51
|
Xue Q, Liu Z, Feng Z, Xu Y, Zuo W, Wang Q, Gao T, Zeng J, Hu X, Jia F, Zhu Y, Xia Y, Yu L. Penfluridol: An antipsychotic agent suppresses lung cancer cell growth and metastasis by inducing G0/G1 arrest and apoptosis. Biomed Pharmacother 2020; 121:109598. [DOI: 10.1016/j.biopha.2019.109598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022] Open
|
52
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
53
|
Zhao L, Gu C, Gan Y, Shao L, Chen H, Zhu H. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J Control Release 2019; 318:1-15. [PMID: 31830541 DOI: 10.1016/j.jconrel.2019.12.005] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
High recurrence and metastasis of triple-negative breast cancer (TNBC) after operation is a leading cause of breast cancer related death. The pre-metastatic niche (PMN) is an environment in a secondary organ conducive to the metastasis of a primary tumor. Herein, we identify exosomes from autologous breast cancer cells that show effective lung targeting ability. Based on this, we developed the biomimetic nanoparticles (cationic bovine serum albumin (CBSA) conjugated siS100A4 and exosome membrane coated nanoparticles, CBSA/siS100A4@Exosome) to improve drug delivery to the lung PMN. CBSA/siS100A4@Exosome self-assembled nanoparticles formed homogeneous sizes of ~200 nm, protected siRNA from degradation, and showed excellent biocompatibility. Further in vivo studies showed that CBSA/siS100A4@Exosome had a higher affinity toward lung in comparison to the CBSA/siS100A4@Liposome, and exhibited outstanding gene-silencing effects that significantly inhibited the growth of malignant breast cancer cells. Taken together, these results indicate that CBSA/siS100A4@Exosome self-assembled nanoparticles are a promising strategy to suppress postoperative breast cancer metastasis.
Collapse
Affiliation(s)
- Liuwan Zhao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Chunyan Gu
- Department of Pathology, Affiliated Nantong Third Hospital of Nantong University, Nantong 226006, China
| | - Ye Gan
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lanlan Shao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48108, USA.
| | - Hongyan Zhu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
54
|
Penfluridol as a Candidate of Drug Repurposing for Anticancer Agent. Molecules 2019; 24:molecules24203659. [PMID: 31614431 PMCID: PMC6832311 DOI: 10.3390/molecules24203659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Penfluridol has robust antipsychotic efficacy and is a first-generation diphenylbutylpiperidine. Its effects last for several days after a single oral dose and it can be administered once a week to provide better compliance and symptom control. Recently; strong antitumour effects for penfluridol were discovered in various cancer cell lines; such as breast; pancreatic; glioblastoma; and lung cancer cells via several distinct mechanisms. Therefore; penfluridol has drawn much attention as a potentially novel anti-tumour agent. In addition; the anti-cancer effects of penfluridol have been demonstrated in vivo: results showed slight changes in the volume and weight of organs at doses tested in animals. This paper outlines the potential for penfluridol to be developed as a next-generation anticancer drug.
Collapse
|
55
|
Gupta N, Srivastava SK. Atovaquone: An Antiprotozoal Drug Suppresses Primary and Resistant Breast Tumor Growth by Inhibiting HER2/β-Catenin Signaling. Mol Cancer Ther 2019; 18:1708-1720. [PMID: 31270151 PMCID: PMC6905100 DOI: 10.1158/1535-7163.mct-18-1286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/06/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women. In the current study, we evaluated the anticancer effects of an antiprotozoal drug, atovaquone, against several breast cancer cell lines. Our results showed that atovaquone treatment induced apoptosis and inhibited the growth of all the breast cancer cell lines tested, including several patient-derived cells. In addition, atovaquone treatment significantly reduced the expression of HER2, β-catenin, and its downstream molecules such as pGSK-3β, TCF-4, cyclin D1, and c-Myc in vitro Efficacy of atovaquone was further evaluated in an in vivo tumor model by orthotropic implantation of two highly aggressive 4T1 and CI66 breast cancer cells in the mammary fat pad of female mice. Our results demonstrated that oral administration of atovaquone suppressed the growth of CI66 and 4T1 tumors by 70% and 60%, respectively. Paclitaxel is the first-line chemotherapeutic agent for metastatic breast cancer. We demonstrate that atovaquone administration suppressed the growth of 4T1 paclitaxel-resistant tumors by 40%. Tumors from atovaquone-treated mice exhibited reduced HER2, β-catenin, and c-Myc levels alongside an increase in apoptosis in all the three tumor models when analyzed by Western blotting, IHC, and TUNEL assay. Taken together, our results indicate that atovaquone effectively reduces the growth of primary and paclitaxel-resistant breast tumors. Atovaquone is already in the clinics with high safety and tolerability profile. Therefore, the findings from our studies will potentially prompt further clinical investigation into repurposing atovaquone for the treatment of patients with advanced breast cancer.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas
| |
Collapse
|
56
|
Xia Y, Jia C, Xue Q, Jiang J, Xie Y, Wang R, Ran Z, Xu F, Zhang Y, Ye T. Antipsychotic Drug Trifluoperazine Suppresses Colorectal Cancer by Inducing G0/G1 Arrest and Apoptosis. Front Pharmacol 2019; 10:1029. [PMID: 31572198 PMCID: PMC6753363 DOI: 10.3389/fphar.2019.01029] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/12/2019] [Indexed: 02/05/2023] Open
Abstract
Repurposing existing drugs for cancer treatment is an effective strategy. An approved antipsychotic drug, trifluoperazine (TFP), has been reported to have potential anticancer effects against several cancer types. Here, we investigated the effect and molecular mechanism of TFP in colorectal cancer (CRC). In vitro studies showed that TFP induced G0/G1 cell cycle arrest to dramatically inhibit CRC cell proliferation through downregulating cyclin-dependent kinase (CDK) 2, CDK4, cyclin D1, and cyclin E and upregulating p27. TFP also induced apoptosis, decreased mitochondrial membrane potential, and increased reactive oxygen species levels in CRC cells, indicating that TFP induced mitochondria-mediated intrinsic apoptosis. Importantly, TFP significantly suppressed tumor growth in two CRC subcutaneous tumor models without side effects. Interestingly, TFP treatment increased the expression levels of programmed death-1 ligand 1 (PD-L1) in CRC cells and programmed death-1 (PD-1) in tumor-infiltrating CD4+ and CD8+ T cells, implying that the combination of TFP with an immune checkpoint inhibitor, such as an anti-PD-L1 or anti-PD-1 antibody, might have synergistic anticancer effects. Taken together, our study signifies that TFP is a novel treatment strategy for CRC and indicates the potential for using the combination treatment of TFP and immune checkpoint blockade to increase antitumor efficiency.
