51
|
Talasila KM, Røsland GV, Hagland HR, Eskilsson E, Flønes IH, Fritah S, Azuaje F, Atai N, Harter PN, Mittelbronn M, Andersen M, Joseph JV, Hossain JA, Vallar L, Noorden CJFV, Niclou SP, Thorsen F, Tronstad KJ, Tzoulis C, Bjerkvig R, Miletic H. The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro Oncol 2017; 19:383-393. [PMID: 27591677 DOI: 10.1093/neuonc/now175] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/09/2016] [Indexed: 12/23/2022] Open
Abstract
Background Invasion and angiogenesis are major hallmarks of glioblastoma (GBM) growth. While invasive tumor cells grow adjacent to blood vessels in normal brain tissue, tumor cells within neovascularized regions exhibit hypoxic stress and promote angiogenesis. The distinct microenvironments likely differentially affect metabolic processes within the tumor cells. Methods In the present study, we analyzed gene expression and metabolic changes in a human GBM xenograft model that displayed invasive and angiogenic phenotypes. In addition, we used glioma patient biopsies to confirm the results from the xenograft model. Results We demonstrate that the angiogenic switch in our xenograft model is linked to a proneural-to-mesenchymal transition that is associated with upregulation of the transcription factors BHLHE40, CEBPB, and STAT3. Metabolic analyses revealed that angiogenic xenografts employed higher rates of glycolysis compared with invasive xenografts. Likewise, patient biopsies exhibited higher expression of the glycolytic enzyme lactate dehydrogenase A and glucose transporter 1 in hypoxic areas compared with the invasive edge and lower-grade tumors. Analysis of the mitochondrial respiratory chain showed reduction of complex I in angiogenic xenografts and hypoxic regions of GBM samples compared with invasive xenografts, nonhypoxic GBM regions, and lower-grade tumors. In vitro hypoxia experiments additionally revealed metabolic adaptation of invasive tumor cells, which increased lactate production under long-term hypoxia. Conclusions The use of glycolysis versus mitochondrial respiration for energy production within human GBM tumors is highly dependent on the specific microenvironment. The metabolic adaptability of GBM cells highlights the difficulty of targeting one specific metabolic pathway for effective therapeutic intervention.
Collapse
Affiliation(s)
- Krishna M Talasila
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Norway
| | | | - Eskil Eskilsson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Irene H Flønes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sabrina Fritah
- NorLux Neuro-oncology Laboratory, Luxembourg Institute of Health, Luxembourg
| | - Francisco Azuaje
- NorLux Neuro-oncology Laboratory, Luxembourg Institute of Health, Luxembourg
| | - Nadia Atai
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Andersen
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Justin V Joseph
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway
| | - Jubayer Al Hossain
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Laurent Vallar
- Department of Oncology, Luxembourg Institute of Health, Luxembourg
| | - Cornelis J F van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Simone P Niclou
- KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,NorLux Neuro-oncology Laboratory, Luxembourg Institute of Health, Luxembourg
| | - Frits Thorsen
- KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Molecular Imaging Center, Department of Biomedicine, University of Bergen, Norway
| | | | | | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Brain Tumor Research Centre, University of Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
52
|
Effects of microRNA-136 on melanoma cell proliferation, apoptosis, and epithelial-mesenchymal transition by targetting PMEL through the Wnt signaling pathway. Biosci Rep 2017; 37:BSR20170743. [PMID: 28724603 PMCID: PMC5587917 DOI: 10.1042/bsr20170743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
The study aims to evaluate the effects of miR-136 on the proliferation, apoptosis, and epithelial–mesenchymal transition (EMT) of melanoma cells by targetting premelanosome protein (PMEL) through the Wnt signaling pathway. After establishment of melanoma mouse models, melanoma (model group) and normal tissues (normal group) were collected. Immunohistochemistry was performed to determine PMEL protein concentration. Mouse melanoma cells were assigned into control, blank, negative control (NC), miR-136 mimics, miR-136 inhibitors, siRNA-PMEL, and miR-136 inhibitors + siRNA-PMEL, LiC1 (Wnt signaling pathway activator), and siRNA-PMEL+ LiCl groups. MTT, Scratch test, Transwell assay, and flow cytometry were performed to measure cell proliferation, migration, invasion, and apoptosis. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to evaluate miR-136, PMEL, β-catenin, Wnt3a, Bcl-2, Bax, Caspase, E-cadherin, and N-cadherin expressions. PMEL is highly expressed in melanoma tissues. MiR-136, Bax, Caspase, and E-cadherin expressions decreased in the model group, whereas PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions increased. Bax, Caspase, and E-cadherin expressions increased in the miR-136 mimics and siRNA-PMEL groups, whereas the expressions decreased in the miR-136 inhibitors group and LiC1 group. PMEL, β-catenin, Bcl-2, Wnt3a, and N-cadherin expressions, cell proliferation, migration, and invasion decreased, and the apoptosis rate inceased in the miR-136 mimics and siRNA-PMEL groups; whereas the tendencies were opposite to those in the miR-136 inhibitors group and LiC1 group. In the siRNA-PMEL+ LiCl group, PMEL expression decreased. These findings indicated that overexpression of miR-136 inhibits melanoma cell EMT, proliferation, migration, invasion, and promotes apoptosis by targetting PMEL through down-regulation of the Wnt signaling pathway.
Collapse
|
53
|
Sun Y, Hawkins PG, Bi N, Dess RT, Tewari M, Hearn JWD, Hayman JA, Kalemkerian GP, Lawrence TS, Ten Haken RK, Matuszak MM, Kong FM, Jolly S, Schipper MJ. Serum MicroRNA Signature Predicts Response to High-Dose Radiation Therapy in Locally Advanced Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2017; 100:107-114. [PMID: 29051037 DOI: 10.1016/j.ijrobp.2017.08.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/11/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE To assess the utility of circulating serum microRNAs (c-miRNAs) to predict response to high-dose radiation therapy for locally advanced non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Data from 80 patients treated from 2004 to 2013 with definitive standard- or high-dose radiation therapy for stages II-III NSCLC as part of 4 prospective institutional clinical trials were evaluated. Pretreatment serum levels of 62 miRNAs were measured by quantitative reverse transcription-polymerase chain reaction array. We combined miRNA data and clinical factors to generate a dose-response score (DRS) for predicting overall survival (OS) after high-dose versus standard-dose radiation therapy. Elastic net Cox regression was used for variable selection and parameter estimation. Model assessment and tuning parameter selection were performed through full cross-validation. The DRS was also correlated with local progression, distant metastasis, and grade 3 or higher cardiac toxicity using Cox regression, and grade 2 or higher esophageal and pulmonary toxicity using logistic regression. RESULTS Eleven predictive miRNAs were combined with clinical factors to generate a DRS for each patient. In patients with low DRS, high-dose radiation therapy was associated with significantly improved OS compared to treatment with standard-dose radiation therapy (hazard ratio 0.22). In these patients, high-dose radiation also conferred lower risk of distant metastasis and local progression, although the latter association was not statistically significant. Patients with high DRS exhibited similar rates of OS regardless of dose (hazard ratio 0.78). The DRS did not correlate with treatment-related toxicity. CONCLUSIONS Using c-miRNA signature and clinical factors, we developed a DRS that identified a subset of patients with locally advanced NSCLC who derive an OS benefit from high-dose radiation therapy. This DRS may guide dose escalation in a patient-specific manner.
Collapse
Affiliation(s)
- Yilun Sun
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Peter G Hawkins
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Nan Bi
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiation Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking, People's Republic of China
| | - Robert T Dess
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Muneesh Tewari
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Jason W D Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - James A Hayman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Gregory P Kalemkerian
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Randall K Ten Haken
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Martha M Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Feng-Ming Kong
- Department of Radiation Oncology, Indiana University, Indianapolis, Indiana
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| | - Matthew J Schipper
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
54
|
Banerjee H, Joyner J, Stevenson M, Kaha W, Krauss C, Hodges S, Santos E, Worthington M, Rousch J, Payne G, Manglik V, Banerjee N, Morris B, Bell D, Mandal S. Short Communication: Studying the Role of Smart Flare Gold Nano Particles in Studying Micro RNA and Oncogene Differential Expression in Prostate Cancer Cell Lines. ACTA ACUST UNITED AC 2017; 6:25-28. [PMID: 28781716 DOI: 10.6000/1929-2279.2017.06.02.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nano technology is a cutting edge science which is now effectively used in the field of cancer biology. Smart Flare gold nanoparticles are now used often for differential gene expression analysis. In this manuscript we are reporting the use of micro RNA miR 146a and onco gene EZH2 Smart Flare probes to study their expression in different prostate cancer cell lines and the effect of novel Rhenium compounds on these genes using a flow cytometer and a Fluorescence microscope. Our results showed this novel nanotechnology can be effectively used in cancer biology to successfully detect the effect of novel drugs on oncogenes and could be a very useful tool for next generation of cancer researchers.
Collapse
Affiliation(s)
- Hirendra Banerjee
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Jamel Joyner
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Monet Stevenson
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - William Kaha
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Christopher Krauss
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Sasha Hodges
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Eduardo Santos
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Myla Worthington
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Jeffferey Rousch
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Gloria Payne
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Vinod Manglik
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Narendra Banerjee
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Brianna Morris
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Dayton Bell
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University Campus of University of North Carolina, Elizabeth City, NC, USA
| | - Santosh Mandal
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| |
Collapse
|
55
|
Babapoor S, Wu R, Kozubek J, Auidi D, Grant-Kels JM, Dadras SS. Identification of microRNAs associated with invasive and aggressive phenotype in cutaneous melanoma by next-generation sequencing. J Transl Med 2017; 97:636-648. [PMID: 28218741 DOI: 10.1038/labinvest.2017.5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
A comprehensive repertoire of human microRNAs (miRNAs) that could be involved in early melanoma invasion into the dermis remains unknown. To this end, we sequenced small RNAs (18-30 nucleotides) isolated from an annotated series of invasive melanomas (average invasive depth, 2.0 mm), common melanocytic nevi, and matched normal skin (n=28). Our previously established bioinformatics pipeline identified 765 distinct mature known miRNAs and defined a set of top 40 list that clearly segregated melanomas into thin (0.75 mm) and thick (2.7 mm) groups. Among the top, miR-21-5p, let-7b-5p, let-7a-5p, miR-424-5p, miR-423-5p, miR-21-3p, miR-199b-5p, miR-182-5p, and miR-205-5p were differentially expressed between thin and thick melanomas. In a validation cohort (n=167), measured expression of miR-21-5p and miR-424-5p, not previously reported in melanoma, were significantly increased in invasive compared with in situ melanomas (P<0.0001). Increased miR-21-5p levels were significantly associated with invasive depth (P=0.038), tumor mitotic index (P=0.038), lymphovascular invasion (P=0.0036), and AJCC stage (P=0.038). In contrast, let-7b levels were significantly decreased in invasive and in situ melanomas compared with common and dysplastic nevi (P<0.0001). Decreased let-7b levels were significantly associated with invasive depth (P=0.011), Clark's level (P=0.013), ulceration (P=0.0043), and AJCC stage (P=0.011). These results define a distinct set of miRNAs associated with invasive and aggressive melanoma phenotype.
