - Christine Lochner
- US/UCT MRC Unit on Anxiety & Stress Disorders, University of Stellenbosch, Stellenbosch, South Africa
| | - Steve Shoptaw
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Dan J Stein
- US/UCT MRC Unit on Anxiety & Stress Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
62
|
Grieco SF, Velmeshev D, Magistri M, Eldar-Finkelman H, Faghihi MA, Jope RS, Beurel E. Ketamine up-regulates a cluster of intronic miRNAs within the serotonin receptor 2C gene by inhibiting glycogen synthase kinase-3. World J Biol Psychiatry 2017; 18:445-456. [PMID: 27723376 PMCID: PMC5386835 DOI: 10.1080/15622975.2016.1224927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/29/2016] [Accepted: 08/08/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES We examined mechanisms that contribute to the rapid antidepressant effect of ketamine in mice that is dependent on glycogen synthase kinase-3 (GSK3) inhibition. METHODS We measured serotonergic (5HT)-2C-receptor (5HTR2C) cluster microRNA (miRNA) levels in mouse hippocampus after administering an antidepressant dose of ketamine (10 mg/kg) in wild-type and GSK3 knockin mice, after GSK3 inhibition with L803-mts, and in learned helpless mice. RESULTS Ketamine up-regulated cluster miRNAs 448-3p, 764-5p, 1264-3p, 1298-5p and 1912-3p (2- to 11-fold). This up-regulation was abolished in GSK3 knockin mice that express mutant constitutively active GSK3. The GSK3 specific inhibitor L803-mts was antidepressant in the learned helplessness and novelty suppressed feeding depression-like behaviours and up-regulated the 5HTR2C miRNA cluster in mouse hippocampus. After administration of the learned helplessness paradigm mice were divided into cohorts that were resilient (non-depressed) or were susceptible (depressed) to learned helplessness. The resilient, but not depressed, mice displayed increased hippocampal levels of miRNAs 448-3p and 1264-3p. Administration of an antagonist to miRNA 448-3p diminished the antidepressant effect of ketamine in the learned helplessness paradigm, indicating that up-regulation of miRNA 448-3p provides an antidepressant action. CONCLUSIONS These findings identify a new outcome of GSK3 inhibition by ketamine that may contribute to antidepressant effects.
Collapse
Affiliation(s)
- Steven F Grieco
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Dmitry Velmeshev
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Marco Magistri
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Hagit Eldar-Finkelman
- c Department of Human Molecular Genetics and Biochemistry , Sackler School of Medicine, Tel Aviv University , Tel Aviv , Israel
| | - Mohammad A Faghihi
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Richard S Jope
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| | - Eleonore Beurel
- a Department of Psychiatry and Behavioural Sciences , Miller School of Medicine, University of Miami , Miami , FL , USA
- b Department of Biochemistry and Molecular Biology , Miller School of Medicine, University of Miami , Miami , FL , USA
| |
Collapse
|
63
|
Cooper MD, Rosenblat JD, Cha DS, Lee Y, Kakar R, McIntyre RS. Strategies to mitigate dissociative and psychotomimetic effects of ketamine in the treatment of major depressive episodes: a narrative review. World J Biol Psychiatry 2017; 18:410-423. [PMID: 26752601 DOI: 10.3109/15622975.2016.1139747] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives Replicated evidence has demonstrated that ketamine exerts rapid-acting and potent antidepressant effects. Notwithstanding, its promise to mitigate depressive symptoms and suicidality in antidepressant-resistant populations, several limitations and safety concerns accompany ketamine including, but not limited to, the potential for abuse and psychotomimetic/dissociative experiences. The focus of the current narrative review is to synthesise available evidence of strategies that may mitigate and fully prevent treatment-emergent psychotomimetic and dissociative effects associated with ketamine administration. Methods PubMed, Google Scholar and ClinicalTrials.gov were searched for relevant articles. Results Potential avenues investigated to minimise psychotomimetic effects associated with ketamine administration include the following: (1) altering dosing and infusion rates; (2) route of administration; (3) enantiomer choice; (4) co-administration with mood stabilisers of antipsychotics; and (5) use of alternative N-methyl-d-aspartate (NMDA)-modulating agents. Emerging evidence indicates that dissociative experiences can be significantly mitigated by using an intranasal route of administration, lower dosages, or use of alternative NMDA-modulating agents, namely lanicemine (AZD6765) and GLYX-13. Conclusions Currently, intranasal administration presents as the most promising strategy to mitigate dissociative and psychotomimetic effects; however, studies of strategies to mitigate the adverse events of ketamine are limited in number and quality and thus further investigation is still needed.
Collapse
Affiliation(s)
- Matthew D Cooper
- a Medical Sciences, Dalhousie University , Halifax , NS , Canada.,b Mood Disorders Psychopharmacology Unit, University Health Network , Toronto , ON , Canada
| | - Joshua D Rosenblat
- b Mood Disorders Psychopharmacology Unit, University Health Network , Toronto , ON , Canada.,c Department of Psychiatry , University of Toronto , Toronto , ON , Canada
| | - Danielle S Cha
- b Mood Disorders Psychopharmacology Unit, University Health Network , Toronto , ON , Canada.,d Institute of Medical Science, University of Toronto , Toronto , ON , Canada
| | - Yena Lee
- b Mood Disorders Psychopharmacology Unit, University Health Network , Toronto , ON , Canada
| | - Ron Kakar
- b Mood Disorders Psychopharmacology Unit, University Health Network , Toronto , ON , Canada.,e Department of Psychiatry , Western University , London and Windsor , ON , Canada
| | - Roger S McIntyre
- b Mood Disorders Psychopharmacology Unit, University Health Network , Toronto , ON , Canada.,c Department of Psychiatry , University of Toronto , Toronto , ON , Canada.,f Department of Pharmacology , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
64
|
Acute or Chronic? A Stressful Question. Trends Neurosci 2017; 40:525-535. [DOI: 10.1016/j.tins.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022]
|
65
|
Lang E, Mallien AS, Vasilescu AN, Hefter D, Luoni A, Riva MA, Borgwardt S, Sprengel R, Lang UE, Gass P, Inta D. Molecular and cellular dissection of NMDA receptor subtypes as antidepressant targets. Neurosci Biobehav Rev 2017; 84:352-358. [PMID: 28843752 DOI: 10.1016/j.neubiorev.2017.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
Abstract
A growing body of evidence supports the idea that drugs targeting the glutamate system may represent a valuable therapeutic alternative in major depressive disorders (MDD). The rapid and prolonged mood elevating effect of the NMDA receptor (NMDAR) antagonist ketamine has been studied intensely. However, its clinical use is hampered by deleterious side-effects, such as psychosis. Therefore, a better understanding of the mechanisms of the psychotropic effects after NMDAR blockade is necessary to develop glutamatergic antidepressants with improved therapeutic profile. Here we review recent experimental data that addressed molecular/cellular determinants of the antidepressant effect mediated by inactivating NMDAR subtypes. We refer to results obtained both in pharmacological and genetic animal models, ranging from global to conditional NMDAR manipulation. Our main focus is on the contribution of different NMDAR subtypes to the psychoactive effects induced by NMDAR ablation/blockade. We review data analyzing the effect of NMDAR subtype deletions limited to specific neuronal populations/brain areas in the regulation of mood. Altogether, these studies suggest effective and putative specific NMDAR drug targets for MDD treatment.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Anne S Mallien
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Dimitri Hefter
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Rolf Sprengel
- Max-Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg University, Germany
| | - Undine E Lang
- Department of Psychiatry (UPK), University of Basel, Switzerland
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Dragos Inta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany; Department of Psychiatry (UPK), University of Basel, Switzerland.
| |
Collapse
|
66
|
Nugent AC, Miller FG, Henter ID, Zarate CA. The Ethics of Clinical Trials Research in Severe Mood Disorders. BIOETHICS 2017; 31:443-453. [PMID: 28503892 PMCID: PMC5469708 DOI: 10.1111/bioe.12349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Mood disorders, including major depressive disorder (MDD) and bipolar disorder (BD), are highly prevalent, frequently disabling, and sometimes deadly. Additional research and more effective medications are desperately needed, but clinical trials research in mood disorders is fraught with ethical issues. Although many authors have discussed these issues, most do so from a theoretical viewpoint. This manuscript uses available empirical data to inform a discussion of the primary ethical issues raised in mood disorders research. These include issues of consent and decision-making capacity, including patients' motivations for participating in research. We also address drug withdrawals, placebo controls, and the overall safety of research. Finally, we examine the extant literature for studies discussing potential indirect benefits of clinical trials research to participants. Taken together, the evidence suggests that clinical trials research incorporating drug withdrawals and placebo controls can be conducted safely and ethically, even in patients with severe or treatment-resistant mood disorders. In fact, given the dearth of effective treatment options for this population, it is our opinion that a moral imperative exists to extend the offer of research participation to severely ill or treatment-resistant groups.