Collapse
Affiliation(s)
- Yong Xia
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Xue
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jinrui Jiang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yao Xie
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Ranran Wang
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhiqiang Ran
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fuyan Xu
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tinghong Ye
- Department of Rehabilitation Medicine and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
57
|
Repurposing Penfluridol in Combination with Temozolomide for the Treatment of Glioblastoma. Cancers (Basel) 2019; 11:cancers11091310. [PMID: 31492002 PMCID: PMC6770574 DOI: 10.3390/cancers11091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Despite the presence of aggressive treatment strategies, glioblastoma remains intractable, warranting a novel therapeutic modality. An oral antipsychotic agent, penflurido (PFD), used for schizophrenia treatment, has shown an antitumor effect on various types of cancer cells. As glioma sphere-forming cells (GSCs) are known to mediate drug resistance in glioblastoma, and considering that antipsychotics can easily penetrate the blood-brain barrier, we investigated the antitumor effect of PFD on patient-derived GSCs. Using five GSCs, we found that PFD exerts an antiproliferative effect in a time- and dose-dependent manner. At IC50, spheroid size and second-generation spheroid formation were significantly suppressed. Stemness factors, SOX2 and OCT4, were decreased. PFD treatment reduced cancer cell migration and invasion by reducing the Integrin α6 and uPAR levels and suppression of the expression of epithelial-to-mesenchymal transition (EMT) factors, vimentin and Zeb1. GLI1 was found to be involved in PFD-induced EMT inhibition. Furthermore, combinatorial treatment of PFD with temozolomide (TMZ) significantly suppressed tumor growth and prolonged survival in vivo. Immunostaining revealed decreased expression of GLI1, SOX2, and vimentin in the PFD treatment group but not in the TMZ-only treatment group. Therefore, PFD can be effectively repurposed for the treatment of glioblastoma by combining it with TMZ.
Collapse
|
58
|
Wu SY, Wen YC, Ku CC, Yang YC, Chow JM, Yang SF, Lee WJ, Chien MH. Penfluridol triggers cytoprotective autophagy and cellular apoptosis through ROS induction and activation of the PP2A-modulated MAPK pathway in acute myeloid leukemia with different FLT3 statuses. J Biomed Sci 2019; 26:63. [PMID: 31470848 PMCID: PMC6717358 DOI: 10.1186/s12929-019-0557-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Chemotherapy is the main treatment for acute myeloid leukemia (AML), but the cure rates for AML patients remain low, and the notorious adverse effects of chemotherapeutic drugs drastically reduce the life quality of patients. Penfluridol, a long-acting oral antipsychotic drug, has an outstanding safety record and exerts oncostatic effects on various solid tumors. Until now, the effect of penfluridol on AML remains unknown. Methods AML cell lines harboring wild-type (WT) Fms-like tyrosine kinase 3 (FLT3) and internal tandem duplication (ITD)-mutated FLT3 were used to evaluate the cytotoxic effects of penfluridol by an MTS assay. A flow cytometric analysis and immunofluorescence staining were employed to determine the cell-death phenotype, cell cycle profile, and reactive oxygen species (ROS) and acidic vesicular organelle (AVO) formation. Western blotting and chemical inhibitors were used to explore the underlying mechanisms involved in penfluridol-mediated cell death. Results We observed that penfluridol concentration-dependently suppressed the cell viability of AML cells with FLT3-WT (HL-60 and U937) and FLT3-ITD (MV4–11). We found that penfluridol treatment not only induced apoptosis as evidenced by increases of nuclear fragmentation, the sub-G1 populations, poly (ADP ribose) polymerase (PARP) cleavage, and caspase-3 activation, but also triggered autophagic responses, such as the light chain 3 (LC3) turnover and AVO formation. Interestingly, blocking autophagy by the pharmacological inhibitors, 3-methyladenine and chloroquine, dramatically enhanced penfluridol-induced apoptosis, indicating the cytoprotective role of autophagy in penfluridol-treated AML cells. Mechanistically, penfluridol-induced apoptosis occurred through activating protein phosphatase 2A (PP2A) to suppress Akt and mitogen-activated protein kinase (MAPK) activities. Moreover, penfluridol’s augmentation of intracellular ROS levels was critical for the penfluridol-induced autophagic response. In the clinic, we observed that patients with AML expressing high PP2A had favorable prognoses. Conclusions These findings provide a rationale for penfluridol being used as a PP2A activator for AML treatment, and the combination of penfluridol with an autophagy inhibitor may be a novel strategy for AML harboring FLT3-WT and FLT3-ITD. Electronic supplementary material The online version of this article (10.1186/s12929-019-0557-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
59
|
