51
|
Mirea MA, Eckensperger S, Hengstschläger M, Mikula M. Insights into Differentiation of Melanocytes from Human Stem Cells and Their Relevance for Melanoma Treatment. Cancers (Basel) 2020; 12:E2508. [PMID: 32899370 PMCID: PMC7564443 DOI: 10.3390/cancers12092508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
Malignant melanoma represents a highly aggressive form of skin cancer. The metastatic process itself is mostly governed by the so-called epithelial mesenchymal transition (EMT), which confers cancer cells migrative, invasive and resistance abilities. Since EMT represents a conserved developmental process, it is worthwhile further examining the nature of early developmental steps fundamental for melanocyte differentiation. This can be done either in vivo by analyzing the physiologic embryo development in different species or by in vitro studies of melanocytic differentiation originating from embryonic human stem cells. Most importantly, external cues drive progenitor cell differentiation, which can be divided in stages favoring neural crest specification or melanocytic differentiation and proliferation. In this review, we describe ectopic factors which drive human pluripotent stem cell differentiation to melanocytes in 2D, as well as in organoid models. Furthermore, we compare developmental mechanisms with processes described to occur during melanoma development. Finally, we suggest differentiation factors as potential co-treatment options for metastatic melanoma patients.
Collapse
Affiliation(s)
| | | | | | - Mario Mikula
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University Vienna, Währingerstrasse 10, 1090 Vienna, Austria; (M.A.M.); (S.E.); (M.H.)
| |
Collapse
|
52
|
Vidal A, Redmer T. Decoding the Role of CD271 in Melanoma. Cancers (Basel) 2020; 12:cancers12092460. [PMID: 32878000 PMCID: PMC7564075 DOI: 10.3390/cancers12092460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
The evolution of melanoma, the most aggressive type of skin cancer, is triggered by driver mutations that are acquired in the coding regions of particularly BRAF (rat fibrosarcoma serine/threonine kinase, isoform B) or NRAS (neuroblastoma-type ras sarcoma virus) in melanocytes. Although driver mutations strongly determine tumor progression, additional factors are likely required and prerequisite for melanoma formation. Melanocytes are formed during vertebrate development in a well-controlled differentiation process of multipotent neural crest stem cells (NCSCs). However, mechanisms determining the properties of melanocytes and melanoma cells are still not well understood. The nerve growth factor receptor CD271 is likewise expressed in melanocytes, melanoma cells and NCSCs and programs the maintenance of a stem-like and migratory phenotype via a comprehensive network of associated genes. Moreover, CD271 regulates phenotype switching, a process that enables the rapid and reversible conversion of proliferative into invasive or non-stem-like states into stem-like states by yet largely unknown mechanisms. Here, we summarize current findings about CD271-associated mechanisms in melanoma cells and illustrate the role of CD271 for melanoma cell migration and metastasis, phenotype-switching, resistance to therapeutic interventions, and the maintenance of an NCSC-like state.
Collapse
|
53
|
Osrodek M, Rozanski M, Czyz M. Insulin Reduces the Efficacy of Vemurafenib and Trametinib in Melanoma Cells. Cancer Manag Res 2020; 12:7231-7250. [PMID: 32982400 PMCID: PMC7501594 DOI: 10.2147/cmar.s263767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the progress made in the clinical management of metastatic melanoma, a patient's response to treatment cannot be fully predicted, and intrinsic or acquired resistance that is developed in most melanoma patients warrants further research efforts. In addition to genetic factors, microenvironmental input should be considered to explain the diversity of response to treatment among melanoma patients. In this study, we evaluated the impact of insulin on patient-derived BRAFV600E melanoma cells, either untreated or treated with vemurafenib or trametinib, inhibitors of BRAFV600 and MEK1/2, respectively. METHODS Cells were cultured in serum-free conditions, either with or without insulin. The activity of the MAPK/ERK and PI3K/AKT pathways was assessed by Western blotting, cell viability, and percentages of Ki-67- and NGFR-positive cells by flow cytometry. Transcript levels were analyzed using qRT-PCR, and γ-H2AX levels by immunoblotting and confocal microscopy. A luminescence-based assay was used to measure glutathione content. RESULTS While insulin did not influence the MAPK/ERK pathway activity, it had a strong influence on melanoma cells, in which this pathway was suppressed by either vemurafenib or trametinib. In the presence of insulin, both drugs were much less efficient in 1) inhibiting proliferation and reducing the percentage of Ki-67-positive cells, and 2) inducing apoptosis and phosphorylation of histone H2AX in melanoma cells. Changes induced by vemurafenib and trametinib in glutathione homeostasis and DNA repair gene expression were also attenuated by insulin. Moreover, insulin impaired the combined effects of targeted drugs and doxorubicin in melanoma cells. In addition to insulin-induced PI3K/AKT activity, which was either transient or sustainable depending on the cell line, an insulin-triggered increase in the percentage of cells expressing NGFR, a marker of neural crest stem-like cells, may contribute to the reduced drug efficacy. CONCLUSION Our results demonstrate the role of insulin in reducing the efficacy of vemurafenib and trametinib. This needs clinical assessment.
Collapse
Affiliation(s)
- Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Michal Rozanski
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
54
|
Reversal of pre-existing NGFR-driven tumor and immune therapy resistance. Nat Commun 2020; 11:3946. [PMID: 32770055 PMCID: PMC7414147 DOI: 10.1038/s41467-020-17739-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/10/2020] [Indexed: 01/05/2023] Open
Abstract
Melanomas can switch to a dedifferentiated cell state upon exposure to cytotoxic T cells. However, it is unclear whether such tumor cells pre-exist in patients and whether they can be resensitized to immunotherapy. Here, we chronically expose (patient-derived) melanoma cell lines to differentiation antigen-specific cytotoxic T cells and observe strong enrichment of a pre-existing NGFRhi population. These fractions are refractory also to T cells recognizing non-differentiation antigens, as well as to BRAF + MEK inhibitors. NGFRhi cells induce the neurotrophic factor BDNF, which contributes to T cell resistance, as does NGFR. In melanoma patients, a tumor-intrinsic NGFR signature predicts anti-PD-1 therapy resistance, and NGFRhi tumor fractions are associated with immune exclusion. Lastly, pharmacologic NGFR inhibition restores tumor sensitivity to T cell attack in vitro and in melanoma xenografts. These findings demonstrate the existence of a stable and pre-existing NGFRhi multitherapy-refractory melanoma subpopulation, which ought to be eliminated to revert intrinsic resistance to immunotherapeutic intervention.
Collapse
|
55
|
Kyriakou G, Melachrinou M. Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: a review. Future Oncol 2020; 16:1549-1567. [PMID: 32484008 DOI: 10.2217/fon-2020-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review provides an overview of the current understanding of the ontogeny and biology of melanoma stem cells in cutaneous malignant melanoma. This article also summarizes and evaluates the current knowledge of the underlying epigenetic mechanisms, the regulation of melanoma progress by the tumor microenvironment as well as the therapeutic implications and applications of these novel insights, in the setting of personalized medicine. Unraveling the complex ecosystem of cutaneous malignant melanoma and the interplay between its components, aims to provide novel insights into the establishment of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Georgia Kyriakou
- Department of Dermatology, University General Hospital of Patras, Rion 265 04, Greece
| | - Maria Melachrinou
- Department of Pathology, University General Hospital of Patras, Rion 265 04, Greece
| |
Collapse
|
56
|
Rapanotti MC, Campione E, Suarez Viguria TM, Spallone G, Costanza G, Rossi P, Orlandi A, Valenti P, Bernardini S, Bianchi L. Stem-Mesenchymal Signature Cell Genes Detected in Heterogeneous Circulating Melanoma Cells Correlate With Disease Stage in Melanoma Patients. Front Mol Biosci 2020; 7:92. [PMID: 32548126 PMCID: PMC7272706 DOI: 10.3389/fmolb.2020.00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of metastasis, cancer cells dissociate from primary tumors, migrate to distal sites, and finally colonize, eventually leading to the formation of metastatic tumors. These cancer cells, defined circulating tumor cells (CTCs) spreading through the blood stream, may develop metastatic lesions or remain dormant. Some emerging clinical evidence supports that some tumor cells may possess metastatic properties already in the earlier stages of tumorigenesis. Because the initiation and progression of vertical growth in human melanoma is fundamental to the notion of tumor virulence and progression, we decided to immune-magnetic collect and molecularly characterize circulating melanoma cells (CMCs) from melanoma patients AJCC staged = pT1b (i.e., transition from radial to vertical phase). CMCs are phenotypically and molecularly heterogeneous, thus we performed a "home-made Liquid-Biopsy," by targeting the melanoma-associated-antigen, MCAM/MUC18/CD146, and/or the melanoma-initiating marker, ABCB5. We assessed a biomarker qualitative expression panel, contemplating the angiogenic-potential, melanoma-initiating and melanoma-differentiation drivers, cell-cell adhesion molecules, matrix-metallo-proteinases, which was performed on three enriched subpopulations from a total of 61 blood-samples from 21 melanoma patients. At first, a significant differential expression of the specific transcripts was documented between and within the CMC fractions enriched with MCAM-, ABCB5-, and both MCAM/ABCB5-coated beads, when analyzing two distinct groups: early AJCC- (stage I-II) and advanced- staged patients (stage II-IV). Moreover, in the early-AJCC staged-group, we could distinguish "endothelial," CD45-MCAM+ enriched-, "stem" S-CMCs, CD45-ABCB5+ enriched- and a third hybrid bi-phenotypic CD45-MCAM+/ABCB5+ enriched-fractions, due to three distinct gene-expression profiles. In particular, the endothelial-CMCs were characterized by positive expression of genes involved in migration and invasion, whilst the stem CMC-fraction only expressed stem and differentiation markers. The third subpopulation isolated based on concurrent MCAM and ABCB5 protein expression showed an invasive phenotype. All three distinct CMCs sub-populations, exhibited a primitive, "stem-mesenchymal" profile suggesting a highly aggressive and metastasizing phenotype. This study confirms the phenotypic and molecular heterogeneity observed in melanoma and highlights those putative genes involved in early melanoma spreading and disease progression.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Elena Campione
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Tara Mayte Suarez Viguria
- Department of Onco-Haematology, Tor Vergata University of Rome, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Giulia Spallone
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| | - Gaetana Costanza
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piero Rossi
- Surgery Division, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Division, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Luca Bianchi
- Department of Dermatology, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
57
|
Moritz J, Metelmann HR, Bekeschus S. Physical Plasma Treatment of Eight Human Cancer Cell Lines Demarcates Upregulation of CD112 as a Common Immunomodulatory Response Element. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2936790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
58
|
Dormant tumor cells interact with memory CD8 + T cells in RET transgenic mouse melanoma model. Cancer Lett 2020; 474:74-81. [PMID: 31962142 DOI: 10.1016/j.canlet.2020.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
Abstract
Melanoma is an aggressive form of skin-cancer. Melanoma cells are characterized by their plasticity, resulting in therapy resistance. Using RET transgenic mouse melanoma model, we characterized dormant tumor cells accumulated in the bone marrow (BM) and investigated their interaction with effector memory CD8+ T cells. We found that cells expressing melanoma-associated antigen tyrosinase related protein (TRP)-2 and stemness marker CD133 represented less than 1.5% of all melanoma cells in primary skin lesions and metastatic lymph nodes. The majority of these cells were negative for the proliferation marker Ki67. In the BM, CD133+TRP-2+ melanoma cells displayed an aberrant expression of p16, p27, Ki67 and PCNA proteins, suggesting their dormant phenotype. Moreover, these cells were characterized by an elevated expression of various molecules characterized stemness, metastatic, angiogenic and immunosuppressive properties such as CD271, CD34, HIF-1α, CXCR3, CXCR4, VEGR2, PD-L1, CTLA-4, CD39 and CCR4 as compared to their CD133- counterparts. Disseminated BM dormant TRP-2+ tumor cells were found to be co-localized with memory CD8+ T cells. Our data suggest that these dormant melanoma cells in the BM could play an important role in the maintenance of memory T cells in the BM.