Collapse
|
67
|
Abstract
There is an urgent need for more effective medications to treat major depressive disorder, as fewer than half of depressed patients achieve full remission and many are not responsive with currently available antidepressant medications or psychotherapy. It is known that prolonged stressful events are an important risk factor for major depressive disorder. However, there are prominent individual variations in response to stress: a relatively small proportion of people (10-20%) experiencing prolonged stress develop stress-related psychiatric disorders, including depression (susceptibility to stress), whereas most stress-exposed individuals maintain normal psychological functioning (resilience to stress). There have been growing efforts to investigate the neural basis of susceptibility versus resilience to depression. An accumulating body of evidence is revealing the genetic, epigenetic, and neurophysiological mechanisms that underlie stress susceptibility, as well as the active mechanisms that underlie the resilience phenotype. In this review, we discuss, mainly based on our own work, key pathological mechanisms of susceptibility that are identified as potential therapeutic targets for depression treatment. We also review novel mechanisms that promote natural resilience as an alternative strategy to achieve treatment efficacy. These studies are opening new avenues to develop conceptually novel therapeutic strategies for depression treatment.
Collapse
Affiliation(s)
- Ming-Hu Han
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Eric J Nestler
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
68
|
Keros S, Buraniqi E, Alex B, Antonetty A, Fialho H, Hafeez B, Jackson MC, Jawahar R, Kjelleren S, Stewart E, Morgan LA, Wainwright MS, Sogawa Y, Patel AD, Loddenkemper T, Grinspan ZM. Increasing Ketamine Use for Refractory Status Epilepticus in US Pediatric Hospitals. J Child Neurol 2017; 32:638-646. [PMID: 28349774 DOI: 10.1177/0883073817698629] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ketamine is an emerging therapy for pediatric refractory status epilepticus. The circumstances of its use, however, are understudied. The authors described pediatric refractory status epilepticus treated with ketamine from 2010 to 2014 at 45 centers using the Pediatric Hospital Inpatient System database. For comparison, they described children treated with pentobarbital. The authors estimated that 48 children received ketamine and pentobarbital for refractory status epilepticus, and 630 pentobarbital without ketamine. Those receiving only pentobarbital were median age 3 [interquartile range 0-10], and spent 30 [18-52] days in-hospital, including 17 [9-28] intensive care unit (ICU) days; 17% died. Median cost was $148 000 [81 000-241 000]. The pentobarbital-ketamine group was older (7 [2-11]) with longer hospital stays (51 [30-93]) and more ICU days (29 [20-56]); 29% died. Median cost was $298 000 [176 000-607 000]. For 71%, ketamine was given ≥1 day after pentobarbital. Ketamine cases per half-year increased from 2 to 9 ( P < .05). Ketamine is increasingly used for severe pediatric refractory status epilepticus, typically after pentobarbital. Research on its effectiveness is indicated.
Collapse
Affiliation(s)
- Sotirios Keros
- 1 Weill Cornell Medicine, New York, NY, USA.,2 Sanford Children's Hospital, Sioux Falls, SD, USA.,3 New York Presbyterian Hospital, New York, NY, USA
| | | | - Byron Alex
- 1 Weill Cornell Medicine, New York, NY, USA.,3 New York Presbyterian Hospital, New York, NY, USA
| | | | - Hugo Fialho
- 4 Boston Children's Hospital, Boston, MA, USA
| | | | | | | | | | | | - Lindsey A Morgan
- 5 Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mark S Wainwright
- 5 Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Yoshimi Sogawa
- 6 Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Anup D Patel
- 7 Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Zachary M Grinspan
- 1 Weill Cornell Medicine, New York, NY, USA.,3 New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
69
|
Iacobucci GJ, Popescu GK. NMDA receptors: linking physiological output to biophysical operation. Nat Rev Neurosci 2017; 18:236-249. [PMID: 28303017 DOI: 10.1038/nrn.2017.24] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NMDA receptors are preeminent neurotransmitter-gated channels in the CNS, which respond to glutamate in a manner that integrates multiple external and internal cues. They belong to the ionotropic glutamate receptor family and fulfil unique and crucial roles in neuronal development and function. These roles depend on characteristic response kinetics, which reflect the operation of the receptors. Here, we review biologically salient features of the NMDA receptor signal and its mechanistic origins. Knowledge of distinctive NMDA receptor biophysical properties, their structural determinants and physiological roles is necessary to understand the physiological and neurotoxic actions of glutamate and to design effective therapeutics.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biochemistry, University of Buffalo, State University of New York (SUNY), 144 Farber Hall, 3435 Main street, Buffalo, New York 14214, USA
| | - Gabriela K Popescu
- Department of Biochemistry, University of Buffalo, State University of New York (SUNY), 144 Farber Hall, 3435 Main street, Buffalo, New York 14214, USA
| |
Collapse
|
70
|
Vargas-Perez H, Grieder TE, Ting-A-Kee R, Maal-Bared G, Chwalek M, van der Kooy D. A single administration of the hallucinogen, 4-acetoxy-dimethyltryptamine, prevents the shift to a drug-dependent state and the expression of withdrawal aversions in rodents. Eur J Neurosci 2017; 45:1410-1417. [PMID: 28378435 DOI: 10.1111/ejn.13572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023]
Abstract
Despite several studies suggesting the therapeutic use of 5-hydroxytryptamine receptors type 2A (5-HT2A ) agonists in the treatment of substance use disorders, the neurobiological basis accounting for such effects are still unknown. It has been observed that chronic exposure to drugs of abuse produces molecular and cellular adaptations in ventral tegmental area (VTA) neurons, mediated by brain-derived neurotrophic factor (BDNF). These BDNF-induced adaptations in the VTA are associated with the establishment of aversive withdrawal motivation that leads to a drug-dependent state. Growing evidence suggests that 5-HT2A receptor signaling can regulate the expression of BDNF in the brain. In this study, we observed that a single systemic or intra-VTA administration of a 5-HT2A agonist in rats and mice blocks both the aversive conditioned response to drug withdrawal and the mechanism responsible for switching from a drug-naive to a drug-dependent motivational system. Our results suggest that 5-HT2A agonists could be used as therapeutic agents to reverse a drug dependent state, as well as inhibiting the aversive effects produced by drug withdrawal.
