51
|
Elkhadragy L, Chen M, Miller K, Yang MH, Long W. A regulatory BMI1/let-7i/ERK3 pathway controls the motility of head and neck cancer cells. Mol Oncol 2017; 11:194-207. [PMID: 28079973 PMCID: PMC5288292 DOI: 10.1002/1878-0261.12021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022] Open
Abstract
Extracellular signal‐regulated kinase 3 (ERK3) is an atypical mitogen‐activated protein kinase (MAPK), whose biological activity is tightly regulated by its cellular abundance. Recent studies have revealed that ERK3 is upregulated in multiple cancers and promotes cancer cell migration/invasion and drug resistance. Little is known, however, about how ERK3 expression level is upregulated in cancers. Here, we have identified the oncogenic polycomb group protein BMI1 as a positive regulator of ERK3 level in head and neck cancer cells. Mechanistically, BMI1 upregulates ERK3 expression by suppressing the tumor suppressive microRNA (miRNA) let‐7i, which directly targets ERK3 mRNA. ERK3 then acts as an important downstream mediator of BMI1 in promoting cancer cell migration. Importantly, ERK3 protein level is positively correlated with BMI1 level in head and neck tumor specimens of human patients. Taken together, our study revealed a molecular pathway consisting of BMI1, miRNA let‐7i, and ERK3, which controls the migration of head and neck cancer cells, and suggests that ERK3 kinase is a potential new therapeutic target in head and neck cancers, particularly those with BMI1 overexpression.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Minyi Chen
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kennon Miller
- Department of Pathology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Muh-Hwa Yang
- Institute of Clinic Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
52
|
Hiraki M, Maeda T, Bouillez A, Alam M, Tagde A, Hinohara K, Suzuki Y, Markert T, Miyo M, Komura K, Ahmad R, Rajabi H, Kufe D. MUC1-C activates BMI1 in human cancer cells. Oncogene 2016; 36:2791-2801. [PMID: 27893710 PMCID: PMC5436937 DOI: 10.1038/onc.2016.439] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022]
Abstract
BMI1 is a component of the PRC1 complex that is overexpressed in breast and other cancers, and promotes self-renewal of cancer stem-like cells. The oncogenic mucin 1 (MUC1) C-terminal (MUC1-C) subunit is similarly overexpressed in human carcinoma cells and has been linked to their self-renewal. There is no known relationship between MUC1-C and BMI1 in cancer. The present studies demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism in breast and other cancer cells. In addition, we show that MUC1-C blocks miR-200c-mediated downregulation of BMI1 expression. The functional significance of this MUC1-C→BMI1 pathway is supported by the demonstration that targeting MUC1-C suppresses BMI1-induced ubiquitylation of H2A and thereby derepresses homeobox HOXC5 and HOXC13 gene expression. Notably, our results further show that MUC1-C binds directly to BMI1 and promotes occupancy of BMI1 on the CDKN2A promoter. In concert with BMI1-induced repression of the p16INK4a tumor suppressor, we found that targeting MUC1-C is associated with induction of p16INK4a expression. In support of these results, analysis of three gene expresssion datasets demonstrated highly significant correlations between MUC1-C and BMI1 in breast cancers. These findings uncover a previously unrecognized role for MUC1-C in driving BMI1 expression and in directly interacting with this stem cell factor, linking MUC1-C with function of the PRC1 in epigenetic gene silencing.
Collapse
Affiliation(s)
- M Hiraki
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - T Maeda
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Bouillez
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Alam
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Tagde
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K Hinohara
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Y Suzuki
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - T Markert
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Miyo
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K Komura
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R Ahmad
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - H Rajabi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Kufe
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
53
|
Gray F, Cho HJ, Shukla S, He S, Harris A, Boytsov B, Jaremko Ł, Jaremko M, Demeler B, Lawlor ER, Grembecka J, Cierpicki T. BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization. Nat Commun 2016; 7:13343. [PMID: 27827373 PMCID: PMC5105191 DOI: 10.1038/ncomms13343] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] Open
Abstract
BMI1 is a core component of the polycomb repressive complex 1 (PRC1) and emerging data support a role of BMI1 in cancer. The central domain of BMI1 is involved in protein-protein interactions and is essential for its oncogenic activity. Here, we present the structure of BMI1 bound to the polyhomeotic protein PHC2 illustrating that the central domain of BMI1 adopts an ubiquitin-like (UBL) fold and binds PHC2 in a β-hairpin conformation. Unexpectedly, we find that the UBL domain is involved in homo-oligomerization of BMI1. We demonstrate that both the interaction of BMI1 with polyhomeotic proteins and homo-oligomerization via UBL domain are necessary for H2A ubiquitination activity of PRC1 and for clonogenic potential of U2OS cells. Here, we also emphasize need for joint application of NMR spectroscopy and X-ray crystallography to determine the overall structure of the BMI1-PHC2 complex.
