51
|
Shahriari-Ahmadi A, Arabi M, Payandeh M, Sadeghi M. The recurrence frequency of breast cancer and its prognostic factors in Iranian patients. Int J Appl Basic Med Res 2017; 7:40-43. [PMID: 28251106 PMCID: PMC5327605 DOI: 10.4103/2229-516x.198521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recurrent breast cancer (BC) after initial treatments is usually associated with poor outcome. The objective of this study is to evaluate baseline characteristics of BC patients to determine their prognostic influence of recurrences. MATERIALS AND METHODS In this retrospective study of 481 BC patients, 182 patients who had recurrence within the first, second, or third 5 years after diagnosis were included in the study. The significant prognostic factors associated with late or very late recurrence were selected according to the Akaike Information Criterion. Early recurrence was defined as initial recurrence within 5 years following curative surgery irrespective of site. Likewise, late recurrence was defined as initial recurrence after 5 years. Also, very late recurrence was defined as initial recurrence after 10 years. RESULTS During the follow-up period, 182 recurrences occurred (local recurrence or distant metastasis). All patients were treated with chemotherapy and radiotherapy and the patients with estrogen receptor (ER)- or progesterone receptor (PR)-positive had hormone therapy. There was a significant correlation between histological grade and receptors status with recurrence. In binary logistic regression analysis, ER and PR were significant prognostic factors for early recurrence. CONCLUSION High histological grade and immunohistochemical markers (ER- and PR-negative or human epidermal growth factor receptor 2-positive) are risk factors for recurrence, especially in early recurrence and also between of them, ER is the more significant prognostic factor in early recurrence.
Collapse
Affiliation(s)
- Ali Shahriari-Ahmadi
- Department of Hematology and Medical Oncology, Hazrat-e-Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Arabi
- Department of Hematology and Medical Oncology, Hazrat-e-Rasoul Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Payandeh
- Department of Hematology and Medical Oncology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
52
|
Zhang Y, Leonard M, Shu Y, Yang Y, Shu D, Guo P, Zhang X. Overcoming Tamoxifen Resistance of Human Breast Cancer by Targeted Gene Silencing Using Multifunctional pRNA Nanoparticles. ACS NANO 2017; 11:335-346. [PMID: 27966906 PMCID: PMC5488869 DOI: 10.1021/acsnano.6b05910] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most breast cancers express estrogen receptor (ER) α, and the antiestrogen drug tamoxifen has been widely used for their treatment. Unfortunately, up to half of all ERα-positive tumors have intrinsic or acquired endocrine therapy resistance. Our recent studies revealed that the ER coactivator Mediator Subunit 1 (MED1) plays a critical role in tamoxifen resistance through cross-talk with HER2. Herein, we assembled a three-way junction (3-WJ) pRNA-HER2apt-siMED1 nanoparticle to target HER2-overexpressing human breast cancer via an HER2 RNA aptamer to silence MED1 expression. We found that these ultracompact RNA nanoparticles are very stable under RNase A, serum, and 8 M urea conditions. These nanoparticles specifically bound to HER2-overexpressing breast cancer cells, efficiently depleted MED1 expression, and significantly decreased ERα-mediated gene transcription, whereas point mutations of the HER2 RNA aptamer on these nanoparticles abolished such functions. The RNA nanoparticles not only reduced the growth, metastasis, and mammosphere formation of the HER2-overexpressing breast cancer cells but also sensitized them to tamoxifen treatment. These biosafe nanoparticles efficiently targeted and penetrated into HER2-overexpressing tumors after systemic administration in orthotopic xenograft mouse models. In addition to their ability to greatly inhibit tumor growth and metastasis, these nanoparticles also led to a dramatic reduction in the stem cell content of breast tumors when combined with tamoxifen treatment in vivo. Overall, we have generated multifunctional RNA nanoparticles that specifically targeted HER2-overexpressing human breast cancer, silenced MED1, and overcame tamoxifen resistance.
Collapse
Affiliation(s)
- Yijuan Zhang
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Marissa Leonard
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Graduate Program in Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Yi Shu
- College of Pharmacy, Department of Physiology & Cell Biology, College of Medicine, and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yongguang Yang
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Dan Shu
- College of Pharmacy, Department of Physiology & Cell Biology, College of Medicine, and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- College of Pharmacy, Department of Physiology & Cell Biology, College of Medicine, and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoting Zhang
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Graduate Program in Cancer and Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Corresponding Author: Tel: 513-558-3017. Fax: 513-558-4454.
| |
Collapse
|
53
|
Chen Q, Weng Z, Lu Y, Jia Y, Ding L, Bai F, Ge M, Lin Q, Wu K. An Experimental Analysis of the Molecular Effects of Trastuzumab (Herceptin) and Fulvestrant (Falsodex), as Single Agents or in Combination, on Human HR+/HER2+ Breast Cancer Cell Lines and Mouse Tumor Xenografts. PLoS One 2017; 12:e0168960. [PMID: 28045951 PMCID: PMC5207527 DOI: 10.1371/journal.pone.0168960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To investigate the effects of trastuzumab (herceptin) and fulvestrant (falsodex) either in combination or alone, on downstream cell signaling pathways in lab-cultured human HR+/HER2+ breast cancer cell lines ZR-75-1 and BT-474, as well as on protein expression levels in mouse xenograft tissue. METHODS Cells were cultivated in the presence of trastuzumab or fulvestrant or both. Molecular events that resulted in an inhibition of cell proliferation and cell cycle progression or in an increased rate of apoptosis were studied. The distribution and abundance of the proteins p-Akt and p-Erk expressed in these cells in response to single agents or combinatorial treatment were also investigated. In addition, the effects of trastuzumab and fulvestrant, either as single agents or in combination on tumor growth as well as on expression of the protein p-MED1 expressed in in vivo mouse xenograft models was also examined. RESULTS Cell proliferation was increasingly inhibited by trastuzumab or fulvestrant or both, with a CI<1 and DRI>1 in both human cell lines. The rate of apoptosis increased only in the BT-474 cell line and not in the ZR-75-1 cell line upon treatment with fulvestrant and not trastuzumab as a single agent (P<0.05). Interestingly, fulvestrant, in combination with trastuzumab, did not significantly alter the rate of apoptosis (in comparison with fulvestrant alone), in the BT-474 cell line (P>0.05). Cell accumulation in the G1 phase of cell cycle was investigated in all treatment groups (P<0.05), and the combination of trastuzumab and fulvestrant reversed the effects of fulvestrant alone on p-Akt and p-Erk protein expression levels. Using ZR-75-1 or BT-474 to generate in vivo tumor xenografts in BALB/c athymic mouse models, we showed that a combination of both drugs resulted in a stronger inhibition of tumor growth (P<0.05) and a greater decrease in the levels of activated MED1 (p-MED1) expressed in tumor issues compared with the use of either drug as a single agent. CONCLUSIONS We demonstrate that the administration of trastuzumab and fulvestrant in combination results in positive synergistic effects on both, ZR-75-1 and BT-474 cell lines. This combinatorial approach is likely to reduce physiological side effects of both drugs, thus providing a theoretical basis for the use of such combination treatment in order to resolve HR+/HER2+ triple positive breast cancer that has previously been shown to be resistant to endocrine treatment alone.