Collapse
Affiliation(s)
- Hector Vargas-Perez
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada.,The Nierika Intercultural Medicine Institute, Ocuilan, Estado de México, México.,Postgrado en Ciencias Cognitivas, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Taryn E Grieder
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada
| | - Ryan Ting-A-Kee
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada
| | - Geith Maal-Bared
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada
| | - Michal Chwalek
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek van der Kooy
- Institute of Medical Science, University of Toronto, 1130-160 College St, Toronto, ON, M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
71
|
Machado-Vieira R, Henter ID, Zarate CA. New targets for rapid antidepressant action. Prog Neurobiol 2017; 152:21-37. [PMID: 26724279 PMCID: PMC4919246 DOI: 10.1016/j.pneurobio.2015.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Current therapeutic options for major depressive disorder (MDD) and bipolar disorder (BD) are associated with a lag of onset that can prolong distress and impairment for patients, and their antidepressant efficacy is often limited. All currently approved antidepressant medications for MDD act primarily through monoaminergic mechanisms. Glutamate is the major excitatory neurotransmitter in the central nervous system, and glutamate and its cognate receptors are implicated in the pathophysiology of MDD, and in the development of novel therapeutics for this disorder. The rapid and robust antidepressant effects of the N-methyl-d-aspartate (NMDA) antagonist ketamine were first observed in 2000. Since then, other NMDA receptor antagonists have been studied in MDD. Most have demonstrated relatively modest antidepressant effects compared to ketamine, but some have shown more favorable characteristics. This article reviews the clinical evidence supporting the use of novel glutamate receptor modulators with direct affinity for cognate receptors: (1) non-competitive NMDA receptor antagonists (ketamine, memantine, dextromethorphan, AZD6765); (2) subunit (GluN2B)-specific NMDA receptor antagonists (CP-101,606/traxoprodil, MK-0657); (3) NMDA receptor glycine-site partial agonists (GLYX-13); and (4) metabotropic glutamate receptor (mGluR) modulators (AZD2066, RO4917523/basimglurant). We also briefly discuss several other theoretical glutamate receptor targets with preclinical antidepressant-like efficacy that have yet to be studied clinically; these include α-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid (AMPA) agonists and mGluR2/3 negative allosteric modulators. The review also discusses other promising, non-glutamatergic targets for potential rapid antidepressant effects, including the cholinergic system (scopolamine), the opioid system (ALKS-5461), corticotropin releasing factor (CRF) receptor antagonists (CP-316,311), and others.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
72
|
Huang YJ, Lane HY, Lin CH. New Treatment Strategies of Depression: Based on Mechanisms Related to Neuroplasticity. Neural Plast 2017; 2017:4605971. [PMID: 28491480 PMCID: PMC5405587 DOI: 10.1155/2017/4605971] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder is a severe and complex mental disorder. Impaired neurotransmission and disrupted signalling pathways may influence neuroplasticity, which is involved in the brain dysfunction in depression. Traditional neurobiological theories of depression, such as monoamine hypothesis, cannot fully explain the whole picture of depressive disorders. In this review, we discussed new treatment directions of depression, including modulation of glutamatergic system and noninvasive brain stimulation. Dysfunction of glutamatergic neurotransmission plays an important role in the pathophysiology of depression. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has rapid and lasting antidepressive effects in previous studies. In addition to ketamine, other glutamatergic modulators, such as sarcosine, also show potential antidepressant effect in animal models or clinical trials. Noninvasive brain stimulation is another new treatment strategy beyond pharmacotherapy. Growing evidence has demonstrated that superficial brain stimulations, such as transcranial magnetic stimulation, transcranial direct current stimulation, cranial electrotherapy stimulation, and magnetic seizure therapy, can improve depressive symptoms. The antidepressive effect of these brain stimulations may be through modulating neuroplasticity. In conclusion, drugs that modulate neurotransmission via NMDA receptor and noninvasive brain stimulation may provide new directions of treatment for depression. Furthermore, exploring the underlying mechanisms will help in developing novel therapies for depression in the future.
Collapse
Affiliation(s)
- Yu-Jhen Huang
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| |
Collapse
|
73
|
Alberich S, Martínez-Cengotitabengoa M, López P, Zorrilla I, Núñez N, Vieta E, González-Pinto A. Efficacy and safety of ketamine in bipolar depression: A systematic review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.rpsmen.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
74
|
Alberich S, Martínez-Cengotitabengoa M, López P, Zorrilla I, Núñez N, Vieta E, González-Pinto A. Eficacia y seguridad de la ketamina en depresión bipolar: una revisión sistemática. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2017; 10:104-112. [DOI: 10.1016/j.rpsm.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/25/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
|
75
|
Ai H, Shi XF, Hu XP, Fang WQ, Zhang B, Lu W. Acute stress regulates phosphorylation of N-methyl-d-aspartate receptor GluN2B at S1284 in hippocampus. Neuroscience 2017; 351:24-35. [PMID: 28359951 DOI: 10.1016/j.neuroscience.2017.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/07/2017] [Accepted: 03/19/2017] [Indexed: 01/07/2023]
Abstract
Exposure to acute stress leads to diverse changes, which include either beneficial or deleterious effects on molecular levels that are implicated in stress-related disorders. N-methyl-d-aspartate receptor (NMDAR)-mediated signalings, are thought to be vital players in stress-related mental disorders as well as attractive therapeutic targets for clinical treatment. In the present study, we utilized acute stress models in mice to explore regulation of phosphorylation level of S1284 in GluN2B subunit of NMDAR. We found out that forced swimming and acute restraint stress increased phosphorylation level of S1284, while phosphorylation level of S1284 was unaltered after brief exposure to open field. Moreover, phosphorylation change of S1284 was negated by treatment of roscovitine which is believed to be a Cyclin-dependent kinase inhibitor. Besides, we showed well correlation of phosphorylation change of S1284 and immobility time during forced swimming. Collectively, our results demonstrated that phosphorylation level of S1284 in GluN2B was regulated by acute stress.
Collapse
Affiliation(s)
- Heng Ai
- Department of Physiology, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| | - Xiao-Fang Shi
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xu-Pang Hu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wei-Qing Fang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bin Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Science, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, Hainan Medical College, 571199, China.
| |
Collapse
|
76
|
Henter ID, de Sousa RT, Gold PW, Brunoni AR, Zarate CA, Machado-Vieira R. Mood Therapeutics: Novel Pharmacological Approaches for Treating Depression. Expert Rev Clin Pharmacol 2017; 10:153-166. [PMID: 27781556 DOI: 10.1080/17512433.2017.1253472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Real-world effectiveness trials suggest that antidepressant efficacy is limited in many patients with mood disorders, underscoring the urgent need for novel therapeutics to treat these disorders. Areas covered: Here, we review the clinical evidence supporting the use of novel modulators for the treatment of mood disorders, including specific glutamate modulators such as: 1) high-trapping glutamatergic modulators; 2) subunit (NR2B)-specific N-methyl-D-aspartate (NMDA) receptor antagonists; 3) NMDA receptor glycine-site partial agonists; and 4) metabotropic glutamate receptor (mGluR) modulators. We also discuss other promising, non-glutamatergic targets for potential rapid antidepressant effects in mood disorders, including the cholinergic system, the glucocorticoid system, and the inflammation pathway, as well as several additional targets of interest. Clinical evidence is emphasized, and non-pharmacological somatic treatments are not reviewed. In general, this paper only explores agents available in the United States. Expert commentary: Of these novel targets, the most promising - and the ones for whom the most evidence exists - appear to be the ionotropic glutamate receptors. However, moving forward will require us to fully embrace the goal of personalized medicine and will require health professionals to pre-emptively identify potential responders.
Collapse
Affiliation(s)
- Ioline D Henter
- a Experimental Therapeutics and Pathophysiology Branch , NIMH-NIH , Bethesda , Maryland , USA
| | - Rafael T de Sousa
- a Experimental Therapeutics and Pathophysiology Branch , NIMH-NIH , Bethesda , Maryland , USA
| | - Philip W Gold
- a Experimental Therapeutics and Pathophysiology Branch , NIMH-NIH , Bethesda , Maryland , USA
| | - Andre R Brunoni
- b Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry , University of São Paulo , São Paulo , Brazil
| | - Carlos A Zarate
- a Experimental Therapeutics and Pathophysiology Branch , NIMH-NIH , Bethesda , Maryland , USA
| | - Rodrigo Machado-Vieira
- a Experimental Therapeutics and Pathophysiology Branch , NIMH-NIH , Bethesda , Maryland , USA
| |
Collapse
|
77
|
Pennybaker SJ, Niciu MJ, Luckenbaugh DA, Zarate CA. Symptomatology and predictors of antidepressant efficacy in extended responders to a single ketamine infusion. J Affect Disord 2017; 208:560-566. [PMID: 27839782 PMCID: PMC5154889 DOI: 10.1016/j.jad.2016.10.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 10/22/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Antidepressant response to a single subanesthetic dose infusion of the glutamatergic modulator ketamine is transient in most depressed patients; however, a minority continue to experience an extended response. This study examined depressive symptoms and potential clinical predictors of extended response to ketamine in subjects with mood disorders. METHODS Subjects were diagnosed with either major depressive disorder (MDD) or bipolar depression. All subjects were treatment-resistant and experiencing a major depressive episode of at least moderate severity. MDD subjects were unmedicated and those with bipolar depression were receiving therapeutic-dose lithium or valproate. All subjects received a single 0.5mg/kg ketamine infusion. Data were collected pre-infusion (baseline) and at days one, 14, and 28 post-infusion. RESULTS Twelve of 93 (12.9%) participants continued to meet response criteria (50% reduction in Montgomery-Asberg Depression Rating Scale (MADRS) score) at two weeks. All depressive symptoms assessed by the MADRS were improved at two weeks in ketamine responders except for sleep duration/depth. A positive family history of alcohol use disorder in a first-degree relative (FHP) and greater dissociation during the infusion were associated with better antidepressant response at two weeks. Improved measures of apparent sadness, reported sadness, inability to feel, and difficulty concentrating at day 1 correlated most strongly with antidepressant effects at two weeks. LIMITATIONS Post-hoc design, small sample size, diagnostic heterogeneity. CONCLUSIONS Static (FHP) and dynamic (improved depressive symptoms) factors may be clinically useful in predicting whether a patient will have an extended response to ketamine.
