51
|
Hu CT, Shao YD, Liu YZ, Xiao X, Cheng ZB, Qu SL, Huang L, Zhang C. Oxidative stress in vascular calcification. Clin Chim Acta 2021; 519:101-110. [PMID: 33887264 DOI: 10.1016/j.cca.2021.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Vascular calcification (VC), which is closely associated with significant mortality in cardiovascular disease, chronic kidney disease (CKD), and/or diabetes mellitus, is characterized by abnormal deposits of hydroxyapatite minerals in the arterial wall. The impact of oxidative stress (OS) on the onset and progression of VC has not been well described. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, myeloperoxidase (MPO), nitric oxide synthases (NOSs), superoxide dismutase (SOD) and paraoxonases (PONs) are relevant factors that influence the production of reactive oxygen species (ROS). Furthermore, excess ROS-induced OS has emerged as a critical mediator promoting VC through several mechanisms, including phosphate balance, differentiation of vascular smooth muscle cells (VSMCs), inflammation, DNA damage, and extracellular matrix remodeling. Because OS is a significant regulator of VC, antioxidants may be considered as novel treatment options.
Collapse
Affiliation(s)
- Chu-Ting Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Medical Laboratory, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Duo Shao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
52
|
Hu W, Jiang S, Liao Y, Li J, Dong F, Guo J, Wang X, Fei L, Cui Y, Ren X, Xu N, Zhao L, Chen L, Zheng Y, Li L, Patzak A, Persson PB, Zheng Z, Lai EY. High phosphate impairs arterial endothelial function through AMPK-related pathways in mouse resistance arteries. Acta Physiol (Oxf) 2021; 231:e13595. [PMID: 33835704 DOI: 10.1111/apha.13595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
AIMS In patients with renal disease, high serum phosphate shows a relationship with cardiovascular risk. We speculate that high phosphate (HP) impairs arterial vasodilation via the endothelium and explore potential underlying mechanisms. METHODS Isolated vessel relaxation, endothelial function, glomerular filtration rate (GFR), oxidative stress status and protein expression were assessed in HP diet mice. Mitochondrial function and protein expression were assessed in HP-treated human umbilical vein endothelial cells (HUVECs). RESULTS High phosphate (1.3%) diet for 12 weeks impaired endothelium-dependent relaxation in mesenteric arteries, kidney interlobar arteries and afferent arterioles; reduced GFR and the blood pressure responses to acute administration of acetylcholine. The PPARα/LKB1/AMPK/eNOS pathway was attenuated in the endothelium of mesenteric arteries from HP diet mice. The observed vasodilatory impairment of mesenteric arteries was ameliorated by PPARα agonist WY-14643. The phosphate transporter PiT-1 knockdown prevented HP-mediated suppression of eNOS activity by impeding phosphorus influx in HUVECs. Endothelium cytoplasmic and mitochondrial reactive oxygen species (ROS) were increased in HP diet mice. Moreover HP decreased the expression of mitochondrial-related antioxidant genes. Finally, mitochondrial membrane potential and PGC-1α expression were reduced by HP treatment in HUVECs, which was partly restored by AMPKα agonist. CONCLUSIONS HP impairs endothelial function by reducing NO bioavailability via decreasing eNOS activity and increasing mitochondrial ROS, in which the AMPK-related signalling pathways may play a key role.
Collapse
Affiliation(s)
- Weipeng Hu
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Shan Jiang
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Yixin Liao
- Department of Obstetrics and Gynecology Nanfang HospitalSouthern Medical University Guangzhou China
| | - Jinhong Li
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
| | - Fang Dong
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Jie Guo
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Xiaohua Wang
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
| | - Lingyan Fei
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
| | - Yu Cui
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Xiaoqiu Ren
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Nan Xu
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Liang Zhao
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Department of Physiology School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Limeng Chen
- Department of Nephrology Peking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical College Beijing China
| | - Yali Zheng
- Department of Nephrology Ningxia people’s hospital Yinchuan China
| | - Lingli Li
- Division of Nephrology and Hypertension Georgetown University Washington DC USA
| | - Andreas Patzak
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Pontus B. Persson
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Zhihua Zheng
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
| | - En Yin Lai
- Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Department of Nephrology Center of Kidney The Seventh Affiliate HospitalSun Yat‐sen University Shenzhen China
- Department of Physiology School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
- Institute of Vegetative Physiology Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| |
Collapse
|
53
|
Type I Interferon as cardiovascular risk factor in systemic and cutaneous lupus erythematosus: A systematic review. Autoimmun Rev 2021; 20:102794. [PMID: 33722754 DOI: 10.1016/j.autrev.2021.102794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) have a high burden of cardiovascular disease (CVD) of multifactorial origin. The aim of this systematic review is to analyze the role of the interferon I (IFN-I) signature and fibroblast growth factor-23 (FGF-23) in patients with SLE or cutaneous lupus erythematosus (CLE) herein. MATERIALS AND METHODS We conducted a systematic literature search in PubMed and Scopus using keywords for major adverse cardiovascular events (MACE) and intermediate outcomes (endothelial dysfunction, subclinical atherosclerosis, platelet activation) associated with IFN-I or FGF-23 in patients with SLE and CLE. RESULTS 4745 citations were screened, of which 12 studies were included. IFN-I was associated with MACE in two third of the studies and the association was strongest for cardiac events. An association of IFN-I was found in all studies investigating impaired vascular function, but only in 50% (respectively 40%) of reports examining the relation of IFN-I and platelet activation (respectively subclinical atherosclerosis). Altogether the reports were of variable bias and quality due to high variability of examined IFN-I biomarkers and inconsistent results for different outcome measures. No studies investigating the cardiovascular risk of circulating IFN-I in CLE, nor FGF-23 in SLE or CLE were found. CONCLUSION Clinical studies measuring the association between IFN-I and direct / intermediate measures of CVD are rare and ambiguous in SLE and nonexistent in CLE, hampering a definite conclusion.
Collapse
|
54
|
Uremic Toxins, Oxidative Stress, Atherosclerosis in Chronic Kidney Disease, and Kidney Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6651367. [PMID: 33628373 PMCID: PMC7895596 DOI: 10.1155/2021/6651367] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/21/2022]
Abstract
Patients with chronic kidney disease (CKD) are at a high risk for cardiovascular disease (CVD), and approximately half of all deaths among patients with CKD are a direct result of CVD. The premature cardiovascular disease extends from mild to moderate CKD stages, and the severity of CVD and the risk of death increase with a decline in kidney function. Successful kidney transplantation significantly decreases the risk of death relative to long-term dialysis treatment; nevertheless, the prevalence of CVD remains high and is responsible for approximately 20-35% of mortality in renal transplant recipients. The prevalence of traditional and nontraditional risk factors for CVD is higher in patients with CKD and transplant recipients compared with the general population; however, it can only partly explain the highly increased cardiovascular burden in CKD patients. Nontraditional risk factors, unique to CKD patients, include proteinuria, disturbed calcium, and phosphate metabolism, anemia, fluid overload, and accumulation of uremic toxins. This accumulation of uremic toxins is associated with systemic alterations including inflammation and oxidative stress which are considered crucial in CKD progression and CKD-related CVD. Kidney transplantation can mitigate the impact of some of these nontraditional factors, but they typically persist to some degree following transplantation. Taking into consideration the scarcity of data on uremic waste products, oxidative stress, and their relation to atherosclerosis in renal transplantation, in the review, we discussed the impact of uremic toxins on vascular dysfunction in CKD patients and kidney transplant recipients. Special attention was paid to the role of native and transplanted kidney function.
Collapse
|
55
|
Vila Cuenca M, Hordijk PL, Vervloet MG. Most exposed: the endothelium in chronic kidney disease. Nephrol Dial Transplant 2021; 35:1478-1487. [PMID: 31071222 PMCID: PMC7473805 DOI: 10.1093/ndt/gfz055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicates that the pathological changes of the endothelium may contribute to the development of cardiovascular complications in chronic kidney disease (CKD). Non-traditional risk factors related to CKD are associated with the incidence of cardiovascular disease, but their role in uraemic endothelial dysfunction has often been disregarded. In this context, soluble α-Klotho and vitamin D are of importance to maintain endothelial integrity, but their concentrations decline in CKD, thereby contributing to the dysfunction of the endothelial lining. These hormonal disturbances are accompanied by an increment of circulating fibroblast growth factor-23 and phosphate, both exacerbating endothelial toxicities. Furthermore, impaired renal function leads to an increment of inflammatory mediators, reactive oxygen species and uraemic toxins that further aggravate the endothelial abnormalities and in turn also inhibit the regeneration of disrupted endothelial lining. Here, we highlight the distinct endothelial alterations mediated by the abovementioned non-traditional risk factors as demonstrated in experimental studies and connect these to pathological changes in CKD patients, which are driven by endothelial disturbances, other than atherosclerosis. In addition, we describe therapeutic strategies that may promote restoration of endothelial abnormalities by modulating imbalanced mineral homoeostasis and attenuate the impact of uraemic retention molecules, inflammatory mediators and reactive oxygen species. A clinical perspective on endothelial dysfunction in CKD may translate into reduced structural and functional abnormalities of the vessel wall in CKD, and ultimately improved cardiovascular disease.
Collapse
Affiliation(s)
- Marc Vila Cuenca
- Department of Nephrology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
56
|
Anand S, Jagannathan R, Gupta R, Mohan S, Prabhakaran D, Wolf M. Fibroblast Growth Factor-23 and a Vegetarian Diet. J Ren Nutr 2020; 30:503-508. [PMID: 32247648 PMCID: PMC7529717 DOI: 10.1053/j.jrn.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/10/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Sparse data exist on population distributions of serum fibroblast growth factor-23 (FGF23) levels from developing, middle-income economies. FGF23 levels may differ substantially across regions based on differences in diet and urbanization. In a population-based study from North India, we tested the hypothesis that urinary phosphate excretion and FGF23 levels are lower among rural compared with urban participants, and among vegetarian compared with nonvegetarian participants. METHODS We measured 24-hour urinary phosphate, and serum parathyroid hormone and FGF23 in a subsample of the population-based Cardiometabolic Risk Reduction in South Asia and Indian Council of Medical Research Coronary Heart Disease surveys. We categorized participants according to diet and residence: urban nonvegetarians (n = 70), urban vegetarians (n = 564), and rural vegetarians (n = 558). Using least square means, we compared the groups' 24-hour urinary phosphate (with urban vegetarians as reference) and FGF23 levels after accounting for age, sex, diabetes, and body mass index. RESULTS Among 1,192 study participants, mean FGF23 was 41 ± 18 pg/mL, median parathyroid hormone was 44 (interquartile range [IQR] 31-60) pg/mL, and median 24-hour urinary phosphate excretion was 419 (IQR: 47-622) mg/day. Urinary phosphate was significantly higher in rural compared with urban vegetarians (median, 503; IQR, 334-543 versus 365; IQR, 199-399 mg/day), but adjusted mean FGF23 levels did not differ across study groups. CONCLUSION In rural and urban India, urinary phosphate excretion was low, but FGF23 levels did not differ by residence or dietary preference. Homogenously low dietary phosphate intake across different settings and diets may partly explain the lack of differences in FGF23.
Collapse
Affiliation(s)
- Shuchi Anand
- Center for Chronic Disease Control, Gurgaon, India; Division of Nephrology, Stanford University School of Medicine, Palo Alto, California.
| | - Ram Jagannathan
- Division of Hospital Medicine, Emory University, Atlanta, Georgia
| | - Ruby Gupta
- Center for Chronic Disease Control, Gurgaon, India
| | | | | | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
57
|
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020; 12:E3001. [PMID: 33007883 PMCID: PMC7599912 DOI: 10.3390/nu12103001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) plays a critical function in many tissues of the body: for example, as part of the hydroxyapatite in the skeleton and as a substrate for ATP synthesis. Pi is the main source of dietary phosphorus. Reduced bioavailability of Pi or excessive losses in the urine causes rickets and osteomalacia. While critical for health in normal amounts, dietary phosphorus is plentiful in the Western diet and is often added to foods as a preservative. This abundance of phosphorus may reduce longevity due to metabolic changes and tissue calcifications. In this review, we examine how dietary phosphorus is absorbed in the gut, current knowledge about Pi sensing, and endocrine regulation of Pi levels. Moreover, we also examine the roles of Pi in different tissues, the consequences of low and high dietary phosphorus in these tissues, and the implications for healthy aging.