Collapse
Affiliation(s)
- Qing Chen
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Weng
- Department of General Surgery, Shanghai International Medical Center, Shanghai, China
| | - Yunshu Lu
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Jia
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longlong Ding
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Bai
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meixin Ge
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Lin
- Department of Radiation Oncology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Kejin Wu
- Department of Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
54
|
Brägelmann J, Klümper N, Offermann A, von Mässenhausen A, Böhm D, Deng M, Queisser A, Sanders C, Syring I, Merseburger AS, Vogel W, Sievers E, Vlasic I, Carlsson J, Andrén O, Brossart P, Duensing S, Svensson MA, Shaikhibrahim Z, Kirfel J, Perner S. Pan-Cancer Analysis of the Mediator Complex Transcriptome Identifies CDK19 and CDK8 as Therapeutic Targets in Advanced Prostate Cancer. Clin Cancer Res 2016; 23:1829-1840. [PMID: 27678455 DOI: 10.1158/1078-0432.ccr-16-0094] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
Purpose: The Mediator complex is a multiprotein assembly, which serves as a hub for diverse signaling pathways to regulate gene expression. Because gene expression is frequently altered in cancer, a systematic understanding of the Mediator complex in malignancies could foster the development of novel targeted therapeutic approaches.Experimental Design: We performed a systematic deconvolution of the Mediator subunit expression profiles across 23 cancer entities (n = 8,568) using data from The Cancer Genome Atlas (TCGA). Prostate cancer-specific findings were validated in two publicly available gene expression cohorts and a large cohort of primary and advanced prostate cancer (n = 622) stained by immunohistochemistry. The role of CDK19 and CDK8 was evaluated by siRNA-mediated gene knockdown and inhibitor treatment in prostate cancer cell lines with functional assays and gene expression analysis by RNAseq.Results: Cluster analysis of TCGA expression data segregated tumor entities, indicating tumor-type-specific Mediator complex compositions. Only prostate cancer was marked by high expression of CDK19 In primary prostate cancer, CDK19 was associated with increased aggressiveness and shorter disease-free survival. During cancer progression, highest levels of CDK19 and of its paralog CDK8 were present in metastases. In vitro, inhibition of CDK19 and CDK8 by knockdown or treatment with a selective CDK8/CDK19 inhibitor significantly decreased migration and invasion.Conclusions: Our analysis revealed distinct transcriptional expression profiles of the Mediator complex across cancer entities indicating differential modes of transcriptional regulation. Moreover, it identified CDK19 and CDK8 to be specifically overexpressed during prostate cancer progression, highlighting their potential as novel therapeutic targets in advanced prostate cancer. Clin Cancer Res; 23(7); 1829-40. ©2016 AACR.
Collapse
Affiliation(s)
- Johannes Brägelmann
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Hematology, Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Niklas Klümper
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Anne Offermann
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Anne von Mässenhausen
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Diana Böhm
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Mario Deng
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Angela Queisser
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Christine Sanders
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Isabella Syring
- Section for Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Clinic for Urology and Pediatric Urology, University Hospital of Bonn, Bonn, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Wenzel Vogel
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Ignacija Vlasic
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ove Andrén
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Peter Brossart
- Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Hematology, Oncology and Rheumatology, University Hospital of Bonn, Bonn, Germany
| | - Stefan Duensing
- Molecular Uro-oncology, Department of Urology, University of Heidelberg, Heidelberg, Germany
| | - Maria A Svensson
- Department of Research and Education, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Zaki Shaikhibrahim
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Sven Perner
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and the Research Center Borstel, Leibniz Center for Medicine and Biosciences, Lübeck and Borstel, Germany.
| |
Collapse
|
55
|
De Mattos-Arruda L, Caldas C. Cell-free circulating tumour DNA as a liquid biopsy in breast cancer. Mol Oncol 2016; 10:464-74. [PMID: 26776681 PMCID: PMC5528975 DOI: 10.1016/j.molonc.2015.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 12/14/2022] Open
Abstract
Recent developments in massively parallel sequencing and digital genomic techniques support the clinical validity of cell-free circulating tumour DNA (ctDNA) as a 'liquid biopsy' in human cancer. In breast cancer, ctDNA detected in plasma can be used to non-invasively scan tumour genomes and quantify tumour burden. The applications for ctDNA in plasma include identifying actionable genomic alterations, monitoring treatment responses, unravelling therapeutic resistance, and potentially detecting disease progression before clinical and radiological confirmation. ctDNA may be used to characterise tumour heterogeneity and metastasis-specific mutations providing information to adapt the therapeutic management of patients. In this article, we review the current status of ctDNA as a 'liquid biopsy' in breast cancer.
Collapse
Affiliation(s)
- Leticia De Mattos-Arruda
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK; Cambridge Experimental Cancer Medicine Centre and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| |
Collapse
|
56
|
Espinal-Enríquez J, Hernández-Lemus E, Mejía C, Ruiz-Azuara L. Network Analysis Shows Novel Molecular Mechanisms of Action for Copper-Based Chemotherapy. Front Physiol 2016; 6:406. [PMID: 26793116 PMCID: PMC4709449 DOI: 10.3389/fphys.2015.00406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/10/2015] [Indexed: 12/24/2022] Open
Abstract
The understanding of the mechanisms associated with the action of chemotherapeutic agents is fundamental to assess and account for possible side-effects of such treatments. Casiopeínas have demonstrated a cytotoxic effect by activation of pro-apoptotic processes in malignant cells. Such processes have been proved to activate the apoptotic intrinsic route, as well as cell cycle arrest. Despite this knowledge, the whole mechanism of action of Casiopeínas is yet to be completely understood. In this work we implement a systems biology approach based on two pathway analysis tools (Over-Representation Analysis and Causal Network Analysis) to observe changes in some hallmarks of cancer, induced by this copper-based chemotherapeutic agent in HeLa cell lines. We find that the metabolism of metal ions is exacerbated, as well as cell division processes being globally diminished. We also show that cellular migration and proliferation events are decreased. Moreover, the molecular mechanisms of liver protection are increased in the cell cultures under the actions of Casiopeínas, unlike the case in many other cytotoxic drugs. We argue that this chemotherapeutic agent may be promising, given its protective hepatic function, concomitant with its cytotoxic participation in the onset of apoptotic processes in malignant cells.
Collapse
Affiliation(s)
- Jesús Espinal-Enríquez
- Computational Genomics, National Institute of Genomic MedicineMéxico City, Mexico; Complejidad en Biología de Sistemas, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics, National Institute of Genomic MedicineMéxico City, Mexico; Complejidad en Biología de Sistemas, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Carmen Mejía
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro Querétaro, Mexico
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
57
|
Grimont A, Pinho AV, Cowley MJ, Augereau C, Mawson A, Giry-Laterrière M, Van den Steen G, Waddell N, Pajic M, Sempoux C, Wu J, Grimmond SM, Biankin AV, Lemaigre FP, Rooman I, Jacquemin P. SOX9 regulates ERBB signalling in pancreatic cancer development. Gut 2015; 64:1790-9. [PMID: 25336113 DOI: 10.1136/gutjnl-2014-307075] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The transcription factor SOX9 was recently shown to stimulate ductal gene expression in pancreatic acinar-to-ductal metaplasia and to accelerate development of premalignant lesions preceding pancreatic ductal adenocarcinoma (PDAC). Here, we investigate how SOX9 operates in pancreatic tumourigenesis. DESIGN We analysed genomic and transcriptomic data from surgically resected PDAC and extended the expression analysis to xenografts from PDAC samples and to PDAC cell lines. SOX9 expression was manipulated in human cell lines and mouse models developing PDAC. RESULTS We found genetic aberrations in the SOX9 gene in about 15% of patient tumours. Most PDAC samples strongly express SOX9 protein, and SOX9 levels are higher in classical PDAC. This tumour subtype is associated with better patient outcome, and cell lines of this subtype respond to therapy targeting epidermal growth factor receptor (EGFR/ERBB1) signalling, a pathway essential for pancreatic tumourigenesis. In human PDAC, high expression of SOX9 correlates with expression of genes belonging to the ERBB pathway. In particular, ERBB2 expression in PDAC cell lines is stimulated by SOX9. Inactivating Sox9 expression in mice confirmed its role in PDAC initiation; it demonstrated that Sox9 stimulates expression of several members of the ERBB pathway and is required for ERBB signalling activity. CONCLUSIONS By integrating data from patient samples and mouse models, we found that SOX9 regulates the ERBB pathway throughout pancreatic tumourigenesis. Our work opens perspectives for therapy targeting tumourigenic mechanisms.