Autophagosome accumulation-mediated ATP energy deprivation induced by penfluridol triggers nonapoptotic cell death of lung cancer via activating unfolded protein response. Cell Death Dis 2019; 10:538. [PMID: 31308361 PMCID: PMC6629704 DOI: 10.1038/s41419-019-1785-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Anticancer chemotherapeutic drugs mainly trigger apoptosis induction to eliminate malignant cells. However, many cancer cells are chemoresistant because of defective apoptosis induction. Targeting the autophagic pathway is currently regarded as an alternative strategy for cancer drug discovery. Penfluridol, an antipsychotic drug, has been reported to exert oncostatic effects, but the effect of penfluridol on lung cancer remains unknown. Herein, the antitumor activity of penfluridol was determined in vitro in non-small-cell lung cancer (NSCLC) cell lines using MTS, plate clonogenic, and transwell migration assays and in vivo in an orthotopic xenograft model. Flow cytometry, holotomographic microscopy, immunofluorescence, and immunohistochemistry were employed to determine the cell-death phenotype induced by penfluridol in vitro and in vivo. Western blotting and genetic knockdown by small interfering RNA were performed to explore the underlying mechanisms involved in penfluridol-mediated cell death. We uncovered that penfluridol inhibited the viability and motility of NSCLC cells in vitro and in vivo. Penfluridol induced nonapoptotic cell death by blocking autophagic flux and inducing accumulation of autophagosome-related protein, light chain 3 (LC3) B-II, in HCC827 and A549 NSCLC cells, and in an A549 orthotopic xenograft tumor model. Autophagosome accumulation-induced cell viability inhibition by penfluridol was mainly attributed to ATP energy deprivation. Moreover, we observed that patients with lung tumors expressing high LC3B had longer overall and disease-free survival times. Mechanistically, upregulation of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) pathways and activation of p38 mitogen-activated protein kinase (MAPK) were critical for penfluridol-induced autophagosome accumulation. Our findings identify that penfluridol acts as an inducer of ER stress and p38 MAPK activation, which led to UPR-mediated nonapoptotic cell death via autophagosome accumulation-caused energy loss. Penfluridol is clinically used for schizophrenia, and our study results strongly support penfluridol as a repurposed drug for treating NSCLC.
Collapse
|
60
|
Weissenrieder JS, Neighbors JD, Mailman RB, Hohl RJ. Cancer and the Dopamine D 2 Receptor: A Pharmacological Perspective. J Pharmacol Exp Ther 2019; 370:111-126. [PMID: 31000578 PMCID: PMC6558950 DOI: 10.1124/jpet.119.256818] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023] Open
Abstract
The dopamine D2 receptor (D2R) family is upregulated in many cancers and tied to stemness. Reduced cancer risk has been correlated with disorders such as schizophrenia and Parkinson's disease, in which dopaminergic drugs are used. D2R antagonists are reported to have anticancer efficacy in cell culture and animal models where they have reduced tumor growth, induced autophagy, affected lipid metabolism, and caused apoptosis, among other effects. This has led to several hypotheses, the most prevalent being that D2R ligands may be a novel approach to cancer chemotherapy. This hypothesis is appealing because of the large number of approved and experimental drugs of this class that could be repurposed. We review the current state of the literature and the evidence for and against this hypothesis. When the existing literature is evaluated from a pharmacological context, one of the striking findings is that the concentrations needed for cytotoxic effects of D2R antagonists are orders of magnitude higher than their affinity for this receptor. Although additional definitive studies will provide further clarity, our hypothesis is that targeting D2-like dopamine receptors may only yield useful ligands for cancer chemotherapy in rare cases.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Jeffrey D Neighbors
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Richard B Mailman
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| | - Raymond J Hohl
- Biomedical Sciences Program (J.S.W.) and Departments of Medicine (J.D.N., R.J.H.) and Pharmacology (J.D.N., R.B.M., R.J.H.), Penn State College of Medicine and Penn State Cancer Institute, Hershey, Pennsylvania
| |
Collapse
|
61
|
Molecular mechanisms of anti-psychotic drugs for improvement of cancer treatment. Eur J Pharmacol 2019; 856:172402. [PMID: 31108054 DOI: 10.1016/j.ejphar.2019.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
Anti-psychotic medications are widely used to treat schizophrenia and bipolar disorder. Besides their medical applications, anti-psychotic drugs have other pharmacological properties which are involved in multiple intracellular functions including metabolism, cell stress, cell-cycle regulation, survival and apoptosis through modulation of cellular signaling pathways such as PI3K/Akt/GSK-3β, STAT3 and wingless (Wnt)-related intracellular signaling. Also, anti-psychotics counteract the growth of tumor cells by stimulating the cellular immune system and natural killer cells. On the other hand, the positive charge and the lipophilicity of anti-psychotics have significant roles in the inhibition of P-gp pumps resulting in accumulation of chemotherapy drugs as well as increasing the cellular susceptibility to chemotherapy, autophagy, angiogenesis inhibition, stem cells differentiation induction and changing the expression of tumor suppressor genes and oncogenes. Overall, anti-psychotics are able to inhibit the proliferation of cancer cells through modulation of different cellular pathways. Anti-psychotics act as anti-cancer drugs and besides can increase the efficacy of anti-cancer agents in cancer cells. In this study, the anti-cancer effects of different anti-psychotic medicines on various malignant tumor cells and their molecular mechanisms have been discussed.