Collapse
|
59
|
Gor R, Ramalingam S. Controversies in Isolation and Characterization of Cancer Stem Cells. CANCER STEM CELLS: NEW HORIZONS IN CANCER THERAPIES 2020:257-272. [DOI: 10.1007/978-981-15-5120-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
60
|
Djirackor L, Kalirai H, Coupland SE, Petrovski G. CD166high Uveal Melanoma Cells Represent a Subpopulation With Enhanced Migratory Capacity. Invest Ophthalmol Vis Sci 2019; 60:2696-2704. [PMID: 31242292 DOI: 10.1167/iovs.18-26431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Cancer stem cells (CSCs) are a subpopulation of cells with the capacity to drive tumor growth. While there is evidence of the existence of CSCs in uveal melanoma (UM), there is no consensus on their defining markers. In this study, we examined putative CSC markers in UM cell lines, primary UM (PUM), and normal choroidal melanocytes (NCM). Methods Nonadherent sphere assays were used to assess the tumorigenic potential of 15 PUMs, 8 high (M3) and 7 low (D3) metastatic risk. Flow cytometry was used to compare the expression of CSC markers between 10 PUMs and 4 NCMs, as well as in 8 UM cell lines grown under adherent and nonadherent conditions. Based on the data generated and from TCGA analyses, CD166 was investigated in detail, including its effect on cell migration using a tumor transendothelial migration assay. Results M3 PUM had a greater melanosphere-forming efficiency than D3 PUM. CD166 and Nestin expression was upregulated in PUM compared to NCM by flow cytometry. UM cell lines resistant to anoikis had increased levels of CD271, Nestin, and CD166 compared with adherent cells. TCGA analysis showed that patients with higher CD166 expression had a poorer prognosis: this was supported by a Mel270 CD166high subpopulation that had enhanced migratory capabilities compared with CD166low cells. IHC showed that CD166 is expressed in the cytoplasm and cell membrane of PUM cells. Conclusions UM contain a population of cells with characteristics of CSCs. In particular, CD166high UM cells appear to represent a subpopulation with enhanced migratory capacity.
Collapse
Affiliation(s)
- Luna Djirackor
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Department of Ophthalmology, Faculty of Medicine, Albert Szent-Gyorgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Goran Petrovski
- Department of Ophthalmology, Faculty of Medicine, Albert Szent-Gyorgyi Clinical Center, University of Szeged, Szeged, Hungary.,Centre for Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
61
|
Morita S, Mochizuki M, Wada K, Shibuya R, Nakamura M, Yamaguchi K, Yamazaki T, Imai T, Asada Y, Matsuura K, Sugamura K, Katori Y, Satoh K, Tamai K. Humanized anti-CD271 monoclonal antibody exerts an anti-tumor effect by depleting cancer stem cells. Cancer Lett 2019; 461:144-152. [DOI: 10.1016/j.canlet.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/21/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
|
62
|
CD133 Is Associated with Increased Melanoma Cell Survival after Multikinase Inhibition. JOURNAL OF ONCOLOGY 2019; 2019:6486173. [PMID: 31379943 PMCID: PMC6662463 DOI: 10.1155/2019/6486173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/12/2019] [Accepted: 05/14/2019] [Indexed: 01/09/2023]
Abstract
FDA-approved kinase inhibitors are now used for melanoma, including combinations of the MEK inhibitor trametinib, and BRAF inhibitor dabrafenib for BRAFV600 mutations. NRAS-mutated cell lines are also sensitive to MEK inhibition in vitro, and NRAS-mutated tumors have also shown partial response to MEK inhibitors. However, melanoma still has high recurrence rates due to subpopulations, sometimes described as “melanoma initiating cells,” resistant to treatment. Since CD133 is a putative cancer stem cell marker for different cancers, associated with decreased survival, we examined resistance of patient-derived CD133(+) and CD133(-) melanoma cells to MAPK inhibitors. Human melanoma cells were exposed to increasing concentrations of trametinib and/or dabrafenib, either before or after separation into CD133(+) and CD133(-) subpopulations. In parental CD133-mixed lines, the percentages of CD133(+) cells increased significantly (p<0.05) after high-dose drug treatment. Presorted CD133(+) cells also exhibited significantly greater (p<0.05) IC50s for single and combination MAPKI treatment. siRNA knockdown revealed a causal relationship between CD133 and drug resistance. Microarray and qRT-PCR analyses revealed that ten of 18 ABC transporter genes were significantly (P<0.05) upregulated in the CD133(+) subpopulation, while inhibition of ABC activity increased sensitivity, suggesting a mechanism for increased drug resistance of CD133(+) cells.
Collapse
|
63
|
Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM, Limonta P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol 2019; 59:221-235. [PMID: 31265892 DOI: 10.1016/j.semcancer.2019.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/27/2019] [Indexed: 01/17/2023]
Abstract
Malignant melanoma is a tumor characterized by a very high level of heterogeneity, responsible for its malignant behavior and ability to escape from standard therapies. In this review we highlight the molecular and biological features of the subpopulation of cancer stem cells (CSCs), well known to be characterized by self-renewal properties, deeply involved in triggering the processes of tumor generation, metastasis, progression and drug resistance. From the molecular point of view, melanoma CSCs are identified and characterized by the expression of stemness markers, such as surface markers, ATP-binding cassette (ABC) transporters, embryonic stem cells and intracellular markers. These cells are endowed with different functional features. In particular, they play pivotal roles in the processes of tumor dissemination, epithelial-to-mesenchymal transition (EMT) and angiogenesis, mediated by specific intracellular signaling pathways; moreover, they are characterized by a unique metabolic reprogramming. As reported for other types of tumors, the CSCs subpopulation in melanoma is also characterized by a low immunogenic profile as well as by the ability to escape the immune system, through the expression of a negative modulation of T cell functions and the secretion of immunosuppressive factors. These biological features allow melanoma CSCs to escape standard treatments, thus being deeply involved in tumor relapse. Targeting the CSCs subpopulation is now considered an attractive treatment strategy; in particular, combination treatments, based on both CSCs-targeting and standard drugs, will likely increase the therapeutic options for melanoma patients. The characterization of CSCs in liquid biopsies from single patients will pave the way towards precision medicine.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | | | - Roberta M Moretti
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.
| |
Collapse
|
64
|
Elkashty OA, Ashry R, Tran SD. Head and neck cancer management and cancer stem cells implication. Saudi Dent J 2019; 31:395-416. [PMID: 31700218 PMCID: PMC6823822 DOI: 10.1016/j.sdentj.2019.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal linings of the upper aerodigestive tract and are heterogeneous in nature. Risk factors for HNSCCs are smoking, excessive alcohol consumption, and the human papilloma virus. Conventional treatments are surgery, radiotherapy, chemotherapy, or a combined modality; however, no international standard mode of therapy exists. In contrast to the conventional model of clonal evolution in tumor development, there is a newly proposed theory based on the activity of cancer stem cells (CSCs) as the model for carcinogenesis. This “CSC hypothesis” may explain the high mortality rate, low response to treatments, and tendency to develop multiple tumors for HNSCC patients. We review current knowledge on HNSCC etiology and treatment, with a focus on CSCs, including their origins, identifications, and effects on therapeutic options.