Collapse
Affiliation(s)
- Sankhiros Babapoor
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Rong Wu
- CICATS Biostatics Center, University of Connecticut Health Center, Farmington, CT, USA
| | - James Kozubek
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Donna Auidi
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Soheil S Dadras
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA.,Department of Dermatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
56
|
Starkey MP, Compston-Garnett L, Malho P, Dunn K, Dubielzig R. Metastasis-associated microRNA expression in canine uveal melanoma. Vet Comp Oncol 2017; 16:81-89. [PMID: 28512868 DOI: 10.1111/vco.12315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/01/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Uveal melanoma (UM) is the most common primary intraocular tumour in dogs. There is no effective means of predicting whether a tumour will metastasize. microRNA (miRNA) metastasis signatures have been identified for several human cancers, including UM. AIMS In this study we investigated whether metastasizing and non-metastasizing canine UMs can be distinguished by miRNA expression levels. MATERIALS AND METHODS miRNA microarray profiling was used to compare miRNA expression in 8 metastasizing and 12 non-metastasizing formalin-fixed, paraffin-embedded (FFPE) primary UM biopsies. RESULTS Fourteen miRNAs exhibited statistically significant differences in expression between the metastasizing and non-metastasizing tumours. Class prediction analysis pinpointed 9 miRNAs which categorized tumours as metastasizing or non-metastasizing with an accuracy of 89%. Of the discriminating miRNAs, 8 were up-regulated in metastasizing UM, and included 3 miRNAs implicated as potential "metastasis activators" in human cutaneous melanoma. The expression of 4 of the miRNAs was subsequently measured using the quantitative reverse transcription polymerase chain reaction (RT-qPCR), and their up-regulation in metastasizing tumours validated. CONCLUSION miRNA expression profiles may potentially be used to identify UMs that will metastasize, and miRNAs that are up-regulated in metastasizing tumours may be targets for therapeutic intervention.
Collapse
Affiliation(s)
- M P Starkey
- Molecular Oncology Group, Animal Health Trust, Newmarket, UK
| | | | - P Malho
- Comparative Ophthalmology Unit, Animal Health Trust, Newmarket, UK
| | - K Dunn
- FOCUS-EyePathLab, Murarrie, Australia
| | - R Dubielzig
- Comparative Ocular Pathology Laboratory, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
57
|
The Effect of miR-200c Inhibition on Chemosensitivity (5- FluoroUracil) in Colorectal Cancer. Pathol Oncol Res 2017; 24:145-151. [DOI: 10.1007/s12253-017-0222-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
58
|
Kozar I, Cesi G, Margue C, Philippidou D, Kreis S. Impact of BRAF kinase inhibitors on the miRNomes and transcriptomes of melanoma cells. Biochim Biophys Acta Gen Subj 2017; 1861:2980-2992. [PMID: 28408301 DOI: 10.1016/j.bbagen.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/01/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma is an aggressive skin cancer with increasing incidence worldwide. The development of BRAF kinase inhibitors as targeted treatments for patients with BRAF-mutant tumours contributed profoundly to an improved overall survival of patients with metastatic melanoma. Despite these promising results, the emergence of rapid resistance to targeted therapy remains a serious clinical issue. METHODS To investigate the impact of BRAF inhibitors on miRNomes and transcriptomes, we used in vitro melanoma models consisting of BRAF inhibitor-sensitive and -resistant cell lines generated in our laboratory. Subsequently, microarray analyses were performed followed by RT-qPCR validations. RESULTS Regarding miRNome and transcriptome changes, the long-term effects of BRAF inhibition differed in a cell line-specific manner with the two different BRAF inhibitors inducing comparable responses in three melanoma cell lines. Despite this heterogeneity, several miRNAs (e.g. miR-92a-1-5p, miR-708-5p) and genes (e.g. DOK5, PCSK2) were distinctly differentially expressed in drug-resistant versus -sensitive cell lines. Analyses of coexpressed miRNAs, as well as inversely correlated miRNA-mRNA pairs, revealed a low MITF/AXL ratio in two drug-resistant cell lines that might be regulated by miRNAs. CONCLUSION Several genes and miRNAs were differentially regulated in the drug-resistant and -sensitive cell lines and might be considered as prognostic and/or diagnostic resistance biomarkers in melanoma drug resistance. GENERAL SIGNIFICANCE Thus far, only little information is available on the significance and role of miRNAs with respect to kinase inhibitor treatments and emergence of drug resistance. In this study, promising miRNAs and genes were identified and associated to BRAF inhibitor-mediated resistance in melanoma. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Ines Kozar
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Giulia Cesi
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Christiane Margue
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Demetra Philippidou
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| | - Stephanie Kreis
- Life Sciences Research Unit, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
59
|
Andrews MC, Cursons J, Hurley DG, Anaka M, Cebon JS, Behren A, Crampin EJ. Systems analysis identifies miR-29b regulation of invasiveness in melanoma. Mol Cancer 2016; 15:72. [PMID: 27852308 PMCID: PMC5112703 DOI: 10.1186/s12943-016-0554-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Background In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs. However, it remains a challenge to identify which miR-mRNA interactions are active at endogenous expression levels, and of biological consequence. Methods We developed a workflow to integrate TargetScan and DIANA-microT predictions into the analysis of data-driven associations calculated from transcript abundance (RNASeq) data, specifically the mutual information and Pearson’s correlation metrics. We use this workflow to identify putative relationships of miR-mediated mRNA repression with strong support from both lines of evidence. Applying this approach systematically to a large, published collection of unique melanoma cell lines – the Ludwig Melbourne melanoma (LM-MEL) cell line panel – we identified putative miR-mRNA interactions that may contribute to invasiveness. This guided the selection of interactions of interest for further in vitro validation studies. Results Several miR-mRNA regulatory relationships supported by TargetScan and DIANA-microT demonstrated differential activity across cell lines of varying matrigel invasiveness. Strong negative statistical associations for these putative regulatory relationships were consistent with target mRNA inhibition by the miR, and suggest that differential activity of such miR-mRNA relationships contribute to differences in melanoma invasiveness. Many of these relationships were reflected across the skin cutaneous melanoma TCGA dataset, indicating that these observations also show graded activity across clinical samples. Several of these miRs are implicated in cancer progression (miR-211, -340, -125b, −221, and -29b). The specific role for miR-29b-3p in melanoma has not been well studied. We experimentally validated the predicted miR-29b-3p regulation of LAMC1 and PPIC and LASP1, and show that dysregulation of miR-29b-3p or these mRNA targets can influence cellular invasiveness in vitro. Conclusions This analytic strategy provides a comprehensive, systems-level approach to identify miR-mRNA regulation in high-throughput cancer data, identifies novel putative interactions with functional phenotypic relevance, and can be used to direct experimental resources for subsequent experimental validation. Computational scripts are available: http://github.com/uomsystemsbiology/LMMEL-miR-miner Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0554-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miles C Andrews
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph Cursons
- Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel G Hurley
- Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew Anaka
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jonathan S Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia. .,Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia. .,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia.
| | - Edmund J Crampin
- Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia. .,Systems Biology Laboratory, University of Melbourne, Parkville, VIC, 3010, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science, University of Melbourne, Parkville, VIC, 3010, Australia. .,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, 3010, Australia. .,Centre for Systems Genomics, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
60
|
Iguchi T, Nambara S, Masuda T, Komatsu H, Ueda M, Kidogami S, Ogawa Y, Hu Q, Sato K, Saito T, Hirata H, Sakimura S, Uchi R, Hayashi N, Ito S, Eguchi H, Sugimachi K, Maehara Y, Mimori K. miR-146a Polymorphism (rs2910164) Predicts Colorectal Cancer Patients' Susceptibility to Liver Metastasis. PLoS One 2016; 11:e0165912. [PMID: 27824903 PMCID: PMC5100922 DOI: 10.1371/journal.pone.0165912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
miR-146a plays important roles in cancer as it directly targets NUMB, an inhibitor of Notch signaling. miR-146a is reportedly regulated by a G>C polymorphism (SNP; rs2910164). This polymorphism affects various cancers, including colorectal cancer (CRC). However, the clinical significance of miR-146a polymorphism in CRC remains unclear. A total of 59 patients with CRC were divided into 2 groups: a CC/CG genotype (n = 32) and a GG genotype (n = 27), based on the miR-146a polymorphism. cDNA microarray analysis was performed using 59 clinical samples. Significantly enriched gene sets in each genotype were extracted using GSEA. We also investigated the association between miR-146a polymorphism and miR-146a, NUMB expression or migratory response in CRC cell lines. The CC/CG genotype was associated with significantly more synchronous liver metastasis (p = 0.007). A heat map of the two genotypes showed that the expression profiles were clearly stratified. GSEA indicated that Notch signaling and JAK/STAT3 signaling were significantly associated with the CC/CG genotype (p = 0.004 and p = 0.023, respectively). CRC cell lines with the pre-miR-146a/C revealed significantly higher miR-146a expression (p = 0.034) and higher NUMB expression and chemotactic activity. In CRC, miR-146a polymorphism is involved in liver metastasis. Identification of this polymorphism could be useful to identify patients with a high risk of liver metastasis in CRC.