Collapse
|
62
|
Gupta N, Gupta P, Srivastava SK. Penfluridol overcomes paclitaxel resistance in metastatic breast cancer. Sci Rep 2019; 9:5066. [PMID: 30911062 PMCID: PMC6434141 DOI: 10.1038/s41598-019-41632-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/01/2019] [Indexed: 12/27/2022] Open
Abstract
Paclitaxel is a first line chemotherapeutic agent for the patients with metastatic breast cancer. But inherited or acquired resistance to paclitaxel leads to poor response rates in a majority of these patients. To identify mechanisms of paclitaxel resistance, we developed paclitaxel resistant breast cancer cell lines, MCF-7 and 4T1 by continuous exposure to paclitaxel for several months. Western blot analysis showed increased expression of HER2 and β-catenin pathway in resistant cell lines as compared to parent cells. Hence, we hypothesized that HER2/β-catenin mediates paclitaxel resistance in breast cancer and suppression of HER2/β-catenin signaling could overcome paclitaxel resistance. Our data showed that penfluridol (PFL) treatment significantly reduced the survival of paclitaxel-resistant cells. Western blot analysis revealed that PFL treatment suppressed HER2, as well as, β-catenin pathway. In vivo data confirmed that PFL significantly potentiated tumor growth suppressive effects of paclitaxel in an orthotropic breast cancer model. In addition, tumors from paclitaxel and PFL-treated mice showed reduced HER2 and β-catenin expression, along with increased apoptosis. Taken together our results demonstrate a novel role of HER2/β-catenin in paclitaxel resistance and open up new avenues for application of PFL as a therapeutic option for overcoming paclitaxel resistance.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas, 79601, USA
| | - Parul Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas, 79601, USA.
| |
Collapse
|
63
|
Xu F, Xia Y, Feng Z, Lin W, Xue Q, Jiang J, Yu X, Peng C, Luo M, Yang Y, Wei Y, Yu L. Repositioning antipsychotic fluphenazine hydrochloride for treating triple negative breast cancer with brain metastases and lung metastases. Am J Cancer Res 2019; 9:459-478. [PMID: 30949404 PMCID: PMC6448056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023] Open
Abstract
Triple negative breast cancer (TNBC) patients have a high risk of brain metastases. This deadly disease represents a major challenge for successful treatment, in part because of the poor ability of drugs to penetrate the blood-brain barrier. Antipsychotic drugs show good bioavailability in the brain, and some of them have exhibited anticancer effects in several cancer types. In this study, we investigated the potential of repurposing fluphenazine hydrochloride (Flu) for the treatment of TNBC and the brain metastases. Our data showed that Flu inhibited survival of metastatic TNBC cells. It induced G0/G1 cell cycle arrest and promoted mitochondria-mediated intrinsic apoptosis in vitro. Pharmacokinetic studies in BALB/c mice showed a brain/plasma drug concentration ratio of Flu above 25 for at least 24 hours after dosing. Flu moderately suppressed tumor growth in a TNBC subcutaneous xenograft mouse model. Importantly, Flu exhibited good anti-metastatic potential in a mouse brain metastasis model with an inhibition rate of 85%. In addition, Flu showed a strong inhibitory effect on spontaneous lung metastasis. Moreover, Flu didn't cause serious side effects in the mice. Taken together, this study prompts further preclinical and clinical investigation into repurposing Flu for treating metastatic TNBC patients, which urgently need new treatment options.
Collapse
Affiliation(s)
- Fuyan Xu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan UniversityChengdu 610041, China
| | - Zhanzhan Feng
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Wentao Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Qiang Xue
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Jinrui Jiang
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Xi Yu
- Carey Bussiness School, Johns Hopkins UniversityBaltimore MD 21202, USA
| | - Cuiting Peng
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Min Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu, Sichuan, China
| | - Yufei Yang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Yuquan Wei
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Luoting Yu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| |
Collapse
|
64
|
Gupta P, Gupta N, Fofaria NM, Ranjan A, Srivastava SK. HER2-mediated GLI2 stabilization promotes anoikis resistance and metastasis of breast cancer cells. Cancer Lett 2019; 442:68-81. [PMID: 30409762 PMCID: PMC6311434 DOI: 10.1016/j.canlet.2018.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
Breast cancer metastasis is a multi-step process and requires cells to overcome anoikis. Anoikis is defined as cell-death that occurs due to loss of cell adhesion. During the course of cancer progression, tumor cells acquire resistance to anoikis. However, mechanisms of anoikis resistance are not clear. Human epidermal growth receptor 2 (HER2) overexpressing breast tumors are known to be highly aggressive and metastatic. The mechanisms correlating HER2 with metastasis are poorly understood. We observed increased anoikis resistance in HER2 overexpressing breast cancer cells. In addition, we identified that HER2 overexpression was also associated with increased sonic hedgehog (SHH) signaling especially GLI2, and that inhibition of SHH pathway suppressed anoikis resistance. GSK3β is known to facilitate proteasome-mediated degradation of GLI2. Moreover, we observed that silencing of GLI2 resulted in reduced migration and invasion of HER2 overexpressing cells. Anoikis resistant HER2 overexpressing cells also showed increased rate and extent of metastasis in vivo, as compared to wild type anoikis resistant cells. Taken together, this study indicates a novel role of HER2/GSK3β/GLI2 axis in anoikis resistance and metastasis, and that GLI2 could be a potential target for anti-cancer therapies.