Collapse
Affiliation(s)
- Juan Serna
- Yale College, Yale University, New Haven, CT 06511, USA;
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
58
|
Humalda JK, Yeung SMH, Geleijnse JM, Gijsbers L, Riphagen IJ, Hoorn EJ, Rotmans JI, Vogt L, Navis G, Bakker SJL, de Borst MH. Effects of Potassium or Sodium Supplementation on Mineral Homeostasis: A Controlled Dietary Intervention Study. J Clin Endocrinol Metab 2020; 105:5854371. [PMID: 32506135 PMCID: PMC7365698 DOI: 10.1210/clinem/dgaa359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Although dietary potassium and sodium intake may influence calcium-phosphate metabolism and bone health, the effects on bone mineral parameters, including fibroblast growth factor 23 (FGF23), are unclear. OBJECTIVE Here, we investigated the effects of potassium or sodium supplementation on bone mineral parameters. DESIGN, SETTING, PARTICIPANTS We performed a post hoc analysis of a dietary controlled randomized, blinded, placebo-controlled crossover trial. Prehypertensive individuals not using antihypertensive medication (n = 36) received capsules containing potassium chloride (3 g/d), sodium chloride (3 g/d), or placebo. Linear mixed-effect models were used to estimate treatment effects. RESULTS Potassium supplementation increased plasma phosphate (from 1.10 ± 0.19 to 1.15 ± 0.19 mmol/L, P = 0.004), in line with an increase in tubular maximum of phosphate reabsorption (from 0.93 ± 0.21 to 1.01 ± 0.20 mmol/L, P < 0.001). FGF23 decreased (114.3 [96.8-135.0] to 108.5 [93.5-125.9] RU/mL, P = 0.01), without change in parathyroid hormone and 25-hydroxy vitamin D3. Fractional calcium excretion decreased (from 1.25 ± 0.50 to 1.11 ± 0.46 %, P = 0.03) without change in plasma calcium. Sodium supplementation decreased both plasma phosphate (from 1.10 ± 0.19 to 1.06 ± 0.21 mmol/L, P = 0.03) and FGF23 (from 114.3 [96.8-135.0] to 108.7 [92.3-128.1] RU/mL, P = 0.02). Urinary and fractional calcium excretion increased (from 4.28 ± 1.91 to 5.45 ± 2.51 mmol/24 hours, P < 0.001, and from 1.25 ± 0.50 to 1.44 ± 0.54 %, P = 0.004, respectively). CONCLUSIONS Potassium supplementation led to a decrease in FGF23, which was accompanied by increase in plasma phosphate and decreased calcium excretion. Sodium supplementation reduced FGF23, but this was accompanied by decrease in phosphate and increase in fractional calcium excretion. Our results indicate distinct effects of potassium and sodium intake on bone mineral parameters, including FGF23. CLINICAL TRIAL REGISTRATION NUMBER NCT01575041.
Collapse
Affiliation(s)
- Jelmer K Humalda
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, RB Groningen, the Netherlands
| | - Stanley M H Yeung
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, RB Groningen, the Netherlands
| | - Johanna M Geleijnse
- Division of Human Nutrition and Health, Wageningen University, HB Wageningen, the Netherlands
| | - Lieke Gijsbers
- Division of Human Nutrition and Health, Wageningen University, HB Wageningen, the Netherlands
| | - Ineke J Riphagen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, RB Groningen, the Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology & Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, CA Rotterdam, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, RC Leiden, the Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, DD Amsterdam Zuidoost, the Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, RB Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, RB Groningen, the Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, RB Groningen, the Netherlands
- Correspondence and Reprint Requests: Martin H. de Borst, MD, PhD, Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands. E-mail:
| |
Collapse
|
59
|
Neyra JA, Hu MC, Moe OW. Fibroblast Growth Factor 23 and αKlotho in Acute Kidney Injury: Current Status in Diagnostic and Therapeutic Applications. Nephron Clin Pract 2020; 144:665-672. [PMID: 32841947 DOI: 10.1159/000509856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Fibroblast growth factor (FGF) 23 and αKlotho are circulating mineral regulatory substances that also have a very diverse range of actions. Acute kidney injury (AKI) is a state of high FGF23 and low αKlotho. Clinical association data for FGF23 are strong, but the basic pathobiology of FGF23 in AKI is rather sparse. Conversely, preclinical data supporting a pathogenic role of αKlotho in AKI are strong, but the human data are still being generated. This pair of substances can potentially serve as diagnostic and prognostic biomarkers. FGF23 blockade and αKlotho restoration can have prophylactic and therapeutic utility in AKI. The literature to date is briefly reviewed in this article.
Collapse
Affiliation(s)
- Javier A Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Medicine, Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, Kentucky, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas, USA, .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA, .,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,
| |
Collapse
|
60
|
Roumeliotis S, Mallamaci F, Zoccali C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J Clin Med 2020; 9:jcm9082359. [PMID: 32718053 PMCID: PMC7465707 DOI: 10.3390/jcm9082359] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The vascular endothelium is a dynamic, functionally complex organ, modulating multiple biological processes, including vascular tone and permeability, inflammatory responses, thrombosis, and angiogenesis. Endothelial dysfunction is a threat to the integrity of the vascular system, and it is pivotal in the pathogenesis of atherosclerosis and cardiovascular disease. Reduced nitric oxide (NO) bioavailability is a hallmark of chronic kidney disease (CKD), with this disturbance being almost universal in patients who reach the most advanced phase of CKD, end-stage kidney disease (ESKD). Low NO bioavailability in CKD depends on several mechanisms affecting the expression and the activity of endothelial NO synthase (eNOS). Accumulation of endogenous inhibitors of eNOS, inflammation and oxidative stress, advanced glycosylation products (AGEs), bone mineral balance disorders encompassing hyperphosphatemia, high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23), and low levels of the active form of vitamin D (1,25 vitamin D) and the anti-ageing vasculoprotective factor Klotho all impinge upon NO bioavailability and are critical to endothelial dysfunction in CKD. Wide-ranging multivariate interventions are needed to counter endothelial dysfunction in CKD, an alteration triggering arterial disease and cardiovascular complications in this high-risk population.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Francesca Mallamaci
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
| | - Carmine Zoccali
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
- Correspondence: ; Tel.: +39-340-73540-62
| |
Collapse
|
61
|
Six I, Flissi N, Lenglet G, Louvet L, Kamel S, Gallet M, Massy ZA, Liabeuf S. Uremic Toxins and Vascular Dysfunction. Toxins (Basel) 2020; 12:toxins12060404. [PMID: 32570781 PMCID: PMC7354618 DOI: 10.3390/toxins12060404] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is an essential element found in many cardiovascular pathologies and in pathologies that have a cardiovascular impact such as chronic kidney disease (CKD). Alteration of vasomotricity is due to an imbalance between the production of relaxing and contracting factors. In addition to becoming a determining factor in pathophysiological alterations, vascular dysfunction constitutes the first step in the development of atherosclerosis plaques or vascular calcifications. In patients with CKD, alteration of vasomotricity tends to emerge as being a new, less conventional, risk factor. CKD is characterized by the accumulation of uremic toxins (UTs) such as phosphate, para-cresyl sulfate, indoxyl sulfate, and FGF23 and, consequently, the deleterious role of UTs on vascular dysfunction has been explored. This accumulation of UTs is associated with systemic alterations including inflammation, oxidative stress, and the decrease of nitric oxide production. The present review proposes to summarize our current knowledge of the mechanisms by which UTs induce vascular dysfunction.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Correspondence: ; Tel./Fax: +03-22-82-54-25
| | - Nadia Flissi
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Gaëlle Lenglet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Loïc Louvet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Amiens-Picardie University Hospital, Human Biology Center, 80054 Amiens, France
| | - Marlène Gallet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Ziad A. Massy
- Service de Néphrologie et Dialyse, Assistance Publique—Hôpitaux de Paris (APHP), Hôpital Universitaire Ambroise Paré, 92100 Boulogne Billancourt, France;
- INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), Université Paris Saclay et Université Versailles Saint Quentin en Yvelines, 94800 Villejuif, France
| | - Sophie Liabeuf
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Pharmacology Department, Amiens University Hospital, 80025 Amiens, France
| |
Collapse
|
62
|
Erythropoietin, Fibroblast Growth Factor 23, and Death After Kidney Transplantation. J Clin Med 2020; 9:jcm9061737. [PMID: 32512806 PMCID: PMC7356141 DOI: 10.3390/jcm9061737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/02/2022] Open
Abstract
Elevated levels of erythropoietin (EPO) are associated with an increased risk of death in renal transplant recipients (RTRs), but the underlying mechanisms remain unclear. Emerging data suggest that EPO stimulates production of the phosphaturic hormone fibroblast growth factor 23 (FGF23), another strong risk factor for death in RTRs. We hypothesized that the hitherto unexplained association between EPO levels and adverse outcomes may be attributable to increased levels of FGF23. We included 579 RTRs (age 51 ± 12 years, 55% males) from the TransplantLines Insulin Resistance and Inflammation Cohort study (NCT03272854). During a follow-up of 7.0 years, 121 RTRs died, of which 62 were due to cardiovascular cause. In multivariable Cox regression analysis, EPO was independently associated with all-cause (HR, 1.66; 95% CI 1.16–2.36; P = 0.005) and cardiovascular death (HR, 1.87; 95% CI 1.14–3.06; P = 0.01). However, the associations were abrogated following adjustment for FGF23 (HR, 1.28; 95% CI 0.87–1.88; P = 0.20, and HR, 1.45; 95% CI 0.84–2.48; P = 0.18, respectively). In subsequent mediation analysis, FGF23 mediated 72% and 50% of the association between EPO and all-cause and cardiovascular death, respectively. Our results underline the strong relationship between EPO and FGF23 physiology, and provide a potential mechanism underlying the relationship between increased EPO levels and adverse outcomes in RTRs.
Collapse
|
63
|
Bouma-de Krijger A, Vervloet MG. Fibroblast growth factor 23: are we ready to use it in clinical practice? J Nephrol 2020; 33:509-527. [PMID: 32130720 PMCID: PMC7220896 DOI: 10.1007/s40620-020-00715-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022]
Abstract
Patients with chronic kidney disease (CKD) have a greatly enhanced risk of cardiovascular morbidity and mortality. Over the past decade it has come clear that a disturbed calcium-phosphate metabolism, with Fibroblast Growth Factor-23 as a key hormone, is partly accountable for this enhanced risk. Numerous studies have been performed unravelling FGF23s actions and its association with clinical conditions. As FGF23 is strongly associated with adverse outcome it may be a promising biomarker for risk prediction or, even more important, targeting FGF23 may be a strategy to improve patient outcome. This review elaborates on the clinical usefulness of FGF23 measurement. Firstly it discusses the reliability of the FGF23 measurement. Secondly, it evaluates whether FGF23 measurement may lead to improved patient risk classification. Finally, and possibly most importantly, this review evaluates if lowering of FGF23 should be a target for therapy. For this, the review discusses the current evidence indicating that FGF23 may be in the causal pathway to cardiovascular pathology, provides an overview of strategies to lower FGF23 levels and discusses the current evidence concerning the benefit of lowering FGF23.
Collapse
Affiliation(s)
- Annet Bouma-de Krijger
- Department of Nephrology, Amsterdam Cardiovascular Science, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marc G. Vervloet
- Department of Nephrology, Amsterdam Cardiovascular Science, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
64
|
Ebert T, Pawelzik SC, Witasp A, Arefin S, Hobson S, Kublickiene K, Shiels PG, Bäck M, Stenvinkel P. Inflammation and Premature Ageing in Chronic Kidney Disease. Toxins (Basel) 2020; 12:E227. [PMID: 32260373 PMCID: PMC7232447 DOI: 10.3390/toxins12040227] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Persistent low-grade inflammation and premature ageing are hallmarks of the uremic phenotype and contribute to impaired health status, reduced quality of life, and premature mortality in chronic kidney disease (CKD). Because there is a huge global burden of disease due to CKD, treatment strategies targeting inflammation and premature ageing in CKD are of particular interest. Several distinct features of the uremic phenotype may represent potential treatment options to attenuate the risk of progression and poor outcome in CKD. The nuclear factor erythroid 2-related factor 2 (NRF2)-kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein 1 (KEAP1) signaling pathway, the endocrine phosphate-fibroblast growth factor-23-klotho axis, increased cellular senescence, and impaired mitochondrial biogenesis are currently the most promising candidates, and different pharmaceutical compounds are already under evaluation. If studies in humans show beneficial effects, carefully phenotyped patients with CKD can benefit from them.