Collapse
Key Words
- ABC, ATP-binding cassette transporters
- ATC, amplifying transitory cell
- Antineoplastic agents
- BMI-1, B cell-specific Moloney murine leukemia virus integration site 1
- Cancer stem cells
- Cancer treatment
- Carcinoma
- EGFR, epidermal growth factor receptor
- HIFs, hypoxia-inducible factors
- Head and neck cancer
- MDR1, Multidrug Resistance Protein 1
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase
- Squamous cell
- TKIs, tyrosine kinase inhibitors
Collapse
Affiliation(s)
- Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada.,Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Ramy Ashry
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
65
|
Wang Y, Leonard MK, Snyder DE, Fisher ML, Eckert RL, Kaetzel DM. NME1 Drives Expansion of Melanoma Cells with Enhanced Tumor Growth and Metastatic Properties. Mol Cancer Res 2019; 17:1665-1674. [PMID: 31123173 DOI: 10.1158/1541-7786.mcr-18-0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Melanoma is a lethal skin cancer prone to progression and metastasis, and resistant to therapy. Metastasis and therapy resistance of melanoma and other cancers are driven by tumor cell plasticity, largely via acquisition/loss of stem-like characteristics and transitions between epithelial and mesenchymal phenotypes (EMT/MET). NME1 is a metastasis suppressor gene that inhibits metastatic potential when its expression is enforced in melanoma and other cancers. Herein, we have unmasked a novel role for NME1 as a driver of melanoma growth distinct from its canonical function as a metastasis suppressor. NME1 promotes expansion of stem-like melanoma cells that exhibit elevated expression of stem cell markers (e.g., Sox2, Sox10, Oct-4, KLF4, and Ccnb-1), enhanced growth as melanoma spheres in culture, and enhanced tumor growth and lung colonizing activities in vivo. In contrast, NME1 expression did not affect the proliferation of melanoma cell lines in monolayer culture conditions. Silencing of NME1 expression resulted in a dramatic reduction in melanoma sphere size, and impaired tumor growth and metastatic activities of melanoma sphere cells when xenografted in immunocompromised mice. Individual cells within melanoma sphere cultures displayed a wide range of NME1 expression across multiple melanoma cell lines. Cell subpopulations with elevated NME1 expression were fast cycling and displayed enhanced expression of stem cell markers. IMPLICATIONS: Our findings suggest the current model of NME1 as a metastasis-suppressing factor requires refinement, bringing into consideration its heterogeneous expression within melanoma sphere cultures and its novel role in promoting the expansion and tumorigenicity of stem-like cells.
Collapse
Affiliation(s)
- Ying Wang
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - M Kathryn Leonard
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Devin E Snyder
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Matthew L Fisher
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Richard L Eckert
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, Maryland
| | - David M Kaetzel
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, Maryland
| |
Collapse
|
66
|
CD271 is a molecular switch with divergent roles in melanoma and melanocyte development. Sci Rep 2019; 9:7696. [PMID: 31118427 PMCID: PMC6531451 DOI: 10.1038/s41598-019-42773-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/29/2019] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of signaling networks controlling self-renewal and migration of developmental cell lineages is closely linked to the proliferative and invasive properties of tumors. Identification of such signaling pathways and their critical regulators is vital for successful design of effective targeted therapies against neoplastic tissue growth. The neurotrophin receptor (CD271/NGFR/p75NTR) is a key regulator of the melanocytic cell lineage through its ability to mediate cell growth, survival, and differentiation. Using clinical melanoma samples, normal melanocytes and global gene expression profiling we have investigated the role of CD271 in rewiring signal transduction networks of melanoma cells during neoplastic transformation. Our analysis demonstrates that depending on the cell fate of tumor initiation vs normal development, elevated levels of CD271 can serve as a switch between proliferation/survival and differentiation/cell death. Two divergent arms of neurotrophin signaling hold the balance between positive regulators of tumor growth controlled by E2F, MYC, SREBP1 and AKT3 pathways on the one hand, and differentiation, senescence, and apoptosis controlled by TRAF6/IRAK-dependent activation of AP1 and TP53 mediated processes on the other hand. A molecular network map revealed in this study uncovers CD271 as a context-specific molecular switch between normal development and malignant transformation.
Collapse
|
67
|
Larribère L, Utikal J. Stem Cell-Derived Models of Neural Crest Are Essential to Understand Melanoma Progression and Therapy Resistance. Front Mol Neurosci 2019; 12:111. [PMID: 31118886 PMCID: PMC6506783 DOI: 10.3389/fnmol.2019.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
During development, neural crest (NC) cells are early precursors of several lineages including melanocytes. Along their differentiation from multipotent cells to mature melanocytes, NC cells will go through successive steps which require either proliferative or motile capacities. For example, they will undergo Epithelial to Mesenchymal Transition (EMT) in order the separate from the neural tube and migrate to their final location in the epidermis (Larribere and Utikal, 2013; Skrypek et al., 2017). The differentiated melanocytes are the cells of origin of melanoma tumors which progress through several stages such as radial growth phase, vertical growth phase, metastasis formation, and often resistance to current therapies. Interestingly, depending on the stage of the disease, melanoma tumor cells share phenotypes with NC cells (proliferative, motile, EMT). These phenotypes are tightly controlled by specific signaling pathways and transcription factors (TFs) which tend to be reactivated during the onset of melanoma. In this review, we summarize first the main TFs which control these common phenotypes. Then, we focus on the existing strategies used to generate human NCs. Finally we discuss how identification and regulation of NC-associated genes provide an additional approach to improving current melanoma targeted therapies.
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
68
|
Du Y, Shao H, Moller M, Prokupets R, Tse YT, Liu ZJ. Intracellular Notch1 Signaling in Cancer-Associated Fibroblasts Dictates the Plasticity and Stemness of Melanoma Stem/Initiating Cells. Stem Cells 2019; 37:865-875. [PMID: 30941836 PMCID: PMC6986496 DOI: 10.1002/stem.3013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) play critical roles in cancer initiation, metastasis, recurrence, and drug resistance. Recent studies have revealed involvement of cancer‐associated fibroblasts (CAFs) in regulating CSCs. However, the intracellular molecular mechanisms that determine the regulatory role of CAFs in modulating the plasticity of CSCs remain unknown. Here, we uncovered that intracellular Notch1 signaling in CAFs serves as a molecular switch, which modulates tumor heterogeneity and aggressiveness by inversely controlling stromal regulation of the plasticity and stemness of CSCs. Using mesenchymal stem cell‐derived fibroblasts (MSC‐DF) harboring reciprocal loss‐of‐function and gain‐of‐function Notch1 signaling, we found that MSC‐DFNotch1−/− prompted cocultured melanoma cells to form more spheroids and acquire the phenotype (CD271+ and Nestin+) of melanoma stem/initiating cells (MICs), whereas MSC‐DFN1IC+/+ suppressed melanoma cell sphere formation and mitigated properties of MICs. MSC‐DFNotch1−/− increased stemness of CD271+ MIC, which resultantly exhibited stronger aggressiveness in vitro and in vivo, by upregulating Sox2/Oct4/Nanog expression. Consistently, when cografted with melanoma cells into NOD scid gamma (NSG) mice, MSC‐DFNotch1−/− increased, but MSC‐DFN1IC+/+ decreased, the amounts of CD271+ MIC in melanoma tissue. The amounts of CD271+ MIC regulated by MSC‐DF carrying high or low Notch1 pathway activity is well correlated with capability of melanoma metastasis, supporting that melanoma metastasis is MIC‐mediated. Our data demonstrate that intracellular Notch1 signaling in CAFs is a molecular switch dictating the plasticity and stemness of MICs, thereby regulating melanoma aggressiveness, and therefore that targeting the intracellular Notch1 signaling pathway in CAFs may present a new therapeutic strategy for melanoma. stem cells2019;37:865–875
Collapse
Affiliation(s)
- Yan Du
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA.,Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hongwei Shao
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Mecker Moller
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Rochelle Prokupets
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Yee Ting Tse
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Zhao-Jun Liu
- Department of Surgery, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
69
|
Human melanoma brain metastases cell line MUG-Mel1, isolated clones and their detailed characterization. Sci Rep 2019; 9:4096. [PMID: 30858407 PMCID: PMC6411871 DOI: 10.1038/s41598-019-40570-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/15/2019] [Indexed: 01/25/2023] Open
Abstract
Melanoma is a leading cause of high mortality that frequently spreads to the brain and is associated with deterioration in quality and quantity of life. Treatment opportunities have been restricted until now and new therapy options are urgently required. Our focus was to reveal the potential heterogeneity of melanoma brain metastasis. We succeeded to establish a brain melanoma metastasis cell line, namely MUG-Mel1 and two resulting clones D5 and C8 by morphological variety, differences in lipidome, growth behavior, surface, and stem cell markers. Mutation analysis by next-generation sequencing, copy number profiling, and cytogenetics demonstrated the different genetic profile of MUG-Mel1 and clones. Tumorigenicity was unsuccessfully tested in various mouse systems and finally established in a zebra fish model. As innovative treatment option, with high potential to pass the blood-brain barrier a peptide isolated from lactoferricin was studied in potential toxicity. Brain metastases are a major clinical challenge, therefore the development of relevant in vitro and in vivo models derived from brain melanoma metastases provides valuable information about tumor biology and offers great potential to screen for new innovative therapies.