Collapse
Affiliation(s)
- Adrien Grimont
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Andreia V Pinho
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | - Mark J Cowley
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | - Cécile Augereau
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Amanda Mawson
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | - Marc Giry-Laterrière
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | | | - Nicola Waddell
- Australian Pancreatic Cancer Genome Initiative Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Marina Pajic
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia
| | - Christine Sempoux
- Department of Pathology, Université catholique de Louvain, Cliniques Universitaires St Luc, Brussels, Belgium
| | - Jianmin Wu
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia
| | - Sean M Grimmond
- Australian Pancreatic Cancer Genome Initiative Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia Wolfson Wohl Cancer Centre, University of Glasgow, Scotland, UK
| | - Andrew V Biankin
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia Wolfson Wohl Cancer Centre, University of Glasgow, Scotland, UK
| | | | - Ilse Rooman
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia
| | - Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
58
|
McIlrath V, Trye A, Aguanno A. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module. J Vis Exp 2015:e52528. [PMID: 26132733 DOI: 10.3791/52528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.
Collapse
Affiliation(s)
| | - Alice Trye
- Department of Natural Sciences, Marymount Manhattan College
| | - Ann Aguanno
- Department of Natural Sciences, Marymount Manhattan College;
| |
Collapse
|
59
|
Acquisition of epithelial-mesenchymal transition phenotype in the tamoxifen-resistant breast cancer cell: a new role for G protein-coupled estrogen receptor in mediating tamoxifen resistance through cancer-associated fibroblast-derived fibronectin and β1-integrin signaling pathway in tumor cells. Breast Cancer Res 2015; 17:69. [PMID: 25990368 PMCID: PMC4453053 DOI: 10.1186/s13058-015-0579-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/11/2015] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Acquired tamoxifen resistance remains the major obstacle to breast cancer endocrine therapy. β1-integrin was identified as one of the target genes of G protein-coupled estrogen receptor (GPER), a novel estrogen receptor recognized as an initiator of tamoxifen resistance. Here, we investigated the role of β1-integrin in GPER-mediated tamoxifen resistance in breast cancer. METHODS The expression of β1-integrin and biomarkers of epithelial-mesenchymal transition were evaluated immunohistochemically in 53 specimens of metastases and paired primary tumors. The function of β1-integrin was investigated in tamoxifen-resistant (MCF-7R) subclones, derived from parental MCF-7 cells, and MCF-7R β1-integrin-silenced subclones in MTT and Transwell assays. Involved signaling pathways were identified using specific inhibitors and Western blotting analysis. RESULTS GPER, β1-integrin and mesenchymal biomarkers (vimentin and fibronectin) expression in metastases increased compared to the corresponding primary tumors; a close expression pattern of β1-integrin and GPER were in metastases. Increased β1-integrin expression was also confirmed in MCF-7R cells compared with MCF-7 cells. This upregulation of β1-integrin was induced by agonists of GPER and blocked by both antagonist and knockdown of it in MCF-7R cells. Moreover, the epidermal growth factor receptor/extracellular regulated protein kinase (EGFR/ERK) signaling pathway was involved in this transcriptional regulation since specific inhibitors of these kinases also reduced the GPER-induced upregulation of β1-integrin. Interestingly, silencing of β1-integrin partially rescued the sensitivity of MCF-7R cells to tamoxifen and the α5β1-integrin subunit is probably responsible for this phenomenon. Importantly, the cell migration and epithelial-mesenchymal transition induced by cancer-associated fibroblasts, or the product of cancer-associated fibroblasts, fibronectin, were reduced by knockdown of β1-integrin in MCF-7R cells. In addition, the downstream kinases of β1-integrin including focal adhesion kinase, Src and AKT were activated in MCF-7R cells and may be involved in the interaction between cancer cells and cancer-associated fibroblasts. CONCLUSIONS GPER/EGFR/ERK signaling upregulates β1-integrin expression and activates downstream kinases, which contributes to cancer-associated fibroblast-induced cell migration and epithelial-mesenchymal transition, in MCF-7R cells. GPER probably contributes to tamoxifen resistance via interaction with the tumor microenvironment in a β1-integrin-dependent pattern. Thus, β1-integrin may be a potential target to improve anti-hormone therapy responses in breast cancer patients.
Collapse
|
60
|
Lacle MM, Moelans CB, Kornegoor R, van der Pol C, Witkamp AJ, van der Wall E, Rueschoff J, Buerger H, van Diest PJ. Chromosome 17 copy number changes in male breast cancer. Cell Oncol (Dordr) 2015; 38:237-45. [PMID: 25906114 PMCID: PMC4445249 DOI: 10.1007/s13402-015-0227-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Overall, HER2-amplified female breast cancer (FBC) is associated with a high grade, an aggressive phenotype and a poor prognosis. In male breast cancer (MBC) amplification of HER2, located on chromosome 17, occurs at a lower frequency than in FBC, where it is part of complex rearrangements. So far, only few studies have addressed the occurrence of chromosome 17 alterations in small MBC cohorts. METHODS Multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH) were used to detect and characterize copy number changes on chromosome 17 in a cohort of 139 MBC. The results obtained were compared to those in FBC, and were correlated with clinicopathological features and patient outcome data. RESULTS We observed a lower frequency of chromosome 17 copy number changes with less complex rearrangement patterns in MBC compared to FBC. Chromosome 17 changes in MBC included gains of 17q and losses of 17p. Whole chromosome 17 polyploidies were not encountered. Two recurrent chromosome 17 amplicons were detected: on 17q12 (encompassing the NEUROD2, HER2, GRB7 and IKZF3 gens) and on 17q23.1 (encompassing the MIR21 and RPS6KB1 genes). Whole arm copy number gains of 17q were associated with decreased 5 year survival rates (p = 0.010). Amplification of HER2 was associated with a high tumor grade, but did not predict patient survival. Although copy number gains of HER2 and NEUROD2 were associated with a high tumor grade, a high mitotic count and a decreased 5 year survival rate (p = 0.015), only tumor size and NEUROD2 copy number gains emerged as independent prognostic factors. CONCLUSIONS In MBC chromosome 17 shows less complex rearrangements and fewer copy number changes compared to FBC. Frequent gains of 17q, encompassing two distinct amplicons, and losses of 17p were observed, but no whole chromosome 17 polyploidies. Only NEUROD2 gains seem to have an independent prognostic impact. These results suggest different roles of chromosome 17 aberrations in male versus female breast carcinogenesis.