Collapse
Affiliation(s)
- Thomas Ebert
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Sven-Christian Pawelzik
- Karolinska Institutet, Department of Medicine Solna, Cardiovascular Medicine Unit, SE-171 76 Stockholm, Sweden; (S.-C.P.); (M.B.)
- Karolinska University Hospital, Theme Heart and Vessels, Division of Valvular and Coronary Disease, SE-171 76 Stockholm, Sweden
| | - Anna Witasp
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Samsul Arefin
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Sam Hobson
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Karolina Kublickiene
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Paul G. Shiels
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow G61 1QH, UK;
| | - Magnus Bäck
- Karolinska Institutet, Department of Medicine Solna, Cardiovascular Medicine Unit, SE-171 76 Stockholm, Sweden; (S.-C.P.); (M.B.)
- Karolinska University Hospital, Theme Heart and Vessels, Division of Valvular and Coronary Disease, SE-171 76 Stockholm, Sweden
| | - Peter Stenvinkel
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| |
Collapse
|
65
|
Oakley CI, Vallejo JA, Wang D, Gray MA, Tiede-Lewis LM, Shawgo T, Daon E, Zorn G, Stubbs JR, Wacker MJ. Trimethylamine- N-oxide acutely increases cardiac muscle contractility. Am J Physiol Heart Circ Physiol 2020; 318:H1272-H1282. [PMID: 32243768 DOI: 10.1152/ajpheart.00507.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality among patients with chronic kidney disease (CKD). Trimethylamine-N-oxide (TMAO), a uremic metabolite that is elevated in the setting of CKD, has been implicated as a nontraditional risk factor for cardiovascular disease. While association studies have linked elevated plasma levels of TMAO to adverse cardiovascular outcomes, its direct effect on cardiac and smooth muscle function remains to be fully elucidated. We hypothesized that pathological concentrations of TMAO would acutely increase cardiac and smooth muscle contractility. These effects may ultimately contribute to cardiac dysfunction during CKD. High levels of TMAO significantly increased paced, ex vivo human cardiac muscle biopsy contractility (P < 0.05). Similarly, TMAO augmented contractility in isolated mouse hearts (P < 0.05). Reverse perfusion of TMAO through the coronary arteries via a Langendorff apparatus also enhanced cardiac contractility (P < 0.05). In contrast, the precursor molecule, trimethylamine (TMA), did not alter contractility (P > 0.05). Multiphoton microscopy, used to capture changes in intracellular calcium in paced, adult mouse hearts ex vivo, showed that TMAO significantly increased intracellular calcium fluorescence (P < 0.05). Interestingly, acute administration of TMAO did not have a statistically significant influence on isolated aortic ring contractility (P > 0.05). We conclude that TMAO directly increases the force of cardiac contractility, which corresponds with TMAO-induced increases in intracellular calcium but does not acutely affect vascular smooth muscle or endothelial function of the aorta. It remains to be determined if this acute inotropic action on cardiac muscle is ultimately beneficial or harmful in the setting of CKD.NEW & NOTEWORTHY We demonstrate for the first time that elevated concentrations of TMAO acutely augment myocardial contractile force ex vivo in both murine and human cardiac tissue. To gain mechanistic insight into the processes that led to this potentiation in cardiac contraction, we used two-photon microscopy to evaluate intracellular calcium in ex vivo whole hearts loaded with the calcium indicator dye Fluo-4. Acute treatment with TMAO resulted in increased Fluo-4 fluorescence, indicating that augmented cytosolic calcium plays a role in the effects of TMAO on force production. Lastly, TMAO did not show an effect on aortic smooth muscle contraction or relaxation properties. Our results demonstrate novel, acute, and direct actions of TMAO on cardiac function and help lay the groundwork for future translational studies investigating the complex multiorgan interplay involved in cardiovascular pathogenesis during CKD.
Collapse
Affiliation(s)
- Carlee I Oakley
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Julian A Vallejo
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri.,Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Derek Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Mark A Gray
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, Missouri
| | - Tilitha Shawgo
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Emmanuel Daon
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - George Zorn
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R Stubbs
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael J Wacker
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
66
|
Simic P, Kim W, Zhou W, Pierce KA, Chang W, Sykes DB, Aziz NB, Elmariah S, Ngo D, Pajevic PD, Govea N, Kestenbaum BR, de Boer IH, Cheng Z, Christov M, Chun J, Leaf DE, Waikar SS, Tager AM, Gerszten RE, Thadhani RI, Clish CB, Jüppner H, Wein MN, Rhee EP. Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. J Clin Invest 2020; 130:1513-1526. [PMID: 32065590 PMCID: PMC7269595 DOI: 10.1172/jci131190] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that controls blood phosphate levels by increasing renal phosphate excretion and reducing 1,25-dihydroxyvitamin D3 [1,25(OH)2D] production. Disorders of FGF23 homeostasis are associated with significant morbidity and mortality, but a fundamental understanding of what regulates FGF23 production is lacking. Because the kidney is the major end organ of FGF23 action, we hypothesized that it releases a factor that regulates FGF23 synthesis. Using aptamer-based proteomics and liquid chromatography-mass spectrometry-based (LC-MS-based) metabolomics, we profiled more than 1600 molecules in renal venous plasma obtained from human subjects. Renal vein glycerol-3-phosphate (G-3-P) had the strongest correlation with circulating FGF23. In mice, exogenous G-3-P stimulated bone and bone marrow FGF23 production through local G-3-P acyltransferase-mediated (GPAT-mediated) lysophosphatidic acid (LPA) synthesis. Further, the stimulatory effect of G-3-P and LPA on FGF23 required LPA receptor 1 (LPAR1). Acute kidney injury (AKI), which increases FGF23 levels, rapidly increased circulating G-3-P in humans and mice, and the effect of AKI on FGF23 was abrogated by GPAT inhibition or Lpar1 deletion. Together, our findings establish a role for kidney-derived G-3-P in mineral metabolism and outline potential targets to modulate FGF23 production during kidney injury.
Collapse
Affiliation(s)
- Petra Simic
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wondong Kim
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wen Zhou
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kerry A Pierce
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, UCSF, San Francisco, California, USA
| | | | | | - Sammy Elmariah
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Debby Ngo
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Paola Divieti Pajevic
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Nicolas Govea
- Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bryan R Kestenbaum
- Kidney Research Institute, University of Washington Medicine and Northwest Kidney Centers, Seattle, Washington, USA
| | - Ian H de Boer
- Kidney Research Institute, University of Washington Medicine and Northwest Kidney Centers, Seattle, Washington, USA
| | - Zhiqiang Cheng
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, UCSF, San Francisco, California, USA
| | - Marta Christov
- Department of Medicine, New York Medical College, Touro College, Valhalla, New York, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - David E Leaf
- Division of Renal (Kidney) Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sushrut S Waikar
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Robert E Gerszten
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Clary B Clish
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Harald Jüppner
- Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Pediatric Nephrology and Hypertension Program, Mass General for Children, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marc N Wein
- Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eugene P Rhee
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
67
|
Positive correlation of serum fibroblast growth factor 23 with peripheral arterial stiffness in kidney transplantation patients. Clin Chim Acta 2020; 505:9-14. [PMID: 32070728 DOI: 10.1016/j.cca.2020.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/26/2020] [Accepted: 02/13/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF-23) has a role in arterial stiffness (AS) apart from regulating mineral metabolism. We investigated the association between FGF-23 concentration and peripheral AS in renal transplantation (RT) recipients. METHODS The fasting blood samples of RT recipients (n = 66) were collected and analyzed. RESULTS A total of 29 (43.9%) RT recipients were classified under the peripheral AS group. The RT recipients in this group had a higher prevalence of diabetes (P < 0.001), hypertension (P = 0.001), and metabolic syndrome (P = 0.023); longer post-RT duration (P = 0.006); higher systolic blood pressure (P < 0.001) and diastolic blood pressure (P = 0.024); and higher fasting glucose (P = 0.002), total cholesterol (P = 0.049), blood urea nitrogen (P = 0.027), phosphorus (P = 0.047), and FGF-23 concentrations (P = 0.003) and FGF-23/α-klotho ratio (P < 0.001) but lower klotho concentrations (P = 0.025) than those in the control group. Moreover, FGF-23 concentration (adjusted odds ratio: 1.057, 95% confidence interval: 1.011-1.105, P = 0.015) was found to be an independent predictor of peripheral AS in RT recipients. CONCLUSIONS Serum FGF-23 concentration was a significant predictor of peripheral AS in RT recipients.
Collapse
|
68
|
Bouzina H, Hesselstrand R, Rådegran G. Higher plasma fibroblast growth factor 23 levels are associated with a higher risk profile in pulmonary arterial hypertension. Pulm Circ 2020; 9:2045894019895446. [PMID: 31908768 PMCID: PMC6935881 DOI: 10.1177/2045894019895446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolic abnormalities are proposed to contribute to pulmonary arterial as well as right ventricular remodelling in pulmonary arterial hypertension. Among the proposed abnormalities are altered glucose and lipid processing, mitochondrial malfunction, oxidative stress as well as vitamin D and iron abnormalities. In the present study, we investigated 11 metabolic plasma biomarkers, with the hypothesis that metabolic proteins may mirror disease severity in pulmonary arterial hypertension. Using proximity extension assays, plasma metabolic biomarkers were measured in 48 pulmonary arterial hypertension patients at diagnosis and, in 33 of them, at an early treatment follow-up, as well as in 16 healthy controls. Among the studied metabolic biomarkers, plasma fibroblast growth factor-23 (p < 0.001), fibroblast growth factor-21 (p < 0.001), fatty acid binding protein 4 (p < 0.001) and lectin-like oxidised low-density lipoprotein receptor 1 (p < 0.001) were increased and paraoxonase-3 was decreased (p < 0.001) in pulmonary arterial hypertension at diagnosis versus controls. Fibroblast growth factor-23 showed the strongest correlations to studied clinical parameters and was therefore selected for further analyses. Fibroblast growth factor-23 correlated specifically to mean right atrial pressure (r = 0.67, p < 0.001), six-min walking distance (r = −0.66, p < 0.001), NT-proBNP (r = 0.64, p < 0.001), venous oxygen saturation (r = −0.61, p < 0.001), cardiac index (r = −0.39, p < 0.007) and pulmonary vascular resistance (r = 0.37, p < 0.01). Fibroblast growth factor-23 correlated moreover to ESC/ERS (r = 0.72, p < 0.001) and the REVEAL risk score (r = 0.61, p < 0.001). Comparing early treatment follow-up with baseline, fibroblast growth factor-23 decreased (p < 0.02), with changes in fibroblast growth factor-23 correlating to changes in six-min walking distance (r = −0.56, p < 0.003), venous oxygen saturation (r = −0.46, p < 0.01), pulmonary vascular resistance (r = 0.43, p < 0.02), mean right atrial pressure (r = 0.38, p < 0.04) and cardiac index (r = −0.39, p < 0.04). Elevated plasma fibroblast growth factor-23 levels at pulmonary arterial hypertension diagnosis were associated with worse haemodynamics and a higher risk profile, and were decreased after the administration of pulmonary arterial hypertension-specific treatment.
Collapse
Affiliation(s)
- Habib Bouzina
- Section of Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, Skåne University Hospital, Lund, Sweden
| | - Roger Hesselstrand
- Section of Rheumatology, Faculty of Medicine, Lund University, Lund, Sweden.,Department of Rheumatology, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Section of Cardiology, Faculty of Medicine, Lund University, Lund, Sweden.,The Hemodynamic Lab, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
69
|
Hu X, Yang L, Yu W, Pan W, Chen X, Li Q, Zhou J, Gu X. Association of Serum Fibroblast Growth Factor 23 Levels with the Presence and Severity of Hepatic Steatosis Is Independent of Sleep Duration in Patients with Diabetes. Diabetes Metab Syndr Obes 2020; 13:1171-1178. [PMID: 32368110 PMCID: PMC7174196 DOI: 10.2147/dmso.s241348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Fibroblast growth factor (FGF) 23 is currently recognized to be involved in the occurrence and development of metabolic diseases. The present study aimed to investigate the association between serum FGF23 levels and hepatic steatosis, as well as the influence of sleep duration. PATIENTS AND METHODS The present study population was selected from patients with diagnosed diabetes hospitalized during February 2018 to April 2019. Serum FGF23 levels were assessed by two-side sandwich enzyme-linked immunosorbent assay. The presence and severity of hepatic steatosis were determined by controlled attenuation parameter (CAP). Hepatic steatosis was determined as CAP≥302 dB/m. RESULTS Serum FGF23 levels were significantly higher in individuals with hepatic steatosis than in those without hepatic steatosis (P=0.004). The present study population was divided into Q1-Q4 according to serum FGF23 quartiles. The risks of hepatic steatosis were increased more than 3 folds in Q2-Q4 (all P<0.01) compared to Q1. CAP showed an uptrend from Q1 to Q4 (P=0.005), even after adjustment for gender and age (P=0.001). Multivariate variance analyses showed significant differences in CAP among Q1-Q4 (P=0.008) and between individuals with short and long sleep duration (P=0.023), which were independent of each other. Serum FGF23 levels were positively associated with CAP independent of gender, age, total metabolic traits, and sleep duration (P=0.042). CONCLUSION Serum FGF23 levels were independently and positively associated with the severity of hepatic steatosis. The associations of serum FGF23 levels and sleep duration with hepatic steatosis were independent of each other.