Collapse
Affiliation(s)
- Steven J Pennybaker
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA; The Johns Hopkins University School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, USA
| | - Mark J Niciu
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA
| | - David A Luckenbaugh
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA
| | - Carlos A Zarate
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Bethesda, MD 20892, USA.
| |
Collapse
|
78
|
Grieco SF, Cheng Y, Eldar-Finkelman H, Jope RS, Beurel E. Up-regulation of insulin-like growth factor 2 by ketamine requires glycogen synthase kinase-3 inhibition. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:49-54. [PMID: 27542584 PMCID: PMC5061618 DOI: 10.1016/j.pnpbp.2016.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 01/21/2023]
Abstract
An antidepressant dose of the rapidly-acting ketamine inhibits glycogen synthase kinase-3 (GSK3) in mouse hippocampus, and this inhibition is required for the antidepressant effect of ketamine in learned helplessness depression-like behavior. Here we report that treatment with an antidepressant dose of ketamine (10mg/kg) increased expression of insulin-like growth factor 2 (IGF2) in mouse hippocampus, an effect that required ketamine-induced inhibition of GSK3. Ketamine also inhibited hippocampal GSK3 and increased expression of hippocampal IGF2 in mice when administered after the induction of learned helplessness. Treatment with the specific GSK3 inhibitor L803-mts was sufficient to up-regulate hippocampal IGF2 expression. Administration of IGF2 siRNA reduced ketamine's antidepressant effect in the learned helplessness paradigm. Mice subjected to the learned helplessness paradigm were separated into two groups, those that were resilient (non-depressed) and those that were susceptible (depressed). Non-depressed resilient mice displayed higher expression of IGF2 than susceptible mice. These results indicate that IGF2 contributes to ketamine's antidepressant effect and that IGF2 may confer resilience to depression-like behavior.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Yuyan Cheng
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, United States; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States.
| |
Collapse
|
79
|
Marinova Z, Chuang DM, Fineberg N. Glutamate-Modulating Drugs as a Potential Therapeutic Strategy in Obsessive-Compulsive Disorder. Curr Neuropharmacol 2017; 15:977-995. [PMID: 28322166 PMCID: PMC5652017 DOI: 10.2174/1570159x15666170320104237] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/27/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is a mental disease commonly associated with severe distress and impairment of social functioning. Serotonin reuptake inhibitors and/or cognitive behavioural therapy are the therapy of choice, however up to 40% of patients do not respond to treatment. Glutamatergic signalling has also been implicated in OCD. The aim of the current study was to review the clinical evidence for therapeutic utility of glutamate-modulating drugs as an augmentation or monotherapy in OCD patients. METHODS We conducted a search of the MEDLINE database for clinical studies evaluating the effect of glutamate-modulating drugs in OCD. RESULTS Memantine is the compound most consistently showing a positive effect as an augmentation therapy in OCD. Anti-convulsant drugs (lamotrigine, topiramate) and riluzole may also provide therapeutic benefit to some OCD patients. Finally, ketamine may be of interest due to its potential for a rapid onset of action. CONCLUSION Further randomized placebo-controlled trials in larger study populations are necessary in order to draw definitive conclusions on the utility of glutamate-modulating drugs in OCD. Furthermore, genetic and epigenetic factors, clinical symptoms and subtypes predicting treatment response to glutamate-modulating drugs need to be investigated systematically.
Collapse
Affiliation(s)
- Zoya Marinova
- Department of Psychosomatic Medicine, Clinic Barmelweid, Barmelweid, Switzerland
| | - De-Maw Chuang
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Naomi Fineberg
- Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Welwyn Garden City, AL8 6HG, United Kingdom
| |
Collapse
|
80
|
Cocaine self-administration disrupted by the N-methyl-D-aspartate receptor antagonist ketamine: a randomized, crossover trial. Mol Psychiatry 2017; 22:76-81. [PMID: 27090301 PMCID: PMC5435123 DOI: 10.1038/mp.2016.39] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/13/2016] [Accepted: 02/05/2016] [Indexed: 12/21/2022]
Abstract
Repeated drug consumption may progress to problematic use by triggering neuroplastic adaptations that attenuate sensitivity to natural rewards while increasing reactivity to craving and drug cues. Converging evidence suggests a single sub-anesthetic dose of the N-methyl-D-aspartate receptor antagonist ketamine may work to correct these neuroadaptations and restore motivation for non-drug rewards. Using an established laboratory model aimed at evaluating behavioral shifts in the salience of cocaine now vs money later, we found that ketamine, as compared to the control, significantly decreased cocaine self-administration by 67% relative to baseline at greater than 24 h post-infusion, the most robust reduction observed to date in human cocaine users and the first to involve mechanisms other than stimulant or dopamine agonist effects. These findings signal new directions in medication development for substance use disorders.
Collapse
|
81
|
Kroes RA, Nilsson CL. Towards the Molecular Foundations of Glutamatergic-targeted Antidepressants. Curr Neuropharmacol 2017; 15:35-46. [PMID: 26955966 PMCID: PMC5327457 DOI: 10.2174/1570159x14666160309114740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/08/2015] [Accepted: 01/30/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Depression affects over 120 million individuals of all ages and is the leading cause of disability worldwide. The lack of objective diagnostic criteria, together with the heterogeneity of the depressive disorder itself, makes it challenging to develop effective therapies. The accumulation of preclinical data over the past 20 years derived from a multitude of models using many divergent approaches, has fueled the resurgence of interest in targeting glutamatergic neurotransmission for the treatment of major depression. OBJECTIVE The emergence of mechanistic studies are advancing our understanding of the molecular underpinnings of depression. While clearly far from complete and conclusive, they offer the potential to lead to the rational design of more specific therapeutic strategies and the development of safer and more effective rapid acting, long lasting antidepressants. METHODS The development of comprehensive omics-based approaches to the dysregulation of synaptic transmission and plasticity that underlies the core pathophysiology of MDD are reviewed to illustrate the fundamental elements. RESULTS This review frames the rationale for the conceptualization of depression as a "pathway disease". As such, it culminates in the call for the development of novel state-of-the-art "-omics approaches" and neurosystems biological techniques necessary to advance our understanding of spatiotemporal interactions associated with targeting glutamatergic-triggered signaling in the CNS. CONCLUSION These technologies will enable the development of novel psychiatric medications specifically targeted to impact specific, critical intracellular networks in a more focused manner and have the potential to offer new dimensions in the area of translational neuropsychiatry.