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Hisateru Komatsu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Masami Ueda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Shinya Kidogami
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Yushi Ogawa
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Hidenari Hirata
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Shotaro Sakimura
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Ryutaro Uchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Naoki Hayashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science Graduate School of Medical Sciences Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812–8582, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu 874–0838, Japan
- * E-mail:
| |
Collapse
|
61
|
Venza M, Visalli M, Beninati C, Benfatto S, Teti D, Venza I. miR-92a-3p and MYCBP2 are involved in MS-275-induced and c-myc-mediated TRAIL-sensitivity in melanoma cells. Int Immunopharmacol 2016; 40:235-243. [PMID: 27620505 DOI: 10.1016/j.intimp.2016.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 12/23/2022]
Abstract
Increasing evidence has demonstrated that in several tumors c-myc acts either as an oncogène or as a proapoptotic agent, depending on binding partner interactions. Recently, we showed that up-regulation of this gene by the histone deacetylase inhibitor MS-275 was responsible for sensitization to TRAIL-induced apoptosis through c-FLIP repression in melanoma. The present study aimed at investigating whether, in addition to inducing H3 hyperacetylation at the c-myc promoter, MS-275 could enhance cell death through the regulation of miRNAs involved in apoptosis, such as the miR-17-92 cluster. Following MS-275 treatment, a decrease in miR-92a-3p was observed either in TRAIL-resistant or TRAIL-sensitive cutaneous and uveal melanoma cells. Prediction tools revealed that miR-92a-3p targeted MYCBP2. Gain- and loss-of-function experiments showed that the 3'-UTR of MYCBP2 mRNA was the target of miR-92a-3p, as ectopic expression of miR-92a-3p resulted in MYCBP2 downregulation whereas miR-92a-3p knockdown markedly increased the expression of MYCBP2. Silencing of MYCBP2 counteracted the pro-apoptotic effects exerted by the down-regulation of miR-92a-3p and prevented c-myc-induced repression of c-FLIP, indicating a pivotal role of MYCBP2 as a mediator of miR-92a-3p and c-myc function. Together, our findings indicate that the MS-275-triggered downregulation of the oncogenic miR-92a-3p- which leads to the overexpression of its target gene MYCBP2 - is an event required for the enhanced susceptibility of melanoma cells to TRAIL-mediated apoptosis. Our data illustrate another epigenetic mechanism activated by MS-275 at the post-transcriptional level in melanoma, in addition to its best-known effects at the transcriptional level.
Collapse
Affiliation(s)
- Mario Venza
- Department of Biomedical Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Maria Visalli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology of Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy; Scylla Biotech Srl, University of Messina, Messina, Italy
| | - Salvatore Benfatto
- Department of Human Pathology of Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Diana Teti
- Charybdis Vaccines Srl, University of Messina, Messina, Italy
| | - Isabella Venza
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
62
|
Völler D, Linck L, Bruckmann A, Hauptmann J, Deutzmann R, Meister G, Bosserhoff AK. Argonaute Family Protein Expression in Normal Tissue and Cancer Entities. PLoS One 2016; 11:e0161165. [PMID: 27518285 PMCID: PMC4982624 DOI: 10.1371/journal.pone.0161165] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022] Open
Abstract
The members of the Argonaute (AGO) protein family are key players in miRNA-guided gene silencing. They enable the interaction between small RNAs and their respective target mRNA(s) and support the catalytic destruction of the gene transcript or recruit additional proteins for downstream gene silencing. The human AGO family consists of four AGO proteins (AGO1-AGO4), but only AGO2 harbors nuclease activity. In this study, we characterized the expression of the four AGO proteins in cancer cell lines and normal tissues with a new mass spectrometry approach called AGO-APP (AGO Affinity Purification by Peptides). In all analyzed normal tissues, AGO1 and AGO2 were most prominent, but marked tissue-specific differences were identified. Furthermore, considerable changes during development were observed by comparing fetal and adult tissues. We also identified decreased overall AGO expression in melanoma derived cell lines compared to other tumor cell lines and normal tissues, with the largest differences in AGO2 expression. The experiments described in this study suggest that reduced amounts of AGO proteins, as key players in miRNA processing, have impact on several cellular processes. Deregulated miRNA expression has been attributed to chromosomal aberrations, promoter regulation and it is known to have a major impact on tumor development and progression. Our findings will further increase our basic understanding of the molecular basis of miRNA processing and its relevance for disease.
Collapse
Affiliation(s)
- Daniel Völler
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Linck
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Astrid Bruckmann
- Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Judith Hauptmann
- Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Rainer Deutzmann
- Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
63
|
Latchana N, del Campo SEM, Grignol VP, Clark JR, Albert SP, Zhang J, Wei L, Aldrink JH, Nicol KK, Ranalli MA, Peters SB, Gru A, Trihka P, Payne PRO, Howard JH, Carson WE. Classification of Indeterminate Melanocytic Lesions by MicroRNA Profiling. Ann Surg Oncol 2016; 24:347-354. [DOI: 10.1245/s10434-016-5476-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 11/18/2022]
|
64
|
Raimo M, Orso F, Grassi E, Cimino D, Penna E, De Pittà C, Stadler MB, Primo L, Calautti E, Quaglino P, Provero P, Taverna D. miR-146a Exerts Differential Effects on Melanoma Growth and Metastatization. Mol Cancer Res 2016; 14:548-62. [DOI: 10.1158/1541-7786.mcr-15-0425-t] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
|
65
|
Mahmoud F, Shields B, Makhoul I, Hutchins LF, Shalin SC, Tackett AJ. Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol Ther 2016; 17:579-91. [PMID: 27105109 PMCID: PMC4990393 DOI: 10.1080/15384047.2016.1167291] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/25/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that the histone methyltransferase enhancer of zeste homolog 2 (EZH2), the main component of the polycomb-repressive complex 2 (PRC2), is involved in melanoma progression and metastasis. Novel drugs that target and reverse such epigenetic changes may find a way into the management of patients with advanced melanoma. We provide a comprehensive up-to-date review of the role and biology of EZH2 on gene transcription, senescence/apoptosis, melanoma microenvironment, melanocyte stem cells, the immune system, and micro RNA. Furthermore, we discuss EZH2 inhibitors as potential anti-cancer therapy.
Collapse
Affiliation(s)
- Fade Mahmoud
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bradley Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Issam Makhoul
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura F. Hutchins
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sara C. Shalin
- Departments of Pathology and Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
66
|
Lunavat TR, Cheng L, Kim DK, Bhadury J, Jang SC, Lässer C, Sharples RA, López MD, Nilsson J, Gho YS, Hill AF, Lötvall J. Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells--Evidence of unique microRNA cargos. RNA Biol 2016; 12:810-23. [PMID: 26176991 PMCID: PMC4615768 DOI: 10.1080/15476286.2015.1056975] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma cells release different types of extracellular vesicles (EVs) into the extracellular milieu that are involved with communication and signaling in the tumor microenvironment. Subsets of EVs include exosomes, microvesicles, and apoptotic bodies that carry protein and genetic (RNA) cargos. To define the contribution of the RNA cargo of melanoma cell derived EVs we performed small RNA sequencing to identify different small RNAs in the EV subsets. Using validated centrifugation protocols, we separated these EV subsets released by the melanoma cell line MML-1, and performed RNA sequencing with the Ion Torrent platform. Various, but different, non-coding RNAs were detected in the EV subsets, including microRNA, mitochondrial associated tRNA, small nucleolar RNA, small nuclear RNA, Ro associated Y-RNA, vault RNA and Y-RNA. We identified in total 1041 miRNAs in cells and EV subsets. Hierarchical clustering showed enrichment of specific miRNAs in exosomes, including hsa-miR-214-3p, hsa-miR-199a-3p and hsa-miR-155-5p, all being associated with melanoma progression. Comparison of exosomal miRNAs with miRNAs in clinical melanoma samples indicate that multiple miRNAs in exosomes also are expressed specifically in melanoma tissues, but not in benign naevi. This study shows for the first time the presence of distinct small RNAs in subsets of EVs released by melanoma cells, with significant similarities to clinical melanoma tissue, and provides unique insights into the contribution of EV associated extracellular RNA in cancer.
Collapse
Affiliation(s)
- Taral R Lunavat
- a Krefting Research Center ; Institute of Medicine; University of Gothenburg ; Gothenburg , Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Latchana N, Ganju A, Howard JH, Carson WE. MicroRNA dysregulation in melanoma. Surg Oncol 2016; 25:184-9. [PMID: 27566021 DOI: 10.1016/j.suronc.2016.05.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 05/19/2016] [Indexed: 01/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer. Current challenges facing the management of melanoma include accurate prediction of individuals who will respond to adjuvant therapies as well as early detection of recurrences. These and other challenges have prompted investigation into biomarkers that could be used as diagnostic, prognostic and therapeutic aids. MicroRNAs (miRs) are small 19-22 nucleotide RNA inhibitors of protein translation. Over 800 different miRs are present within cells and importantly miR expression profiles may vary across different cells types and stages of malignancy. Unique expression profiles have been described for malignant melanoma; however, this work has yet to be translated into routine clinical practice. We highlight pertinent studies involving common miRs implicated in the oncogenesis of melanoma including miR-21, miR-125b, miR-150, miR-155, miR-205, and miR-211. In particular, emphasis is placed upon differential expression across different stages of melanoma progression, prognostic implications and potential mechanistic involvement. Focused efforts on inhibition of these miRs could be the most efficient method of translating preclinical endeavors into clinically meaningful applications.