Collapse
Affiliation(s)
- Xiang Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Lijuan Yang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Weihui Yu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Wei Pan
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xueqin Chen
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Qianqian Li
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jingzong Zhou
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Xuejiang Gu Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou325000, Zhejiang Province, People’s Republic of China Tel/Fax +86 577 5557 9381 Email
| |
Collapse
|
70
|
Abstract
Fibroblast growth factor 23 (FGF23) is a hormone with a central role in the regulation of phosphate homeostasis. This regulation is accomplished by the coordinated modulation of renal phosphate handling, vitamin D metabolism and parathyroid hormone secretion. Patients with kidney disease have increased circulating levels of FGF23 and in other patient populations and in healthy individuals, FGF23 levels also rise following an increase in dietary phosphate intake. Maladaptive increases in FGF23 have a detrimental effect on several organs and tissues and, importantly, these pathological changes most likely contribute to increased morbidity and mortality. For example, in the context of heart disease, FGF23 is involved in the development of pathological hypertrophy that can lead to congestive heart failure. Increased FGF23 concentrations can also lead to microcirculatory changes, in particular reduced vasodilatory capacity, and collectively these cardiovascular changes can compromise tissue perfusion. In addition, FGF23 is associated with inflammation and an increased risk of infection; other potentially detrimental effects of FGF23 are likely to emerge in the future. Most importantly, recent insights demonstrate that FGF23 can be therapeutically targeted, which holds promise for the treatment of many patients in a variety of clinical settings.
Collapse
|
71
|
Smith ER, Holt SG, Hewitson TD. αKlotho-FGF23 interactions and their role in kidney disease: a molecular insight. Cell Mol Life Sci 2019; 76:4705-4724. [PMID: 31350618 PMCID: PMC11105488 DOI: 10.1007/s00018-019-03241-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Following the serendipitous discovery of the ageing suppressor, αKlotho (αKl), several decades ago, a growing body of evidence has defined a pivotal role for its various forms in multiple aspects of vertebrate physiology and pathology. The transmembrane form of αKl serves as a co-receptor for the osteocyte-derived mineral regulator, fibroblast growth factor (FGF)23, principally in the renal tubules. However, compelling data also suggest that circulating soluble forms of αKl, derived from the same source, may have independent homeostatic functions either as a hormone, glycan-cleaving enzyme or lectin. Chronic kidney disease (CKD) is of particular interest as disruption of the FGF23-αKl axis is an early and common feature of disease manifesting in markedly deficient αKl expression, but FGF23 excess. Here we critically discuss recent findings in αKl biology that conflict with the view that soluble αKl has substantive functions independent of FGF23 signalling. Although the issue of whether soluble αKl can act without FGF23 has yet to be resolved, we explore the potential significance of these contrary findings in the context of CKD and highlight how this endocrine pathway represents a promising target for novel anti-ageing therapeutics.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia.
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| |
Collapse
|
72
|
Disthabanchong S, Srisuwarn P. Mechanisms of Vascular Calcification in Kidney Disease. Adv Chronic Kidney Dis 2019; 26:417-426. [PMID: 31831120 DOI: 10.1053/j.ackd.2019.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
The increase in prevalence and severity of vascular calcification in chronic kidney disease is a result of complex interactions between changes in the vascular bed, mineral metabolites, and other uremic factors. Vascular calcification can occur in the intima and the media of arterial wall. Under permissive conditions, vascular smooth muscle cells (VSMCs) can transform to osteoblast-like phenotype. The membrane-bound vesicles released from transformed VSMCs and the apoptotic bodies derived from dying VSMCs serve as nucleating structures for calcium crystal formation. Alterations in the quality and the quantity of endogenous calcification inhibitors also give rise to an environment that potentiates calcification.
Collapse
Affiliation(s)
- Sinee Disthabanchong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Praopilad Srisuwarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
73
|
Shi J, Fan J, Su Q, Yang Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne) 2019; 10:703. [PMID: 31736870 PMCID: PMC6833922 DOI: 10.3389/fendo.2019.00703] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Clear evidence indicates that cytokines, for instance, adipokines, hepatokines, inflammatory cytokines, myokines, and osteokines, contribute substantially to the development of abnormal glucose and lipid metabolism. Some cytokines play a positive role in metabolism action, while others have a negative metabolic role linking to the induction of metabolic dysfunction. The mechanisms involved are not fully understood, but are associated with lipid accumulation in organs and tissues, especially in the adipose and liver tissue, changes in energy metabolism, and inflammatory signals derived from various cell types, including immune cells. In this review, we describe the roles of certain cytokines in the regulation of metabolism and inter-organ signaling in regard to the pathophysiological aspects. Given the disease-related changes in circulating levels of relevant cytokines, these factors may serve as biomarkers for the early detection of metabolic disorders. Moreover, based on preclinical studies, certain cytokines that can induce improvements in glucose and lipid metabolism and immune response may emerge as novel targets of broader and more efficacious treatments and prevention of metabolic disease.
Collapse
Affiliation(s)
- Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
74
|
Vervloet M. Modifying Phosphate Toxicity in Chronic Kidney Disease. Toxins (Basel) 2019; 11:E522. [PMID: 31505780 PMCID: PMC6784221 DOI: 10.3390/toxins11090522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Phosphate toxicity is a well-established phenomenon, especially in chronic kidney disease (CKD), where hyperphosphatemia is a frequent occurrence when CKD is advanced. Many therapeutic efforts are targeted at phosphate, and comprise dietary intervention, modifying dialysis schemes, treating uncontrolled hyperparathyroidism and importantly, phosphate binder therapy. Despite all these interventions, hyperphosphatemia persists in many, and its pathological influence is ongoing. In nephrological care, a somewhat neglected aspect of treatment-when attempts fail to lower exposure to a toxin like phosphate-is to explore the possibility of "anti-dotes". Indeed, quite a long list of factors modify, or are mediators of phosphate toxicity. Addressing these, especially when phosphate itself cannot be sufficiently controlled, may provide additional protection. In this narrative overview, several factors are discussed that may qualify as either such a modifier or mediator, that can be influenced by other means than simply lowering phosphate exposure. A wider scope when targeting phosphate-induced comorbidity in CKD, in particular cardiovascular disease, may alleviate the burden of disease that is the consequence of this potentially toxic mineral in CKD.
Collapse
Affiliation(s)
- Marc Vervloet
- Department of Nephrology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
75
|
van de Wouw J, Broekhuizen M, Sorop O, Joles JA, Verhaar MC, Duncker DJ, Danser AHJ, Merkus D. Chronic Kidney Disease as a Risk Factor for Heart Failure With Preserved Ejection Fraction: A Focus on Microcirculatory Factors and Therapeutic Targets. Front Physiol 2019; 10:1108. [PMID: 31551803 PMCID: PMC6737277 DOI: 10.3389/fphys.2019.01108] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) and chronic kidney disease (CKD) co-exist, and it is estimated that about 50% of HF patients suffer from CKD. Although studies have been performed on the association between CKD and HF with reduced ejection fraction (HFrEF), less is known about the link between CKD and heart failure with preserved ejection fraction (HFpEF). Approximately, 50% of all patients with HF suffer from HFpEF, and this percentage is projected to rise in the coming years. Therapies for HFrEF are long established and considered quite successful. In contrast, clinical trials for treatment of HFpEF have all shown negative or disputable results. This is likely due to the multifactorial character and the lack of pathophysiological knowledge of HFpEF. The typical co-existence of HFpEF and CKD is partially due to common underlying comorbidities, such as hypertension, dyslipidemia and diabetes. Macrovascular changes accompanying CKD, such as hypertension and arterial stiffening, have been described to contribute to HFpEF development. Furthermore, several renal factors have a direct impact on the heart and/or coronary microvasculature and may underlie the association between CKD and HFpEF. These factors include: (1) activation of the renin-angiotensin-aldosterone system, (2) anemia, (3) hypercalcemia, hyperphosphatemia and increased levels of FGF-23, and (4) uremic toxins. This review critically discusses the above factors, focusing on their potential contribution to coronary dysfunction, left ventricular stiffening, and delayed left ventricular relaxation. We further summarize the directions of novel treatment options for HFpEF based on the contribution of these renal drivers.
Collapse
Affiliation(s)
- Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Michelle Broekhuizen
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
76
|
Eisenga MF, Emans ME, van der Putten K, Cramer MJ, Diepenbroek A, Velthuis BK, Doevendans PA, Verhaar MC, Joles JA, Bakker SJL, Nolte IM, Braam B, Gaillard CAJM. Epoetin Beta and C-Terminal Fibroblast Growth Factor 23 in Patients With Chronic Heart Failure and Chronic Kidney Disease. J Am Heart Assoc 2019; 8:e011130. [PMID: 31423921 PMCID: PMC6759901 DOI: 10.1161/jaha.118.011130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background In patients with chronic heart failure and chronic kidney disease, correction of anemia with erythropoietin-stimulating agents targeting normal hemoglobin levels is associated with an increased risk of cardiovascular morbidity and mortality. Emerging data suggest a direct effect of erythropoietin on fibroblast growth factor 23 (FGF23), elevated levels of which have been associated with adverse outcomes. We investigate effects of erythropoietin-stimulating agents in patients with both chronic heart failure and chronic kidney disease focusing on FGF23. Methods and Results In the EPOCARES (Erythropoietin in CardioRenal Syndrome) study, we randomized 56 anemic patients (median age 74 [interquartile range 69-80] years, 66% male) with both chronic heart failure and chronic kidney disease into 3 groups, of which 2 received epoetin beta 50 IU/kg per week for 50 weeks, and the third group served as control. Measurements were performed at baseline and after 2, 26, and 50 weeks. Data were analyzed using linear mixed-model analysis. After 50 weeks of erythropoietin-stimulating agent treatment, hematocrit and hemoglobin levels increased. Similarly, C-terminal FGF23 levels, in contrast to intact FGF23 levels, rose significantly due to erythropoietin-stimulating agents as compared with the controls. During median follow-up for 5.7 (2.0-5.7) years, baseline C-terminal FGF23 levels were independently associated with increased risk of mortality (hazard ratio 2.20; 95% CI, 1.35-3.59; P=0.002). Conclusions Exogenous erythropoietin increases C-terminal FGF23 levels markedly over a period of 50 weeks, elevated levels of which, even at baseline, are significantly associated with an increased risk of mortality. The current results, in a randomized trial setting, underline the strong relationship between erythropoietin and FGF23 physiology in patients with chronic heart failure and chronic kidney disease. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00356733.