Collapse
Affiliation(s)
- Roger A. Kroes
- Naurex, Inc., 1801 Maple Street, Evanston, Illinois 60201, United States
| | - Carol L. Nilsson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Texas, 77555-1074, United States
| |
Collapse
|
82
|
Hansen KB, Yi F, Perszyk RE, Menniti FS, Traynelis SF. NMDA Receptors in the Central Nervous System. Methods Mol Biol 2017; 1677:1-80. [PMID: 28986865 DOI: 10.1007/978-1-4939-7321-7_1] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NMDA-type glutamate receptors are ligand-gated ion channels that mediate a major component of excitatory neurotransmission in the central nervous system (CNS). They are widely distributed at all stages of development and are critically involved in normal brain functions, including neuronal development and synaptic plasticity. NMDA receptors are also implicated in the pathophysiology of numerous neurological and psychiatric disorders, such as ischemic stroke, traumatic brain injury, Alzheimer's disease, epilepsy, mood disorders, and schizophrenia. For these reasons, NMDA receptors have been intensively studied in the past several decades to elucidate their physiological roles and to advance them as therapeutic targets. Seven NMDA receptor subunits exist that assemble into a diverse array of tetrameric receptor complexes, which are differently regulated, have distinct regional and developmental expression, and possess a wide range of functional and pharmacological properties. The diversity in subunit composition creates NMDA receptor subtypes with distinct physiological roles across neuronal cell types and brain regions, and enables precise tuning of synaptic transmission. Here, we will review the relationship between NMDA receptor structure and function, the diversity and significance of NMDA receptor subtypes in the CNS, as well as principles and rules by which NMDA receptors operate in the CNS under normal and pathological conditions.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA. .,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, USA.
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Riley E Perszyk
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., George & Anne Ryan Institute for Neuroscience, Kingston, RI, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
83
|
Du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. Gene expression related to serotonergic and glutamatergic neurotransmission is altered in the flinders sensitive line rat model of depression: Effect of ketamine. Synapse 2016; 71:37-45. [PMID: 27589698 DOI: 10.1002/syn.21940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/11/2022]
Abstract
Major depressive disorder (MDD) is associated with dysfunctional serotonergic and glutamatergic neurotransmission, and the genetic animal model of depression Flinders Sensitive Line (FSL) rats display alterations in these systems relatively to their control strain Flinders Resistant Line (FRL). However, changes on transcript level related to serotonergic and glutamatergic signaling have only been sparsely studied in this model. The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has fast-onset antidepressant properties, and recent data implicate serotonergic neurotransmission in ketamine's antidepressant-like activities in rodents. Here, we investigated the transcript levels of 40 genes involved in serotonergic and glutamatergic neurotransmission in FSL and FRL rats in response to a single dose of ketamine (15 mg/kg; 90 min prior to euthanization). Using real-time quantitative polymerase chain reaction, we studied the effect of ketamine in the hippocampus, whereas strain differences were investigated in both hippocampus and frontal cortex. The expression of genes involved in serotonergic and glutamatergic neurotransmission were unaffected by a single dose of ketamine in the hippocampus. Relative to FRL rats, FSL rats displayed enhanced hippocampal transcript levels of 5-ht2c , and P11, whereas the expression was reduced for 5-ht2a , Nr2a, and Mglur2. In the frontal cortex, we found higher transcript levels of 5-ht2c and Mglur2, whereas the expression of 5-ht2a was reduced in FSL rats. Thus, ketamine is not associated with hippocampal alterations in serotonergic or glutamatergic genes at 90 min after an antidepressant dose. Furthermore, FSL rats display serotonergic and glutamatergic abnormalities on gene expression level that partly may resemble findings in MDD patients.
Collapse
Affiliation(s)
- Kristian Gaarn Du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark.,Lundbeck US LLC, 215 College Rd, Paramus, New Jersey
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| |
Collapse
|
84
|
Potential involvement of serotonergic signaling in ketamine's antidepressant actions: A critical review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:27-38. [PMID: 27262695 DOI: 10.1016/j.pnpbp.2016.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023]
Abstract
A single i.v. infusion of ketamine, classified as an N-methyl-d-aspartate (NMDA) receptor antagonist, may alleviate depressive symptoms within hours of administration in treatment resistant depressed patients, and the antidepressant effect may last for several weeks. These unique therapeutic properties have prompted researchers to explore the mechanisms mediating the antidepressant effects of ketamine, but despite many efforts, no consensus on its antidepressant mechanism of action has been reached. Recent preclinical reports have associated the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) with the antidepressant-like action of ketamine. Here, we review the current evidence for a serotonergic role in ketamine's antidepressant effects. The pharmacological profile of ketamine may include equipotent activity on several non-NMDA targets, and the current hypotheses for the mechanisms responsible for ketamine's antidepressant activity do not appear to preclude the possibility that non-glutamate neurotransmitters are involved in the antidepressant effects. At multiple levels, the serotonergic and glutamatergic systems interact, and such crosstalk could support the notion that changes in serotonergic neurotransmission may impact ketamine's antidepressant potential. In line with these prospects, ketamine may increase 5-HT levels in the prefrontal cortex of rats, plausibly via hippocampal NMDA receptor inhibition and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. In addition, a number of preclinical studies suggest that the antidepressant-like effects of ketamine may depend on endogenous activation of 5-HT receptors. Recent imaging and behavioral data predominantly support a role for 5-HT1A or 5-HT1B receptors, but the full range of 5-HT receptors has currently not been systematically investigated in this context. Furthermore, the nature of any 5-HT dependent mechanism in ketamine's antidepressant effect is currently not understood, and therefore, more studies are warranted to confirm this hypothesis and explore the specific pathways that might implicate 5-HT.
Collapse
|
85
|
Yang B, Ren Q, Ma M, Chen QX, Hashimoto K. Antidepressant Effects of (+)-MK-801 and (-)-MK-801 in the Social Defeat Stress Model. Int J Neuropsychopharmacol 2016; 19:pyw080. [PMID: 27608811 PMCID: PMC5203762 DOI: 10.1093/ijnp/pyw080] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Current data on antidepressant action of the N-methyl-D-aspartate receptor antagonist, (+)-MK-801, is inconsistent. This study was conducted to examine the effects of (+)-MK-801 and its less potent stereoisomer, (-)-MK-801, in the social defeat stress model of depression. METHODS The antidepressant effects of (+)-MK-801 (0.1mg/kg) and (-)-MK-801 (0.1mg/kg) in the social defeat stress model were examined. RESULTS In the tail suspension and forced swimming tests, both stereoisomers significantly attenuated increased immobility time in susceptible mice. In the sucrose preference test, (+)-MK-801, but not (-)-MK-801, significantly enhanced reduced sucrose consumption 2 or 4 days after a single dose. However, no antianhedonia effects were detected 7 days after a single dose of either stereoisomer. CONCLUSIONS Both stereoisomers of MK-801 induced rapid antidepressant effects in the social defeat stress model, although neither produced a long-lasting effect (7 days).
Collapse
Affiliation(s)
| | | | | | | | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan (Dr Yang, Dr Ren, Ms Ma, and Dr Hashimoto); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China (Drs Yang and Chen).