Collapse
|
70
|
Prunk Zdravković T, Zdravković B, Zdravković M, Dariš B, Lunder M, Ferk P. In-vitro study of the influence of octocrylene on a selected metastatic melanoma cell line. GIORN ITAL DERMAT V 2019; 154:197-204. [DOI: 10.23736/s0392-0488.17.05616-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
71
|
Hao J, Fan W, Li Y, Tang R, Tian C, Yang Q, Zhu T, Diao C, Hu S, Chen M, Guo P, Long Q, Zhang C, Qin G, Yu W, Chen M, Li L, Qin L, Wang J, Zhang X, Ren Y, Zhou P, Zou L, Jiang K, Guo W, Deng W. Melatonin synergizes BRAF-targeting agent vemurafenib in melanoma treatment by inhibiting iNOS/hTERT signaling and cancer-stem cell traits. J Exp Clin Cancer Res 2019; 38:48. [PMID: 30717768 PMCID: PMC6360719 DOI: 10.1186/s13046-019-1036-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/13/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As the selective inhibitor of BRAF kinase, vemurafenib exhibits effective antitumor activities in patients with V600 BRAF mutant melanomas. However, acquired drug resistance invariably develops after its initial treatment. METHODS Immunohistochemical staining was performed to detect the expression of iNOS and hTERT, p-p65, Epcam, CD44, PCNA in mice with melanoma xenografts. The proliferation and migration of melanoma cells were detected by MTT, tumorsphere culture, cell cycle, cell apoptosis, AO/EB assay and colony formation, transwell assay and scratch assay in vitro, and tumor growth differences were observed in xenograft nude mice. Changes in the expression of key molecules in the iNOS/hTERT signaling pathways were detected by western blot. Nucleus-cytoplasm separation, and immunofluorescence analyses were conducted to explore the location of p50/p65 in melanoma cell lines. Flow cytometry assay were performed to determine the expression of CD44. Pull down assay and ChIP assay were performed to detect the binding ability of p65 at iNOS and hTERT promoters. Additionally, hTERT promoter-driven luciferase plasmids were transfected in to melanoma cells with indicated treatment to determine luciferase activity of hTERT. RESULTS Melatonin significantly and synergistically enhanced vemurafenib-mediated inhibitions of proliferation, colony formation, migration and invasion and promoted vemurafenib-induced apoptosis, cell cycle arresting and stemness weakening in melanoma cells. Further mechanism study revealed that melatonin enhanced the antitumor effect of vemurafenib by abrogating nucleus translocation of NF-κB p50/p65 and their binding at iNOS and hTERT promoters, thereby suppressing the expression of iNOS and hTERT. The elevated anti-tumor capacity of vemurafenib upon co-treatment with melatonin was also evaluated and confirmed in mice with melanoma xenografts. CONCLUSIONS Collectively, our results demonstrate melatonin synergizes the antitumor effect of vemurafenib in human melanoma by inhibiting cell proliferation and cancer-stem cell traits via targeting NF-κB/iNOS/hTERT signaling pathway, and suggest the potential of melatonin in antagonizing the toxicity of vemurafenib and augmenting its sensitivities in melanoma treatment.
Collapse
Affiliation(s)
- Jiaojiao Hao
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenhua Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Yizhuo Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ranran Tang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chunfang Tian
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Yang
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tianhua Zhu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chaoliang Diao
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Manyu Chen
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Long
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Changlin Zhang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ge Qin
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Wendan Yu
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Liren Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Lijun Qin
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingshu Wang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | - Penghui Zhou
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Lijuan Zou
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kui Jiang
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cells and The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| |
Collapse
|
72
|
Expression of Neural Crest Markers GLDC and ERRFI1 is Correlated with Melanoma Prognosis. Cancers (Basel) 2019; 11:cancers11010076. [PMID: 30641895 PMCID: PMC6356846 DOI: 10.3390/cancers11010076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022] Open
Abstract
Regulation of particular genes during the formation of neural crest (NC) cells is also described during progression of malignant melanoma. In this context, it is of paramount importance to develop neural crest models allowing the identification of candidate genes, which could be used as biomarkers for melanoma prognosis. Here, we used a human induced Pluripotent Stem Cells (iPSC)-based approach to present novel NC-associated genes, expression of which was upregulated in melanoma. A list of 8 candidate genes, based on highest upregulation, was tested for prognostic value in a tissue microarray analysis containing samples from advanced melanoma (good versus bad prognosis) as well as from high-risk primary melanomas (early metastasizing versus non or late-metastasizing). CD271, GLDC, and ERRFI1 showed significantly higher expression in metastatic patients who died early than the ones who survived at least 30 months. In addition, GLDC and TWIST showed a significantly higher immunohistochemistry (IHC) score in primary melanomas from patients who developed metastases within 12 months versus those who did not develop metastases in 30 months. In conclusion, our iPSC-based study reveals a significant association of NC marker GLDC protein expression with melanoma prognosis.
Collapse
|
73
|
Buder T, Deutsch A, Klink B, Voss-Böhme A. Patterns of Tumor Progression Predict Small and Tissue-Specific Tumor-Originating Niches. Front Oncol 2019; 8:668. [PMID: 30687642 PMCID: PMC6335293 DOI: 10.3389/fonc.2018.00668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
The development of cancer is a multistep process in which cells increase in malignancy through progressive alterations. Such altered cells compete with wild-type cells and have to establish within a tissue in order to induce tumor formation. The range of this competition and the tumor-originating cell type which acquires the first alteration is unknown for most human tissues, mainly because the involved processes are hardly observable, aggravating an understanding of early tumor development. On the tissue scale, one observes different progression types, namely with and without detectable benign precursor stages. Human epidemiological data on the ratios of the two progression types exhibit large differences between cancers. The idea of this study is to utilize data of the ratios of progression types in human cancers to estimate the homeostatic range of competition in human tissues. This homeostatic competition range can be interpreted as necessary numbers of altered cells to induce tumor formation on the tissue scale. For this purpose, we develop a cell-based stochastic model which is calibrated with newly-interpreted human epidemiological data. We find that the number of tumor cells which inevitably leads to later tumor formation is surprisingly small compared to the overall tumor and largely depends on the human tissue type. This result points toward the existence of a tissue-specific tumor-originating niche in which the fate of tumor development is decided early and long before a tumor becomes detectable. Moreover, our results suggest that the fixation of tumor cells in the tumor-originating niche triggers new processes which accelerate tumor growth after normal tissue homeostasis is voided. Our estimate for the human colon agrees well with the size of the stem cell niche in colonic crypts. For other tissues, our results might aid to identify the tumor-originating cell type. For instance, data on primary and secondary glioblastoma suggest that the tumors originate from a cell type competing in a range of 300 – 1,900 cells.
Collapse
Affiliation(s)
- Thomas Buder
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany.,Faculty of Informatics/Mathematics, HTW Dresden-University of Applied Sciences, Dresden, Germany
| | - Andreas Deutsch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Anja Voss-Böhme
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany.,Faculty of Informatics/Mathematics, HTW Dresden-University of Applied Sciences, Dresden, Germany
| |
Collapse
|
74
|
Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1027453. [PMID: 30671168 PMCID: PMC6323533 DOI: 10.1155/2018/1027453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-β, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.
Collapse
|
75
|
Graf SA, Heppt MV, Wessely A, Krebs S, Kammerbauer C, Hornig E, Strieder A, Blum H, Bosserhoff AK, Berking C. The myelin protein PMP2 is regulated by SOX10 and drives melanoma cell invasion. Pigment Cell Melanoma Res 2018; 32:424-434. [PMID: 30506895 DOI: 10.1111/pcmr.12760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/05/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022]
Abstract
The transcription factor sex determining region Y-box 10 (SOX10) plays a key role in the development of melanocytes and glial cells from neural crest precursors. SOX10 is involved in melanoma initiation, proliferation, invasion, and survival. However, specific mediators which impart its oncogenic properties remain widely unknown. To identify target genes of SOX10, we performed RNA sequencing after ectopic expression of SOX10 in human melanoma cells. Among nine differentially regulated genes, peripheral myelin protein 2 (PMP2) was consistently upregulated in several cell lines. Direct regulation of PMP2 by SOX10 was shown by chromatin immunoprecipitation, electrophoretic mobility shift, and luciferase reporter assays. Moreover, a coregulation of PMP2 by SOX10 and early growth response 2 in melanoma cells was found. Phenotypical investigation demonstrated that PMP2 expression can increase melanoma cell invasion. As PMP2 protein was detected only in a subset of melanoma cell lines, it might contribute to melanoma heterogeneity.
Collapse
Affiliation(s)
- Saskia Anna Graf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Markus Vincent Heppt
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Anja Wessely
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Claudia Kammerbauer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Eva Hornig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Annamarie Strieder
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Anja-Katrin Bosserhoff
- Department of Biochemistry and Molecular Medicine, Institute of Biochemistry, Emil Fischer Center, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Carola Berking
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
76
|
Teixeira Buck MG, Souza Cabral Tuci P, Perillo Rosin FC, Pinheiro Barcessat AR, Corrêa L. Immunohistochemistry profile of p75 neurotrophin receptor in oral epithelial dysplasia and oral squamous cell carcinoma induced by 4-nitroquinoline 1-oxide in rats. Arch Oral Biol 2018; 96:169-177. [PMID: 30268558 DOI: 10.1016/j.archoralbio.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The 4-nitroquinoline 1-oxide (4-NQO) model for carcinogenesis has been used to investigate cancer stem cells (CSC), but no study has addressed the role of the p75 neurotrophin receptor (p75NTR) in 4-NQO-induced oral dysplasia and oral squamous cell carcinoma (OSCC). The aim of this study was to evaluate the immunohistochemistry profile of the p75NTR during 4-NQO-induced oral carcinogenesis in rats and to verify whether this profile has an association with proliferating cell nuclear antigen (PCNA) immunolabeling. DESIGN For 28 weeks, rats were exposed to 4-NQO, which was diluted in the drinking water. After 3, 5, 7, 16, and 28 weeks, the animals were euthanized and their tongues were histologically analyzed using p75NTR and PCNA immunolabeling. RESULTS In animals without 4-NQO exposure, the p75NTR and PCNA were expressed only in the basal epithelial layer and in a clustered manner. The oral epithelium showed dysplasia and a significant increase in the number of p75NTR- and PCNA-positive cells, which were localized mainly in the basal and suprabasal epithelial layers during weeks 5-16 of 4-NQO exposure. When the epithelium invaded the lamina propria and well-differentiated OSCC began, the p75NTR-positive cell frequency drastically decreased in epithelial cords and nests, showing a negative correlation with PCNA expression. p75NTR immunolabeling during 4-NQO-induced carcinogenesis was similar to that described for human head and neck dysplasia and neoplasia. CONCLUSIONS p75NTR immunolabeling observed in 4-NQO-induced oral dysplastic and OSCC lesions were related to the early phases of oral carcinogenesis and may help predict cell dysplasia and malignant transformation.