Collapse
Affiliation(s)
- Nicholas Latchana
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - Akaansha Ganju
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - J Harrison Howard
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA.
| | - William E Carson
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Virology, Immunology and Medical Genetics, The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
68
|
Larsen AC. Conjunctival malignant melanoma in Denmark: epidemiology, treatment and prognosis with special emphasis on tumorigenesis and genetic profile. Acta Ophthalmol 2016; 94 Thesis 1:1-27. [PMID: 27192168 DOI: 10.1111/aos.13100] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conjunctival malignant melanoma is a rare disease associated with considerable mortality. Most published data have been based on case reports or series of referred patients. In addition, very little is known about the genetic and epigenetic profile of conjunctival melanoma and the resemblance to uveal, cutaneous and mucosal melanoma. The aim was to determine the incidence rate of conjunctival melanoma, and to relate clinicopathological features and treatment to prognosis. A further aim was to determine the prevalence of BRAF mutations in conjunctival melanoma, to determine whether BRAF mutations are early events in pathogenesis, and relate clinicopathological features and prognosis to BRAF-mutation status. Finally, we wanted to identify tumour-specific and prognostic microRNAs in conjunctival melanoma, and to compare these with the microRNA expression of other melanoma subtypes. In order to investigate these rare tumours, we studied all the conjunctival melanomas that had been surgically removed in Denmark over a period of 52 years (1960-2012). Tissue samples, clinical files, pathology reports and follow-up data were collected and re-evaluated. Using droplet digital polymerase chain reaction and immunohistochemistry, we investigated BRAF mutations; and using microRNA expression profiling, we investigated differentially expressed microRNAs. The overall incidence of conjunctival melanoma was 0.5/1 000 000/year, and it increased in Denmark over 52 years. The increase was mainly caused by an increase in older patients (>65 years) and bulbar lesions. Clinicopathological features significantly associated with a poor prognosis were extrabulbar location, involvement of adjacent tissue structures, tumour thickness exceeding 2 mm and local tumour recurrence. Patients undergoing incisional biopsy and/or treatment involving excision without adjuvant therapy fared worse than patients treated with excision and any type of adjuvant treatment. We found that 35% (39/110) of conjunctival melanomas were BRAF-mutated, and the incidence of BRAF mutations was constant over time. BRAF-mutation status corresponded in conjunctival melanoma and paired premalignant lesions. BRAF mutations were more frequent in males, in young patients, and in tumours with a sun-exposed tumour location (bulbar conjunctiva or caruncle), with a mixed or non-pigmented colour, with absence of primary acquired melanosis, and with origin in a nevus. Immunohistochemistry was able to accurately detect BRAF V600E mutations. In univariate analysis, distant metastatic disease was associated with BRAF mutations. No prognostic associations with BRAF mutations were identified in multivariate analyses. MicroRNA expression analysis revealed 25 tumour-specific microRNAs in conjunctival melanoma. Five possibly oncogenic miRNAs (miR-20b-5p, miR-146b-5p, miR-146a-5p, miR-506-3p and miR-509-3p) were up-regulated. Seven microRNAs (miR-30d-5p, miR-138-5p, miR-146a-5p, miR-500a-5p, miR-501-3p, miR-501-5p and miR-502-3p) were significantly and simultaneously up-regulated in both stage T1 and stage T2 tumours, and were associated with increased tumour thickness. The expression of the 25 tumour-specific microRNAs did not differ significantly between conjunctival melanoma and oral or nasal mucosal melanoma. In conclusion, the incidence of conjunctival melanoma increased in the Danish population from 1960 to 2012. From our findings of a distinct pattern of BRAF mutations and differentially expressed microRNAs, it is evident that conjunctival melanoma is closely related to cutaneous and other mucosal melanomas and bears less resemblance to uveal melanomas. This means that conjunctival melanoma patients may benefit from therapies that are effective for cutaneous and mucosal melanoma. Additionally, the identification of several up-regulated microRNAs may prove to be useful as prognostic or therapeutic targets in conjunctival melanoma.
Collapse
Affiliation(s)
- Ann-Cathrine Larsen
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
69
|
Margue C, Reinsbach S, Philippidou D, Beaume N, Walters C, Schneider JG, Nashan D, Behrmann I, Kreis S. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer? Oncotarget 2016; 6:12110-27. [PMID: 25883223 PMCID: PMC4494926 DOI: 10.18632/oncotarget.3661] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/28/2015] [Indexed: 11/25/2022] Open
Abstract
MiRNAs are increasingly recognized as biomarkers for the diagnosis of cancers where they are profiled from tumor tissue (intracellular miRNAs) or serum/plasma samples (extracellular miRNAs). To improve detection of reliable biomarkers from blood samples, we first compiled a healthy reference miRNome and established a well-controlled analysis pipeline allowing for standardized quantification of circulating miRNAs. Using whole miRNome and custom qPCR arrays, miRNA expression profiles were analyzed in 126 serum, whole blood and tissue samples of healthy volunteers and melanoma patients and in primary melanocyte and keratinocyte cell lines. We found characteristic signatures with excellent prognostic scores only in late stage but not in early stage melanoma patients. Upon comparison of melanoma tissue miRNomes with matching serum samples, several miRNAs were identified to be exclusively tissue-derived (miR-30b-5p, miR-374a-5p and others) while others had higher expression levels in serum (miR-3201 and miR-122-5p). Here we have compiled a healthy and widely applicable miRNome from serum samples and we provide strong evidence that levels of cell-free miRNAs only change significantly at later stages of melanoma progression, which has serious implications for miRNA biomarker studies in cancer.
Collapse
Affiliation(s)
| | | | | | - Nicolas Beaume
- Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | - Casandra Walters
- Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | | | - Dorothée Nashan
- Life Sciences Research Unit, University of Luxembourg, Luxembourg.,Klinikum Dortmund GmbH, Germany
| | - Iris Behrmann
- Life Sciences Research Unit, University of Luxembourg, Luxembourg
| | - Stephanie Kreis
- Life Sciences Research Unit, University of Luxembourg, Luxembourg
| |
Collapse
|
70
|
Huo L, Wang Y, Gong Y, Krishnamurthy S, Wang J, Diao L, Liu CG, Liu X, Lin F, Symmans WF, Wei W, Zhang X, Sun L, Alvarez RH, Ueno NT, Fouad TM, Harano K, Debeb BG, Wu Y, Reuben J, Cristofanilli M, Zuo Z. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod Pathol 2016; 29:330-46. [PMID: 26916073 PMCID: PMC11793840 DOI: 10.1038/modpathol.2016.38] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/09/2016] [Accepted: 01/09/2016] [Indexed: 02/07/2023]
Abstract
Inflammatory breast cancer is the most aggressive form of breast cancer. Identifying new biomarkers to be used as therapeutic targets is in urgent need. Messenger RNA expression profiling studies have indicated that inflammatory breast cancer is a transcriptionally heterogeneous disease, and specific molecular targets for inflammatory breast cancer have not been well established. We performed microRNA expression profiling in inflammatory breast cancer in comparison with locally advanced noninflammatory breast cancer in this study. Although many microRNAs were differentially expressed between normal breast tissue and tumor tissue, most of them did not show differential expression between inflammatory and noninflammatory tumor samples. However, by microarray analysis, quantitative reverse transcription PCR, and in situ hybridization, we showed that microRNA-205 expression was decreased not only in tumor compared with normal breast tissue, but also in inflammatory breast cancer compared with noninflammatory breast cancer. Lower expression of microRNA-205 correlated with worse distant metastasis-free survival and overall survival in our cohort. A small-scale immunohistochemistry analysis showed coexistence of decreased microRNA-205 expression and decreased E-cadherin expression in some ductal tumors. MicroRNA-205 may serve as a therapeutic target in advanced breast cancer including inflammatory breast cancer.
Collapse
Affiliation(s)
- Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Yan Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Yun Gong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Feng Lin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - William F. Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Wei Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Xinna Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Li Sun
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Ricardo H. Alvarez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Tamer M. Fouad
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Kenichi Harano
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Bisrat G. Debeb
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | - James Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| | | | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United State
| |
Collapse
|
71
|
Wen Y, Li L, Wang L, Xu L, Liang W, Ren S, Liu G. Biomedical Applications of DNA-Nanomaterials Based on Metallic Nanoparticles and DNA Self-Assembled Nanostructures. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
72
|
Wang C, Guan S, Liu F, Chen X, Han L, Wang D, Nesa EU, Wang X, Bao C, Wang N, Cheng Y. Prognostic and diagnostic potential of miR-146a in oesophageal squamous cell carcinoma. Br J Cancer 2016; 114:290-7. [PMID: 26794279 PMCID: PMC4742585 DOI: 10.1038/bjc.2015.463] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/26/2015] [Accepted: 11/19/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that dysregulated microRNA-146a (miR-146a) is involved in tumour genesis and cancer progression. We aimed to evaluate its expression level and the potential for the diagnosis and prognosis in oesophageal squamous cell cancer (ESCC). METHODS We examined miR-146a expression in 62 pairs of ESCC cancerous and matched paracancerous tissue, 115 formalin-fixed paraffin-embedded (FFPE) tissue samples and serum samples from 154 ESCC patients and 154 healthy volunteers using quantitative reverse transcription-PCR (qRT-PCR). Kaplan-Meier method, Cox regression and receiver-operating characteristic (ROC) curve analysis were applied to analyse its prognostic and diagnostic value. RESULTS MicroRNA-146a expression level was significantly decreased in ESCC tissue compared with paracancerous tissue (P<0.001). Its regulation level was negatively associated with T factor and TNM stage. Kaplan-Meier curve revealed that its downregulation level predicted worse overall survival (OS) and progression-free survival (PFS). Both univariate and multivariate analyses identified miR-146a expression as independent prognostic factor for OS and PFS. Serum miR-146a was significantly reduced in ESCC patients than in healthy controls (P<0.001). Area under the curve ROC value, sensitivity and specificity for this marker were 0.863 ± 0.033, 85.7% and 68.6% in the Discovery Group, and 0.891 ± 0.027, 82.1% and 83.3% in the Validation Group. CONCLUSIONS MicroRNA-146a is significantly reduced in cancerous tissue and serum samples of ESCC patients. It is an ideal biomarker for the prognosis and diagnosis of ESCC.