Collapse
Affiliation(s)
- Miangela M. Lacle
- />Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Cathy B. Moelans
- />Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Robert Kornegoor
- />Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Carmen van der Pol
- />Department of Surgery, University Medical Center, Utrecht, The Netherlands
| | - Arjen J. Witkamp
- />Department of Surgery, University Medical Center, Utrecht, The Netherlands
| | - Elsken van der Wall
- />Department of Division of Oncology, University Medical Center, Utrecht, The Netherlands
| | | | - Horst Buerger
- />Institute of Pathology Paderborn/Höxter and Brustzentrum, Paderborn, Germany
| | - Paul J. van Diest
- />Department of Pathology, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
61
|
Liu G, Sprenger C, Wu PJ, Sun S, Uo T, Haugk K, Epilepsia KS, Plymate S. MED1 mediates androgen receptor splice variant induced gene expression in the absence of ligand. Oncotarget 2015; 6:288-304. [PMID: 25481872 PMCID: PMC4381595 DOI: 10.18632/oncotarget.2672] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/02/2014] [Indexed: 11/25/2022] Open
Abstract
The appearance of constitutively active androgen receptor splice variants (AR-Vs) has been proposed as one of the causes of castration-resistant prostate cancer (CRPC). However, the underlying mechanism of AR-Vs in CRPC transcriptional regulation has not been defined. A distinct transcriptome enriched with cell cycle genes, e.g. UBE2C, has been associated with AR-Vs, which indicates the possibility of an altered transcriptional mechanism when compared to full-length wild-type AR (ARfl). Importantly, a recent study reported the critical role of p-MED1 in enhancing UBE2C expression through a locus looping pattern, which only occurs in CRPC but not in androgen-dependent prostate cancer (ADPC). To investigate the potential correlation between AR-V and MED1, in the present study we performed protein co-immunoprecipitation, chromatin immunoprecipitation, and cell proliferation assays and found that MED1 is necessary for ARv567es induced UBE2C up-regulation and subsequent prostate cancer cell growth. Furthermore, p-MED1 is bound to ARv567es independent of full-length AR; p-MED1 has higher recruitment to UBE2C promoter and enhancer regions in the presence of ARv567es. Our data indicate that p-MED1 serves as a key mediator in ARv567es induced gene expression and suggests a mechanism by which AR-Vs promote the development and progression of CRPC.
Collapse
Affiliation(s)
- Gang Liu
- Department of Medicine, University of Washington, Seattle 98104, WA
| | - Cynthia Sprenger
- Department of Medicine, University of Washington, Seattle 98104, WA
- Veteran Affairs Puget Sound Health Care System, Seattle 98104, WA
| | - Pin-Jou Wu
- Department of Medicine, University of Washington, Seattle 98104, WA
| | - Shihua Sun
- Department of Medicine, University of Washington, Seattle 98104, WA
| | - Takuma Uo
- Department of Medicine, University of Washington, Seattle 98104, WA
| | - Kathleen Haugk
- Veteran Affairs Puget Sound Health Care System, Seattle 98104, WA
| | | | - Stephen Plymate
- Department of Medicine, University of Washington, Seattle 98104, WA
- Veteran Affairs Puget Sound Health Care System, Seattle 98104, WA
| |
Collapse
|
62
|
Cui J, Yang Y, Li H, Leng Y, Qian K, Huang Q, Zhang C, Lu Z, Chen J, Sun T, Wu R, Sun Y, Song H, Wei X, Jing P, Yang X, Zhang C. MiR-873 regulates ERα transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells. Oncogene 2014; 34:3895-907. [PMID: 25531331 DOI: 10.1038/onc.2014.430] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Abstract
miRNAs (microRNAs) are frequently and aberrantly expressed in many cancers. MiR-873 has been revealed to be downregulated in colorectal cancer and glioblastoma. However, its function remains unclear. Here we report that miR-873 is downregulated in breast tumor compared with normal tissue. Enforced expression of miR-873 decreases the transcriptional activity of ER (estrogen receptor)-α but not ERβ through the modulation of ERα phosphorylation in ER-positive breast cancer cells. We also found that miR-873 inhibits breast cancer cell proliferation and tumor growth in nude mice. Reporter gene assays revealed cyclin-dependent kinase 3 (CDK3) as a direct target of miR-873. CDK3 was shown to be overexpressed in breast cancer and phosphorylate ERα at Ser104/116 and Ser118. Furthermore, we found that Mir-873 inhibits ER activity and cell growth via targeting CDK3. Interestingly, miR-873 was observed to be downregulated in tamoxifen-resistant MCF-7/TamR cells, while CDK3 is overexpressed in these cells. More importantly, re-expression of miR-873 reversed tamoxifen resistance in MCF-7/TamR cells. Our data demonstrate that miR-873 is a novel tumor suppressor in ER-positive breast cancer and a potential therapeutic approach for treatment of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- J Cui
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - Y Yang
- Beijing Institute for Neuroscience, Capital Medical University, Beijing, China
| | - H Li
- Department of Molecular & Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Y Leng
- The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - K Qian
- The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Q Huang
- Department of Animal Sciences and Technology, Jilin Agriculture University, Changchun, China
| | - C Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Z Lu
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - J Chen
- Urology Department, the First Hospital of Nanchang University, Nanchang, China
| | - T Sun
- Urology Department, the First Hospital of Nanchang University, Nanchang, China
| | - R Wu
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - Y Sun
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - H Song
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - X Wei
- Department of Applied Chemistry, College of Chemistry & Molecular Engineering, Peking University, Beijing, China
| | - P Jing
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne Fort Wayne, IN, USA
| | - X Yang
- Institute of Health Sciences, Anhui University, Hefei, China
| | - C Zhang
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
63
|
Li SJ, Yang XN, Qian HY. Antitumor effects of WNT2B silencing in GLUT1 overexpressing cisplatin resistant head and neck squamous cell carcinoma. Am J Cancer Res 2014; 5:300-308. [PMID: 25628939 PMCID: PMC4300709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023] Open
Abstract
OBJECTIVES The increased rate of glucose uptake necessary to support the growth of tumor cells is mediated by glucose transporters, and glucose transporter 1 (GLUT1) is overexpressed in several types of cancer in correlation with poor prognosis. And WNT2B overexpression is thought to be involved in tumor progression. Here, we investigated the effects of WNT2B in GLUT1 overexpressing cisplatin resistant head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. MATERIALS AND METHODS We generated GLUT1 overexpressing cisplatin resistant CAL27 and SCC25 oral cancer cells. Lentiviral mediated knock-down of WNT2B was performed in CAL27 and SCC25. QRT-PCR and Western blot analysis were used to detect the mRNA and protein expression of GLUT1, WNT2B, Cyclin D1 and β-catenin. Cell viability was assessed by MTT analysis. Colony formation assay was performed by staining with 0.5% crystal violet. The role of WNT2B in HNSCC was examined in vivo through the generation of a CAL27 (or cisplatin resistant CAL27 or cisplatin resistant CAL27 with WNT2B knock-down) nude mice xenograft model of HNSCC. RESULTS Knock-down of WNT2B in decreased cell viability and colony formation in cisplatin resistant CAL27 and SCC25 in association with the downregulation of GLUT1, cyclin D1 and β-catenin. In a cisplatin resistant CAL27 mouse xenograft model, shRNA mediated silencing of WNT2B increased survival and decreased tumor growth in correlation with the downregulation of GLUT1, cyclin D1 and β-catenin. CONCLUSION WNT2B plays a role in tumorigenesis and chemotherapy resistance in oral cancer and provide a potential therapeutic target for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Sheng-Jiao Li
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Tongji UniversityShanghai, China
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, China
| | - Xiao-Ning Yang
- Department of Obstetrics and Gynecology, Shanghai Pudong HospitalShanghai, China
| | - Han-Yu Qian
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Tongji UniversityShanghai, China
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, China
| |
Collapse
|
64
|
Yang Y, Cui J, Xue F, Zhang C, Mei Z, Wang Y, Bi M, Shan D, Meredith A, Li H, Xu ZQD. Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:270-81. [PMID: 25514493 DOI: 10.1016/j.bbagrm.2014.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/20/2014] [Accepted: 12/09/2014] [Indexed: 11/16/2022]
Abstract
Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-β1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway.