Collapse
Affiliation(s)
- Marina Gabriela Teixeira Buck
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Priscila Souza Cabral Tuci
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Flávia Cristina Perillo Rosin
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil
| | - Ana Rita Pinheiro Barcessat
- Biological Health Sciences Department, School of Nursing, Federal University of Amapá, Rod. Juscelino Kubitschek, KM-02 Jardim Marco Zero Macapá, 68.903-419 Macapá, AP, Brazil
| | - Luciana Corrêa
- Pathology Department, School of Dentistry, University of São Paulo, Av. Prof Lineu Prestes, 2227 - Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
77
|
Bhattacharyya S, Mitra D, Ray S, Biswas N, Banerjee S, Majumder B, Mustafi SM, Murmu N. Reversing effect of Lupeol on vasculogenic mimicry in murine melanoma progression. Microvasc Res 2018; 121:52-62. [PMID: 30381268 DOI: 10.1016/j.mvr.2018.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/16/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022]
Abstract
Vasculogenic mimicry, an endothelia-independent tumor microcirculation has been found in various cancers and is thought to be achieved by cancer stem like cells. Dacarbazine resistance is one of the most common features of melanoma and recent studies suggest that the mode of resistance is closely related to the formation of vasculogenic mimicry. In our work, we examined the anticancer effect of Lupeol, a novel phytochemical with Dacarbazine in vivo and in vitro. Results demonstrated adequate cytotoxicity followed by down regulation of CD 133 expression in Lupeol treated B16-F10 cell line. In solid tumor model the drug also inhibited vasculogenic mimicry along with angiogenesis by altering both the cancer stem cell as well as the endothelial progenitor cell population. Lupeol hindered the maturation of bone marrow derived endothelial progenitors and thus, retarded the formation of rudimentary tumor microvessels. Notably, Dacarbazine treatment demonstrated unresponsiveness to B16-F10 cells in both in vivo and in vitro model via upregulation of CD 133 expression and increased formation of vasculogenic mimicry tubes. Together, these data indicate that Lupeol alone can become a proficient agent in treating melanoma, inhibiting vasculogenic mimicry and might play a significant role in subduing Dacarbazine induced drug resistance.
Collapse
Affiliation(s)
- Sayantan Bhattacharyya
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Sudipta Ray
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Nirjhar Biswas
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Samir Banerjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Biswanath Majumder
- Department of Molecular Pathology and Cancer Biology, Mitra Biotech, 202, Narayana Nethralaya, Hosur Main Road, Bangalore 560099, India
| | - Saunak Mitra Mustafi
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
78
|
Guanziroli E, Venegoni L, Fanoni D, Cavicchini S, Coggi A, Ferrero S, Gianotti R, Berti E, Del Gobbo A. Immunohistochemical expression and prognostic role of CD10, CD271 and Nestin in primary and recurrent cutaneous melanoma. Ital J Dermatol Venerol 2018; 156:68-72. [PMID: 30251808 DOI: 10.23736/s2784-8671.18.06145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND CD10, CD271 and Nestin, which are proteins associated with tumor-initiating properties and/or progression potential, have not been specifically studied on malignant melanoma (MM) with cutaneous recurrences. METHODS We evaluated the expression of CD10, CD271 and Nestin in 27 tumor samples from 16 patients. These tumor samples corresponded to 6 primary melanomas which developed 11 ITM and 10 primary melanomas without recurrences at 10-year follow-up from specimens obtained from surgical excisions of patients referred to the Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, University of Milan, between 2006 and 2016. RESULTS We demonstrated a higher expression of CD271 and Nestin in primary tumors which recurred than control population, Nestin was expressed with significantly higher percentages in primary tumors than recurrences, and CD10 expression was statistically significant correlated with disease-free survival: cases with a lower score recurred lately than cases with higher scores. CONCLUSIONS Our preliminary results suggested that CD271 and Nestin can be considered early biomarkers for the development of ITM, Nesting can be useful in differentiating primary MM from cutaneous recurrences and CD10 is associated with a rapid disease progression and may be considered a potential prognostic marker.
Collapse
Affiliation(s)
- Elena Guanziroli
- Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy -
| | - Luigia Venegoni
- Department of Medical-Surgical and Transplant Physiopathology, University of Milan, Milan, Italy
| | - Daniele Fanoni
- Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Cavicchini
- Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella Coggi
- Unit of Dermatology, Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Unit of Pathological Anatomy, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Raffaele Gianotti
- Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilio Berti
- Department of Medical-Surgical and Transplant Physiopathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Del Gobbo
- Unit of Pathological Anatomy, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
79
|
|
80
|
Mertz DR, Ahmed T, Takayama S. Engineering cell heterogeneity into organs-on-a-chip. LAB ON A CHIP 2018; 18:2378-2395. [PMID: 30040104 PMCID: PMC6081245 DOI: 10.1039/c8lc00413g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Organ-on-a-chip development is an application that will benefit from advances in cell heterogeneity characterization because these culture models are intended to mimic in vivo microenvironments, which are complex and dynamic. Due in no small part to advances in microfluidic single cell analysis methods, cell-to-cell variability is an increasingly understood feature of physiological tissues, with cell types from as common as 1 out of every 2 cells to as rare as 1 out of every 100 000 cells having important roles in the biochemical and biological makeup of tissues and organs. Variability between neighboring cells can be transient or maintained, and ordered or stochastic. This review covers three areas of well-studied cell heterogeneity that are informative for organ-on-a-chip development efforts: tumors, the lung, and the intestine. Then we look at how recent single cell analysis strategies have enabled better understanding of heterogeneity within in vitro and in vivo tissues. Finally, we provide a few work-arounds for adapting current on-chip culture methods to better mimic physiological cell heterogeneity including accounting for crucial rare cell types and events.
Collapse
Affiliation(s)
- David R Mertz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, USA.
| | | | | |
Collapse
|
81
|
Guanziroli E, Venegoni L, Fanoni D, Berti E. Merkel cell carcinoma: a single-institution retrospective case series analyzing CD271 expression with a focus on its prognostic role. GIORN ITAL DERMAT V 2018; 155:518-520. [PMID: 29963808 DOI: 10.23736/s0392-0488.18.06074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Guanziroli
- Department of Medical and Surgical Physiopathology and Transplantation, Maggiore Polyclinic Hospital, IRCCS Ca' Granda Foundation, University of Milan, Milan, Italy -
| | - Luigia Venegoni
- Department of Medical and Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Daniele Fanoni
- Unit of Dermatology, Department of Medical and Surgical Physiopathology and Transplantation, Maggiore Polyclinic Hospital, IRCCS Ca' Granda Foundation, Milan, Italy
| | - Emilio Berti
- Department of Medical and Surgical Physiopathology and Transplantation, Maggiore Polyclinic Hospital, IRCCS Ca' Granda Foundation, University of Milan, Milan, Italy
| |
Collapse
|
82
|
Abstract
Cancer stem cells are a subpopulation of cells within a tumour believed to confer resistance to standard cancer therapies. Although many studies have addressed the specific mechanisms of tumour recurrence driven by cancer stem cells, cellular metabolism is an often-neglected attribute. The metabolic features of cancer stem cells are still poorly understood, and they thus constitute a promising field in cancer research. The findings published so far point to a distinct metabolic phenotype in cancer stem cells, which might depend on the cancer type, the model system used or even the experimental design, and several controversies still need to be tackled. This Review describes the metabolic phenotype of cancer stem cells by addressing the main metabolic traits in different tumours, including glycolysis and oxidative, glutamine, fatty acid and amino acid metabolism. In the context of these pathways, we also mention the specific alterations in metabolic enzymes and metabolite levels that have a role in the regulation of cancer stemness. Determining the role of metabolism in supporting resistance to therapy driven by cancer stem cells can raise the opportunity for novel therapeutic targets, which might not only eliminate this resistant population, but, more importantly, eradicate the whole tumour in a relapse-free scenario. Summary: The intrinsic mechanisms that define cancer stem cells, specifically their metabolic properties, are summarized in this Review, in an attempt to point out the benefit of targeting metabolism as a novel therapeutic approach.
Collapse
Affiliation(s)
- Joana Peixoto
- Cancer Signalling and Metabolism Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-465 Porto, Portugal.,Medical Faculty of the University of Porto, 4200-319 Porto, Portugal.,Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, 97074 Würzburg, Germany
| | - Jorge Lima
- Cancer Signalling and Metabolism Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal .,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-465 Porto, Portugal.,Medical Faculty of the University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
83
|
Liang L, Coudière-Morrison L, Tatari N, Stromecki M, Fresnoza A, Porter CJ, Del Bigio MR, Hawkins C, Chan JA, Ryken TC, Taylor MD, Ramaswamy V, Werbowetski-Ogilvie TE. CD271 + Cells Are Diagnostic and Prognostic and Exhibit Elevated MAPK Activity in SHH Medulloblastoma. Cancer Res 2018; 78:4745-4759. [PMID: 29930101 DOI: 10.1158/0008-5472.can-18-0027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/10/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
Abstract
The extensive heterogeneity both between and within the medulloblastoma subgroups underscores a critical need for variant-specific biomarkers and therapeutic strategies. We previously identified a role for the CD271/p75 neurotrophin receptor (p75NTR) in regulating stem/progenitor cells in the SHH medulloblastoma subgroup. Here, we demonstrate the utility of CD271 as a novel diagnostic and prognostic marker for SHH medulloblastoma using IHC analysis and transcriptome data across 763 primary tumors. RNA sequencing of CD271+ and CD271- cells revealed molecularly distinct, coexisting cellular subsets, both in vitro and in vivo MAPK/ERK signaling was upregulated in the CD271+ population, and inhibiting this pathway reduced endogenous CD271 levels, stem/progenitor cell proliferation, and cell survival as well as cell migration in vitro Treatment with the MEK inhibitor selumetinib extended survival and reduced CD271 levels in vivo, whereas, treatment with vismodegib, a well-known smoothened (SMO) inhibitor currently in clinical trials for the treatment of recurrent SHH medulloblastoma, had no significant effect in our models. Our study demonstrates the clinical utility of CD271 as both a diagnostic and prognostic tool for SHH medulloblastoma tumors and reveals a novel role for MEK inhibitors in targeting CD271+ SHH medulloblastoma cells.Significance: This study identifies CD271 as a specific and novel biomarker of SHH-type medulloblastoma and that targeting CD271+ cells through MEK inhibition represents a novel therapeutic strategy for the treatment of SHH medulloblastoma. Cancer Res; 78(16); 4745-59. ©2018 AACR.