Collapse
Affiliation(s)
- Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Nehal Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
65
|
Zhang W, Zhang C, Liu F, Mao Y, Xu W, Fan T, Sun Q, He S, Chen Y, Guo W, Tan Y, Jiang Y. Antiproliferative activities of the second-generation antipsychotic drug sertindole against breast cancers with a potential application for treatment of breast-to-brain metastases. Sci Rep 2018; 8:15753. [PMID: 30361678 PMCID: PMC6202417 DOI: 10.1038/s41598-018-33740-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/19/2018] [Indexed: 01/24/2023] Open
Abstract
Epidemiological observations have shown that schizophrenia patients after long-term drug treatment exhibited reduced tumor incidences. The potential anticancer effects of antipsychotic drugs are subsequently demonstrated. These drugs are of great interest as agents against untreatable brain metastases because of their ability to traverse the blood-brain barrier (BBB). Most drugs tested thus far are the first-generation antipsychotics (FGAs). But their clinical application may be limited due to high risks of deaths in elderly patients. There is an urgent need to find additional BBB-traversing anticancer agents with lower risks of deaths. In this work, we investigated antitumor activities of eight second-generation-antipsychotic (SGA) drugs, since they exhibit lower mortality rates than FGAs. We discovered that sertindole showed broad antiproliferative activities against seven cancer types including 29 cell-lines and exhibited potent effects toward breast cancer cell-lines, with half maximal concentration to inhibit proliferation by 50% (IC50) as low as 800 nM. We further found that sertindole caused cell death through autophagy-associated apoptosis and its directly-binding inhibition of 5-HT6 involved in this process. In xenotransplant mice, sertindole administration approaching maximal therapeutic dose attenuated breast-tumor growth by 22.7%. Therefore, our study reveals promising anticancer potentials of sertindole against breast cancers, with probable applications for breast-to-brain metastases.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China.,School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Cunlong Zhang
- Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518055, P. R. China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yu Mao
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Wei Xu
- School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinsheng Sun
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China.,School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Shengnan He
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yuzong Chen
- Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518055, P. R. China
| | - Wei Guo
- School of Medicine, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P. R. China. .,Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
66
|
Ashraf-Uz-Zaman M, Sajib MS, Cucullo L, Mikelis CM, German NA. Analogs of penfluridol as chemotherapeutic agents with reduced central nervous system activity. Bioorg Med Chem Lett 2018; 28:3652-3657. [PMID: 30389290 DOI: 10.1016/j.bmcl.2018.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022]
Abstract
Several recent reports have highlighted the feasibility of the use of penfluridol, a well-known antipsychotic agent, as a chemotherapeutic agent. In vivo experiments have confirmed the cytotoxic activity of penfluridol in triple-negative breast cancer model, lung cancer model, and further studies have been proposed to assess its anticancer activity and viability for the treatment of glioblastomas. However, penfluridol anticancer activity was observed at a dosage significantly higher than that administered in antipsychotic therapy, thus raising the concern for the potential onset of CNS side effects in patients undergoing intensive pharmacological treatment. In this study, we evaluate the potential CNS toxicity of penfluridol side by side with a set of analogs.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States.
| |
Collapse
|
67
|
Feng Z, Xia Y, Gao T, Xu F, Lei Q, Peng C, Yang Y, Xue Q, Hu X, Wang Q, Wang R, Ran Z, Zeng Z, Yang N, Xie Z, Yu L. The antipsychotic agent trifluoperazine hydrochloride suppresses triple-negative breast cancer tumor growth and brain metastasis by inducing G0/G1 arrest and apoptosis. Cell Death Dis 2018; 9:1006. [PMID: 30258182 PMCID: PMC6158270 DOI: 10.1038/s41419-018-1046-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 02/08/2023]
Abstract
Women with aggressive triple-negative breast cancer (TNBC) are at high risk of brain metastasis, which has no effective therapeutic option partially due to the poor penetration of drugs across the blood-brain barrier. Trifluoperazine (TFP) is an approved antipsychotic drug with good bioavailability in brain and had shown anticancer effect in several types of cancer. It drives us to investigate its activities to suppress TNBC, especially the brain metastasis. In this study, we chose three TNBC cell lines MDA-MB-468, MDA-MB-231, and 4T1 to assess its anticancer activities along with the possible mechanisms. In vitro, it induced G0/G1 cell cycle arrest via decreasing the expression of both cyclinD1/CDK4 and cyclinE/CDK2, and stimulated mitochondria-mediated apoptosis. In vivo, TFP suppressed the growth of subcutaneous xenograft tumor and brain metastasis without causing detectable side effects. Importantly, it prolonged the survival of mice bearing brain metastasis. Immunohistochemical analysis of Ki67 and cleaved caspase-3 indicated TFP could suppress the growth and induce apoptosis of cancer cells in vivo. Taken together, TFP might be a potential available drug for treating TNBC with brain metastasis, which urgently needs novel treatment options.