Collapse
Affiliation(s)
- Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing,100069, China.
| | - Jiajun Cui
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, 45267, USA; Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, 100071, China
| | - Feng Xue
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chuanfu Zhang
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhu Mei
- Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing,100069, China
| | - Yue Wang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mingjun Bi
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, 45267, USA
| | - Dapeng Shan
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Alex Meredith
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, 45267, USA
| | - Hui Li
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington KY, 40536, USA
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing,100069, China.
| |
Collapse
|
65
|
Cui L, Li M, Feng F, Yang Y, Hang X, Cui J, Gao J. MEIS1 functions as a potential AR negative regulator. Exp Cell Res 2014; 328:58-68. [DOI: 10.1016/j.yexcr.2014.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/15/2014] [Accepted: 08/17/2014] [Indexed: 02/07/2023]
|
66
|
Fumoleau P, Koch KM, Brain E, Lokiec F, Rezai K, Awada A, Hayward L, Werutsky G, Bogaerts J, Marréaud S, Cardoso F. A phase I pharmacokinetics study of lapatinib and tamoxifen in metastatic breast cancer (EORTC 10053 Lapatam study). Breast 2014; 23:663-9. [PMID: 25065668 DOI: 10.1016/j.breast.2014.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE This phase I study assessed the pharmacokinetic (PK), tolerability, safety and preliminary clinical activity of tamoxifen (T) and lapatinib (L) in patients with metastatic breast cancer (MBC). METHODS Patients (pts) with hormone receptor positive MBC, irrespective of HER-2 status, were randomly assigned to T → T + L group, tamoxifen in cycle 1 for 28 days then adding lapatinib on day 1 of cycle 2; or L → T + L group, lapatinib in cycle 1 for 14 days, then adding tamoxifen on day 1 of cycle 2 to evaluate the potential drug-drug PK interaction at steady-state. The dose of tamoxifen was 20 mg/day and lapatinib 1500 mg/day. RESULTS Twenty-five pts were enrolled of which 23 started treatment, five (22%) of them were HER-2 positive. Median age was 59 years and 96% had PS ≤1. Eleven (91.7%) pts in the T → T + L group and 10 (76.9%) in L → T + L group received at least 2 cycles of treatment. The most frequently reported drug-related adverse events (>25% of patients) were diarrhoea (62%), anaemia (56%), rash (52%), fatigue (52%), dermatology other (34%) and leukopenia (28%). Grade 3-4 drug-related toxicities were infrequent (<10%). No cardiotoxicity was observed. T plasma concentrations did not appeared to be affected by the presence of lapatinib. L steady-state plasma concentrations were 20% lower after 28 days of co-administration with T. Eight (36.4%) patients experienced stable disease and median progression free survival was 2.7 months. CONCLUSIONS The combination of L and T was safe and clinically active. T affected L plasma concentrations, which remained within the therapeutic index.
Collapse
Affiliation(s)
- Pierre Fumoleau
- Centre Georges-François Leclerc, Rue Professeur Marion, 21079 Dijon, France.
| | - Kevin M Koch
- GlaxoSmithKline, Research Triangle Park, 5 Moore Drive, 27709 Raleigh-Durham, United States.
| | - Etienne Brain
- Institut Curie, Centre René Huguenin, 35 rue Dailly, 92210 Saint-Cloud, France.
| | - François Lokiec
- Institut Curie, Centre René Huguenin, 35 rue Dailly, 92210 Saint-Cloud, France.
| | - Keyvan Rezai
- Institut Curie, Centre René Huguenin, 35 rue Dailly, 92210 Saint-Cloud, France.
| | - Ahmad Awada
- Institut Jules Bordet, Boulevard de Waterloo 121, 1000 Brussels, Belgium.
| | - Larry Hayward
- Edinburgh Cancer Centre, Western General Hospital, Crewe Road South, EH4 2XR Edinburgh, United Kingdom.
| | - Gustavo Werutsky
- European Organisation for Research and Treatment of Cancer, Avenue Mounier, 83/11, 1200 Brussels, Belgium.
| | - Jan Bogaerts
- European Organisation for Research and Treatment of Cancer, Avenue Mounier, 83/11, 1200 Brussels, Belgium.
| | - Sandrine Marréaud
- European Organisation for Research and Treatment of Cancer, Avenue Mounier, 83/11, 1200 Brussels, Belgium.
| | - Fatima Cardoso
- Institut Jules Bordet, Boulevard de Waterloo 121, 1000 Brussels, Belgium; Institut Jules Bordet (currently at Champalimaud Cancer Center), Av. de Brasília, s/n, 1400-038 Lisbon, Portugal.
| |
Collapse
|
67
|
Moelans CB, van der Groep P, Hoefnagel LD, van de Vijver MJ, Wesseling P, Wesseling J, van der Wall E, van Diest PJ. Genomic evolution from primary breast carcinoma to distant metastasis: Few copy number changes of breast cancer related genes. Cancer Lett 2014; 344:138-146. [DOI: 10.1016/j.canlet.2013.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 12/30/2022]
|
68
|
Rondón-Lagos M, Verdun Di Cantogno L, Marchiò C, Rangel N, Payan-Gomez C, Gugliotta P, Botta C, Bussolati G, Ramírez-Clavijo SR, Pasini B, Sapino A. Differences and homologies of chromosomal alterations within and between breast cancer cell lines: a clustering analysis. Mol Cytogenet 2014; 7:8. [PMID: 24456987 PMCID: PMC3914704 DOI: 10.1186/1755-8166-7-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Background The MCF7 (ER+/HER2-), T47D (ER+/HER2-), BT474 (ER+/HER2+) and SKBR3 (ER-/HER2+) breast cancer cell lines are widely used in breast cancer research as paradigms of the luminal and HER2 phenotypes. Although they have been subjected to cytogenetic analysis, their chromosomal abnormalities have not been carefully characterized, and their differential cytogenetic profiles have not yet been established. In addition, techniques such as comparative genomic hybridization (CGH), microarray-based CGH and multiplex ligation-dependent probe amplification (MLPA) have described specific regions of gains, losses and amplifications of these cell lines; however, these techniques cannot detect balanced chromosomal rearrangements (e.g., translocations or inversions) or low frequency mosaicism. Results A range of 19 to 26 metaphases of the MCF7, T47D, BT474 and SKBR3 cell lines was studied using conventional (G-banding) and molecular cytogenetic techniques (multi-color fluorescence in situ hybridization, M-FISH). We detected previously unreported chromosomal changes and determined the content and frequency of chromosomal markers. MCF7 and T47D (ER+/HER2-) cells showed a less complex chromosomal make up, with more numerical than structural alterations, compared to BT474 and SKBR3 (HER2+) cells, which harbored the highest frequency of numerical and structural aberrations. Karyotype heterogeneity and clonality were determined by comparing all metaphases within and between the four cell lines by hierarchical clustering. The latter analysis identified five main clusters. One of these clusters was characterized by numerical chromosomal abnormalities common to all cell lines, and the other four clusters encompassed cell-specific chromosomal abnormalities. T47D and BT474 cells shared the most chromosomal abnormalities, some of which were shared with SKBR3 cells. MCF7 cells showed a chromosomal pattern that was markedly different from those of the other cell lines. Conclusions Our study provides a comprehensive and specific characterization of complex chromosomal aberrations of MCF7, T47D, BT474 and SKBR3 cell lines. The chromosomal pattern of ER+/HER2- cells is less complex than that of ER+/HER2+ and ER-/HER2+ cells. These chromosomal abnormalities could influence the biologic and pharmacologic response of cells. Finally, although gene expression profiling and aCGH studies have classified these four cell lines as luminal, our results suggest that they are heterogeneous at the cytogenetic level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anna Sapino
- Department of Medical Sciences, University of Turin, Via Santena 7, 10126 Turin, Italy.