Collapse
Affiliation(s)
- Cong Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Fang Liu
- Department of Imaging, Shandong Medical College, Jinan, Shandong 250002, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Ding Wang
- Department of Laboratory Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Effat Un Nesa
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xintong Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, China
| | - Cihang Bao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Nana Wang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
73
|
A direct plasma assay of circulating microRNA-210 of hypoxia can identify early systemic metastasis recurrence in melanoma patients. Oncotarget 2016; 6:7053-64. [PMID: 25749524 PMCID: PMC4466669 DOI: 10.18632/oncotarget.3142] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 02/06/2023] Open
Abstract
Circulating cell-free(cf) microRNAs (miRNAs) have been reported to exist in plasma. MicroRNA-210(miR-210) is known to play important roles in the tumor hypoxic state. We hypothesized that the expression levels of cf-miR-210 in plasma would predict early clinical recurrence in melanoma patients. A direct miRNA assay on plasma (RT-qPCR-DP) was developed to improve cf-miRNA assay logistics, eliminate RNA extraction, and reduce specimen amount required. RNA was extracted from formalin-fixed paraffin-embedded (FFPE) melanoma tissues (n = 108) and assessed by RT-qPCR. Plasma (10 μl; n = 264) was procured from AJCC Stage III/IV patients in phase III clinical trials. A RT-qPCR-DP was performed to detect cf-miR-210. MiR-210 was significantly higher in metastatic tumors compared to primary tumors. Cf-miR-210 was significantly higher in melanoma patients versus healthy donor controls. In serial bloods within individual patients, cf-miR-210 < 3 months prior to disease recurrence significantly increased compared to baseline levels (p = 0.012). ROC curve analysis demonstrated that patients with elevated cf-miR-210 were more likely to have disease recurrence. Moreover, cf-miR-210 increase significantly correlated with poorer prognosis (p < 0.001). Lactate dehydrogenase (LDH) level was also assessed within patients, and the AIC values for proportional hazards regression models of cf-miR-210(120.01) and LDH (122.91) demonstrated that cf-miR-210 is a better recurrence indicator. We concluded enhanced cf-miR-210 provides identification of early systemic melanoma recurrence.
Collapse
|
74
|
Li N. Low Expression of Mir-137 Predicts Poor Prognosis in Cutaneous Melanoma Patients. Med Sci Monit 2016; 22:140-4. [PMID: 26763596 PMCID: PMC4716707 DOI: 10.12659/msm.895207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/21/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The present study aimed to measure miR-137 expression in patients with cutaneous melanoma (CM) and to estimate the correlation of miR-137 expression and the prognosis of CM patients. MATERIAL/METHODS The expression level of miR-137 was assayed by quantitative real-time PCR (qRT-PCR) and presented as mean ±SD. Chi-square was used to evaluate the relationship between miR-137 expression and clinical characteristics. We used a Kaplan-Meier survival curve to determine the overall survival rate of CM patients. Moreover, the correlation between miR-137 expression and the prognosis of CM patients was confirmed by Cox regression analysis. RESULTS The relative expression of miR-137 in CM tissue was 1.59±0.43, while that in paired normal tissue was 2.41±0.54, which was significantly higher. Chi-square analysis showed statistical significance between miR-137 expression and clinical characteristics such as TNM stage, ulcer, and occurrence site (P<0.05). However, no association was found between miR-137 expression and age, sex, or family history (P>0.05). According to the survival curve outcome, patients with low miR-137 expression showed relatively higher mortality (P=0.000) and multivariate analysis verified that low expression of miR-137 predicted poor prognosis of CM patients (HR=8.531, 95% CI=2.950-24.668, P=0.000). CONCLUSIONS Compared with paired normal tissues, miR-137 expression was lower in CM tissues. Patients with low miR-137 expression had higher mortality than those with high miR-137 expression, suggesting that low miR-137 expression indicated poor prognosis for CM patients.
Collapse
Affiliation(s)
- Nan Li
- Corresponding Author: Nan Li, e-mail:
| |
Collapse
|
75
|
Weiss S, Hanniford D, Hernando E, Osman I. Revisiting determinants of prognosis in cutaneous melanoma. Cancer 2015; 121:4108-23. [PMID: 26308244 PMCID: PMC4666819 DOI: 10.1002/cncr.29634] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 11/10/2022]
Abstract
The American Joint Committee on Cancer staging system for cutaneous melanoma is based on primary tumor thickness and the presence of ulceration, mitoses, lymph node spread, and distant metastases as determinants of prognosis. Although this cutaneous melanoma staging system has evolved over time to more accurately reflect patient prognosis, improvements are still needed, because current understanding of the particular factors (genetic mutation, expression alteration, host response, etc) that are critical for predicting patient outcomes is incomplete. Given the clinical and biologic heterogeneity of primary melanomas, new prognostic tools are needed to more precisely identify patients who are most likely to develop advanced disease. Such tools would affect clinical surveillance strategies and aid in patient selection for adjuvant therapy. The authors reviewed the literature on prognostic molecular and immunologic markers in primary cutaneous melanoma, their associations with clinicopathologic and survival outcomes, and their potential for incorporation into current staging models. Overall, the studies considered in this review did not define prognostic markers that could be readily incorporated into the current staging system. Therefore, efforts should be continued in these and other directions to maximize the likelihood of identifying clinically useful prognostic biomarkers for cutaneous melanoma.
Collapse
Affiliation(s)
- Sarah Weiss
- Department of Medical Oncology, New York University School of Medicine, New York, NY
- Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY
| | - Douglas Hanniford
- Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Eva Hernando
- Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, New York University School of Medicine, New York, NY
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY
| |
Collapse
|
76
|
Mannavola F, Tucci M, Felici C, Stucci S, Silvestris F. miRNAs in melanoma: a defined role in tumor progression and metastasis. Expert Rev Clin Immunol 2015; 12:79-89. [PMID: 26505837 DOI: 10.1586/1744666x.2016.1100965] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The crosstalk of melanoma cells with components of the microenvironment promotes malignant cell proliferation and spread to distant tissues. Although the major pathogenetic events have already been elucidated, the mechanisms that drive the metastatic behavior of tumor cells are still undefined. MicroRNAs (miRNAs) are small non-coding RNAs that control post-transcriptional gene expression through interconnected kinases upstream of functional genes involved in tumor progression. Here, we review the biological relevance of melanoma-related miRNAs and focus on their potential role in propagating signals that may cause tumor microenvironment rearrangements, as well as disablement of the immune system and melanoma cell proliferation.
Collapse
Affiliation(s)
- Francesco Mannavola
- a DIMO, Department of Internal Medicine and Clinical Oncology , University of Bari 'Aldo Moro' , Bari , Italy
| | - Marco Tucci
- a DIMO, Department of Internal Medicine and Clinical Oncology , University of Bari 'Aldo Moro' , Bari , Italy
| | - Claudia Felici
- a DIMO, Department of Internal Medicine and Clinical Oncology , University of Bari 'Aldo Moro' , Bari , Italy
| | - Stefania Stucci
- a DIMO, Department of Internal Medicine and Clinical Oncology , University of Bari 'Aldo Moro' , Bari , Italy
| | - Franco Silvestris
- a DIMO, Department of Internal Medicine and Clinical Oncology , University of Bari 'Aldo Moro' , Bari , Italy
| |
Collapse
|
77
|
Yakovleva ME, Welinder C, Sugihara Y, Pawłowski K, Rezeli M, Wieslander E, Malm J, Marko-Varga G. Workflow for large-scale analysis of melanoma tissue samples. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
78
|
Balci S, Ayaz L, Gorur A, Yildirim Yaroglu H, Akbayir S, Dogruer Unal N, Bulut B, Tursen U, Tamer L. microRNA profiling for early detection of nonmelanoma skin cancer. Clin Exp Dermatol 2015; 41:346-51. [DOI: 10.1111/ced.12736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2014] [Indexed: 01/01/2023]
Affiliation(s)
- S. Balci
- Department of Biochemistry; Mersin University Faculty of Medicine; Mersin Turkey
| | - L. Ayaz
- Department of Biochemistry; Faculty of Pharmacy; Trakya University; Edirne Turkey
| | - A. Gorur
- Department of Biochemistry; Mersin University Faculty of Medicine; Mersin Turkey
| | | | - S. Akbayir
- Department of Biochemistry; Mersin University Faculty of Medicine; Mersin Turkey
| | - N. Dogruer Unal
- Department of Biochemistry; Faculty of Pharmacy; Mersin University; Mersin Turkey
| | - B. Bulut
- Department of Dermatology; Mersin University Faculty of Medicine; Mersin Turkey
| | - U. Tursen
- Department of Dermatology; Mersin University Faculty of Medicine; Mersin Turkey
| | - L. Tamer
- Department of Biochemistry; Mersin University Faculty of Medicine; Mersin Turkey
| |
Collapse
|
79
|
Identifying miRNA/mRNA negative regulation pairs in colorectal cancer. Sci Rep 2015; 5:12995. [PMID: 26269151 PMCID: PMC4534763 DOI: 10.1038/srep12995] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022] Open
Abstract
Although considerable progress has been made in the molecular biology of Colorectal cancer (CRC), novel approaches are still required to uncover the detailed molecular mechanism of CRC. We aim to explore the potential negatively regulated miRNA-mRNA pairs and investigate their regulatory roles so as to elaborate the potential roles of the critical proteins in the signaling pathways enriched by the differential target genes of negatively regulated miRNA in CRC. Firstly, the differential miRNA-mRNA pairs were selected, followed by pairs of miRNA and their target genes. The obtained relationships were subjected to do functional enrichment analysis and those enriched in CRC pathways were chose to further construct a protein interaction network. Finally, we analyzed the regulatory roles of these relationships and constructed a regulatory network of negatively regulated miRNA and mRNA relationships. A total of 372 pairs of miRNA-mRNA were found and 108 target genes of miRNA were obtained. Three miRNAs including hsa-mir-23b, hsa-mir-365-1 and hsa-mir-365-2 showed significant influence on prognosis of CRC patients. To conclude, the miRNA/mRNA deregulations pairs identified in this study have high potentials to be further applied in diagnosis and treatment of CRC.
Collapse
|
80
|
Laxman N, Rubin CJ, Mallmin H, Nilsson O, Pastinen T, Grundberg E, Kindmark A. Global miRNA expression and correlation with mRNA levels in primary human bone cells. RNA (NEW YORK, N.Y.) 2015; 21:1433-1443. [PMID: 26078267 PMCID: PMC4509933 DOI: 10.1261/rna.049148.114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA-mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA-mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, α1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression.