| |
Collapse
|
86
|
Beurel E, Grieco SF, Amadei C, Downey K, Jope RS. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor signaling. Bipolar Disord 2016; 18:473-480. [PMID: 27687706 PMCID: PMC5071181 DOI: 10.1111/bdi.12436] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Sub-anesthetic doses of ketamine have been found to provide rapid antidepressant actions, indicating that the cellular signaling systems targeted by ketamine are potential sites for therapeutic intervention. Ketamine acts as an antagonist of N-methyl-D-aspartate (NMDA) receptors, and animal studies indicate that subsequent augmentation of signaling by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors is critical for the antidepressant outcome. METHODS In this study, we tested if the inhibitory effect of ketamine on glycogen synthase kinase-3 (GSK3) affected hippocampal cell-surface AMPA receptors using immunoblotting of membrane and synaptosomal extracts from wild-type and GSK3 knockin mice. RESULTS Treatment with an antidepressant dose of ketamine increased the hippocampal membrane level of the AMPA glutamate receptor (GluA)1 subunit, but did not alter the localization of GluA2, GluA3, or GluA4. This effect of ketamine was abrogated in GSK3 knockin mice expressing mutant GSK3 that cannot be inhibited by ketamine, demonstrating that ketamine-induced inhibition of GSK3 is necessary for up-regulation of cell surface AMPA GluA1 subunits. AMPA receptor trafficking is regulated by post-synaptic density-95 (PSD-95), a substrate for GSK3. Ketamine treatment decreased the hippocampal membrane level of phosphorylated PSD-95 on Thr-19, the target of GSK3 that promotes AMPA receptor internalization. CONCLUSIONS These results demonstrate that ketamine-induced inhibition of GSK3 causes reduced phosphorylation of PSD-95, diminishing the internalization of AMPA GluA1 subunits to allow for augmented signaling through AMPA receptors following ketamine treatment.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Steven F Grieco
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Celeste Amadei
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kimberlee Downey
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
87
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
88
|
du Jardin KG, Liebenberg N, Müller HK, Elfving B, Sanchez C, Wegener G. Differential interaction with the serotonin system by S-ketamine, vortioxetine, and fluoxetine in a genetic rat model of depression. Psychopharmacology (Berl) 2016; 233:2813-25. [PMID: 27236785 DOI: 10.1007/s00213-016-4327-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
Abstract
RATIONALE The mechanisms mediating ketamine's antidepressant effect have only been partly resolved. Recent preclinical reports implicate serotonin (5-hydroxytryptamine; 5-HT) in the antidepressant-like action of ketamine. Vortioxetine is a multimodal-acting antidepressant that is hypothesized to exert its therapeutic activity through 5-HT reuptake inhibition and modulation of several 5-HT receptors. OBJECTIVES The objective of this study was to evaluate the therapeutic-like profiles of S-ketamine, vortioxetine, and the serotonin reuptake inhibitor fluoxetine in response to manipulation of 5-HT tone. METHOD Flinders Sensitive Line (FSL) rats, a genetic model of depression, were depleted of 5-HT by repeated administration of 4-chloro-DL-phenylalanine methyl ester HCl (pCPA). Using pCPA-pretreated and control FSL rats, we investigated the acute and sustained effects of S-ketamine (15 mg/kg), fluoxetine (10 mg/kg), or vortioxetine (10 mg/kg) on recognition memory and depression-like behavior in the object recognition task (ORT) and forced swim test (FST), respectively. RESULTS The behavioral phenotype of FSL rats was unaffected by 5-HT depletion. Vortioxetine, but not fluoxetine or S-ketamine, acutely ameliorated the memory deficits of FSL rats in the ORT irrespective of 5-HT tone. No sustained effects were observed in the ORT. In the FST, all three drugs demonstrated acute antidepressant-like activity but only S-ketamine had sustained effects. Unlike vortioxetine, the antidepressant-like responses of fluoxetine and S-ketamine were abolished by 5-HT depletion. CONCLUSIONS These observations suggest that the acute and sustained antidepressant-like effects of S-ketamine depend on endogenous stimulation of 5-HT receptors. In contrast, the acute therapeutic-like effects of vortioxetine on memory and depression-like behavior may be mediated by direct activity at 5-HT receptors.
Collapse
Affiliation(s)
- Kristian Gaarn du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark.
| | - Nico Liebenberg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark.,Lundbeck US LLC, 215 College Rd, Paramus, NJ, 07652, USA
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240, Risskov, Denmark.,School of Pharmacy (Pharmacology), North-West University, 11 Hoffman St, Potchefstroom, 2531, South Africa
| |
Collapse
|
89
|
du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. A single dose of vortioxetine, but not ketamine or fluoxetine, increases plasticity-related gene expression in the rat frontal cortex. Eur J Pharmacol 2016; 786:29-35. [PMID: 27235984 DOI: 10.1016/j.ejphar.2016.05.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022]
Abstract
Ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that has been shown to induce a rapid antidepressant effect in treatment-resistant patients. Vortioxetine is a multimodal-acting antidepressant that exert its therapeutic activity through serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibition and modulation of several 5-HT receptors. In clinical trials, vortioxetine improves depression symptoms and cognitive dysfunction. Neuroplasticity as well as serotonergic and glutamatergic signaling attain significant roles in depression pathophysiology and antidepressant responses. Here, we investigate the effects of ketamine and vortioxetine on gene expression related to serotonergic and glutamatergic neurotransmission as well as neuroplasticity and compare them to those of the selective serotonin reuptake inhibitor fluoxetine. Rats were injected with fluoxetine (10mg/kg), ketamine (15mg/kg), or vortioxetine (10mg/kg) at 2, 8, 12, or 27h prior to harvesting of the frontal cortex and hippocampus. mRNA levels were measured by real-time quantitative polymerase chain reaction (qPCR). The main finding was that vortioxetine enhanced plasticity-related gene expression (Mtor, Mglur1, Pkcα, Homer3, Spinophilin, and Synapsin3) in the frontal cortex at 8h after a single dose. Ingenuity pathway analysis of this subset of data identified a biological network that was engaged by vortioxetine and is plausibly associated with neuroplasticity. Transcript levels had returned to baseline levels 12h after injection. Only minor effects on gene expression were found for ketamine or fluoxetine. In conclusion, acute vortioxetine, but not fluoxetine or ketamine, transiently increased plasticity-related gene expression in the frontal cortex. These effects may be ascribed to the direct 5-HT receptor activities of vortioxetine.
Collapse
Affiliation(s)
- Kristian Gaarn du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark.
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark; Lundbeck US LLC, 215 College Rd, Paramus, NJ 07652, USA
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark; School of Pharmacy (Pharmacology), North-West University, 11 Hoffman St, Potchefstroom 2531, South Africa
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, 8240 Risskov, Denmark
| |
Collapse
|
90
|
Nho K, Ramanan VK, Horgusluoglu E, Kim S, Inlow MH, Risacher SL, McDonald BC, Farlow MR, Foroud TM, Gao S, Callahan CM, Hendrie HC, Niculescu AB, Saykin AJ. Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults. J Alzheimers Dis 2016; 45:1197-206. [PMID: 25690665 DOI: 10.3233/jad-148009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Depressive symptoms are common in older adults and are particularly prevalent in those with or at elevated risk for dementia. Although the heritability of depression is estimated to be substantial, single nucleotide polymorphism-based genome-wide association studies of depressive symptoms have had limited success. In this study, we performed genome-wide gene- and pathway-based analyses of depressive symptom burden. Study participants included non-Hispanic Caucasian subjects (n = 6,884) from three independent cohorts, the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Health and Retirement Study (HRS), and the Indiana Memory and Aging Study (IMAS). Gene-based meta-analysis identified genome-wide significant associations (ANGPT4 and FAM110A, q-value = 0.026; GRM7-AS3 and LRFN5, q-value = 0.042). Pathway analysis revealed enrichment of association in 105 pathways, including multiple pathways related to ERK/MAPK signaling, GSK3 signaling in bipolar disorder, cell development, and immune activation and inflammation. GRM7, ANGPT4, and LRFN5 have been previously implicated in psychiatric disorders, including the GRM7 region displaying association with major depressive disorder. The ERK/MAPK signaling pathway is a known target of antidepressant drugs and has important roles in neuronal plasticity, and GSK3 signaling has been previously implicated in Alzheimer's disease and as a promising therapeutic target for depression. Our results warrant further investigation in independent and larger cohorts and add to the growing understanding of the genetics and pathobiology of depressive symptoms in aging and neurodegenerative disorders. In particular, the genes and pathways demonstrating association with depressive symptoms may be potential therapeutic targets for these symptoms in older adults.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emrin Horgusluoglu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Inlow
- Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Hugh C Hendrie
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
91
|
Li E, Deng H, Wang B, Fu W, You Y, Tian S. Apelin-13 exerts antidepressant-like and recognition memory improving activities in stressed rats. Eur Neuropsychopharmacol 2016; 26:420-30. [PMID: 26853763 DOI: 10.1016/j.euroneuro.2016.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/23/2015] [Accepted: 01/23/2016] [Indexed: 01/23/2023]
Abstract
Apelin is the endogenous ligand for the G-protein-coupled receptor (APJ). The localization of APJ in limbic structures suggests a potential role for apelin in emotional processes. However, the role of apelin in the regulation of stress-induced responses such as depression and memory impairment is largely unknown. In the present study, we evaluated the role of apelin-13 in the regulation of stress-induced depression and memory impairment in rats. We report that repeated intracerebroventricular injections of apelin-13 reversed behavioral despair (immobility) in the forced swim (FS) test, a model widely used for the selection of new antidepressant agents. Apelin-13 also reversed behavioral deficits (escape failure) in the learned helplessness test. The magnitude of the antiimmobility and anti-escape failure effects of apelin-13 was comparable to that of imipramine, a classic antidepressant used as a positive control. Rats exposed to FS stress showed memory performance impairment in the novel object recognition test, and this impairment was improved by apelin-13 treatment. Apelin-13 did not affect recognition memory performance in non-stressed rats. Furthermore, the pretreatment of LY294002 (PI3K inhibitors) or PD98059 (ERK1/2 inhibitor) blocked apelin-13-mediated activities in FS-stressed rats. These findings suggest that apelin-13 exerts antidepressant-like and recognition memory improving activities through activating PI3K and ERK1/2 signaling pathways in stressed rats.