| |
Collapse
|
69
|
Pazhoomand R, Keyhan E, Banan M, Najmabad H, Karimlou M, Khodadad F, Iraniparast A, Feiz F, Majidzadeh K, Bahman I, Moghadam FA, Sobhani AM, Abedin SS, Muhammadnejad A, Behjat F. Detection of HER2 Status in Breast Cancer: Comparison of Current Methods with MLPA and Real-time RT-PCR. Asian Pac J Cancer Prev 2013. [DOI: 10.7314/apjcp.2013.14.12.7621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
70
|
Schiano C, Casamassimi A, Rienzo M, de Nigris F, Sommese L, Napoli C. Involvement of Mediator complex in malignancy. Biochim Biophys Acta Rev Cancer 2013; 1845:66-83. [PMID: 24342527 DOI: 10.1016/j.bbcan.2013.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/28/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
Mediator complex (MED) is an evolutionarily conserved multiprotein, fundamental for growth and survival of all cells. In eukaryotes, the mRNA transcription is dependent on RNA polymerase II that is associated to various molecules like general transcription factors, MED subunits and chromatin regulators. To date, transcriptional machinery dysfunction has been shown to elicit broad effects on cell proliferation, development, differentiation, and pathologic disease induction, including cancer. Indeed, in malignant cells, the improper activation of specific genes is usually ascribed to aberrant transcription machinery. Here, we focus our attention on the correlation of MED subunits with carcinogenesis. To date, many subunits are mutated or display altered expression in human cancers. Particularly, the role of MED1, MED28, MED12, CDK8 and Cyclin C in cancer is well documented, although several studies have recently reported a possible association of other subunits with malignancy. Definitely, a major comprehension of the involvement of the whole complex in cancer may lead to the identification of MED subunits as novel diagnostic/prognostic tumour markers to be used in combination with imaging technique in clinical oncology, and to develop novel anti-cancer targets for molecular-targeted therapy.
Collapse
Affiliation(s)
- Concetta Schiano
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Monica Rienzo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Filomena de Nigris
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Linda Sommese
- U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Claudio Napoli
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy; Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy; U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
71
|
Yang Q, Feng F, Zhang F, Wang C, Lu Y, Gao X, Zhu Y, Yang Y. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell. Cell Signal 2013; 25:2652-60. [PMID: 24012497 DOI: 10.1016/j.cellsig.2013.08.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/25/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Long interspersed nucleotide element (LINE)-1 ORF-1p is encoded by the human pro-oncogene LINE-1. It is involved in the development and progression of several human carcinomas, such as hepatocellular carcinoma and lung and breast cancers. The hepatocyte growth factor (HGF)/ETS-1 signaling pathway is involved in regulation of cancer cell proliferation, metastasis and invasion. The biological function of the interaction between LINE-1 ORF-1p and the HGF/ETS-1 signaling pathway in regulation of human breast cancer proliferation remains largely unknown. Here, we showed that LINE-1 ORF-1p enhanced ETS-1 transcriptional activity and increased expression of downstream genes of ETS-1. Interaction between ETS-1 and LINE-1 ORF-1p was identified by immunoprecipitation assays. LINE-1 ORF-1p modulated ETS-1 activity through cytoplasm/nucleus translocation and recruitment to the ETS-1 binding element in the MMP1 gene promoter. We also showed that LINE-1 ORF-1p promoted proliferation and anchorage-independent growth of MDA-MB-231 breast cancer cells. By investigating a novel role of the LINE-1 ORF-1p in the HGF/ETS-1 signaling pathway and MDA-MB-231 cells, we demonstrated that LINE-1 ORF-1p may be a novel ETS-1 coactivator and molecular target for therapy of human triple negative breast cancer.
Collapse
Affiliation(s)
- Qian Yang
- College of Clinical Medicine, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Viswakarma N, Jia Y, Bai L, Gao Q, Lin B, Zhang X, Misra P, Rana A, Jain S, Gonzalez FJ, Zhu YJ, Thimmapaya B, Reddy JK. The Med1 subunit of the mediator complex induces liver cell proliferation and is phosphorylated by AMP kinase. J Biol Chem 2013; 288:27898-911. [PMID: 23943624 DOI: 10.1074/jbc.m113.486696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mediator, a large multisubunit protein complex, plays a pivotal role in gene transcription by linking gene-specific transcription factors with the preinitiation complex and RNA polymerase II. In the liver, the key subunit of the Mediator complex, Med1, interacts with several nuclear receptors and transcription factors to direct gene-specific transcription. Conditional knock-out of Med1 in the liver showed that hepatocytes lacking Med1 did not regenerate following either partial hepatectomy or treatment with certain nuclear receptor activators and failed to give rise to tumors when challenged with carcinogens. We now report that the adenovirally driven overexpression of Med1 in mouse liver stimulates hepatocyte DNA synthesis with enhanced expression of DNA replication, cell cycle control, and liver-specific genes, indicating that Med1 alone is necessary and sufficient for liver cell proliferation. Importantly, we demonstrate that AMP-activated protein kinase (AMPK), an important cellular energy sensor, interacts with, and directly phosphorylates, Med1 in vitro at serine 656, serine 756, and serine 796. AMPK also phosphorylates Med1 in vivo in mouse liver and in cultured primary hepatocytes and HEK293 and HeLa cells. In addition, we demonstrate that PPARα activators increase AMPK-mediated Med1 phosphorylation in vivo. Inhibition of AMPK by compound C decreased hepatocyte proliferation induced by Med1 and also by the PPARα activators fenofibrate and Wy-14,643. Co-treatment with compound C attenuated PPARα activator-inducible fatty acid β-oxidation in liver. Our results suggest that Med1 phosphorylation by its association with AMPK regulates liver cell proliferation and fatty acid oxidation, most likely as a downstream effector of PPARα and AMPK.
Collapse
Affiliation(s)
- Navin Viswakarma
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Prognostic Role of Human Epidermal Growth Factor Receptor 2 Status in Premenopausal Early Breast Cancer Treated With Adjuvant Tamoxifen. Clin Breast Cancer 2013; 13:247-53. [DOI: 10.1016/j.clbc.2013.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 12/13/2022]
|
74
|
Zhang L, Cui J, Leonard M, Nephew K, Li Y, Zhang X. Silencing MED1 sensitizes breast cancer cells to pure anti-estrogen fulvestrant in vitro and in vivo. PLoS One 2013; 8:e70641. [PMID: 23936234 PMCID: PMC3728322 DOI: 10.1371/journal.pone.0070641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022] Open
Abstract
Pure anti-estrogen fulvestrant has been shown to be a promising ER antagonist for locally advanced and metastatic breast cancer. Unfortunately, a significant proportion of patients developed resistance to this type of endocrine therapy but the molecular mechanisms governing cellular responsiveness to this agent remain poorly understood. Here, we’ve reported that knockdown of estrogen receptor coactivator MED1 sensitized fulvestrant resistance breast cancer cells to fulvestrant treatment. We found that MED1 knockdown further promoted cell cycle arrest induced by fulvestrant. Using an orthotopic xenograft mouse model, we found that knockdown of MED1 significantly reduced tumor growth in mice. Importantly, knockdown of MED1 further potentiated tumor growth inhibition by fulvestrant. Mechanistic studies indicated that combination of fulvestrant treatment and MED1 knockdown is able to cooperatively inhibit the expression of ER target genes. Chromatin immunoprecipitation experiments further supported a role for MED1 in regulating the recruitment of RNA polymerase II and transcriptional corepressor HDAC1 on endogenous ER target gene promoter in the presence of fulvestrant. These results demonstrate a role for MED1 in mediating resistance to the pure anti-estrogen fulvestrant both in vitro and in vivo.