Collapse
Affiliation(s)
- Navya Laxman
- Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden Science for Life Laboratory, Department of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Hans Mallmin
- Department of Surgical Sciences, Uppsala University, SE-75185 Uppsala, Sweden
| | - Olle Nilsson
- Department of Surgical Sciences, Uppsala University, SE-75185 Uppsala, Sweden
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1B1 Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada H3A 0G1
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1B1 Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada H3A 0G1
| | - Andreas Kindmark
- Department of Medical Sciences, Uppsala University, SE-75185 Uppsala, Sweden Science for Life Laboratory, Department of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| |
Collapse
|
81
|
Villaruz LC, Huang G, Romkes M, Kirkwood JM, Buch SC, Nukui T, Flaherty KT, Lee SJ, Wilson MA, Nathanson KL, Benos PV, Tawbi HA. MicroRNA expression profiling predicts clinical outcome of carboplatin/paclitaxel-based therapy in metastatic melanoma treated on the ECOG-ACRIN trial E2603. Clin Epigenetics 2015; 7:58. [PMID: 26052356 PMCID: PMC4457092 DOI: 10.1186/s13148-015-0092-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Carboplatin/paclitaxel (CP), with or without sorafenib, result in objective response rates of 18-20 % in unselected chemotherapy-naïve patients. Molecular predictors of survival and response to CP-based chemotherapy in metastatic melanoma (MM) are critical to improving the therapeutic index. Intergroup trial E2603 randomized MM patients to CP with or without sorafenib. Expression data were collected from pre-treatment formalin-fixed paraffin-embedded (FFPE) tumor tissues from 115 of 823 patients enrolled on E2603. The selected patients were balanced across treatment arms, BRAF status, and clinical outcome. We generated data using Nanostring array (microRNA (miRNA) expression) and DNA-mediated annealing, selection, extension and ligation (DASL)/Illumina microarrays (HT12 v4) (mRNA expression) with protocols optimized for FFPE samples. Integrative computational analysis was performed using a novel Tree-guided Recursive Cluster Selection (T-ReCS) [1] algorithm to select the most informative features/genes, followed by TargetScan miRNA target prediction (Human v6.2) and mirConnX [2] for network inference. RESULTS T-ReCS identified PLXNB1 as negatively associated with progression-free survival (PFS) and miR-659-3p as the primary miRNA associated positively with PFS. miR-659-3p was differentially expressed based on PFS but not based on treatment arm, BRAF or NRAS status. Dichotomized by median PFS (less vs greater than 4 months), miR-659-3p expression was significantly different. High miR-659-3p expression distinguished patients with responsive disease (complete or partial response) from patients with stable disease. miR-659-3p predicted gene targets include NFIX, which is a transcription factor known to interact with c-Jun and AP-1 in the context of developmental processes and disease. CONCLUSIONS This novel integrative analysis implicates miR-659-3p as a candidate predictive biomarker for MM patients treated with platinum-based chemotherapy and may serve to improve patient selection.
Collapse
Affiliation(s)
- Liza C Villaruz
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - Grace Huang
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Marjorie Romkes
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - John M Kirkwood
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - Shama C Buch
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Tomoko Nukui
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Keith T Flaherty
- University of Pennsylvania, Philadelphia, PA USA.,Massachusetts General Hospital, Boston, MA USA
| | | | - Melissa A Wilson
- University of Pennsylvania, Philadelphia, PA USA.,New York University, New York, NY USA
| | | | | | - Hussein A Tawbi
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| |
Collapse
|
82
|
Wang J, Zhang Y, Zhang N, Wang C, Herrler T, Li Q. An updated review of mechanotransduction in skin disorders: transcriptional regulators, ion channels, and microRNAs. Cell Mol Life Sci 2015; 72:2091-106. [PMID: 25681865 PMCID: PMC11113187 DOI: 10.1007/s00018-015-1853-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/22/2015] [Accepted: 02/09/2015] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The skin is constantly exposed and responds to a wide range of biomechanical cues. The mechanobiology of skin has already been known and applied by clinicians long before the fundamental molecular mechanisms of mechanotransduction are elucidated. MATERIALS AND METHODS Despite increasing knowledge on the mediators of biomechanical signaling such as mitogen-associated protein kinases, Rho GTPases or FAK-ERK pathways, the key elements of mechano-responses transcription factors, and mechano-sensors remain unclear. Recently, canonical biochemical components of Hippo and Wnt signaling pathway YAP and β-catenin were found to exhibit undefined mechanical sensitivity. Mechanical forces were identified to be the dominant regulators of YAP/TAZ activity in a multicellular context. Furthermore, different voltage or ligand sensitive ion channels in the cell membrane exhibited their mechanical sensitivity as mechano-sensors. Additionally, a large number of microRNAs have been confirmed to regulate cellular behavior and contribute to various skin disorders under mechanical stimuli. Mechanosensitive (MS) microRNAs could not only be activated by distinct mechanical force pattern, but also responsively target MS sensors such as e-cadherin and cytoskeleton constituent RhoA. CONCLUSION Thus, a comprehensive understanding of this regulatory network of cutaneous mechanotransduction will facilitate the development of novel approaches to wound healing, hypertrophic scar formation, skin regeneration, and the progression or initiation of skin diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | | | | | | | | | | |
Collapse
|
83
|
Correlation of miRNA expression profiling in surgical pathology materials, with Ki-67, HER2, ER and PR in breast cancer patients. Int J Biol Markers 2015; 30:e190-9. [PMID: 25907662 DOI: 10.5301/jbm.5000141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND New molecular markers related to prognosis and/or clinical outcome have been extensively studied in breast cancer. In particular, microRNA (miRNA) has attracted the interest of both basic and clinical investigators as one of the promising molecular markers of breast cancer patients. MiRNAs are a class of short noncoding RNAs that regulate mRNAs at posttranscriptional level and are deregulated in various human malignancies. Previous studies have reported that miRNAs were stably conserved in 10% formalin-fixed paraffin-embedded tissues without significant degradation, in contrast to more fragile RNA. METHODS Therefore, in this study, we examined 21 surgical breast cancer specimens using the Human Cancer microRNA PCR Array system (QIAGEN) to explore potential molecular targets of miRNAs. RESULTS Profiling of miRNA expression in archival materials demonstrated that a group of deregulated miRNAs was associated with clinicopathological parameters of the patients, such as Ki-67, HER2, ER and PR. For instance, an abundant expression of multiple let-7 miRNA family, also known as tumor suppressor, was detected in low Ki-67 and HER2 groups. Elevated expression of 8 miRNAs overlapped between Ki-67+/HER2+/ER+/PR+ groups, including several known oncogenic miRNAs such as miR-148b, miR-15b, miR-200c, miR-150, miR-191, miR-96, miR-25 and miR-21. CONCLUSIONS These results all indicated that when analyzing miRNAs in surgical pathology specimens of breast cancer as a biomarker, they should be examined as a cluster through miRNA profiling, rather than relying on the analysis of a single miRNA.
Collapse
|
84
|
Jinnin M. Recent progress in studies of miRNA and skin diseases. J Dermatol 2015; 42:551-8. [PMID: 25917002 DOI: 10.1111/1346-8138.12904] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 01/05/2023]
Abstract
miRNA is a family of small non-coding RNA that consists of 22 nucleotides on average. miRNA are implicated in various cellular activities such as cell proliferation or migration via the modulation of gene expression, and also are linked to the pathogenesis of human diseases. This paper reviews recent research progress about the contribution of miRNA to the pathogenesis of various skin diseases, and possible application of miRNA as the disease markers in each disease. For example, downregulated miR-424-5p in psoriatic skin causes the overexpression of MEK1 and cyclin E1 in psoriatic keratinocytes, resulting in the keratinocyte overgrowth and hyperproliferation seen in the disease. Although there was no significant difference in the serum miR-424-5p levels between psoriasis patients and healthy controls, serum miR-1266-5p levels were significantly upregulated in psoriasis patients, and showed weak and inverse correlation with disease activity. Furthermore, combination of serum levels of miR-146a-5p and -203a-3p was more reliable to distinguish psoriasis patients and normal subjects, than each miRNA alone. Hair shaft miR-424-5p levels were significantly higher in psoriasis patients than normal subjects, while hair root miR-19a-3p levels in psoriasis patients were inversely correlated with the duration between symptom onset and the first visit to the hospital. Future researches of miRNA will enable the advances of their clinical applications including the clarification of pathogenesis, disease markers and novel treatments.
Collapse
Affiliation(s)
- Masatoshi Jinnin
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
85
|
Bartlett D, Boyle GM, Ziman M, Medic S. Mechanisms contributing to differential regulation of PAX3 downstream target genes in normal human epidermal melanocytes versus melanoma cells. PLoS One 2015; 10:e0124154. [PMID: 25880082 PMCID: PMC4399949 DOI: 10.1371/journal.pone.0124154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/01/2015] [Indexed: 11/19/2022] Open
Abstract
Melanoma is a highly aggressive and drug resistant form of skin cancer. It arises from melanocytes, the pigment producing cells of the skin. The formation of these melanocytes is driven by the transcription factor PAX3 early during embryonic development. As a result of alternative splicing, the PAX3 gene gives rise to eight different transcripts which encode isoforms that have different structures and activate different downstream target genes involved in pathways of cell proliferation, migration, differentiation and survival. Furthermore, post-translational modifications have also been shown to alter the functions of PAX3. We previously identified PAX3 downstream target genes in melanocytes and melanoma cells. Here we assessed the effects of PAX3 down-regulation on this panel of target genes in primary melanocytes versus melanoma cells. We show that PAX3 differentially regulates various downstream target genes involved in cell proliferation in melanoma cells compared to melanocytes. To determine mechanisms behind this differential downstream target gene regulation, we performed immunoprecipitation to assess post-translational modifications of the PAX3 protein as well as RNAseq to determine PAX3 transcript expression profiles in melanocytes compared to melanoma cells. Although PAX3 was found to be post-translationally modified, there was no qualitative difference in phosphorylation and ubiquitination between melanocytes and melanoma cells, while acetylation of PAX3 was reduced in melanoma cells. Additionally, there were differences in PAX3 transcript expression profiles between melanocytes and melanoma cells. In particular the PAX3E transcript, responsible for reducing melanocyte proliferation and increasing apoptosis, was found to be down-regulated in melanoma cells compared to melanocytes. These results suggest that alternate transcript expression profiles activate different downstream target genes leading to the melanoma phenotype.