Collapse
Affiliation(s)
- Lisa Liang
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ludivine Coudière-Morrison
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nazanin Tatari
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Margaret Stromecki
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Agnes Fresnoza
- Central Animal Care Services, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba and the Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Cynthia Hawkins
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Chan
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Timothy C Ryken
- Department of Neurosurgery, University of Kansas, Kansas City, Kansas
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Division of Haematology/Oncology, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health and Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tamra E Werbowetski-Ogilvie
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
84
|
Pasqual-Melo G, Gandhirajan RK, Stoffels I, Bekeschus S. Targeting malignant melanoma with physical plasmas. CLINICAL PLASMA MEDICINE 2018. [DOI: 10.1016/j.cpme.2018.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
85
|
Guo Q, Grimmig T, Gonzalez G, Giobbie-Hurder A, Berg G, Carr N, Wilson BJ, Banerjee P, Ma J, Gold JS, Nandi B, Huang Q, Waaga-Gasser AM, Lian CG, Murphy GF, Frank MH, Gasser M, Frank NY. ATP-binding cassette member B5 (ABCB5) promotes tumor cell invasiveness in human colorectal cancer. J Biol Chem 2018; 293:11166-11178. [PMID: 29789423 DOI: 10.1074/jbc.ra118.003187] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/23/2018] [Indexed: 12/29/2022] Open
Abstract
ABC member B5 (ABCB5) mediates multidrug resistance (MDR) in diverse malignancies and confers clinically relevant 5-fluorouracil resistance to CD133-expressing cancer stem cells in human colorectal cancer (CRC). Because of its recently identified roles in normal stem cell maintenance, we hypothesized that ABCB5 might also serve MDR-independent functions in CRC. Here, in a prospective clinical study of 142 CRC patients, we found that ABCB5 mRNA transcripts previously reported not to be significantly expressed in healthy peripheral blood mononuclear cells are significantly enriched in patient peripheral blood specimens compared with non-CRC controls and correlate with CRC disease progression. In human-to-mouse CRC tumor xenotransplantation models that exhibited circulating tumor mRNA, we observed that cancer-specific ABCB5 knockdown significantly reduced detection of these transcripts, suggesting that the knockdown inhibited tumor invasiveness. Mechanistically, this effect was associated with inhibition of expression and downstream signaling of AXL receptor tyrosine kinase (AXL), a proinvasive molecule herein shown to be produced by ABCB5-positive CRC cells. Importantly, rescue of AXL expression in ABCB5-knockdown CRC tumor cells restored tumor-specific transcript detection in the peripheral blood of xenograft recipients, indicating that ABCB5 regulates CRC invasiveness, at least in part, by enhancing AXL signaling. Our results implicate ABCB5 as a critical determinant of CRC invasiveness and suggest that ABCB5 blockade might represent a strategy in CRC therapy, even independently of ABCB5's function as an MDR mediator.
Collapse
Affiliation(s)
- Qin Guo
- From the Departments of Medicine.,the Division of Genetics.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Tanja Grimmig
- the Department of Surgery, University of Würzburg, 97070 Würzburg, Germany
| | | | - Anita Giobbie-Hurder
- the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and
| | - Gretchen Berg
- From the Departments of Medicine.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Brian J Wilson
- the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Pallavi Banerjee
- From the Departments of Medicine.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jie Ma
- the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | - Qin Huang
- Pathology, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | | | | | - George F Murphy
- the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.,Department of Pathology, and
| | - Markus H Frank
- the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138.,Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Martin Gasser
- the Department of Surgery, University of Würzburg, 97070 Würzburg, Germany
| | - Natasha Y Frank
- From the Departments of Medicine, .,the Division of Genetics.,the Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
86
|
Nielsen PS, Riber-Hansen R, Steiniche T. Immunohistochemical CD271 expression correlates with melanoma progress in a case-control study. Pathology 2018; 50:402-410. [PMID: 29678478 DOI: 10.1016/j.pathol.2017.12.340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/01/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023]
Abstract
Putative cancer stem cell (CSC) markers have arisen from melanoma mouse and in vitro models, but their expression in paraffin embedded patient samples relative to clinical outcome remains largely unexplored. Rather than cells of the tumour bulk, conceivably, CSC drive tumour progression. Accordingly, complete eradication may prevent melanoma relapse. Because elevated tumour-cell proliferation is an established indicator of aggressive disease, this study aimed to investigate the correlation between melanoma recurrence and proliferation of putative CSC that express CD271, CD166, or CD20. Additionally, the expression of these markers was studied in naevi, melanomas, and their recurrence. In melanoma patients, 30 with relapse (cases) and 30 without (controls) were matched for tumour thickness, ulceration, Clark level, subtype, site, gender, and age. One paraffin-embedded section of the patients' primary melanoma (n = 60), relapse (n = 21), and naevus (n = 17) were immunohistochemically double-stained for Ki-67/MART1 and single-stained for CD271, CD166, and CD20. Their whole slide images were aligned as virtual quadruple stains. Image analysis established proliferation indices of each putative stem cell marker and the tumour bulk in addition to the markers' percentage level in tumour areas and the epidermis. In cases vs controls, median dermal proliferation indices (no./mm2) were 211 vs 103 (p = 0.04) for CD271, 512 vs 227 (p = 0.3) for CD166, 184 vs 97 (p = 0.3) for CD20, and 95 vs 103 (p = 0.6) for the tumour bulk. Of additional interest, epidermal CD271+ keratinocytes totalled 8.8% in naevi and 0.98% in melanomas (p = 0.0007). Even though differences between naevi and melanomas also were observed for CD166 in both the epidermis (p = 0.002) and dermis (p = 0.006), they were visually less apparent. CD20+MART1+ cells were absent in half of the melanomas, and all naevi and relapses. In conclusion, high levels of CD271+Ki-67+MART1+ cells were linked to melanoma relapse as opposed to common Ki-67 indices in this particular case-control study. With further investigation, such cells could be potential targets of therapy. Especially, loss of epidermal CD271+ keratinocytes seemed necessary for melanoma development; hence, identification may serve as a diagnostic tool with additional research.
Collapse
Affiliation(s)
- Patricia Switten Nielsen
- Department of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark.
| | - Rikke Riber-Hansen
- Department of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark
| |
Collapse
|
87
|
Tsao SCH, Wang J, Wang Y, Behren A, Cebon J, Trau M. Characterising the phenotypic evolution of circulating tumour cells during treatment. Nat Commun 2018; 9:1482. [PMID: 29662054 PMCID: PMC5902511 DOI: 10.1038/s41467-018-03725-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/08/2018] [Indexed: 12/30/2022] Open
Abstract
Real-time monitoring of cancer cells' phenotypic evolution during therapy can provide vital tumour biology information for treatment management. Circulating tumour cell (CTC) analysis has emerged as a useful monitoring tool, but its routine usage is restricted by either limited multiplexing capability or sensitivity. Here, we demonstrate the use of antibody-conjugated and Raman reporter-coated gold nanoparticles for simultaneous labelling and monitoring of multiple CTC surface markers (named as "cell signature"), without the need for isolating individual CTCs. We observe cell heterogeneity and phenotypic changes of melanoma cell lines during molecular targeted treatment. Furthermore, we follow the CTC signature changes of 10 stage-IV melanoma patients receiving immunological or molecular targeted therapies. Our technique maps the phenotypic evolution of patient CTCs sensitively and rapidly, and shows drug-resistant clones having different CTC signatures of potential clinical value. We believe our proposed method is of general interest in the CTC relevant research and translation fields.
Collapse
Affiliation(s)
- Simon Chang-Hao Tsao
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Jing Wang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yuling Wang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia. .,Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia.
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Department of Surgery, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
88
|
Prince MEP, Zhou L, Moyer JS, Tao H, Lu L, Owen J, Etigen M, Zheng F, Chang AE, Xia J, Wolf G, Wicha MS, Huang S, Ren X, Li Q. Evaluation of the immunogenicity of ALDH(high) human head and neck squamous cell carcinoma cancer stem cells in vitro. Oral Oncol 2018; 59:30-42. [PMID: 27424180 DOI: 10.1016/j.oraloncology.2016.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To establish the concept that the antigenicity/immunogenicity of ALDH(high) human head and neck squamous cell carcinoma (HNSCC) cancer stem cells (CSC) is distinct from that of ALDH(low) non-CSCs. METHODS We generated CSC-loaded dendritic cells (DCs) to sensitize autologous peripheral blood T, B lymphocytes to react with CSCs using human HNSCC samples in vitro. RESULTS From peripheral blood collected from patients with HNSCC, we obtained PBMCs. DCs generated from the PBMC and pulsed with the lysate of ALDH(high) cells isolated from cultured HNSCC cells (CSC-DC) could sensitize autologous T, B lymphocytes in vitro, which was evident by cytokine production, CTL activity, and antibody secretion of these primed T, B cells in response to ALDH(high) CSCs. In contrast, DCs pulsed with lysate of ALDH(low) cells (ALDH(low)-DC) resulted in limited sensitization/priming of autologous T, B lymphocytes to produce IFNγ, GM-CSF; lyse CSCs, and secrete IgM and IgG in response to ALDH(high) CSCs. These results demonstrated significant differences in the antigenicity/immunogenicity between ALDH(high) CSCs vs. ALDH(low) cells isolated from the tumor specimen of patients with HNSCC, which indicates the existence of unique CSC antigens in the ALDH(high) population. CONCLUSION It is feasible to generate DCs from the PBMCs and isolate ALDH(high) CSCs from cultured tumor cells of the patients with HNSCC to prepare CSC-DC vaccines that can induce anti-HNSCC CSC cellular and humoral immunity, indicating its potential clinical application to treat patients with HNSCC.