Collapse
Affiliation(s)
- Zhanzhan Feng
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Yong Xia
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Tiantao Gao
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Fuyan Xu
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Qian Lei
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Cuiting Peng
- School of Chemical Engineering, Sichuan University, 610041, Chengdu, China
| | - Yufei Yang
- Sichuan Yuanda Shuyang Pharmaceutical Co., Ltd., 610041, Chengdu, China
| | - Qiang Xue
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Xi Hu
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Qianqian Wang
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Ranran Wang
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Zhiqiang Ran
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Zhilin Zeng
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Nan Yang
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Zixin Xie
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Luoting Yu
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
68
|
O'Brien NL, Fiorentino A, Curtis D, Rayner C, Petrosellini C, Al Eissa M, Bass NJ, McQuillin A, Sharp SI. Rare variant analysis in multiply affected families, association studies and functional analysis suggest a role for the ITGΒ4 gene in schizophrenia and bipolar disorder. Schizophr Res 2018; 199:181-188. [PMID: 29526452 PMCID: PMC6179966 DOI: 10.1016/j.schres.2018.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 11/29/2022]
Abstract
Recent results imply that rare variants contribute to the risk of schizophrenia. Exome sequence data from the UK10K project was used to identify three rare, amino acid changing variants in the ITGB4 gene which segregated with schizophrenia in two families: rs750367954, rs147480547 and rs145976111. Association analysis was carried out in the exome-sequenced Swedish schizophrenia study and in UCL schizophrenia and bipolar cases and controls genotyped for these variants. A gene-wise weighted burden test was performed on a trio sample of schizophrenia cases and their parents. rs750367954 was seen in two Swedish cases and in no controls. The other two variants were commoner in cases than controls in both Swedish and UCL cohort samples and an overall burden test was significant at p=0.0000031. The variants were not observed in the trio sample but ITGB4 was most highly ranked out of 14,960 autosomal genes in a gene-wise weighted burden test. The effect of rs147480547 and rs145976111 was studied in human neuroblastoma SH-SY5Y cells. Cells transfected with both variants had increased proliferation at both 24 and 48h (p=0.013 and p=0.05 respectively) compared to those with wild-type ITGB4. Taken together, these results suggest that rare variants in ITGB4 which affect function may contribute to the aetiology of schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- N L O'Brien
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - A Fiorentino
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - D Curtis
- UCL Genetics Institute, University College London, London, UK; Centre for Psychiatry, Barts and the London School of Medicine and Dentistry, London, UK
| | - C Rayner
- UCL Genetics Institute, University College London, London, UK
| | - C Petrosellini
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - M Al Eissa
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - N J Bass
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - A McQuillin
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK.
| | - S I Sharp
- UCL Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| |
Collapse
|
69
|
Padma K, Nanaware S, Pande N, Ransing R, Kulkarni K. Radiation-Induced Neuropsychiatric Manifestations in a Patient with Brain Metastasis: A Diagnostic and Therapeutic Challenges for Consultation-Liaison Psychiatrist. Indian J Palliat Care 2018; 24:369-371. [PMID: 30111955 PMCID: PMC6069615 DOI: 10.4103/ijpc.ijpc_210_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this case report is to highlight diagnostic and therapeutic challenges for consultation-liaison psychiatrist in the case of radiation-induced neuropsychiatric syndrome. We report the case of a 61-year-old man presented with neurological and psychiatric manifestations following the radiation therapy for non-small cell lung carcinoma with brain metastasis. We have briefly reviewed and discussed the risk factors, clinical features, diagnostic, therapeutic, and preventive aspect of radiation-induced neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Kumari Padma
- Department of Psychiatry, B.K.L. Walawalkar Rural Medical College, Maharashtra, India
| | - Sagar Nanaware
- Department of Medicine, B.K.L. Walawalkar Rural Medical College, Maharashtra, India
| | - Nikhil Pande
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Ramdas Ransing
- Department of Psychiatry, B.K.L. Walawalkar Rural Medical College, Maharashtra, India
| | | |
Collapse
|
70
|
Verma K, Gupta N, Zang T, Wangtrakluldee P, Srivastava SK, Penning TM, Trippier PC. AKR1C3 Inhibitor KV-37 Exhibits Antineoplastic Effects and Potentiates Enzalutamide in Combination Therapy in Prostate Adenocarcinoma Cells. Mol Cancer Ther 2018; 17:1833-1845. [PMID: 29891491 DOI: 10.1158/1535-7163.mct-17-1023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/01/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17 β-hydroxysteroid dehydrogenase, is responsible for intratumoral androgen biosynthesis, contributing to the development of castration-resistant prostate cancer (CRPC) and eventual chemotherapeutic failure. Significant upregulation of AKR1C3 is observed in CRPC patient samples and derived CRPC cell lines. As AKR1C3 is a downstream steroidogenic enzyme synthesizing intratumoral testosterone (T) and 5α-dihydrotestosterone (DHT), the enzyme represents a promising therapeutic target to manage CRPC and combat the emergence of resistance to clinically employed androgen deprivation therapy. Herein, we demonstrate the antineoplastic activity of a potent, isoform-selective and hydrolytically stable AKR1C3 inhibitor (E)-3-(4-(3-methylbut-2-en-1-yl)-3-(3-phenylpropanamido)phenyl)acrylic acid (KV-37), which reduces prostate cancer cell growth in vitro and in vivo and sensitizes CRPC cell lines (22Rv1 and LNCaP1C3) toward the antitumor effects of enzalutamide. Crucially, KV-37 does not induce toxicity in nonmalignant WPMY-1 prostate cells nor does it induce weight loss in mouse xenografts. Moreover, KV-37 reduces androgen receptor (AR) transactivation and prostate-specific antigen expression levels in CRPC cell lines indicative of a therapeutic effect in prostate cancer. Combination studies of KV-37 with enzalutamide reveal a very high degree of synergistic drug interaction that induces significant reduction in prostate cancer cell viability via apoptosis, resulting in >200-fold potentiation of enzalutamide action in drug-resistant 22Rv1 cells. These results demonstrate a promising therapeutic strategy for the treatment of drug-resistant CRPC that invariably develops in prostate cancer patients following initial treatment with AR antagonists such as enzalutamide. Mol Cancer Ther; 17(9); 1833-45. ©2018 AACR.