Collapse
Affiliation(s)
- Danielle Bartlett
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, Division of Cancer & Cell Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mel Ziman
- School of Medical Sciences, Edith Cowan University, Perth, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
- * E-mail:
| | - Sandra Medic
- School of Medical Sciences, Edith Cowan University, Perth, Australia
- Curtin Health Innovation Research Institute of Ageing and Chronic Disease, Curtin University, Perth, Australia
| |
Collapse
|
86
|
Michailidi C, Hayashi M, Datta S, Sen T, Zenner K, Oladeru O, Brait M, Izumchenko E, Baras A, VandenBussche C, Argos M, Bivalacqua TJ, Ahsan H, Hahn NM, Netto GJ, Sidransky D, Hoque MO. Involvement of epigenetics and EMT-related miRNA in arsenic-induced neoplastic transformation and their potential clinical use. Cancer Prev Res (Phila) 2015; 8:208-21. [PMID: 25586904 PMCID: PMC4355280 DOI: 10.1158/1940-6207.capr-14-0251] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject's risk of developing urothelial carcinoma. To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic-exposed subjects, urothelial carcinoma patients, and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time-dependent manner after arsenic treatment and cellular morphology was changed. In a soft agar assay, colonies were observed only in arsenic-treated cells, and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in an invasion assay were observed only in arsenic-treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic-treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic-treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were downregulated in arsenic-exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P = 0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC = 0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early urothelial carcinoma detection.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Arsenic/adverse effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Cohort Studies
- DNA Methylation
- Epigenesis, Genetic/genetics
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunoenzyme Techniques
- Male
- MicroRNAs/analysis
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Invasiveness
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Urinary Bladder/drug effects
- Urinary Bladder/metabolism
- Urinary Bladder/pathology
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
- Young Adult
Collapse
Affiliation(s)
- Christina Michailidi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Masamichi Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sayantan Datta
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Tanusree Sen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Kaitlyn Zenner
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Oluwadamilola Oladeru
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Alexander Baras
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | | | - Maria Argos
- Department of Health Studies, The University of Chicago, Chicago, Illinois
| | | | - Habibul Ahsan
- Department of Health Studies, The University of Chicago, Chicago, Illinois. Departments of Medicine and Human Genetics and Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois
| | - Noah M Hahn
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - George J Netto
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland. Department of Urology, Johns Hopkins University, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland. Department of Urology, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
87
|
Mione M, Bosserhoff A. MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res 2015; 28:340-54. [PMID: 25515738 DOI: 10.1111/pcmr.12346] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
The importance of microRNAs as key molecular components of cellular processes is now being recognized. Recent reports have shown that microRNAs regulate processes as diverse as protein expression and nuclear functions inside cells and are able to signal extracellularly, delivered via exosomes, to influence cell fate at a distance. The versatility of microRNAs as molecular tools inspires the design of novel strategies to control gene expression, protein stability, DNA repair and chromatin accessibility that may prove very useful for therapeutic approaches due to the extensive manageability of these small molecules. However, we still lack a comprehensive understanding of the microRNA network and its interactions with the other layers of regulatory elements in cellular and extracellular functions. This knowledge may be necessary before we exploit microRNA versatility in therapeutic settings. To identify rules of interactions between microRNAs and other regulatory systems, we begin by reviewing microRNA activities in a single cell type: the melanocyte, from development to disease.
Collapse
Affiliation(s)
- Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggestein-Leopoldshafen, Germany
| | | |
Collapse
|
88
|
Miller DL, Davis JW, Taylor KH, Johnson J, Shi Z, Williams R, Atasoy U, Lewis JS, Stack MS. Identification of a human papillomavirus-associated oncogenic miRNA panel in human oropharyngeal squamous cell carcinoma validated by bioinformatics analysis of the Cancer Genome Atlas. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:679-92. [PMID: 25572154 DOI: 10.1016/j.ajpath.2014.11.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/03/2014] [Accepted: 11/12/2014] [Indexed: 12/19/2022]
Abstract
High-risk human papillomavirus (HPV) is a causative agent for an increasing subset of oropharyngeal squamous cell carcinomas (OPSCCs), and current evidence supports these tumors as having identifiable risk factors and improved response to therapy. However, the biochemical and molecular alterations underlying the pathobiology of HPV-associated OPSCC (designated HPV(+) OPSCC) remain unclear. Herein, we profile miRNA expression patterns in HPV(+) OPSCC to provide a more detailed understanding of pathologic molecular events and to identify biomarkers that may have applicability for early diagnosis, improved staging, and prognostic stratification. Differentially expressed miRNAs were identified in RNA isolated from an initial clinical cohort of HPV(+/-) OPSCC tumors by quantitative PCR-based miRNA profiling. This oncogenic miRNA panel was validated using miRNA sequencing and clinical data from The Cancer Genome Atlas and miRNA in situ hybridization. The HPV-associated oncogenic miRNA panel has potential utility in diagnosis and disease stratification and in mechanistic elucidation of molecular factors that contribute to OPSCC development, progression, and differential response to therapy.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - J Wade Davis
- Department of Health Management and Informatics, University of Missouri School of Medicine, Columbia, Missouri; Department of Statistics, University of Missouri School of Medicine, Columbia, Missouri
| | - Kristen H Taylor
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Jeff Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana; Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | - Zonggao Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana; Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | - Russell Williams
- Department of Biochemistry, Indiana University South Bend, South Bend, Indiana
| | - Ulus Atasoy
- Department of Surgery, University of Missouri School of Medicine, Columbia, Missouri
| | - James S Lewis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana; Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana.
| |
Collapse
|
89
|
Essential Role of microRNA in Skin Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 888:307-30. [DOI: 10.1007/978-3-319-22671-2_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
90
|
Syed DN, Lall RK, Mukhtar H. MicroRNAs and Photocarcinogenesis. Photochem Photobiol 2014; 91:173-87. [DOI: 10.1111/php.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Deeba N. Syed
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Rahul K. Lall
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Hasan Mukhtar
- Department of Dermatology; University of Wisconsin; Madison WI
| |
Collapse
|
91
|
Penna E, Orso F, Taverna D. miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol 2014; 135:960-969. [PMID: 25501033 DOI: 10.1038/jid.2014.479] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022]
Abstract
MicroRNAs are short regulatory RNAs that are able to post-transcriptionally modulate gene expression and that have crucial roles in the control of physiological and pathological processes including cancer onset, growth, and progression. miR-214, located inside the sequence of the long noncoding Dmn3os transcript, contributes to the regulation of normal and cancer cell biology, even if it operates in a context-dependent and sometimes contradictory manner. miR-214 is deregulated in several human tumors including melanoma, breast, ovarian, gastric, and hepatocellular carcinomas. miR-214's pleiotropic and tumor-specific contribution to various cancer formation and progression hallmarks is achieved via its several target genes. In fact, miR-214 behaves as a key hub by coordinating fundamental signaling networks such as PTEN/AKT, β-catenin, and tyrosine kinase receptor pathways. Interestingly, miR-214 also regulates the levels of crucial gene expression modulators: the epigenetic repressor Ezh2, "genome guardian" p53, transcription factors TFAP2, and another microRNA, miR-148b. Thus, miR-214 seems to have essential roles in coordinating tumor proliferation, stemness, angiogenesis, invasiveness, extravasation, metastasis, resistance to chemotherapy, and microenvironment. The sum of current literature reports suggests that miR-214 is a molecular hub involved in the control of cancer networks and, as such, could be a potential diagnostic/prognostic biomarker and target for therapeutic intervention.
Collapse
Affiliation(s)
- Elisa Penna
- Molecular Biotechnology Center (MBC), Torino, Italy; Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), Torino, Italy; Department of Molecular Biotechnology and Health Sciences, Torino, Italy; Center for Molecular Systems Biology, University of Torino, Torino, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), Torino, Italy; Department of Molecular Biotechnology and Health Sciences, Torino, Italy; Center for Molecular Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
92
|
Liu SM, Lu J, Lee HC, Chung FH, Ma N. miR-524-5p suppresses the growth of oncogenic BRAF melanoma by targeting BRAF and ERK2. Oncotarget 2014; 5:9444-59. [PMID: 25275294 PMCID: PMC4253445 DOI: 10.18632/oncotarget.2452] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/20/2014] [Indexed: 01/07/2023] Open
Abstract
It has been well documented that miRNAs can modulate the effectiveness of cancer-associated signaling pathways. Mitogen-activated protein kinase (MAPK/ERK) signaling plays an essential role in the progression of many cancers, including melanoma and colon cancers. However, no single miRNA is reported to directly target multiple components of the MAPK/ERK pathway. We performed a miRNA PCR array screening with various MAPK/ERK signaling activities. The miRNA array data revealed that the expression of miR-524-5p was decreased in cells with an active MAPK/ERK pathway and confirmed that the expression of miR-524-5p is inversely associated with the activity of the MAPK/ERK pathway. We demonstrated that miR-524-5p directly binds to the 3'-untranslated regions of both BRAFandERK2 and suppresses the expression of these proteins. Because BRAF and ERK2 are the main components of MAPK signaling, the overexpression of miR-524-5p effectively inhibits MAPK/ERK signaling, tumor proliferation, and melanoma cell migration. Moreover, tumors overexpressing miR-524-5p were significantly smaller than those of the negative control mice. Our findings provide new insight into the role of miR-524-5p as an important miRNA that negatively regulates the MAPK/ERK signaling pathway, suggesting that miR-524-5p could be a potent therapeutic candidate for melanoma treatment.
Collapse
Affiliation(s)
- Szu-Mam Liu
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| | - Jean Lu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hoong-Chien Lee
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
- Center for Dynamical Biomarkers and Translational Medicine, National Central University, Jhongli, Taiwan
- Department of Physics, Chung Yuan Christian University, Jhongli, Taiwan
| | - Feng-Hsiang Chung
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
- Center for Dynamical Biomarkers and Translational Medicine, National Central University, Jhongli, Taiwan
| | - Nianhan Ma
- Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taiwan
| |
Collapse
|
93
|
The miRNA23b-regulated signaling network as a key to cancer development--implications for translational research and therapeutics. J Mol Med (Berl) 2014; 92:1129-38. [PMID: 25301113 DOI: 10.1007/s00109-014-1208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023]
Abstract
A growing body of evidence indicates that microRNA23b (miR23b) is pleiotropic-it plays important roles in regulating physiological functions of cells, in regulating differentiation of cells and in regulating cellular immune responses. Our review of the literature showed that dysregulation of miR23b expression is implicated in the disruption of these cellular mechanisms and development of diseases such as cancer. MiR23b dysregulation appears to do this by modulating the expression level of candidate gene products involved in a network of signaling pathways including TGF-beta and Notch pathways that govern malignant properties of cancer cells such as motility and invasiveness. More recently, miR23b regulation of gene expression has also been associated with cancer stem cells and chemoresistance. Our review covers miR23b's role in immunity, endothelial function, differentiation, and cancer as well as its potential for translation into future cancer diagnostics and therapeutics.