Collapse
Affiliation(s)
- Michele F Eisenga
- Division of Nephrology Department of Internal Medicine University of Groningen University Medical Center Groningen Groningen the Netherlands
| | - Mireille E Emans
- Department of Cardiology Ikazia Hospital Rotterdam the Netherlands
| | | | - Maarten J Cramer
- Department of Cardiology University of Utrecht University Medical Center Utrecht Utrecht the Netherlands
| | - Adry Diepenbroek
- Division of Nephrology Department of Internal Medicine University of Groningen University Medical Center Groningen Groningen the Netherlands
| | - Birgitta K Velthuis
- Department of Radiology University of Utrecht University Medical Center Utrecht Utrecht the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology University of Utrecht University Medical Center Utrecht Utrecht the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension University of Utrecht University Medical Center Utrecht Utrecht the Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension University of Utrecht University Medical Center Utrecht Utrecht the Netherlands
| | - Stephan J L Bakker
- Division of Nephrology Department of Internal Medicine University of Groningen University Medical Center Groningen Groningen the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology University of Groningen University Medical Center Groningen Groningen the Netherlands
| | - Branko Braam
- Division of Nephrology and Immunology Department of Medicine University of Alberta Edmonton Canada
| | - Carlo A J M Gaillard
- Department of Internal Medicine and Dermatology University of Utrecht University Medical Center Utrecht Utrecht the Netherlands
| |
Collapse
|
77
|
Millar SA, Anderson SI, O'Sullivan SE. Osteokines and the vasculature: a review of the in vitro effects of osteocalcin, fibroblast growth factor-23 and lipocalin-2. PeerJ 2019; 7:e7139. [PMID: 31372314 PMCID: PMC6660824 DOI: 10.7717/peerj.7139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Bone-derived factors that demonstrate extra-skeletal functions, also termed osteokines, are fast becoming a highly interesting and focused area of cross-disciplinary endocrine research. Osteocalcin (OCN), fibroblast growth factor-23 (FGF23) and lipocalin-2 (LCN-2), produced in bone, comprise an important endocrine system that is finely tuned with other organs to ensure homeostatic balance and health. This review aims to evaluate in vitro evidence of the direct involvement of these proteins in vascular cells and whether any causal roles in cardiovascular disease or inflammation can be supported. PubMed, Medline, Embase and Google Scholar were searched for relevant research articles investigating the exogenous addition of OCN, FGF23 or LCN-2 to vascular smooth muscle or endothelial cells. Overall, these osteokines are directly vasoactive across a range of human and animal vascular cells. Both OCN and FGF23 have anti-apoptotic properties and increase eNOS phosphorylation and nitric oxide production through Akt signalling in human endothelial cells. OCN improves intracellular insulin signalling and demonstrates protective effects against endoplasmic reticulum stress in murine and human endothelial cells. OCN may be involved in calcification but further research is warranted, while there is no evidence for a pro-calcific effect of FGF23 in vitro. FGF23 and LCN-2 increase proliferation in some cell types and increase and decrease reactive oxygen species generation, respectively. LCN-2 also has anti-apoptotic effects but may increase endoplasmic reticulum stress as well as have pro-inflammatory and pro-angiogenic properties in human vascular endothelial and smooth muscle cells. There is no strong evidence to support a pathological role of OCN or FGF23 in the vasculature based on these findings. In contrast, they may in fact support normal endothelial functioning, vascular homeostasis and vasodilation. No studies examined whether OCN or FGF23 may have a role in vascular inflammation. Limited studies with LCN-2 indicate a pro-inflammatory and possible pathological role in the vasculature but further mechanistic data is required. Overall, these osteokines pose intriguing functions which should be investigated comprehensively to assess their relevance to cardiovascular disease and health in humans.
Collapse
Affiliation(s)
- Sophie A Millar
- Division of Graduate Entry Medicine and Medical Sciences, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Susan I Anderson
- Division of Graduate Entry Medicine and Medical Sciences, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- Division of Graduate Entry Medicine and Medical Sciences, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
78
|
Abstract
Acute kidney injury (AKI) is associated with many of the same mineral metabolite abnormalities that are observed in chronic kidney disease. These include increased circulating levels of the osteocyte-derived, vitamin D-regulating hormone, fibroblast growth factor 23 (FGF23), and decreased renal expression of klotho, the co-receptor for FGF23. Recent data have indicated that increased FGF23 and decreased klotho levels in the blood and urine could serve as novel predictive biomarkers of incident AKI, or as novel prognostic biomarkers of adverse outcomes in patients with established AKI. In addition, because FGF23 and klotho exert numerous classic as well as off-target effects on a variety of organ systems, targeting their dysregulation in AKI may represent a unique opportunity for therapeutic intervention. We review the pathophysiology, kinetics, and regulation of FGF23 and klotho in animal and human studies of AKI, and we discuss the challenges and opportunities involved in targeting FGF23 and klotho therapeutically.
Collapse
Affiliation(s)
- Marta Christov
- Department of Medicine, New York Medical College, Valhalla, NY.
| | - Javier A Neyra
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, KY; Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX
| | - Sanjeev Gupta
- Department of Medicine, New York Medical College, Valhalla, NY
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to review the current literature related to the role of inorganic phosphate in the pathogenesis of hypertension. RECENT FINDINGS An increasing number of publications have revealed a detrimental role of inorganic phosphate, which is commonly used as a flavor enhancer or preservative in the processed food, in promoting hypertension in otherwise healthy individuals. Animal experimental data indicate that dietary phosphate excess engages multiple mechanisms that promote hypertension, including overactivation of the sympathetic nervous system, increased vascular stiffness, impaired endothelium-dependent vasodilation, as well as increased renal sodium absorption or renal injury. These effects may be explained by direct effects of high extracellular phosphate levels or increase in phosphaturic hormones such as fibroblast growth factor 23, or downregulation of klotho, a transmembrane protein expressed in multiple organs which possess antiaging property. SUMMARY Dietary phosphate, particularly inorganic phosphate, is an emerging risk factor for hypertension which is ubiquitous in the western diet. Large randomized clinical trials are needed to determine if lowering dietary phosphate content constitutes an effective nonpharmacologic intervention for prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Han-Kyul Kim
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Masaki Mizuno
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - Wanpen Vongpatanasin
- Hypertension Section, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
80
|
Johnston JA, Nelson DR, Zhang L, Curtis SE, Voelker JR, Wetterau JR. Estimating the distribution of a novel clinical biomarker (FGF-23) in the US population using findings from a regional research registry. PLoS One 2019; 14:e0218435. [PMID: 31246994 PMCID: PMC6597057 DOI: 10.1371/journal.pone.0218435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/02/2019] [Indexed: 12/27/2022] Open
Abstract
Evidence of involvement of novel biomarkers in disease pathogenesis from research cohorts often precedes an understanding of their distributions in broader populations. This study aimed to estimate the distribution of fibroblast growth factor 23 (FGF-23), an endocrine hormone that helps to regulate serum phosphate levels, in the overall US population and in important subgroups. We used a predictive model generated using data from the Framingham Health Study to estimate FGF-23 values for adults in the US National Health and Nutrition Examination Survey and the size of patient subgroups with levels of FGF-23 above selected thresholds. To assess the face validity of our FGF-23 estimates, we examined the relationship between estimated FGF-23 and cardiovascular and all-cause mortality within NHANES using Kaplan-Meier estimates and Cox proportional-hazards regression models and compared it to that observed in Framingham. Estimated FGF-23 values from NHANES were lower (median [interquartile range] 47.4 [35.8, 64.0] vs. 67.0 [54.0, 85.0] RU/mL) than the observed FGF-23 values from the Framingham cohort. Age- and sex-adjusted 10-year all-cause mortality was significantly higher (hazard ratio 2.43 [95% confidence interval: 1.42, 4.16]) for subjects with estimated FGF-23 levels in the highest versus lowest quartile. Estimating the distribution of biomarker values in the general population by applying predictive equations from smaller research cohorts is feasible and can inform drug research decision making.
Collapse
Affiliation(s)
- Joseph A. Johnston
- Global Patient Outcomes and Real World Evidence, Eli Lilly and Company, Indianapolis, Indiana, United States of America
- * E-mail:
| | - David R. Nelson
- Global Patient Outcomes and Real World Evidence, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Limin Zhang
- Global Patient Outcomes and Real World Evidence, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Sarah E. Curtis
- Global Patient Outcomes and Real World Evidence, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - James R. Voelker
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - John R. Wetterau
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| |
Collapse
|
81
|
Eisenga MF, De Jong MA, Van der Meer P, Leaf DE, Huls G, Nolte IM, Gaillard CAJM, Bakker SJL, De Borst MH. Iron deficiency, elevated erythropoietin, fibroblast growth factor 23, and mortality in the general population of the Netherlands: A cohort study. PLoS Med 2019; 16:e1002818. [PMID: 31170159 PMCID: PMC6553711 DOI: 10.1371/journal.pmed.1002818] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Emerging data in chronic kidney disease (CKD) patients suggest that iron deficiency and higher circulating levels of erythropoietin (EPO) stimulate the expression and concomitant cleavage of the osteocyte-derived, phosphate-regulating hormone fibroblast growth factor 23 (FGF23), a risk factor for premature mortality. To date, clinical implications of iron deficiency and high EPO levels in the general population, and the potential downstream role of FGF23, are unclear. Therefore, we aimed to determine the associations between iron deficiency and higher EPO levels with mortality, and the potential mediating role of FGF23, in a cohort of community-dwelling subjects. METHODS AND FINDINGS We analyzed 6,544 community-dwelling subjects (age 53 ± 12 years; 50% males) who participated in the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study-a prospective population-based cohort study, of which we used the second survey (2001-2003)-and follow-up was performed for a median of 8 years. We measured circulating parameters of iron status, EPO levels, and plasma total FGF23 levels. Our primary outcome was all-cause mortality. In multivariable linear regression analyses, ferritin (ß = -0.43), transferrin saturation (TSAT) (ß = -0.17), hepcidin (ß = -0.36), soluble transferrin receptor (sTfR; ß = 0.33), and EPO (ß = 0.28) were associated with FGF23 level, independent of potential confounders. During median (interquartile range [IQR]) follow-up of 8.2 (7.7-8.8) years, 379 (6%) subjects died. In multivariable Cox regression analyses, lower levels of TSAT (hazard ratio [HR] per 1 standard deviation [SD], 0.84; 95% confidence interval [CI], 0.75-0.95; P = 0.004) and higher levels of sTfR (HR, 1.15; 95% CI 1.03-1.28; P = 0.01), EPO (HR, 1.17; 95% CI 1.05-1.29; P = 0.004), and FGF23 (HR, 1.20; 95% CI 1.10-1.32; P < 0.001) were each significantly associated with an increased risk of death, independent of potential confounders. Adjustment for FGF23 levels markedly attenuated the associations of TSAT (HR, 0.89; 95% CI 0.78-1.01; P = 0.06), sTfR (HR, 1.08; 95% CI 0.96-1.20; P = 0.19), and EPO (HR, 1.10; 95% CI 0.99-1.22; P = 0.08) with mortality. FGF23 remained associated with mortality (HR, 1.15; 95% CI 1.04-1.27; P = 0.008) after adjustment for TSAT, sTfR, and EPO levels. Mediation analysis indicated that FGF23 explained 31% of the association between TSAT and mortality; similarly, FGF23 explained 32% of the association between sTfR and mortality and 48% of the association between EPO and mortality (indirect effect P < 0.05 for all analyses). The main limitations of this study were the observational study design and the absence of data on intact FGF23 (iFGF23), precluding us from discerning whether the current results are attributable to an increase in iFGF23 or in C-terminal FGF23 fragments. CONCLUSIONS AND RELEVANCE In this study, we found that functional iron deficiency and higher EPO levels were each associated with an increased risk of death in the general population. Our findings suggest that FGF23 could be involved in the association between functional iron deficiency and increased EPO levels and death. Investigation of strategies aimed at correcting iron deficiency and reducing FGF23 levels is warranted.
Collapse
Affiliation(s)
- Michele F. Eisenga
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- * E-mail:
| | - Maarten A. De Jong
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter Van der Meer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - David E. Leaf
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gerwin Huls
- Division of Hematology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Carlo A. J. M. Gaillard
- Department of Internal Medicine and Dermatology, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin H. De Borst
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
82
|
de Oliveira Neves FM, Araújo CB, de Freitas DF, Arruda BFT, de Macêdo Filho LJM, Salles VB, Meneses GC, Martins AMC, Libório AB. Fibroblast growth factor 23, endothelium biomarkers and acute kidney injury in critically-ill patients. J Transl Med 2019; 17:121. [PMID: 30971270 PMCID: PMC6458699 DOI: 10.1186/s12967-019-1875-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibroblast growth factor 23 (FGF23) and endothelium-related biomarkers have been related to AKI in critically-ill patients. Also, FGF23 is associated with endothelial dysfunction. In this study, we investigated if elevated FGF23 association with severe AKI is mediated by several endothelial/glycocalyx-related biomarkers. METHODS Prospective cohort study with critically-ill patients. Blood samples were collected within the first 24 h after ICU admission. Severe AKI (defined according to KDIGO stage 2/3) was the analyzed outcome. RESULTS 265 patients were enrolled and 82 (30.9%) developed severe AKI-defined according to KDIGO stage 2/3. Blood samples to biomarkers measurement were collected within the first 24 h after ICU admission. After adjustment for several variables, FGF23, vascular cell adhesion protein 1 (VCAM-1), angiopoietin 2 (AGPT2), syndecan-1 and intercellular adhesion molecule-1 (ICAM-1) were associated with severe AKI. The individual indirect effects of VCAM-1, AGPT2 and syndecan-1 explained 23%, 31%, and 32% of the total observed effect of FGF23 on severe AKI, respectively. ICAM-1 showed no statistically significant mediation. When all three endothelium-related biomarkers were included in a directed acyclic graph (DAG), the Bayesian network learning suggested the following causal association pathway FGF-23 → syndecan-1 → VCAM-1 → AGPT2 → severe AKI. CONCLUSIONS The association between FGF23 and AKI are mediated by endothelium-related biomarkers, mainly VCAM-1, AGPT2 and syndecan-1. Moreover, the statistical models show that syndecan-1, a biomarker of endothelial glycocalyx dysfunction, seems to be the initial mediator between FGF23 and severe AKI.