Collapse
Affiliation(s)
- Lijiang Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Institute of Biochemistry, College of Life Science, Zhejiang University, Hangzhou City, China
- Center of Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou City, China
| | - Jiajun Cui
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Marissa Leonard
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kenneth Nephew
- Department of Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Yongquan Li
- Institute of Biochemistry, College of Life Science, Zhejiang University, Hangzhou City, China
- * E-mail: (XZ); (YL)
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (XZ); (YL)
| |
Collapse
|
75
|
Zhang P, Ma X, Song E, Chen W, Pang H, Ni D, Gao Y, Fan Y, Ding Q, Zhang Y, Zhang X. Tubulin cofactor A functions as a novel positive regulator of ccRCC progression, invasion and metastasis. Int J Cancer 2013; 133:2801-11. [PMID: 23740643 DOI: 10.1002/ijc.28306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/10/2013] [Indexed: 11/11/2022]
Abstract
Microtubules (Mts), which consist of α/β-tubulin heterodimers, are involved in cancer development and metastasis. Tubulin cofactor A (TBCA) plays crucial roles in modulating tubulin folding and α/β-tubulin heterodimer polymerization. Here, we identified the aberrant expression of TBCA in clear cell renal cell carcinoma (ccRCC) specimens as well as cell lines and revealed the function of TBCA as a novel positive regulator in ccRCC progression, invasion and metastasis. qRT-PCR, Western blot and immunohistochemistry assays confirmed that TBCA was significantly highly expressed in ccRCC specimens and cell lines compared to their corresponding normal kidney tissues and HKC. Accordingly, the influence of TBCA on cell proliferation, apoptosis and invasion/migration was detected through overexpression and knockdown of endogenous TBCA protein level in ccRCC cells via plasmids. Silencing of TBCA expression inhibited the proliferation of 786-O cells and Caki-1 cells and promoted the apoptosis of 786-O cells. Down-regulation of TBCA expression also reduced the invasion and migration ability of 786-O cells. Interestingly, overexpression of TBCA did not induce biocharacteristics that directly contrasted to those of TBCA knockdown. Importantly, exploration of the mechanism showed that TBCA could function via modulating cytoskeleton integration and influencing cell cycle progress. Furthermore, down-regulation of TBCA expression in 786-O and Caki-1 cells affected cytoskeleton integration and cell size, induced S/G2 cell cycle arrest and led to cyclineA/E and CDK2 aberrant expression. By investigating novel roles of TBCA in regulation of ccRCC cell progression, invasion and metastasis, our study identified that TBCA may be a potential molecular target for ccRCC therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urology, PLA General Hospital, Beijing, People's Republic of China; State Key Laboratory of Kidney Diseases, PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Cancer is associated with mutated genes, and analysis of tumour-linked genetic alterations is increasingly used for diagnostic, prognostic and treatment purposes. The genetic profile of solid tumours is currently obtained from surgical or biopsy specimens; however, the latter procedure cannot always be performed routinely owing to its invasive nature. Information acquired from a single biopsy provides a spatially and temporally limited snap-shot of a tumour and might fail to reflect its heterogeneity. Tumour cells release circulating free DNA (cfDNA) into the blood, but the majority of circulating DNA is often not of cancerous origin, and detection of cancer-associated alleles in the blood has long been impossible to achieve. Technological advances have overcome these restrictions, making it possible to identify both genetic and epigenetic aberrations. A liquid biopsy, or blood sample, can provide the genetic landscape of all cancerous lesions (primary and metastases) as well as offering the opportunity to systematically track genomic evolution. This Review will explore how tumour-associated mutations detectable in the blood can be used in the clinic after diagnosis, including the assessment of prognosis, early detection of disease recurrence, and as surrogates for traditional biopsies with the purpose of predicting response to treatments and the development of acquired resistance.
Collapse
|
77
|
Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013; 10:472-84. [PMID: 23836314 DOI: 10.1038/nrclinonc.2013.110] [Citation(s) in RCA: 1290] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer is associated with mutated genes, and analysis of tumour-linked genetic alterations is increasingly used for diagnostic, prognostic and treatment purposes. The genetic profile of solid tumours is currently obtained from surgical or biopsy specimens; however, the latter procedure cannot always be performed routinely owing to its invasive nature. Information acquired from a single biopsy provides a spatially and temporally limited snap-shot of a tumour and might fail to reflect its heterogeneity. Tumour cells release circulating free DNA (cfDNA) into the blood, but the majority of circulating DNA is often not of cancerous origin, and detection of cancer-associated alleles in the blood has long been impossible to achieve. Technological advances have overcome these restrictions, making it possible to identify both genetic and epigenetic aberrations. A liquid biopsy, or blood sample, can provide the genetic landscape of all cancerous lesions (primary and metastases) as well as offering the opportunity to systematically track genomic evolution. This Review will explore how tumour-associated mutations detectable in the blood can be used in the clinic after diagnosis, including the assessment of prognosis, early detection of disease recurrence, and as surrogates for traditional biopsies with the purpose of predicting response to treatments and the development of acquired resistance.
Collapse
Affiliation(s)
- Emily Crowley
- Department of Oncology, University of Turin, Institute for Cancer Research and Treatment, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Turin, Italy
| | | | | | | |
Collapse
|
78
|
|
79
|
Murtaza M, Dawson SJ, Tsui DWY, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong ASC, Marass F, Humphray S, Hadfield J, Bentley D, Chin TM, Brenton JD, Caldas C, Rosenfeld N. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 2013; 497:108-12. [PMID: 23563269 DOI: 10.1038/nature12065] [Citation(s) in RCA: 1302] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/11/2013] [Indexed: 02/07/2023]
Abstract
Cancers acquire resistance to systemic treatment as a result of clonal evolution and selection. Repeat biopsies to study genomic evolution as a result of therapy are difficult, invasive and may be confounded by intra-tumour heterogeneity. Recent studies have shown that genomic alterations in solid cancers can be characterized by massively parallel sequencing of circulating cell-free tumour DNA released from cancer cells into plasma, representing a non-invasive liquid biopsy. Here we report sequencing of cancer exomes in serial plasma samples to track genomic evolution of metastatic cancers in response to therapy. Six patients with advanced breast, ovarian and lung cancers were followed over 1-2 years. For each case, exome sequencing was performed on 2-5 plasma samples (19 in total) spanning multiple courses of treatment, at selected time points when the allele fraction of tumour mutations in plasma was high, allowing improved sensitivity. For two cases, synchronous biopsies were also analysed, confirming genome-wide representation of the tumour genome in plasma. Quantification of allele fractions in plasma identified increased representation of mutant alleles in association with emergence of therapy resistance. These included an activating mutation in PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha) following treatment with paclitaxel; a truncating mutation in RB1 (retinoblastoma 1) following treatment with cisplatin; a truncating mutation in MED1 (mediator complex subunit 1) following treatment with tamoxifen and trastuzumab, and following subsequent treatment with lapatinib, a splicing mutation in GAS6 (growth arrest-specific 6) in the same patient; and a resistance-conferring mutation in EGFR (epidermal growth factor receptor; T790M) following treatment with gefitinib. These results establish proof of principle that exome-wide analysis of circulating tumour DNA could complement current invasive biopsy approaches to identify mutations associated with acquired drug resistance in advanced cancers. Serial analysis of cancer genomes in plasma constitutes a new paradigm for the study of clonal evolution in human cancers.