Collapse
Affiliation(s)
- E Li
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China
| | - Haifeng Deng
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Department of Anesthesiology, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Wan Fu
- Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Department of Neurology, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yong You
- Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Department of Neurology, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Shaowen Tian
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
92
|
Vasavada MM, Leaver AM, Espinoza RT, Joshi SH, Njau SN, Woods RP, Narr KL. Structural connectivity and response to ketamine therapy in major depression: A preliminary study. J Affect Disord 2016; 190:836-841. [PMID: 26630613 PMCID: PMC4685004 DOI: 10.1016/j.jad.2015.11.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/30/2015] [Accepted: 11/15/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ketamine elicits an acute antidepressant effect in patients with major depressive disorder (MDD). Here, we used diffusion imaging to explore whether regional differences in white matter microstructure prior to treatment may predict clinical response 24h following ketamine infusion in 10 MDD patients. METHODS FSL's Tract-Based Spatial Statistics (TBSS) established voxel-level differences in fractional anisotropy (FA) between responders (patients showing >50% improvement in symptoms 24h post-infusion) and non-responders in major white matter pathways. Follow-up regions-of-interest (ROI) analyses examined differences in FA and radial (RD), axial (AD) and mean diffusivity (MD) between responders and non-responders and 15 age- and sex-matched controls, with groups compared pairwise. RESULTS Whole brain TBSS (p<0.05, corrected) and confirmatory tract-based regions-of-interest analyses showed larger FA values in the cingulum and forceps minor in responders compared to non-responders; complementary decreases in RD occurred in the cingulum (p<0.05). Only non-responders differed from controls showing decreased FA in the forceps minor, increased RD in the cingulum and forceps minor, and increased MD in the forceps minor (p<0.05). LIMITATIONS Non-responders showed an earlier age of onset and longer current depressive episode than responders. Though these factors did not interact with diffusion metrics, results may be impacted by the limited sample size. CONCLUSIONS Though findings are considered preliminary, significant differences in FA, RD and MD shown in non-responders compared to responders and controls in fronto-limbic and ventral striatal pathways suggest that the structural architecture of specific functional networks mediating emotion may predict ketamine response in MDD.
Collapse
Affiliation(s)
- Megha M Vasavada
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Amber M Leaver
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Randall T Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Shantanu H Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie N Njau
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA,Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
93
|
Abstract
Treating to target in chronic diseases [e.g. Major Depressive Disorder (MDD)] fosters precision, consistency, and appropriateness of treatment selection and sequencing. Therapeutic target definitions/endpoints in MDD should satisfy patient-, provider-, and societal expectations. Functional recovery in depression and return to both physical and mental health are the overarching therapeutic objectives. Treating to target in MDD implies multidimensional symptomatic remission, with a particular emphasis on cognitive function and aspects of positive mental health. Several atypical antipsychotic agents (i.e. brexpiprazole, aripiprazole, quetiapine) are FDA-approved as augmentation agents in MDD. Vortioxetine, duloxetine, and psychostimulants have evidence of independent, direct, and robust effects on cognitive function in MDD. Vortioxetine is the only agent that demonstrates efficacy across multiple cognitive domains in MDD associated with functional recovery. Measurement-based care, health information technology/systems, and integrated care models (e.g. medical homes) provide requisite tools and health environments for optimal health outcomes in MDD. Achieving remission in MDD does not equate to health. Return to positive mental health as well as full functioning provide the impetus to pivot away from traditional provider-defined outcomes toward an inclusive perspective involving patient- and society-defined outcomes (i.e. optimization of human capital). As in other chronic diseases, treating to target (e.g. cognitive function) further increases the probability of achieving optimal health outcomes.
Collapse
|
94
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
95
|
Kawaguchi DM, Glatt SJ. GRIK4 polymorphism and its association with antidepressant response in depressed patients: a meta-analysis. Pharmacogenomics 2015; 15:1451-9. [PMID: 25303296 DOI: 10.2217/pgs.14.96] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM This study aimed to evaluate the relationship between a human GRIK4 gene polymorphism (rs1954787) and responsiveness to antidepressant treatment in depressed patients. METHODS A meta-analysis was carried out on five studies. Pooled odds ratios (ORs), 95% CIs and a χ(2) test measuring heterogeneity were calculated. A test of publication bias was also conducted. RESULTS Alleles and genotypes from a total of 2169 depressed patients were analyzed. The results showed that the C allele appeared more frequently than the T allele in responders to treatment (OR: 1.22; 95% CI: 1.035-1.445; z = 2.36; p = 0.018). Similarly, CC homozygotes were more likely than TT homozygotes to respond to treatment (OR: 1.45; 95% CI: 1.107-1.913; z = 2.69; p = 0.007). No evidence of publication bias was detected. CONCLUSION Subjects possessing the C allele or CC genotype of the GRIK4 polymorphism rs1954787 are more likely to respond to antidepressant treatment relative to subjects harboring the T allele and TT genotype. Additional replication of this result is required before this association can be considered definitive, after which it may become possible to employ this marker in conjunction with other known predictors in order to anticipate the outcomes of treatment with antidepressant medications.
Collapse
Affiliation(s)
- Daniel M Kawaguchi
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Departments of Psychiatry & Behavioral Sciences & Neuroscience & Physiology, Medical Genetics Research Center, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
96
|
Role of the nitric oxide donor sodium nitroprusside in the antidepressant effect of ketamine in mice. Eur Neuropsychopharmacol 2015; 25:1848-52. [PMID: 26138155 DOI: 10.1016/j.euroneuro.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/09/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022]
Abstract
Ketamine may represent an efficient alternative antidepressant with rapid therapeutic onset; however, the clinical use of ketamine is hampered by psychosis-like side-effects. Recent studies suggest that the nitric oxide (NO) donor sodium nitroprusside (SNP) prevents psychosis-like abnormalities triggered by ketamine or another NMDA receptor (NMDAR) antagonist, phencyclidine (PCP) in rats. SNP was shown to elicit antipsychotic effects also in humans. Considering the tight interrelation between NMDAR activation and neuronal NO synthesis, we evaluated the effect of pre-treatment with SNP on the antidepressant action of ketamine. We found that SNP (0.5-1mg/kg, i.p.) did not alter the antidepressant effect of ketamine (30 mg/kg) in the Porsolt Forced Swim Test (FST) in mice. Additionally, SNP by itself produced no effect in the FST or in the openfield. This suggests indirectly a differential involvement of the nitrinergic system in the antidepressant vs. psychotomimetic effect of ketamine, although an influence of species-specific differences cannot be excluded in this interpretation.
Collapse
|
97
|
Affiliation(s)
- Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark J Niciu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
98
|
Costi S, Van Dam NT, Murrough JW. Current Status of Ketamine and Related Therapies for Mood and Anxiety Disorders. Curr Behav Neurosci Rep 2015; 2:216-225. [PMID: 26783510 DOI: 10.1007/s40473-015-0052-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide. Despite a plethora of established treatments, less than one-third of individuals with MDD achieve stable remission of symptoms. Given limited efficacy and significant lag time to onset of therapeutic action among conventional antidepressants, interest has shifted to treatments that act outside of the monoamine neurotransmitter systems (e.g., serotonin, norepinephrine, and dopamine). Preclinical and clinical research on the glutamate system has been particularly promising in this regard. Accumulating evidence shows support for a rapid antidepressant effect of ketamine - a glutamate N-methyl-d-aspartate (NMDA) receptor antagonist. The present article reviews the pharmacology, safety, and efficacy of ketamine as a novel therapeutic agent for mood and anxiety disorders. The majority of clinical trials using ketamine have been conducted in patients with treatment resistant forms of MDD; recent work has begun to examine ketamine in bipolar disorder, posttraumatic stress disorder, and obsessive-compulsive disorder. The impact of ketamine on suicidal ideation is also discussed. The current status and prospects for the identification of human biomarkers of ketamine treatment response and hurdles to treatment development are considered. We conclude by considering modulators of the glutamate system other than ketamine currently in development as potential novel treatment strategies for mood and anxiety disorders.