Collapse
Affiliation(s)
- Fernanda Macedo de Oliveira Neves
- Medical Sciences Postgraduate Program, Department of Clinical Medicine, Universidade Federal do Ceará, Avenida Abolição, 4043 Ap 1203, Fortaleza, Ceará, CEP 60165-082, Brazil
| | - Camila Barbosa Araújo
- Medical Sciences Postgraduate Program, Universidade de Fortaleza-UNIFOR, Fortaleza, Ceara, Brazil
| | | | | | | | | | - Gdayllon Cavalcante Meneses
- Medical Sciences Postgraduate Program, Department of Clinical Medicine, Universidade Federal do Ceará, Avenida Abolição, 4043 Ap 1203, Fortaleza, Ceará, CEP 60165-082, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Alexandre Braga Libório
- Medical Sciences Postgraduate Program, Department of Clinical Medicine, Universidade Federal do Ceará, Avenida Abolição, 4043 Ap 1203, Fortaleza, Ceará, CEP 60165-082, Brazil. .,Medical Sciences Postgraduate Program, Universidade de Fortaleza-UNIFOR, Fortaleza, Ceara, Brazil.
| |
Collapse
|
83
|
Bouma-de Krijger A, van Ittersum FJ, Hoekstra T, Ter Wee PM, Vervloet MG. Short-term effects of sevelamer-carbonate on fibroblast growth factor 23 and pulse wave velocity in patients with normophosphataemic chronic kidney disease Stage 3. Clin Kidney J 2019; 12:678-685. [PMID: 31584563 PMCID: PMC6768309 DOI: 10.1093/ckj/sfz027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 12/25/2022] Open
Abstract
Background High concentrations of both phosphate and fibroblast growth factor 23 (FGF23) observed in chronic kidney disease (CKD) are associated with an increased risk of cardiovascular morbidity and mortality. Pulse wave velocity (PWV) is a surrogate marker for cardiovascular events and all-cause mortality. It is not known whether a reduction of FGF23 or phosphate alters cardiovascular risk. Sevelamer has shown to have the ability to reduce both phosphate and FGF23 concentrations. Furthermore, reduction of PWV is reported with sevelamer use as well, but it is unclear if this is mediated by decline of phosphate or FGF23. We investigated if sevelamer induced a decline in PWV and if this was associated with a reduction in FGF23. Methods In all, 24 normophosphataemic CKD Stage 3 patients started treatment with a fixed dose of sevelamer-carbonate (Renvela®) 2.4 g twice daily, with their usual diet for 8 weeks in a single-arm study. PWV was measured and blood samples were obtained before, during and after washout of treatment with sevelamer. Vascular calcification was quantified using the Kauppila Index (KI). The primary outcome was the change of PWV from baseline to 8 weeks of treatment and the secondary endpoint was the difference of FGF23 following treatment with sevelamer. One of the linear mixed models was used to analyse the association between treatment and outcome. Mediation analysis was performed as a sensitivity analysis. The study was registered in the Dutch trial register (http://www.trialregister.nl: NTR2383). Results A total of 18 patients completed 8 weeks of treatment with sevelamer and were analysed. Overall, treatment with sevelamer did not induce a significant reduction of PWV (β = −0.36, P = 0.12). However, in patients with less vascular calcification (lower KI score), there was a statistically significant reduction of PWV, adjusted for mean arterial pressure, after treatment (β = 0.63, P = 0.02). Addition of FGF23 to the model did not alter this association. Mediation analysis yielded similar results. FGF23 did not decrease during treatment with sevelamer. Conclusion In this short-term pilot study in normophosphataemic CKD patients, treatment with sevelamer did not improve PWV. In subgroup analysis, however, PWV improved in patients with no or limited abdominal aorta calcifications. This was not associated with a decline of FGF23.
Collapse
Affiliation(s)
- Annet Bouma-de Krijger
- Department of Nephrology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Frans J van Ittersum
- Department of Nephrology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences Institute (ACS), O2
- Building for Human Life Sciences, Amsterdam, The Netherlands
| | - Tiny Hoekstra
- Department of Nephrology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Pieter M Ter Wee
- Department of Nephrology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, VU University Medical Center Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences Institute (ACS), O2
- Building for Human Life Sciences, Amsterdam, The Netherlands
| |
Collapse
|
84
|
Picke AK, Campbell G, Napoli N, Hofbauer LC, Rauner M. Update on the impact of type 2 diabetes mellitus on bone metabolism and material properties. Endocr Connect 2019; 8:R55-R70. [PMID: 30772871 PMCID: PMC6391903 DOI: 10.1530/ec-18-0456] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/23/2022]
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, especially as a result of our aging society, high caloric intake and sedentary lifestyle. Besides the well-known complications of T2DM on the cardiovascular system, the eyes, kidneys and nerves, bone strength is also impaired in diabetic patients. Patients with T2DM have a 40-70% increased risk for fractures, despite having a normal to increased bone mineral density, suggesting that other factors besides bone quantity must account for increased bone fragility. This review summarizes the current knowledge on the complex effects of T2DM on bone including effects on bone cells, bone material properties and other endocrine systems that subsequently affect bone, discusses the effects of T2DM medications on bone and concludes with a model identifying factors that may contribute to poor bone quality and increased bone fragility in T2DM.
Collapse
Affiliation(s)
- Ann-Kristin Picke
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Graeme Campbell
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - Nicola Napoli
- Diabetes and Bone Network, Department Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, Missouri, USA
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Correspondence should be addressed to M Rauner:
| |
Collapse
|
85
|
Avin KG, Vallejo JA, Chen NX, Wang K, Touchberry CD, Brotto M, Dallas SL, Moe SM, Wacker MJ. Fibroblast growth factor 23 does not directly influence skeletal muscle cell proliferation and differentiation or ex vivo muscle contractility. Am J Physiol Endocrinol Metab 2018; 315:E594-E604. [PMID: 29558205 PMCID: PMC6230710 DOI: 10.1152/ajpendo.00343.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/29/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
Abstract
Skeletal muscle dysfunction accompanies the clinical disorders of chronic kidney disease (CKD) and hereditary hypophosphatemic rickets. In both disorders, fibroblast growth factor 23 (FGF23), a bone-derived hormone regulating phosphate and vitamin D metabolism, becomes chronically elevated. FGF23 has been shown to play a direct role in cardiac muscle dysfunction; however, it is unknown whether FGF23 signaling can also directly induce skeletal muscle dysfunction. We found expression of potential FGF23 receptors ( Fgfr1-4) and α-Klotho in muscles of two animal models (CD-1 and Cy/+ rat, a naturally occurring rat model of chronic kidney disease-mineral bone disorder) as well as C2C12 myoblasts and myotubes. C2C12 proliferation, myogenic gene expression, oxidative stress marker 8-OHdG, intracellular Ca2+ ([Ca2+]i), and ex vivo contractility of extensor digitorum longus (EDL) or soleus muscles were assessed after treatment with various amounts of FGF23. FGF23 (2-100 ng/ml) did not alter C2C12 proliferation, expression of myogenic genes, or oxidative stress after 24- to 72-h treatment. Acute or prolonged FGF23 treatment up to 6 days did not alter C2C12 [Ca2+]i handling, nor did acute treatment with FGF23 (9-100 ng/ml) affect EDL and soleus muscle contractility. In conclusion, although skeletal muscles express the receptors involved in FGF23-mediated signaling, in vitro FGF23 treatments failed to directly alter skeletal muscle development or function under the conditions tested. We hypothesize that other endogenous substances may be required to act in concert with FGF23 or apart from FGF23 to promote muscle dysfunction in hereditary hypophosphatemic rickets and CKD.
Collapse
Affiliation(s)
- Keith G Avin
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University , Indianapolis, Indiana
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Julian A Vallejo
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City , Kansas City, Missouri
| | - Neal X Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City , Kansas City, Missouri
| | - Chad D Touchberry
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri
| | - Marco Brotto
- College of Nursing and Health Innovation, Bone-Muscle Collaborative Sciences, University of Texas-Arlington , Arlington, Texas
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City , Kansas City, Missouri
| | - Sharon M Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
- Roudebush Veterans Administration Medical Center , Indianapolis, Indiana
| | - Michael J Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri
| |
Collapse
|
86
|
Incremental value of intact fibroblast growth factor 23 to natriuretic peptides for long-term risk estimation of heart failure patients. Clin Biochem 2018; 61:47-49. [PMID: 30205090 DOI: 10.1016/j.clinbiochem.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/07/2018] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor 23 (FGF-23), a key hormone for the regulation of the phosphorus homeostasis, has also several direct effects on cardiac function. In heart failure (HF), the increase of FGF-23 participates to cardiac hypertrophy and remodeling. Measurement of the intact, biologically active hormone is now available. We determined intact FGF-23 in HF patients with reduced ejection fraction and assess its prognosis value for cardiovascular death over a long-term follow-up. We observed that intact FGF-23 is an independent predictor of cardiovascular death in HF patients and provides added value to the standard of care, natriuretic peptide, for risk estimation.
Collapse
|
87
|
Cardiovascular Interactions between Fibroblast Growth Factor-23 and Angiotensin II. Sci Rep 2018; 8:12398. [PMID: 30120363 PMCID: PMC6098163 DOI: 10.1038/s41598-018-30098-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/14/2018] [Indexed: 12/12/2022] Open
Abstract
Both the activation of the renin angiotensin aldosterone system (RAAS) and elevations of circulating Fibroblast Growth Factor-23 (FGF-23) have been implicated in the pathogenesis of left ventricular hypertrophy (LVH) in chronic kidney disease. To investigate potential cross-talk between RAAS and FGF-23, we administered angiotensin II (Ang II) to wild-type rodents and the Hyp mouse model of excess FGF-23. Ang II administration for four weeks to wild-type rodents resulted in significant increases in systolic blood pressure and LVH. Unexpectedly, FGF-23 circulating levels were increased by 1.5-1.7 fold in Ang II treated animals. In addition, Ang II treatment increased expression of FGF-23 message levels in bone, the predominant tissue for FGF-23 production, and induced expression of FGF-23 and its co-receptor α-Klotho in the heart, which normally does not express FGF-23 or α-Klotho in physiologically relevant levels. Hyp mice with elevated FGF-23 exhibited increased blood pressure and LVH at baseline. Ang II administration to Hyp mice resulted further increments in blood pressure and left ventricular hypertrophy, consistent with additive cardiovascular effects. These findings suggest that FGF-23 may participate in unexpected systemic and paracrine networks regulating hemodynamic and myocardial responses.