Collapse
Affiliation(s)
- Mark E P Prince
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Li Zhou
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Department of Immunology, Biotherapy Center ,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jeffrey S Moyer
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Huimin Tao
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Hubei Province Stem Cell Research & Appling Center, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lu
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - John Owen
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Martin Etigen
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Fang Zheng
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA.,Hubei Province Stem Cell Research & Appling Center, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alfred E Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Jianchuan Xia
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gregory Wolf
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| | - Shiang Huang
- Hubei Province Stem Cell Research & Appling Center, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiubao Ren
- Department of Immunology, Biotherapy Center ,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Qiao Li
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
89
|
Bosserhoff AK, Schneider N, Ellmann L, Heinzerling L, Kuphal S. The neurotrophin Neuritin1 (cpg15) is involved in melanoma migration, attachment independent growth, and vascular mimicry. Oncotarget 2018; 8:1117-1131. [PMID: 27901477 PMCID: PMC5352040 DOI: 10.18632/oncotarget.13585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/07/2016] [Indexed: 01/20/2023] Open
Abstract
The neurotrophin Neuritin1 (NRN1; cpg15) belongs to the candidate plasticity gene (CPG) family and is expressed in postmitotic-differentiating neurons of the developmental nervous system and neuronal structures associated with plasticity in the brain of human adult.Our newest findings document that NRN1 deregulation could contribute also to disease development and have impact on malignant melanoma. Our analyses displayed the over-expression of NRN1 in melanoma in vitro and in vivo, shown by immunohistochemistry and qRT-PCR on microdissected melanoma tissue; furthermore, soluble NRN1 was detectable in tissue culture supernatant and serum of melanoma patients.To investigate the role of NRN1 in melanoma we performed knockdown, over-expression and recombinant-NRN1-treatment experiments affiliated by functional assays. Our results show that migration, attachment independent growth and vasculogenesis were affected after manipulation of NRN1 on endogenous and extrinsic level. Interestingly, high NRN1 serum levels correlate with low MIA serum levels (< 10ng/ml). Therefore, we speculate that NRN1 could be a marker for early melanoma stages, in particular.In summary, we detected an overexpression of NRN1 in melanoma patient. In functional cell culture experiments we found a correlation between NRN1 expression and the cancerous behavior of melanoma cells.
Collapse
Affiliation(s)
- Anja Katrin Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Nadja Schneider
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Lisa Ellmann
- Institute for Functional Genomics, University Regensburg, Regensburg, 93053, Germany
| | - Lucie Heinzerling
- Institute of Dermatology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Silke Kuphal
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
| |
Collapse
|
90
|
Kfoury A, Armaro M, Collodet C, Sordet-Dessimoz J, Giner MP, Christen S, Moco S, Leleu M, de Leval L, Koch U, Trumpp A, Sakamoto K, Beermann F, Radtke F. AMPK promotes survival of c-Myc-positive melanoma cells by suppressing oxidative stress. EMBO J 2018; 37:embj.201797673. [PMID: 29440228 DOI: 10.15252/embj.201797673] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 12/21/2022] Open
Abstract
Although c-Myc is essential for melanocyte development, its role in cutaneous melanoma, the most aggressive skin cancer, is only partly understood. Here we used the NrasQ61KINK4a-/- mouse melanoma model to show that c-Myc is essential for tumor initiation, maintenance, and metastasis. c-Myc-expressing melanoma cells were preferentially found at metastatic sites, correlated with increased tumor aggressiveness and high tumor initiation potential. Abrogation of c-Myc caused apoptosis in primary murine and human melanoma cells. Mechanistically, c-Myc-positive melanoma cells activated and became dependent on the metabolic energy sensor AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase that plays an important role in energy and redox homeostasis under stress conditions. AMPK pathway inhibition caused apoptosis of c-Myc-expressing melanoma cells, while AMPK activation protected against cell death of c-Myc-depleted melanoma cells through suppression of oxidative stress. Furthermore, TCGA database analysis of early-stage human melanoma samples revealed an inverse correlation between C-MYC and patient survival, suggesting that C-MYC expression levels could serve as a prognostic marker for early-stage disease.
Collapse
Affiliation(s)
- Alain Kfoury
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Marzia Armaro
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Caterina Collodet
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | | | - Stefan Christen
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - Sofia Moco
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | - Marion Leleu
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, University Hospital Lausanne, Lausanne, Switzerland
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg, Germany
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Friedrich Beermann
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| |
Collapse
|
91
|
Abstract
Resistance to chemotherapy and cancer relapse are major clinical challenges attributed to a sub population of cancer stem cells (CSCs). The concept of CSCs has been the subject of intense research by the oncology community since evidence for their existence was first published over twenty years ago. Emerging data indicates that they are also able to evade novel therapies such as targeted agents, immunotherapies and anti-angiogenics. The inability to appropriately identify and isolate CSCs is a major hindrance to the field and novel technologies are now being utilized. Agents that target CSC-associated cell surface receptors and signaling pathways have generated promising pre-clinical results and are now entering clinical trial. Here we discuss and evaluate current therapeutic strategies to target CSCs.
Collapse
Affiliation(s)
- Stephanie Annett
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland
| | - Tracy Robson
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland.
| |
Collapse
|
92
|
Lin J, Zhang D, Fan Y, Chao Y, Chang J, Li N, Han L, Han C. Regulation of Cancer Stem Cell Self-Renewal by HOXB9 Antagonizes Endoplasmic Reticulum Stress-Induced Melanoma Cell Apoptosis via the miR-765-FOXA2 Axis. J Invest Dermatol 2018; 138:1609-1619. [PMID: 29408459 DOI: 10.1016/j.jid.2018.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 01/13/2023]
Abstract
Adaptation to endoplasmic reticulum (ER) stress has been indicated as a driver of malignancy and resistance to therapy in human melanoma. However, the relationship between cancer stem cells and adaptation to ER stress remains unclear. Here, we show that the ratio of cancer stem cells is increased in ER stress-resistant melanoma cells, which inhibit ER stress-induced apoptosis and promote tumorigenesis. Further mechanistic studies showed that HOXB9 triggered by ER stress favors cancer stem cell self-renewal and enhances ER stress resistance. HOXB9 directly binds to the promoter of microRNA-765 and facilitates its transcription, which in turn targets FOXA2, resulting in a FOXA2 decrease and cancer stem cell increase. Additionally, an increase in HOXB9 promotes melanoma growth and inhibits cell apoptosis in a mouse xenograft model. Elevated HOXB9 is found in human melanoma tissues, which is associated with microRNA-765 up-regulation and FOXA2 decreases. Thus, our data showed that the HOXB9-dependent, microRNA-765-mediated FOXA2 pathway contributes to the survival of melanoma under ER stress by maintaining the properties of cancer stem cells.
Collapse
Affiliation(s)
- Jingrong Lin
- Institute of Cancer Stem Cell and Department of Dermatology of the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Dongmei Zhang
- Department of Physiology of College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Yongsheng Fan
- Institute of Cancer Stem Cell and Department of Dermatology of the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Yulin Chao
- Institute of Cancer Stem Cell and Department of Dermatology of the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Jinming Chang
- Institute of Cancer Stem Cell and Department of Dermatology of the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Na Li
- Department of Physiology of College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Linlin Han
- Physical Examination Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chuanchun Han
- Institute of Cancer Stem Cell and Department of Dermatology of the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
93
|
Hao J, Xu H, Luo M, Yu W, Chen M, Liao Y, Zhang C, Zhao X, Jiang W, Hou S, Feng X, Zou K, Chen Y, Huang W, Guo W, Kang L, Deng W. The Tumor-Promoting Role of TRIP4 in Melanoma Progression and its Involvement in Response to BRAF-Targeted Therapy. J Invest Dermatol 2018; 138:159-170. [PMID: 28899685 DOI: 10.1016/j.jid.2017.07.850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/14/2017] [Accepted: 07/30/2017] [Indexed: 12/11/2022]
Abstract
TRIP4 was identified as having a proliferation promoting effect in melanoma cells based on small interfering RNA library screening, however, its precise function in melanoma progression is completely unknown. Here, we explored the carcinogenic role of TRIP4 in melanoma. The high expression of TRIP4 was observed in human melanoma cells and tissues. Its knockdown suppressed melanoma progression in vitro and in vivo, including melanoma cell proliferation, migration, and invasion inhibition and apoptosis induction. Further mechanistic analysis showed that TRIP4 promoted melanoma growth through modulation of COX-2 and iNOS expression partially by activating NF-κB signaling indirectly and partially by the direct anchoring of itself at COX-2 and iNOS promoter via synergy with p300. TRIP4 was confirmed to regulate the sensitivity to anti-BRAF targeted agents in BRAF-mutant human melanoma cells and xenografts. In addition, clinical data showed that high expression of TRIP4 was positively correlated with increased expression of COX-2 and iNOS and predicted poor prognosis in a cohort of 100 melanoma patients. Collectively, these results show a pro-tumorigenic role of TRIP4, provide an insight into the mechanism of TRIP4 as a candidate therapeutic target, and suggest the potential of TRIP4 and BRAF dual targeting as an effective therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Jiaojiao Hao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Hua Xu
- Department of Gynaecology, Hospital of China Medical University, Number 202 Hospital of China PLA (People's Liberation Army), Shenyang, China
| | - Meihua Luo
- Shunde Hospital, Southern Medical University, Foshan, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yina Liao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xinrui Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wei Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xu Feng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kun Zou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yiming Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct, Incorporated, Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Lan Kang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
94
|
Zhang X, Cheng X, Lai Y, Zhou Y, Cao W, Hua ZC. Salmonella VNP20009-mediated RNA interference of ABCB5 moderated chemoresistance of melanoma stem cell and suppressed tumor growth more potently. Oncotarget 2017; 7:14940-50. [PMID: 26910836 PMCID: PMC4924763 DOI: 10.18632/oncotarget.7496] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Drug resistance remains an obstacle hindering the success of chemotherapy. Cancer stem cells (CSCs) have been recently found to confer resistance to chemotherapy. Therefore functional markers of CSCs should be discovered and specific therapies targeting these cells should be developed. In our investigation, a small population of B16F10 cells which was positive for ATP-binding cassette sub-family B member 5 (ABCB5) was isolated. This population displayed characteristics similar to those of CSCs and ABCB5 was identified to confer tumor growth and drug resistance in B16F10 cell line. Although targeting ABCB5 by small short interfering RNA delivered by VNP20009 failed to inhibit tumor growth, the combined treatment of VNP-shABCB5 and chemotherapy can act synergistically to delay tumor growth and enhance survival time in a primary B16F10 mice model. Results suggest that the combined treatment of VNP-shABCB5 and chemotherapy can improve the efficacy of chemotherapeutic drugs. Therefore, this combination therapy is of potential significance for melanoma treatment.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China
| | - Xiawei Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yueyang Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yuqiang Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Wenmin Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China.,The State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu , China
| |
Collapse
|
95
|
low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun 2017; 8:1988. [PMID: 29215016 PMCID: PMC5719420 DOI: 10.1038/s41467-017-01573-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 09/29/2017] [Indexed: 01/22/2023] Open
Abstract
Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic capacity. According to the “phenotype switching” model, the aggressive nature of melanoma cells results from their intrinsic potential to dynamically switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state. Here we identify the low affinity neurotrophin receptor CD271 as a key effector of phenotype switching in melanoma. CD271 plays a dual role in this process by decreasing proliferation, while simultaneously promoting invasiveness. Dynamic modification of CD271 expression allows tumor cells to grow at low levels of CD271, to reduce growth and invade when CD271 expression is high, and to re-expand at a distant site upon decrease of CD271 expression. Mechanistically, the cleaved intracellular domain of CD271 controls proliferation, while the interaction of CD271 with the neurotrophin receptor Trk-A modulates cell adhesiveness through dynamic regulation of a set of cholesterol synthesis genes relevant for patient survival. The aggressive nature of melanoma cells relies on their ability to switch from a high-proliferative/low-invasive to a low-proliferative/high-invasive state; however, the mechanisms governing this switch are unclear. Here, using in vivo models of human melanoma, the authors show that CD271 is a key regulator of phenotype switching and metastasis formation.