Collapse
Affiliation(s)
- Kshitij Verma
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas
| | - Nehal Gupta
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas
| | - Tianzhu Zang
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phumvadee Wangtrakluldee
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sanjay K Srivastava
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas.,Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, Texas
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, Texas. .,Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
71
|
Zhu J, Fang F, Sjölander A, Fall K, Adami HO, Valdimarsdóttir U. First-onset mental disorders after cancer diagnosis and cancer-specific mortality: a nationwide cohort study. Ann Oncol 2018; 28:1964-1969. [PMID: 28525559 DOI: 10.1093/annonc/mdx265] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The diagnosis of cancer is strongly associated with the risk of mental disorders even in patients with no previous history of mental disorders. Accumulating data suggest that mental distress may accelerate tumor progression. We hypothesized therefore that mental disorders after a cancer diagnosis may increase the risk of cancer-specific mortality. Patients and methods We conducted a nationwide cohort study including 244 261 cancer patients diagnosed in Sweden during 2004-2009 and followed them through 2010. Through the Swedish Patient Register, we obtained clinical diagnoses of all mental disorders and focused on mood-, anxiety-, and substance abuse disorders (ICD10: F10-F16, F18-F19, F32-F33, F40-F41, and F43-45) that are commonly diagnosed among patients with cancer. We further classified the studied mental disorders into first-onset or recurrent mental disorders. We used Cox regression to estimate multivariable hazard ratios (HRs) with 95% confidence intervals (CIs) as a measure of the association between mental disorders after cancer diagnosis and cancer-specific mortality, adjusting for age, sex, calendar period, educational level, cancer stage, and cancer type at diagnosis. Results After cancer diagnosis, 11 457 patients were diagnosed with mood-, anxiety-, and substance abuse disorders; of which 7236 were first-onset mental disorders. Patients with a first-onset mental disorder were at increased risk of cancer-specific mortality (HR: 1.82, 95% CI: 1.71-1.92) while patients with a recurrent mental disorder had much lower risk elevation (HR: 1.14, 95% CI: 1.05-1.24). The increased cancer-specific mortality by first-onset mental disorders was observed for almost all cancer sites/groups and the association was stronger for localized cancers (HR: 2.00, 95% CI: 1.73-2.31) than for advanced cancers (HR: 1.49, 95% CI: 1.32-1.69). Conclusions Patients with a first-onset common mood-, anxiety-, or substance abuse disorder after cancer diagnosis may be at increased risk of cancer-specific death.
Collapse
Affiliation(s)
- J Zhu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm
| | - F Fang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm
| | - A Sjölander
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm
| | - K Fall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm.,Department of Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - H O Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA.,Clinical Effectiveness Research Group, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - U Valdimarsdóttir
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA.,Center of Public Health Sciences, School of Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
72
|
Huafeng J, Deqing Z, Yong D, Yulian Z, Ailing H. A cross-talk between integrin β4 and epidermal growth factor receptor induces gefitinib chemoresistance to gastric cancer. Cancer Cell Int 2018; 18:50. [PMID: 29618949 PMCID: PMC5879569 DOI: 10.1186/s12935-018-0548-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/23/2018] [Indexed: 02/01/2023] Open
Abstract
Background Gastric cancer presents a major health burden worldwide. Therefore, many molecular targeting agents have been evaluated for treatment of gastric cancer. Gefitinib has shown anticancer activity against gastric cancer which work through inhibiting epidermal growth factor receptor (EGFR). However, the effect of gefitinib is limited due to its resistance. Therefore, understanding the mechanisms of gefitinib resistance is desperately needed to formulate novel strategies against gastric cancer. Here, we analyzed resistance mechanism from the crosstalk between EGFR and integrin β4. Methods Integrin β4-expression vector or siRNA were used to analyze the functional effects of integrin β4 on chemoresistance of gastric cancer cells to gefitinib. EGFR and integrin β4 expression, proliferation and apoptosis of gastric cancer cells were assayed by indirect immunofluorescence, western blot, MTT and flow cytometry respectively. EGFR and integrin β4 expression were also assayed on patient samples. Results It was found that the integrin β4 expression was increased in gefitinib-resistant gastric cell line. The upregulated integrin β4 expression was identified to promote gefitinib resistance and proliferation, and inhibit apoptosis, while downregulation of integrin β4 was to inhibit gefitinib resistance and proliferation, and induce apoptosis. Moreover, the overexpression of integrin β4 in SGC7901 cells resulted in the down-regulation of p-EGFR protein levels while down-regulation of integrin β4, significantly resulted in overexpression of p-EGFR. The results of western blot from patients also showed there was obvious negative correlation between p-EGFR and integrin β4 in gastric cancer patients. Conclusion Considering the above results, it is concluded that the interaction of EGFR and integrin β4 may change the sensitivity of gefitinib treatment.