Collapse
|
94
|
Mehrotra M, Medeiros LJ, Luthra R, Sargent RL, Yao H, Barkoh BA, Singh R, Patel KP. Identification of putative pathogenic microRNA and its downstream targets in anaplastic lymphoma kinase–negative anaplastic large cell lymphoma. Hum Pathol 2014; 45:1995-2005. [DOI: 10.1016/j.humpath.2014.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/10/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022]
|
95
|
Gu Y, Cheng Y, Song Y, Zhang Z, Deng M, Wang C, Zheng G, He Z. MicroRNA-493 suppresses tumor growth, invasion and metastasis of lung cancer by regulating E2F1. PLoS One 2014; 9:e102602. [PMID: 25105419 PMCID: PMC4126682 DOI: 10.1371/journal.pone.0102602] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
miRNAs have been proposed to be key regulators of progression and metastasis in cancer. However, an understanding of their roles and molecular mechanisms is needed to provide deeper insights for better therapeutic opportunities. In this study we investigated the role and mechanism of miR-493 in the development and progression of nonsmall-cell lung cancer (NSCLC). Our data indicated that the expression of miR-493 was markedly reduced in pulmonary carcinoma. The ectopic expression of miR-493 impaired cell growth and invasion in vitro and in vivo. Mechanically, miR-493 commonly directly targeted E2F1, which resulted in a robust reduction of the expression of mRNA and protein. This effect, in turn, decreased the growth, invasion and metastasis of lung cancer cells. Our findings highlight the importance of miR-493 dysfunction in promoting tumor progression, and implicate miR-493 as a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yixue Gu
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- Medical School, University of South China, Hengyang, Hunan, PR China
| | - Ye Cheng
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Ying Song
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhijie Zhang
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Min Deng
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chengkun Wang
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Guopei Zheng
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhimin He
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
- * E-mail:
| |
Collapse
|
96
|
Sun V, Zhou WB, Majid S, Kashani-Sabet M, Dar AA. MicroRNA-mediated regulation of melanoma. Br J Dermatol 2014; 171:234-41. [PMID: 24665835 DOI: 10.1111/bjd.12989] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2014] [Indexed: 01/10/2023]
Abstract
Melanoma is one of the most aggressive and deadly skin cancers, and, in its advanced stages, accounts for > 80% mortality. The incidence of melanoma is increasing worldwide; however, beyond surgical removal of the tumour, there is currently no curative therapy available, especially for its advanced stages. This may, in part, be owing to incomplete understanding of the molecular mechanisms that regulate the initiation and/or progression of melanoma to metastasis. The molecular mechanisms leading to the development and progression of melanoma are the focus of intense investigation, and many genetic/epigenetic alterations affecting melanoma progression and development have been identified. microRNAs (miRNAs) are emerging as important causal modulators in the development and progression of melanoma. The understanding of miRNA-mediated regulation of tumours has grown immensely over the last few years, as it has been understood to regulate most biological processes. Here, we review the currently available data on miRNAs associated with melanoma, highlighting those deregulated miRNAs that target important genes and pathways involved in the progression of melanocytes to primary and metastatic melanoma. We also review their potential clinical utility as biomarkers and potential use in targeted therapy.
Collapse
Affiliation(s)
- V Sun
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, 475 Brannan St Suite 220, San Francisco, CA, 94107, U.S.A
| | | | | | | | | |
Collapse
|
97
|
Altered expression pattern of miR-29a, miR-29b and the target genes in myeloid leukemia. Exp Hematol Oncol 2014; 3:17. [PMID: 25006537 PMCID: PMC4086441 DOI: 10.1186/2162-3619-3-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/31/2014] [Indexed: 01/07/2023] Open
Abstract
Objectives The miR-29 family have been demonstrated acting as vital tumor suppressor in multiple cancers as well as regulators in the adaptive immune system. Little is known about their role in leukemogenesis. The purpose of this study is to analyze the expression pattern of miR-29a/29b and its target genes Mcl-1 (myeloid cell leukemia sequence 1) and B-cell lymphoma 2 (Bcl-2) in myeloid leukemia. Methods Quantitative real-time PCR was used for detecting genes expression level in peripheral blood mononuclear cells (PBMCs) from 10 cases with newly diagnosed, untreated acute myeloid leukemia (AML) and 14 cases with newly diagnosed, untreated chronic myeloid leukemia (CML) in chronic phase, and 14 healthy individual (HI) served as controls. Correlation between the relative expression levels of different genes have been analyzed. Results Significant lower expression of miR-29a/29b and higher expression level of two potential target genes Bcl-2 and Mcl-1 were found in PBMCs from AML and CML patients compared with HI group. In addtion, miR-29a expression in AML was significantly lower than that in CML. Moreover, negative correlation between miR-29a/29b and its target genes have been found. While, positive correlation between relative expression level of miR-29a and miR-29b or Bcl-2 and Mcl-1 were presented in the total 38 research objects. Conclusion Down-regulated miR-29a and miR-29b, and accompanying up-regulated Bcl-2 and Mcl-1 are the common feature in myeloid leukemias. These data further support the role for miR-29a/29b dysregulation in myeloid leukemogenesis and the therapeutic promise of regulating miR-29a/29b expression for myeloid leukemia in the future.
Collapse
|
98
|
Abbas O, Miller DD, Bhawan J. Cutaneous malignant melanoma: update on diagnostic and prognostic biomarkers. Am J Dermatopathol 2014; 36:363-79. [PMID: 24803061 DOI: 10.1097/dad.0b013e31828a2ec5] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The incidence of cutaneous malignant melanoma has rapidly increased in recent years in all parts of the world, and melanoma is a leading cause of cancer death. As even relatively small melanomas may have metastatic potential, accurate assessment of progression is critical. Although diagnosis of cutaneous malignant melanoma is usually based on histopathologic criteria, these criteria may at times be inadequate in differentiating melanoma from certain types of benign nevi. As for prognosis, tumor (Breslow) thickness, mitotic rate, and ulceration have been considered the most important prognostic indicators among histopathologic criteria. However, there are cases of thin primary melanomas that have ultimately developed metastases despite complete excision. Given this, an accurate assessment of melanoma progression is critical, and development of molecular biomarkers that identify high-risk melanoma in its early phase is urgently needed. Large-scale genomic profiling has identified considerable heterogeneity in melanoma and suggests subgrouping of tumors by patterns of gene expression and mutation will ultimately be essential to accurate staging. This subgrouping in turn may allow for more targeted therapy. In this review, we aim to provide an update on the most promising new biomarkers that may help in the identification and prognostication of melanoma.
Collapse
Affiliation(s)
- Ossama Abbas
- *Associate Professor of Clinical Dermatology, Dermatology Department, American University of Beirut-Medical Center, Beirut, Lebanon; and †Assistant Professor of Dermatology (D.D.M.), Professor of Dermatology and Pathology (J.B.), Dermatopathology Section, Department of Dermatology, Boston University School of Medicine, Boston, MA
| | | | | |
Collapse
|
99
|
Rothschild SI. microRNA therapies in cancer. MOLECULAR AND CELLULAR THERAPIES 2014; 2:7. [PMID: 26056576 PMCID: PMC4452061 DOI: 10.1186/2052-8426-2-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/29/2014] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation. Some microRNAs have been categorized as “oncomiRs” as opposed to “tumor suppressor miRs” Modulating the miRNA activities may provide exciting opportunities for cancer therapy. This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.
Collapse
Affiliation(s)
- Sacha I Rothschild
- Department Internal Medicine, Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
100
|
Forloni M, Dogra SK, Dong Y, Conte D, Ou J, Zhu LJ, Deng A, Mahalingam M, Green MR, Wajapeyee N. miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. eLife 2014; 3:e01460. [PMID: 24550252 PMCID: PMC3927633 DOI: 10.7554/elife.01460] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/11/2014] [Indexed: 02/07/2023] Open
Abstract
Oncogenic mutations in BRAF and NRAS occur in 70% of melanomas. In this study, we identify a microRNA, miR-146a, that is highly upregulated by oncogenic BRAF and NRAS. Expression of miR-146a increases the ability of human melanoma cells to proliferate in culture and form tumors in mice, whereas knockdown of miR-146a has the opposite effects. We show these oncogenic activities are due to miR-146a targeting the NUMB mRNA, a repressor of Notch signaling. Previous studies have shown that pre-miR-146a contains a single nucleotide polymorphism (C>G rs2910164). We find that the ability of pre-miR-146a/G to activate Notch signaling and promote oncogenesis is substantially higher than that of pre-miR-146a/C. Analysis of melanoma cell lines and matched patient samples indicates that during melanoma progression pre-miR-146a/G is enriched relative to pre-miR-146a/C, resulting from a C-to-G somatic mutation in pre-miR-146a/C. Collectively, our results reveal a central role for miR-146a in the initiation and progression of melanoma. DOI: http://dx.doi.org/10.7554/eLife.01460.001.
Collapse
Affiliation(s)
- Matteo Forloni
- Department of Pathology, Yale University School of Medicine, New Haven, United States
| | - Shaillay Kumar Dogra
- Singapore Institute of Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Yuying Dong
- Department of Pathology, Yale University School of Medicine, New Haven, United States
| | - Darryl Conte
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Jianhong Ou
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, United States
| | - Lihua Julie Zhu
- Programs in Gene Function and Expression, Molecular Medicine, and Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - April Deng
- Department of Pathology, University of Massachusetts Medical School, Worcester, United States
| | - Meera Mahalingam
- Dermatopathology Section, Department of Dermatology, Boston University School of Medicine, Boston, United States
| | - Michael R Green
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
- Program in Gene Function and Expression, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, United States
| |
Collapse
|