Collapse
Affiliation(s)
- Muhammed Murtaza
- Cancer Research UK Cambridge Institute and University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013; 13:299-314. [PMID: 23612459 DOI: 10.1038/nrc3496] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations that directly affect transcription by RNA polymerases rank among the most central mediators of malignant transformation, but the frequency of new anticancer drugs that selectively target defective transcription apparatus entering the clinic has been limited. This is because targeting the large protein-protein and protein-DNA interfaces that control both generic and selective aspects of RNA polymerase transcription has proved extremely difficult. However, recent technological advances have led to a 'quantum leap' in our comprehension of the structure and function of the core RNA polymerase components, how they are dysregulated in a broad range of cancers and how they may be targeted for 'transcription therapy'.
Collapse
Affiliation(s)
- Megan J Bywater
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne 8006, Victoria, Australia
| | | | | | | |
Collapse
|
81
|
Jin F, Irshad S, Yu W, Belakavadi M, Chekmareva M, Ittmann MM, Abate-Shen C, Fondell JD. ERK and AKT signaling drive MED1 overexpression in prostate cancer in association with elevated proliferation and tumorigenicity. Mol Cancer Res 2013; 11:736-47. [PMID: 23538858 DOI: 10.1158/1541-7786.mcr-12-0618] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MED1 is a key coactivator of the androgen receptor (AR) and other signal-activated transcription factors. Whereas MED1 is overexpressed in prostate cancer cell lines and is thought to coactivate distinct target genes involved in cell-cycle progression and castration-resistant growth, the underlying mechanisms by which MED1 becomes overexpressed and its oncogenic role in clinical prostate cancer have remained unclear. Here, we report that MED1 is overexpressed in the epithelium of clinically localized human prostate cancer patients, which correlated with elevated cellular proliferation. In a Nkx3.1:Pten mutant mouse model of prostate cancer that recapitulates the human disease, MED1 protein levels were markedly elevated in the epithelium of both invasive and castration-resistant adenocarcinoma prostate tissues. Mechanistic evidence showed that hyperactivated ERK and/or AKT signaling pathways promoted MED1 overexpression in prostate cancer cells. Notably, ectopic MED1 overexpression in prostate cancer xenografts significantly promoted tumor growth in nude mice. Furthermore, MED1 expression in prostate cancer cells promoted the expression of a number of novel genes involved in inflammation, cell proliferation, and survival. Together, these findings suggest that elevated MED1 is a critical molecular event associated with prostate oncogenesis.
Collapse
Affiliation(s)
- Feng Jin
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, UMDNJ, 683 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Chen WX, Hu Q, Qiu MT, Zhong SL, Xu JJ, Tang JH, Zhao JH. miR-221/222: promising biomarkers for breast cancer. Tumour Biol 2013; 34:1361-70. [DOI: 10.1007/s13277-013-0750-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/13/2013] [Indexed: 12/24/2022] Open
|
83
|
Preskorn SH, Hatt CR. How pharmacogenomics (PG) are changing practice: implications for prescribers, their patients, and the healthcare system (PG series part I). J Psychiatr Pract 2013; 19:142-9. [PMID: 23507814 DOI: 10.1097/01.pra.0000428559.01953.73] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This is the first column of a series discussing how advances in pharmacogenomic information (PGI) and molecular biology are leading to changes in the product labels of existing drugs and providing new targets for drug discovery. This column first introduces the concept of PGI and defines related terminology. The authors then discuss how new information on genetic variations in patient responses to drugs has led to revisions in the product labels of many already marketed drugs. Rapidly expanding PGI has also led to the development of new drugs with novel mechanisms of action. Such drug development has been especially common in oncology, with new agents being developed to target genetically specific forms of cancer. The authors review how genetically determined variations in the pharmacokinetics and pharmacodynamics of a drug in a specific patient can make that patient "sensitive" or "resistant" to the effects of that particular drug. This type of PGI is expanding the concept of "special populations" to include patients with genetically determined differences in pharmacokinetics and/or pharmacodynamics. The second column in this series will explain how increased knowledge of molecular pharmacology and PGI has resulted in the revision of product labels for drugs already on the market, using pimozide as an example. The third column in this series will deal with the discovery of new drugs with novel mechanisms of action, with a focus on oncology drugs. The last column in the series will discuss the need to make this knowledge readily accessible to clinicians at the time and point of therapeutic care.
Collapse
Affiliation(s)
- Sheldon H Preskorn
- Department of Psychiatry, University of Kansas School of Medicine-Wichita, USA
| | | |
Collapse
|
84
|
Feng F, Lu YY, Zhang F, Gao XD, Zhang CF, Meredith A, Xu ZX, Yang YT, Chang XJ, Wang H, Qu JH, Zeng Z, Yang JL, Wang CP, Zhu YF, Cui JJ, Yang YP. Long interspersed nuclear element ORF-1 protein promotes proliferation and resistance to chemotherapy in hepatocellular carcinoma. World J Gastroenterol 2013; 19:1068-1078. [PMID: 23466962 PMCID: PMC3581994 DOI: 10.3748/wjg.v19.i7.1068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/15/2012] [Accepted: 01/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To clarify the specific roles and mechanisms of long interspersed nuclear element-1 ORF-1 protein [human long interspersed nuclear element-1 (LINE-1), ORF-1p] in chemotherapeutic drug resistance and cell proliferation regulation in hepatocellular carcinoma (HCC) cells.
METHODS: MTT assays were performed to identify the effect of the chemotherapeutic drug toxicity on HepG2 cells. Cell proliferation inhibition and the IC50 were calculated by the Origin 8.0 software. Western blotting assays were performed to investigate whether LINE-1 ORF-1p modulates the expression of some important genes, including p53, p27, p15, Bcl-2, mdr, and p-gp. To corroborate the proliferation and anchor-independent growth results, the HepG2 cells were analyzed by flow cytometry to investigate the effect of LINE-1 ORF-1p on the apoptosis regulation.
RESULTS: LINE-1 ORF-1p contributed to the resistance to several chemotherapeutic drugs (cisplatin and epirubicin) in HepG2 cells. The IC50 of the epirubicin and cisplatin increased from 36.04 nmol/L to 59.11 nmol/L or from 37.94 nmol/L to 119.32 nmol/L. Repression of LINE-1 ORF-1p expression by the siRNA could markedly enhance the response of HepG2 cells to the epirubicin and cisplatin. The IC50 correspondingly decreased from 28.06 nmol/L to 3.83 nmol/L or from 32.04 nmol/L to 2.89 nmol/L. Interestingly, down-regulation of LINE-1 ORF-1p level by siRNA could promote the response of HepG2 cells to the paclitaxel. The IC50 decreased from 35.90 nmol/L to 7.36 nmol/L. However, overexpression of LINE-1 ORF-1p did not modulate the paclitaxel toxicity in HepG2 cells. Further Western blotting revealed that LINE-1 ORF-1p enhanced mdr and p-gp gene expression. As a protein arrested in the nucleus, LINE-1 ORF-1p may function through modulating transcriptional activity of some important transcription factors. Indeed, LINE-1 ORF-1p promoted HepG2 cell proliferation, anchor-independent growth and protected the cells against apoptosis through modulating the expression of p15, p21, p53, and Bcl-2 genes.
CONCLUSION: LINE-1 ORF-1p promotes HepG2 cell proliferation and plays an important role in the resistance of chemotherapeutic drugs. By establishing novel roles and defining the mechanisms of LINE-1 ORF-1p in HCC chemotherapeutic drug resistance and cell proliferation regulation, this study indicates that LINE-1 ORF-1p is a potential target for overcoming HCC chemotherapeutic resistance.
Collapse
|
85
|
Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 2012; 14:108-45. [PMID: 23344024 PMCID: PMC3565254 DOI: 10.3390/ijms14010108] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients.
Collapse
|