Collapse
Affiliation(s)
- Sara Costi
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicholas T Van Dam
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James W Murrough
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
99
|
McCloud TL, Caddy C, Jochim J, Rendell JM, Diamond PR, Shuttleworth C, Brett D, Amit BH, McShane R, Hamadi L, Hawton K, Cipriani A. Ketamine and other glutamate receptor modulators for depression in bipolar disorder in adults. Cochrane Database Syst Rev 2015:CD011611. [PMID: 26415966 DOI: 10.1002/14651858.cd011611.pub2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND There is emerging evidence that glutamatergic system dysfunction might play an important role in the pathophysiology of bipolar depression. This review focuses on the use of glutamate receptor modulators for depression in bipolar disorder. OBJECTIVES 1. To assess the effects of ketamine and other glutamate receptor modulators in alleviating the acute symptoms of depression in people with bipolar disorder.2. To review the acceptability of ketamine and other glutamate receptor modulators in people with bipolar disorder who are experiencing acute depression symptoms. SEARCH METHODS We searched the Cochrane Depression, Anxiety and Neurosis Review Group's Specialised Register (CCDANCTR, to 9 January 2015). This register includes relevant randomised controlled trials (RCTs) from: the Cochrane Library (all years), MEDLINE (1950 to date), EMBASE (1974 to date), and PsycINFO (1967 to date). We cross-checked reference lists of relevant papers and systematic reviews. We did not apply any restrictions to date, language or publication status. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing ketamine, memantine, or other glutamate receptor modulators with other active psychotropic drugs or saline placebo in adults with bipolar depression. DATA COLLECTION AND ANALYSIS At least two review authors independently selected studies for inclusion, assessed trial quality and extracted data. Primary outcomes for this review were response rate and adverse events. Secondary outcomes included remission rate, depression severity change scores, suicidality, cognition, quality of life, and dropout rate. We contacted study authors for additional information. MAIN RESULTS Five studies (329 participants) were included in this review. All included studies were placebo-controlled and two-armed, and the glutamate receptor modulators - ketamine (two trials), memantine (two trials), and cytidine (one trial) - were used as add-on drugs to mood stabilisers. The treatment period ranged from a single intravenous administration (all ketamine studies), to repeated administration for memantine and cytidine (8 to 12 weeks, and 12 weeks, respectively). Three of the studies took place in the USA, one in Taiwan, and in one, the location was unclear. The majority (70.5%) of participants were from Taiwan. All participants had a primary diagnosis of bipolar disorder, according to the DSM-IV or DSM-IV-TR, and were in a current depressive phase. The severity of depression was at least moderate in all but one study.Among all glutamate receptor modulators included in this review, only ketamine appeared to be more efficacious than placebo 24 hours after the infusion for the primary outcome, response rate (odds ratio (OR) 11.61, 95% confidence interval (CI) 1.25 to 107.74; P = 0.03; I² = 0%, 2 studies, 33 participants). This evidence was rated as low quality. The statistically significant difference disappeared at three days, but the mean estimate still favoured ketamine (OR 8.24, 95% CI 0.84 to 80.61; 2 studies, 33 participants; very low quality evidence). We found no difference in response between ketamine and placebo at one week (OR 4.00, 95% CI 0.33 to 48.66; P = 0.28, 1 study; 18 participants; very low quality evidence).There was no significant difference between memantine and placebo in response rate one week after treatment (OR 1.08, 95% CI 0.06 to 19.05; P = 0.96, 1 study, 29 participants), two weeks (OR 4.88, 95% CI 0.78 to 30.29; P = 0.09, 1 study, 29 participants), four weeks (OR 5.33, 95% CI 1.02 to 27.76; P = 0.05, 1 study, 29 participants), or at three months (OR, 1.66, 95% CI 0.69 to 4.03; P = 0.26, I² = 36%, 2 studies, 261 participants). These findings were based on very low quality evidence.There was no significant difference between cytidine and placebo in response rate at three months (OR, 1.13, 95% CI 0.30 to 4.24; P = 0.86, 1 study, 35 participants; very low quality evidence).For the secondary outcome of remission, no significant differences were found between ketamine and placebo, nor between memantine and placebo. For the secondary outcome of change scores from baseline on depression scales, ketamine was more effective than placebo at 24 hours (MD -11.81, 95% CI -20.01 to -3.61; P = 0.005, 2 studies, 32 participants) but not at one or two weeks after treatment. There was no difference between memantine and placebo for this outcome.We found no significant differences in terms of adverse events between placebo and ketamine, memantine, or cytidine. There were no differences between ketamine and placebo, memantine and placebo, or cytidine and placebo in total dropouts. No data were available on dropouts due to adverse effects for ketamine or cytidine; but no difference was found between memantine and placebo. AUTHORS' CONCLUSIONS Reliable conclusions from this review are severely limited by the small amount of data usable for analysis. The body of evidence about glutamate receptor modulators in bipolar disorder is even smaller than that which is available for unipolar depression. Overall, we found limited evidence in favour of a single intravenous dose of ketamine (as add-on therapy to mood stabilisers) over placebo in terms of response rate up to 24 hours; ketamine did not show any better efficacy in terms of remission in bipolar depression. Even though ketamine has the potential to have a rapid and transient antidepressant effect, the efficacy of a single intravenous dose may be limited. Ketamine's psychotomimetic effects could compromise study blinding; this is a particular issue for this review as no included study used an active comparator, and so we cannot rule out the potential bias introduced by inadequate blinding procedures.We did not find conclusive evidence on adverse events with ketamine. To draw more robust conclusions, further RCTs (with adequate blinding) are needed to explore different modes of administration of ketamine and to study different methods of sustaining antidepressant response, such as repeated administrations. There was not enough evidence to draw meaningful conclusions for the remaining two glutamate receptor modulators (memantine and cytidine). This review is limited not only by completeness of evidence, but also by the low to very low quality of the available evidence.
Collapse
Affiliation(s)
- Tayla L McCloud
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Boczek T, Lisek M, Ferenc B, Zylinska L. Plasma membrane Ca(2+)-ATPase is a novel target for ketamine action. Biochem Biophys Res Commun 2015; 465:312-7. [PMID: 26278817 DOI: 10.1016/j.bbrc.2015.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/09/2015] [Indexed: 01/03/2023]
Abstract
Ketamine, a high affinity uncompetitive antagonist of voltage-dependent NMDA receptor, has been used for years as a dissociative anesthetic. Although the drug is considered as safe and well-tolerable, it is now evident that it can exert dose-dependent multidirectional effects acting on different cellular targets and pathways. The latest clinical studies also demonstrated its promising antidepressant action. However, the widespread use of this drug in humans is largely limited by a broad range of cognitive adverse effects that resemble some core symptoms of schizophrenia. In line with the hypothesis of unifying role of calcium in schizophrenia symptomology, we used ketamine-induced rat model of experimental psychosis to study the effect of 5-day ketamine treatment (30 mg/kg, ip) on the activity of plasma membrane Ca(2+)-ATPase. Whereas no change in a total amount of the enzyme in cortical synaptosomal membranes was observed, a decrease by ∼50% in hydrolytic activity, as well as lowered phosphointermediate formation were detected. Moreover, ketamine action appeared to be isoform-independent. The experiments on intact Ca(2+)-ATPase purified from vehicle-treated rat cortex revealed dose-dependent inhibition of enzymatic activity. Furthermore, ketamine decreased, but not eliminated, the stimulation by calmodulin. The inhibitory effect, although much weaker, was also evident for truncated form of calcium pump obtained following digestion by trypsin. Our results indicate that plasma membrane Ca(2+)-ATPase is a novel target for ketamine and putative interaction sites may involve central catalytic loop and calmodulin-binding domain.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland.
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 6/8 Mazowiecka Str., 92-215 Lodz, Poland
| |
Collapse
|