Collapse
|
88
|
Verkaik M, Juni RP, van Loon EPM, van Poelgeest EM, Kwekkeboom RFJ, Gam Z, Richards WG, Ter Wee PM, Hoenderop JG, Eringa EC, Vervloet MG. FGF23 impairs peripheral microvascular function in renal failure. Am J Physiol Heart Circ Physiol 2018; 315:H1414-H1424. [PMID: 30028196 DOI: 10.1152/ajpheart.00272.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases account for ~50% of mortality in patients with chronic kidney disease (CKD). Fibroblast growth factor 23 (FGF23) is independently associated with endothelial dysfunction and cardiovascular mortality. We hypothesized that CKD impairs microvascular endothelial function and that this can be attributed to FGF23. Mice were subjected to partial nephrectomy (5/6Nx) or sham surgery. To evaluate the functional role of FGF23, non-CKD mice received FGF23 injections and CKD mice received FGF23-blocking antibodies after 5/6Nx surgery. To examine microvascular function, myocardial perfusion in vivo and vascular function of gracilis resistance arteries ex vivo were assessed in mice. 5/6Nx surgery blunted ex vivo vasodilator responses to acetylcholine, whereas responses to sodium nitroprusside or endothelin were normal. In vivo FGF23 injections in non-CKD mice mimicked this endothelial defect, and FGF23 antibodies in 5/6Nx mice prevented endothelial dysfunction. Stimulation of microvascular endothelial cells with FGF23 in vitro did not induce ERK phosphorylation. Increased plasma asymmetric dimethylarginine concentrations were increased by FGF23 and strongly correlated with endothelial dysfunction. Increased FGF23 concentration did not mimic impaired endothelial function in the myocardium of 5/6Nx mice. In conclusion, impaired peripheral endothelium-dependent vasodilatation in 5/6Nx mice is mediated by FGF23 and can be prevented by blocking FGF23. These data corroborate FGF23 as an important target to combat cardiovascular disease in CKD. NEW & NOTEWORTHY In the present study, we provide the first evidence that fibroblast growth factor 23 (FGF23) is a cause of peripheral endothelial dysfunction in a model of early chronic kidney disease (CKD) and that endothelial dysfunction in CKD can be prevented by blockade of FGF23. This pathological effect on endothelial cells was induced by long-term exposure of physiological levels of FGF23. Mechanistically, increased plasma asymmetric dimethylarginine concentrations were strongly associated with this endothelial dysfunction in CKD and were increased by FGF23.
Collapse
Affiliation(s)
- Melissa Verkaik
- Department of Nephrology and Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Rio P Juni
- Department of Physiology, Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Ellen P M van Loon
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Erik M van Poelgeest
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Rick F J Kwekkeboom
- Department of Physiology, Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Zeineb Gam
- Department of Physiology, Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | | | - Pieter M Ter Wee
- Department of Nephrology and Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Etto C Eringa
- Department of Physiology, Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | - Marc G Vervloet
- Department of Nephrology and Institute for Cardiovascular Research VU, VU University Medical Center , Amsterdam , The Netherlands
| | | |
Collapse
|
89
|
Tanaka K, Salunya T, Motomiya Y, Motomiya Y, Oyama Y, Yamakuchi M, Maruyama I. Decreased Expression of Thrombomodulin in Endothelial Cells by Fibroblast Growth Factor-23/α-Klotho. Ther Apher Dial 2018; 21:395-404. [PMID: 28834363 DOI: 10.1111/1744-9987.12524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) has been known to be a state of excessive fibroblast growth factor-23 (FGF23) and α-Klotho deficiency. Patients undergoing hemodialysis have an increased mortality risk associated with cardiovascular disease and endothelial dysfunction. The mechanism responsible for the relationship of FGF23 to endothelial damage in these patients has been unclear. On the other hands, increasing evidences have demonstrated that thrombomodulin (TM) plays an important role in the endothelial barrier. Here, we report the suppression of membrane TM, in a dose-dependent manner, in human umbilical vein endothelial cells after FGF23 and FGF23/α-Klotho stimulation. In addition, the levels of soluble TM, which reflect endothelial cell injury, were much higher in cell supernatants after FGF23 and FGF23/α-Klotho stimulation than in the control supernatant. This study indicates a possible mechanism by which excessive levels of FGF23 are involved in endothelial TM disruption, which has been implicated as a potential cardiovascular risk factor in patients with CKD, especially in HD patients.
Collapse
Affiliation(s)
| | - Tancharoen Salunya
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Thailand
| | | | | | - Yoko Oyama
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Munekazu Yamakuchi
- Department of Laboratory and Vascular Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
90
|
Leaf DE, Siew ED, Eisenga MF, Singh K, Mc Causland FR, Srivastava A, Alp Ikizler T, Ware LB, Ginde AA, Kellum JA, Palevsky PM, Wolf M, Waikar SS. Fibroblast Growth Factor 23 Associates with Death in Critically Ill Patients. Clin J Am Soc Nephrol 2018; 13:531-541. [PMID: 29519954 PMCID: PMC5969465 DOI: 10.2215/cjn.10810917] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/03/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Dysregulated mineral metabolism is a common and potentially maladaptive feature of critical illness, especially in patients with AKI, but its association with death has not been comprehensively investigated. We sought to determine whether elevated plasma levels of the osteocyte-derived, vitamin D-regulating hormone, fibroblast growth factor 23 (FGF23), are prospectively associated with death in critically ill patients with AKI requiring RRT, and in a general cohort of critically ill patients with and without AKI. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We measured plasma FGF23 and other mineral metabolite levels in two cohorts of critically ill patients (n=1527). We included 817 patients with AKI requiring RRT who enrolled in the ARF Trial Network (ATN) study, and 710 patients with and without AKI who enrolled in the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study. We hypothesized that higher FGF23 levels at enrollment are independently associated with higher 60-day mortality. RESULTS In the ATN study, patients in the highest compared with lowest quartiles of C-terminal (cFGF23) and intact FGF23 (iFGF23) had 3.84 (95% confidence interval, 2.31 to 6.41) and 2.08 (95% confidence interval, 1.03 to 4.21) fold higher odds of death, respectively, after adjustment for demographics, comorbidities, and severity of illness. In contrast, plasma/serum levels of parathyroid hormone, vitamin D metabolites, calcium, and phosphate were not associated with 60-day mortality. In the VALID study, patients in the highest compared with lowest quartiles of cFGF23 and iFGF23 had 3.52 (95% confidence interval, 1.96 to 6.33) and 1.93 (95% confidence interval, 1.12 to 3.33) fold higher adjusted odds of death. CONCLUSIONS Higher FGF23 levels are independently associated with greater mortality in critically ill patients.
Collapse
Affiliation(s)
- David E Leaf
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Georgianos PI, Pikilidou MI, Liakopoulos V, Balaskas EV, Zebekakis PE. Arterial stiffness in end-stage renal disease-pathogenesis, clinical epidemiology, and therapeutic potentials. Hypertens Res 2018. [PMID: 29531291 DOI: 10.1038/s41440-018-0025-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arterial stiffness is an important risk factor for cardiovascular morbidity and mortality in patients with end-stage renal disease (ESRD). Arterial stiffness aggravates cardiovascular risk via multiple pathways, such as augmentation of aortic systolic pressure, subendocardial hypoperfusion, and excess pulsatile energy transmission from macro- to microcirculation. Pathogenesis of the arteriosclerotic process in ESRD is complex and not yet fully understood. Several factors unique to ESRD, such as mineral metabolism disturbances, vascular calcifications, formation of advanced glycation end-products, and acute and chronic volume overload, are proposed to play a particular role in the progression of arteriosclerosis in ESRD. As these and other mechanistic pathways of arterial stiffening in ESRD are elucidated, there is hope that this knowledge will be translated into novel therapeutic interventions targeting arterial stiffness. In the meantime, blood pressure (BP) lowering via strict volume control and appropriate use of antihypertensive drugs is a fundamental step in reversing accelerated arterial stiffening and modifying the cardiovascular risk profile of ESRD patients. In this article, we review the pathogenesis, clinical epidemiology, and therapies targeting arterial stiffness in ESRD, discussing recent advances and high-priority goals of future research in these important areas.
Collapse
Affiliation(s)
- Panagiotis I Georgianos
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Maria I Pikilidou
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Liakopoulos
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elias V Balaskas
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis E Zebekakis
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
92
|
Fujii H, Kono K, Nakai K, Goto S, Nishii T, Kono A, Nishi S. Effects of Lanthanum Carbonate on Coronary Artery Calcification and Cardiac Abnormalities After Initiating Hemodialysis. Calcif Tissue Int 2018; 102:310-320. [PMID: 29058057 DOI: 10.1007/s00223-017-0347-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022]
Abstract
It is known that calcium-containing phosphate binders are more closely associated with the progression of vascular calcification than non-calcium-containing phosphate binders. In this study, we investigated the effect of the non-calcium-containing phosphate binder, lanthanum carbonate on the progression of coronary artery calcification and cardiovascular abnormalities compared to that of calcium-containing phosphate binder in chronic kidney disease patients during the early period after initiating hemodialysis. This was a randomized open-label study in which patients were divided into the calcium carbonate or lanthanum carbonate group. We evaluated blood samples, coronary artery calcification using high-resolution computed tomography, and cardiac abnormalities using echocardiography prior to and after initiating hemodialysis. Cardiac dimension and systolic function were significantly improved in the lanthanum carbonate group compared to those in the calcium carbonate group. Although statistically significant differences were not observed in all the patients, only among patients with moderate coronary artery calcification, the changes in coronary artery calcification score at 18 months were significantly smaller in the lanthanum carbonate group than those in the calcium carbonate group. The percent change in coronary artery calcification at 18 months was significantly correlated with the serum fibroblast growth factor 23 levels at 18 months (r = 0.245, P < 0.05). This significant correlation was particularly strong in patients with moderate coronary artery calcification (r = 0.593, P < 0.001). Our study suggests that lanthanum carbonate ameliorates cardiac abnormalities, and may slow coronary artery calcification development in patients with moderate coronary artery calcification, during the early period following hemodialysis initiation.
Collapse
Affiliation(s)
- Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Keiji Kono
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kentaro Nakai
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shunsuke Goto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tatsuya Nishii
- Division of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsushi Kono
- Division of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi Nishi
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
93
|
Endothelial factors in the pathogenesis and treatment of chronic kidney disease Part II. J Hypertens 2018; 36:462-471. [DOI: 10.1097/hjh.0000000000001600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
94
|
Tranæus Lindblad Y, Olauson H, Vavilis G, Hammar U, Herthelius M, Axelsson J, Bárány P. The FGF23-Klotho axis and cardiac tissue Doppler imaging in pediatric chronic kidney disease-a prospective cohort study. Pediatr Nephrol 2018; 33:147-157. [PMID: 28795324 PMCID: PMC5700222 DOI: 10.1007/s00467-017-3766-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chronic kidney disease-associated mineral bone disorder (CKD-MBD) is common in pediatric kidney disease patients and a risk factor for future cardiovascular disease (CVD). Fibroblast growth factor-23 (FGF23) and Klotho are novel key players in CKD-MBD, and has been suggested to be involved in the development of CVD. METHODS This prospective cohort study included 74 pediatric patients; 31 with CKD (age range 0.8-18.8 years, glomerular filtration rate (GFR) range 9-68 mL/min/1.73 m2) and 43 transplanted patients (CKD-T; age range 3.3-17.7 years, GFR range 10-99 mL/min/1.73 m2) examined annually for 3 years. We assessed longitudinal patterns and predictors of FGF23 and soluble Klotho, as well as associations to cardiac remodeling and function using echocardiographic pulse wave Doppler (PWD) and color-coded tissue Doppler imaging (cc-TDI). RESULTS The prevalence of high FGF23 levels (≥95th percentile) was 60% in CKD and 42% in CKD-T patients, despite a low prevalence of hyperphosphatemia and normal Klotho levels. Low GFR at baseline was a predictor for high mean log FGF23 during follow-up in CKD and CKD-T patients (β = -0.2, p < 0.001). A high log FGF23 z-score longitudinally was borderline significantly associated with elevated left ventricular mass index (LVMI) in CKD patients (β = 1.8, p = 0.06). In addition, high log FGF23 (β = -0.43, p = 0.01) and low log Klotho (β = 0.44, p = 0.006) over time were associated with a worse left ventricular diastolic function (cc-TDI e'/a') in CKD-T patients. CONCLUSIONS In pediatric CKD and CKD-T patients, the FGF23 level increase and Klotho level decrease with progressing renal failure, despite well-controlled phosphate levels. Following adjustments, both high FGF23 and low Klotho levels were strongly associated with a worse left ventricular diastolic function longitudinally. The potential role of FGF23 and Klotho in cardiac morbidity in pediatric CKD requires further investigation.