Collapse
|
96
|
Delyon J, Varna M, Feugeas JP, Sadoux A, Yahiaoui S, Podgorniak MP, Leclert G, Dorval SM, Dumaz N, Soulie J, Janin A, Mourah S, Lebbé C. Validation of a preclinical model for assessment of drug efficacy in melanoma. Oncotarget 2017; 7:13069-81. [PMID: 26909610 PMCID: PMC4914342 DOI: 10.18632/oncotarget.7541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of personalized medicine is to improve our understanding of the disease at molecular level and to optimize therapeutic management. In this context, we have developed in vivo and ex vivo preclinical strategies evaluating the efficacy of innovative drugs in melanomas. Human melanomas (n = 17) of different genotypes (mutated BRAF, NRAS, amplified cKIT and wild type) were successfully engrafted in mice then amplified by successive transplantations. The exhaustive characterization of patient-derived xenografts (PDX) at genomic level (transcriptomic and CGH arrays) revealed a similar distribution pattern of genetic abnormalities throughout the successive transplantations compared to the initial patient tumor, enabling their use for mutation-specific therapy strategies. The reproducibility of their spontaneous metastatic potential in mice was assessed in 8 models. These PDXs were used for the development of histoculture drug response assays (ex vivo) for the evaluation of innovative drug efficacy (BRAF and MEK inhibitors). The pharmacological effects of BRAF and MEK inhibitors were similar between PDX-derived histocultures and their corresponding PDX, on 2 models of BRAF and NRAS-mutated melanomas. These models constitute a validated, effective tool for preclinical investigation of new therapeutic agents, and improve therapeutic strategies in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Julie Delyon
- INSERM UMR_S976, Paris, F-75010, France.,AP-HP, Hôpital Saint-Louis, Department of Dermatology, Paris, F-75010, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, F-75013, France
| | - Mariana Varna
- INSERM UMR_S1165, Paris, F-75010, France.,Université Paris-Diderot, Department of Pathology, UMR_S1165, Paris, F-75010, France.,UMR CNRS 8612, Institut Galien-UFR de Pharmacie, Université de Paris-Sud, Châtenay-Malabry, F-92290, France
| | - Jean-Paul Feugeas
- Université Paris-Diderot, Sorbonne Paris Cité, Paris, F-75013, France.,INSERM UMR_1137, Paris, F-75018, France
| | | | | | | | | | - Sarra Mazouz Dorval
- Université Paris-Diderot, Sorbonne Paris Cité, Paris, F-75013, France.,AP-HP, Hôpital Saint-Louis, Department of Plastic, Reconstructive and Esthetic Surgery, Paris, F-75010, France
| | - Nicolas Dumaz
- INSERM UMR_S976, Paris, F-75010, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, F-75013, France
| | | | - Anne Janin
- INSERM UMR_S1165, Paris, F-75010, France.,Université Paris-Diderot, Department of Pathology, UMR_S1165, Paris, F-75010, France.,AP-HP, Hôpital Saint-Louis, Department of Pathology, Paris, F-75010, France
| | - Samia Mourah
- INSERM UMR_S976, Paris, F-75010, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, F-75013, France.,AP-HP, Hôpital Saint-Louis, Laboratoire de Pharmacologie Biologique, Paris, F-75010, France
| | - Céleste Lebbé
- INSERM UMR_S976, Paris, F-75010, France.,AP-HP, Hôpital Saint-Louis, Department of Dermatology, Paris, F-75010, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, F-75013, France
| |
Collapse
|
97
|
Testa U, Castelli G, Pelosi E. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells. Med Sci (Basel) 2017; 5:E28. [PMID: 29156643 PMCID: PMC5753657 DOI: 10.3390/medsci5040028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
98
|
Zhang M, Cao Y, Li X, Hu L, Taieb SK, Zhu X, Zhang J, Feng Y, Zhao R, Wang M, Xue W, Yang Z, Wang Y. Cd271 mediates proliferation and differentiation of epidermal stem cells to support cutaneous burn wound healing. Cell Tissue Res 2017; 371:273-282. [PMID: 29150821 DOI: 10.1007/s00441-017-2723-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/26/2017] [Indexed: 01/18/2023]
Abstract
Burn wounds can significantly reduce the quality of life of patients with respect to their physiology and psychology and can even threaten their lives. Many treatments have been proposed, including stem cell therapy but no effective method can as yet cure such damage. Our study highlights the role of Cd271 in epidermal stem cells (eSC) during the healing of burn wounds. The expression of Cd271 increases together with burn wound healing. Injection of Cd271-over-expressing eSC into wounds promotes the healing rate in a mouse burn model. Over-expression of Cd271 enhances the abilities of eSC with regard to their differentiation, proliferation and migration and even their resistance to apoptosis in vitro. These results are in accordance with a hypothesis suggesting that Cd271 promotes the healing of skin burn wounds by improving the potential of eSC for differentiation, proliferation and migration. Our findings shed light on the role of Cd271 in wound healing and may provide new therapeutic approaches for curing burn wounds of the skin.
Collapse
Affiliation(s)
- Min Zhang
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China
| | - Yongqian Cao
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China
| | - Xiaohong Li
- Health Management Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China
| | - Lizhi Hu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Sahbi Khaled Taieb
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaolong Zhu
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Zhang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yongqiang Feng
- Department of Laser Aesthetic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing, 100000, China
| | - Ran Zhao
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China
| | - Mingqing Wang
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China
| | - Wenjun Xue
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China
| | - Zhanjie Yang
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China
| | - Yibing Wang
- Department of Burns and Plastic Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, 250000, China.
| |
Collapse
|
99
|
Khoshinani HM, Afshar S, Pashaki AS, Mahdavinezhad A, Nikzad S, Najafi R, Amini R, Gholami MH, khoshghadam A, Saidijam M. Involvement of miR-155/FOXO3a and miR-222/PTEN in acquired radioresistance of colorectal cancer cell line. Jpn J Radiol 2017; 35:664-672. [DOI: 10.1007/s11604-017-0679-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
|
100
|
Grzywa TM, Paskal W, Włodarski PK. Intratumor and Intertumor Heterogeneity in Melanoma. Transl Oncol 2017; 10:956-975. [PMID: 29078205 PMCID: PMC5671412 DOI: 10.1016/j.tranon.2017.09.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a cancer that exhibits one of the most aggressive and heterogeneous features. The incidence rate escalates. A high number of clones harboring various mutations contribute to an exceptional level of intratumor heterogeneity of melanoma. It also refers to metastases which may originate from different subclones of primary lesion. Such component of the neoplasm biology is termed intertumor and intratumor heterogeneity. These levels of tumor heterogeneity hinder accurate diagnosis and effective treatment. The increasing number of research on the topic reflects the need for understanding limitation or failure of contemporary therapies. Majority of analyses concentrate on mutations in cancer-related genes. Novel high-throughput techniques reveal even higher degree of variations within a lesion. Consolidation of theories and researches indicates new routes for treatment options such as targets for immunotherapy. The demand for personalized approach in melanoma treatment requires extensive knowledge on intratumor and intertumor heterogeneity on the level of genome, transcriptome/proteome, and epigenome. Thus, achievements in exploration of melanoma variety are described in details. Particularly, the issue of tumor heterogeneity or homogeneity given BRAF mutations is discussed.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Wiktor Paskal
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Paweł K Włodarski
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland.
| |
Collapse
|