Collapse
Affiliation(s)
- Jia Huafeng
- Department of Gastroenterology, Hongze District People's Hospital, Huai'an, 223100 Jiangsu China
| | - Zhang Deqing
- 2Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu China
| | - Ding Yong
- Department of General Surgery, Hongze District People's Hospital, Huai'an, 223100 Jiangsu China
| | - Zhang Yulian
- Department of Gastroenterology, Hongze District People's Hospital, Huai'an, 223100 Jiangsu China
| | - Hu Ailing
- Department of Oncology, Hongze District People's Hospital, 102 Dongfeng Road, Hongze District, Huai'an, 223100 Jiangsu China
| |
Collapse
|
73
|
Du J, Shang J, Chen F, Zhang Y, Yin N, Xie T, Zhang H, Yu J, Liu F. A CRISPR/Cas9–Based Screening for Non-Homologous End Joining Inhibitors Reveals Ouabain and Penfluridol as Radiosensitizers. Mol Cancer Ther 2017; 17:419-431. [DOI: 10.1158/1535-7163.mct-17-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/20/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
74
|
Ranjan A, Wright S, Srivastava SK. Immune consequences of penfluridol treatment associated with inhibition of glioblastoma tumor growth. Oncotarget 2017; 8:47632-47641. [PMID: 28512255 PMCID: PMC5564593 DOI: 10.18632/oncotarget.17425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common and lethal brain tumor associated with only 12% median survival rate of patients. Despite the development of advanced surgical, radiation or use of combinations of anti-cancer drugs, treatment for glioblastoma patients is still a challenge. The major contributing factor in glioblastoma progression and resistive nature is its ability to evade the immune surveillance. Hence, modulating the immune system in glioblastoma tumors could be an important strategy for anticancer therapeutics. Penfluridol, an antipsychotic drug has been shown to have anti-cancer properties in our recently published studies. The present study evaluates the immune response of penfluridol in glioblastoma tumors. Our results demonstrated that penfluridol treatment significantly suppressed glioblastoma tumor growth. Our current results demonstrated about 72% suppression of myeloid derived suppressor cells (MDSCs) with penfluridol treatment in mouse bearing U87MG glioblastoma tumors. MDSCs are known to increase regulatory T cells (Treg), which are immunosuppressive in nature and suppresses M1 macrophages that are tumor suppressive in nature. Our results also showed suppression of regulatory T cells as well as elevation of M1 macrophages with penfluridol treatment by 58% and 57% respectively. Decrease in CCL4 as well as IFNγ with penfluridol treatment was also observed indicating decrease in overall tumor inflammation. This is the first report demonstrating immune modulations by penfluridol treatment associated with glioblastoma tumor growth suppression prompting further investigation to establish penfluridol as a treatment option for glioblastoma patients.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Stephen Wright
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Departments of Internal Medicine and Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79106, USA
| |
Collapse
|
75
|
Ranjan A, German N, Mikelis C, Srivenugopal K, Srivastava SK. Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer. Tumour Biol 2017; 39:1010428317705517. [DOI: 10.1177/1010428317705517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nadezhda German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Constantinos Mikelis
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Kalkunte Srivenugopal
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
76
|
Ranjan A, Srivastava SK. Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1. Oncotarget 2017; 8:32960-32976. [PMID: 28380428 PMCID: PMC5464842 DOI: 10.18632/oncotarget.16515] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor with poor survival rate. Our results show that penfluridol, an antipsychotic drug significantly reduced the survival of ten adult and pediatric glioblastoma cell lines with IC50 ranging 2-5 μM after 72 hours of treatment and induced apoptosis. Penfluridol treatment suppressed the phosphorylation of Akt at Ser473 and reduced the expression of GLI1, OCT4, Nanog and Sox2 in several glioblastoma cell lines in a concentration-dependent manner. Inhibiting Akt with LY294002 and siRNA, or inhibiting GLI1 using GANT61, cyclopamine, siRNA and CRISPR/Cas9 resulted in enhanced cell growth suppressive effects of penfluridol. On the other hand, overexpression of GLI1 significantly attenuated the effects of penfluridol. Our results further demonstrated that penfluridol treatment inhibited the growth of U87MG tumors by 65% and 72% in subcutaneous and intracranial in vivo glioblastoma tumor models respectively. Immunohistochemical and western blot analysis of tumors revealed reduced pAkt (Ser 473), GLI1, OCT4 and increase in caspase-3 cleavage and TUNEL staining, confirming in vitro findings. Taken together, our results indicate that overall glioblastoma tumor growth suppression by penfluridol was associated with Akt-mediated inhibition of GLI1.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
77
|
Hedrick E, Li X, Safe S. Penfluridol Represses Integrin Expression in Breast Cancer through Induction of Reactive Oxygen Species and Downregulation of Sp Transcription Factors. Mol Cancer Ther 2017; 16:205-216. [PMID: 27811009 PMCID: PMC5222719 DOI: 10.1158/1535-7163.mct-16-0451] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
It was recently demonstrated the penfluridol inhibited breast tumor growth and metastasis and this was associated with downregulation of α6- and β4-integrins. In this study, we observed the penfluridol induced reactive oxygen species (ROS) and this was the primary mechanism of action. Penfluridol-mediated growth inhibition, induction of apoptosis, and inhibition of breast cancer cell migration was attenuated after cotreatment with glutathione. Penfluridol also downregulated Sp transcription factors Sp1, Sp3, and Sp4 through epigenetic downregulation of cMyc and cMyc-regulated miRNAs (miR27a and miR20a/miR17) and induction of the miR-regulated Sp transcriptional repressors ZBTB10 and ZBTB4. α6- and β4-integrins as well as α5- and β1-integrins are Sp-regulated genes that are also coregulated by the orphan nuclear receptor NR4A1 and these integrins can be targeted by agents such as penfluridol that suppress Sp1, Sp3, and Sp4 and also by NR4A1 antagonists. Mol Cancer Ther; 16(1); 205-16. ©2016 AACR.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Xi Li
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
78
|
Ranjan A, Srivastava SK. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci Rep 2016; 6:26165. [PMID: 27189859 PMCID: PMC4870635 DOI: 10.1038/srep26165] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6-7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|