Collapse
Affiliation(s)
- Ylva Tranæus Lindblad
- Division of Pediatrics, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden. .,Astrid Lindgren Children's Hospital, Huddinge BUMM, Paradistorget 4, 5tr, S-141 47, Huddinge, Sweden. .,Department of Pediatrics, Karolinska University Hospital, Stockholm, Sweden.
| | - Hannes Olauson
- 0000 0004 1937 0626grid.4714.6Division of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Vavilis
- 0000 0000 9241 5705grid.24381.3cDivision of Emergency Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ulf Hammar
- 0000 0004 1937 0626grid.4714.6Institute of Environmental Medicine and Unit of Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Herthelius
- 0000 0004 1937 0626grid.4714.6Division of Pediatrics, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden ,0000 0000 9241 5705grid.24381.3cDepartment of Pediatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Axelsson
- 0000 0000 9241 5705grid.24381.3cDepartment of Immunology, Karolinska University Hospital, Stockholm, Sweden ,0000 0004 1937 0626grid.4714.6Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bárány
- 0000 0004 1937 0626grid.4714.6Division of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden ,0000 0000 9241 5705grid.24381.3cDepartment of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
95
|
Stöhr R, Schuh A, Heine GH, Brandenburg V. FGF23 in Cardiovascular Disease: Innocent Bystander or Active Mediator? Front Endocrinol (Lausanne) 2018; 9:351. [PMID: 30013515 PMCID: PMC6036253 DOI: 10.3389/fendo.2018.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor-23 (FGF23) is a mainly osteocytic hormone which increases renal phosphate excretion and reduces calcitriol synthesis. These renal actions are mediated via alpha-klotho as the obligate co-receptor. Beyond these canonical "mineral metabolism" actions, FGF23 has been identified as an independent marker for cardiovascular risk in various patient populations. Previous research has linked elevated FGF23 predominantly to left-ventricular dysfunction and consecutive morbidity and mortality. Moreover, some experimental data suggest FGF23 as a direct and causal stimulator for cardiac hypertrophy via specific myocardial FGF23-receptor activation, independent from alpha-klotho. This hypothesis offers fascinating prospects in terms of therapeutic interventions, specifically in patients with chronic kidney disease (CKD) in whom the FGF23 system is strongly stimulated and in whom left-ventricular dysfunction is a major disease burden. However, novel data challenges the previous stand-alone hypothesis about a one-way road which guides unidirectionally skeletal FGF23 toward cardiotoxic effects. In fact, recent data point toward local myocardial production and release of FGF23 in cases where (acute) myocardial damage occurs. The effects of this local production and the physiological meaning are under current examination. Moreover, epidemiologic studies suggest that high FGF-23 may follow, rather than induce, myocardial disease in certain conditions. In summary, while FGF23 is an interesting link between mineral metabolism and cardiac function underlining the meaning of the bone-heart axis, more research is needed before therapeutic interventions may be considered.
Collapse
Affiliation(s)
- Robert Stöhr
- Department of Cardiology, University Hospital of the RWTH Aachen, Aachen, Germany
- *Correspondence: Robert Stöhr
| | - Alexander Schuh
- Department of Cardiology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Gunnar H. Heine
- Department of Nephrology, University Hospital Homburg-Saar, Homburg, Germany
| | - Vincent Brandenburg
- Department of Cardiology, University Hospital of the RWTH Aachen, Aachen, Germany
| |
Collapse
|
96
|
Matkar PN, Ariyagunarajah R, Leong-Poi H, Singh KK. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis. Biomolecules 2017; 7:biom7040074. [PMID: 28974056 PMCID: PMC5745456 DOI: 10.3390/biom7040074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.
Collapse
Affiliation(s)
- Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | | | - Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Krishna K Singh
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
97
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone, mainly produced by osteoblasts and osteocytes in response to increased extracellular phosphate and circulating vitamin D hormone. Endocrine FGF23 signaling requires co-expression of the ubiquitously expressed FGF receptor 1 (FGFR1) and the co-receptor α-Klotho (Klotho). In proximal renal tubules, FGF23 suppresses the membrane expression of the sodium-phosphate cotransporters Npt2a and Npt2c which mediate urinary reabsorption of filtered phosphate. In addition, FGF23 suppresses proximal tubular expression of 1α-hydroxylase, the key enzyme responsible for vitamin D hormone production. In distal renal tubules, FGF23 signaling activates with-no-lysine kinase 4, leading to increased renal tubular reabsorption of calcium and sodium. Therefore, FGF23 is not only a phosphaturic but also a calcium- and sodium-conserving hormone, a finding that may have important implications for the pathophysiology of chronic kidney disease. Besides these endocrine, Klotho-dependent functions of FGF23, FGF23 is also an auto-/paracrine suppressor of tissue-nonspecific alkaline phosphatase transcription via Klotho-independent FGFR3 signaling, leading to local inhibition of mineralization through accumulation of pyrophosphate. In addition, FGF23 may target the heart via an FGFR4-mediated Klotho-independent signaling cascade. Taken together, there is emerging evidence that FGF23 is a pleiotropic hormone, linking bone with several other organ systems.
Collapse
MESH Headings
- Autocrine Communication
- Bone and Bones/physiology
- Calcification, Physiologic
- Cardiovascular System
- Fibroblast Growth Factor-23
- Fibroblast Growth Factors/physiology
- Glucuronidase/physiology
- Humans
- Immunomodulation
- Kidney Tubules, Proximal/physiology
- Klotho Proteins
- Paracrine Communication
- Phosphates/physiology
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 3/physiology
- Receptor, Fibroblast Growth Factor, Type 4/physiology
- Sodium-Phosphate Cotransporter Proteins, Type IIa/physiology
- Sodium-Phosphate Cotransporter Proteins, Type IIc/physiology
Collapse
Affiliation(s)
- Reinhold G Erben
- 1 Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
98
|
Krishnasamy R, Tan SJ, Hawley CM, Johnson DW, Stanton T, Lee K, Mudge DW, Campbell S, Elder GJ, Toussaint ND, Isbel NM. Progression of arterial stiffness is associated with changes in bone mineral markers in advanced CKD. BMC Nephrol 2017; 18:281. [PMID: 28870151 PMCID: PMC5584006 DOI: 10.1186/s12882-017-0705-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background Arterial stiffness is an independent predictor of all-cause and cardiovascular mortality in patients with chronic kidney disease (CKD). There are limited prospective data however on progression of arterial stiffness in CKD, including evaluating associations with bone mineral markers such as fibroblast growth factor 23 (FGF23) and soluble α-klotho (sKl). Methods In this prospective, single-center, observational study, arterial stiffness [measured by pulse wave velocity (PWV)] and hormones influencing mineral homeostasis, including serum FGF23 and sKl, were compared between non-dialysis CKD stages 4/5 and healthy controls at baseline and 12 months (12 m). Abdominal aortic calcification (AAC) was quantitated using lateral lumbar radiography at baseline. Results Forty patients with CKD [mean estimated glomerular filtration rate (eGFR) 19.5 ± 6.7 mL/min/1.73m2] and 42 controls (mean eGFR 88.6 ± 12.9 mL/min/1.73m2) completed follow-up. There were no differences in age, gender and body mass index between groups. A significant increase in FGF23 [240.6 (141.9–1129.8) to 396.8 (160.3–997.7) pg/mL, p = 0.001] was observed in the CKD group but serum phosphate, corrected calcium, parathyroid hormone and sKl did not change significantly over 12 m. At baseline, CKD subjects had higher AAC prevalence [83.8% versus (vs.) 43.6%, p = 0.002] and higher aortic PWV [9.7(7.6–11.7) vs. 8.1 (7.2–9.7) m/s, p = 0.047] compared to controls. At 12 m, aortic PWV increased by 1.3 m/s (95% confidence interval, 0.56 to 2.08, p < 0.001) in the CKD cohort, with 30% of subjects showing progression from normal aortic elasticity to stiffening (PWV > 10 m/s). Serum FGF23 was associated with AAC, abnormal PWV and progression of PWV at 12 m. Conclusions Arterial stiffness and serum FGF23, both of which are associated with increased cardiovascular risk, increased over one year in individuals with CKD. Additionally, a significant association was found between serum FGF23 and arterial calcification and stiffness. Larger clinical studies and further experimental work are warranted to delineate the temporal relationship as well as the pathological mechanisms linking FGF23 and vascular disease. Electronic supplementary material The online version of this article (10.1186/s12882-017-0705-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rathika Krishnasamy
- Department of Nephrology, Sunshine Coast University Hospital, PO Box 5340, Sunshine Coast, Birtinya, MC QLD, 4560, Australia. .,Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Sven-Jean Tan
- Department of Nephrology, The Royal Melbourne Hospital (RMH), Melbourne, VIC, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, VIC, Australia
| | - Carmel M Hawley
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - David W Johnson
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Tony Stanton
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Cardiology, Sunshine Coast University Hospital, Birtinya, Australia
| | - Kevin Lee
- Department of Radiology, Princess Alexandra Hospital, Brisbane, Australia
| | - David W Mudge
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Scott Campbell
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Grahame J Elder
- Department of Renal Medicine, Westmead Hospital, Sydney, Australia.,Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Nigel D Toussaint
- Department of Nephrology, The Royal Melbourne Hospital (RMH), Melbourne, VIC, Australia.,Department of Medicine (RMH), The University of Melbourne, Parkville, VIC, Australia
| | - Nicole M Isbel
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
99
|
Papagianni A. Fibroblast Growth Factor-23: A Novel Biomarker for Cardiovascular Disease in Chronic Kidney Disease Patients. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2017; 38:19-27. [PMID: 28991773 DOI: 10.1515/prilozi-2017-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fibroblast Growth Factor (FGF)-23 increase is considered one of the earliest biochemical abnormalities in chronic kidney disease-mineral bone disorder (CKD-MBD). Furthermore, accumulating data have provided evidence of a link between increased FGF-23 levels and cardiovascular morbidity and mortality in CKD patients as well as in several other populations including cardiology patients and general population. The cellular and molecular mechanisms underlying the deleterious effect of FGF-23 on the cardiovascular system are not yet completely defined and are the focus of intense research. However, animal and human studies have demonstrated important actions of FGF-23 in the heart and vessels through which could promote the development of cardiovascular complications in uremia. Moreover, significant interactions have been reported between FGF-23 and other well recognized cardiovascular risk factors such as renin-angiotensin system and inflammation which could account, at least in part, for the observed associations between FGF-23 and adverse clinical outcomes. Further studies are needed to clarify the mechanisms responsible for the pleiotropic actions of FGF-23 and moreover to identify whether it is a modifiable risk factor and a potential target of therapeutic interventions which could probably help to reduce the unacceptably high cardiovascular morbidity and mortality of CKD patients.
Collapse
|
100
|
Qin Z, Liu X, Song M, Zhou Q, Yu J, Zhou B, Wu Y, He Y, Huang L. Fibroblast growth factor 23 as a predictor of cardiovascular and all-cause mortality in prospective studies. Atherosclerosis 2017; 261:1-11. [PMID: 28411494 DOI: 10.1016/j.atherosclerosis.2017.03.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The prognostic value of fibroblast growth factor 23 (FGF23) for mortality remains controversial. We performed a meta-analysis of cohort studies to examine the controversial relationship between FGF23 and mortality. METHODS PubMed, EMBASE, the Cochrane Library databases and reference bibliographies were searched through September 2016 to identify prospective cohort studies with relative risks (RRs) and 95% confidence intervals (CIs) for FGF23 and mortality. A random effects model was used to pool the risk estimates. A dose-response analysis of the risk for all-cause mortality associated with FGF23 was conducted using the generalized least squares trend estimation method. RESULTS Nineteen prospective cohort studies were eligible for inclusion in this meta-analysis, of which 16 reported all-cause mortality and 9 reported cardiovascular mortality. During the follow-up periods ranging from 1 to 18.6 years, 5606 deaths occurred among 22,805 participants and 2458 cardiovascular deaths occurred among 28,845 participants. Elevated FGF23 was associated with an increased risk of all-cause mortality (RR 1.68; 95% CI 1.48-1.92) and cardiovascular mortality (RR 1.68; 95% CI 1.38-2.04) with moderate heterogeneity. These associations were not markedly modified by the geographic location, follow-up length, patient predisposition, FGF23 measurement or study quality. A sensitivity analysis yielded a similar effect on the pooled risk estimate. Evidence of a nonlinear relationship between FGF23 and all-cause mortality was observed in the dose-response analysis, with the risk gradually increasing as FGF23 increased. CONCLUSIONS This meta-analysis showed that individuals with increased plasma FGF23 levels might suffer a higher risk of all-cause mortality and cardiovascular mortality.
Collapse
Affiliation(s)
- Zhexue Qin
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xi Liu
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mingbao Song
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Quan Zhou
- Department of Science and Education, First People's Hospital of Changde City, No. 818 Renming Road, Changde, Hunan, 415003, China
| | - Jie Yu
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Baoshang Zhou
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yazhou Wu
- Department of Health Statistics, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yongming He
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Lan Huang
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|