Collapse
Affiliation(s)
- Felicia Gray
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hyo Je Cho
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shihan He
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ashley Harris
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Bohdan Boytsov
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Łukasz Jaremko
- Deutsches Zentrum fur Neurodegenerative Erkrankungen (DZNE), Am Fassberg 11, 37077 Goettingen, Germany
- Max-Planck Institute of Biophysical Chemistry, NMR-based Department for Structural Biology, Am Fassberg 11, 37077 Goettingen, Germany
| | - Mariusz Jaremko
- Max-Planck Institute of Biophysical Chemistry, NMR-based Department for Structural Biology, Am Fassberg 11, 37077 Goettingen, Germany
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Elizabeth R. Lawlor
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
54
|
|
55
|
Jung J, Buisman S, de Haan G. Hematopoiesis during development, aging, and disease. Exp Hematol 2016; 44:689-95. [DOI: 10.1016/j.exphem.2016.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022]
|
56
|
Zhou X, Dai X, Wu X, Ji J, Karaplis A, Goltzman D, Yang X, Miao D. Overexpression of Bmi1 in Lymphocytes Stimulates Skeletogenesis by Improving the Osteogenic Microenvironment. Sci Rep 2016; 6:29171. [PMID: 27373231 PMCID: PMC4931581 DOI: 10.1038/srep29171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022] Open
Abstract
To investigate whether overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by improving the osteogenic microenvironment, we examined the skeletal phenotype of EμBmi1 transgenic mice with overexpression of Bmi1 in lymphocytes. The size of the skeleton, trabecular bone volume and osteoblast number, indices of proliferation and differentiation of bone marrow mesenchymal stem cells (BM-MSCs) were increased significantly, ROS levels were reduced and antioxidative capacity was enhanced in EμBmi1 mice compared to WT mice. In PTHrP1-84 knockin (Pthrp(KI/KI)) mice, the expression levels of Bmi1 are reduced and potentially can mediate the premature osteoporosis observed. We therefore generated a Pthrp(KI/KI) mice overexpressing Bmi1 in lymphocytes and compared them with Pthrp(KI/KI) and WT littermates. Overexpression of Bmi1 in Pthrp(KI/KI) mice resulted in a longer lifespan, increased body weight and improvement in skeletal growth and parameters of osteoblastic bone formation with reduced ROS levels and DNA damage response parameters. Our results demonstrate that overexpression of Bmi1 in lymphocytes can stimulate osteogenesis in vivo and partially rescue defects in skeletal growth and osteogenesis in Pthrp(KI/KI) mice. These studies therefore indicate that overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by inhibiting oxidative stress and improving the osteogenic microenvironment.
Collapse
Affiliation(s)
- Xichao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiuliang Dai
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xuan Wu
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ji Ji
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
- Department of Fundamentals of Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Andrew Karaplis
- The Department of Medicine, McGill University, Montreal, Canada
| | - David Goltzman
- The Department of Medicine, McGill University, Montreal, Canada
| | - Xiangjiao Yang
- The Department of Medicine, McGill University, Montreal, Canada
- Rosalind & Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
57
|
Abstract
Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges.
Collapse
Affiliation(s)
- Hector Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, IMSS National Medical Center, Mexico City, Mexico
| |
Collapse
|
58
|
Wang N, Guo D, Zhao YY, Dong CY, Liu XY, Yang BX, Wang SW, Wang L, Liu QG, Ren Q, Lin YM, Ma XT. TWIST-1 promotes cell growth, drug resistance and progenitor clonogenic capacities in myeloid leukemia and is a novel poor prognostic factor in acute myeloid leukemia. Oncotarget 2016; 6:20977-92. [PMID: 26023795 PMCID: PMC4673244 DOI: 10.18632/oncotarget.4007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
Alterations of TWIST-1 expression are often seen in solid tumors and contribute to tumorigenesis and cancer progression. However, studies concerning its pathogenic role in leukemia are scarce. Our study shows that TWIST-1 is overexpressed in bone marrow mononuclear cells of patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Gain-of-function and loss-of-function analyses demonstrate that TWIST-1 promotes cell growth, colony formation and drug resistance of AML and CML cell lines. Furthermore, TWIST-1 is aberrantly highly expressed in CD34+CD38− leukemia stem cell candidates and its expression declines with differentiation. Down-modulation of TWIST-1 in myeloid leukemia CD34+ cells impairs their colony-forming capacity. Mechanistically, c-MPL, which is highly expressed in myeloid leukemia cells and associated with poor prognosis, is identified as a TWIST-1 coexpressed gene in myeloid leukemia patients and partially contributes to TWIST-1-mediated leukemogenic effects. Moreover, patients with higher TWIST-1 expression have shorter overall and event-free survival (OS and EFS) in AML. Multivariate analysis further demonstrates that TWIST-1 overexpression is a novel independent unfavourable predictor for both OS and EFS in AML. These data highlight TWIST-1 as a new candidate gene contributing to leukemogenesis of myeloid leukemia, and propose possible new avenues for improving risk and treatment stratification in AML.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Dan Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yang-Yang Zhao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Cheng-Ya Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Xiao-Yan Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Bin-Xia Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Shu-Wei Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Lin Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Qing-Guo Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yong-Min Lin
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Xiao-Tong Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| |
Collapse
|
59
|
Sahasrabuddhe AA. BMI1: A Biomarker of Hematologic Malignancies. BIOMARKERS IN CANCER 2016; 8:65-75. [PMID: 27168727 PMCID: PMC4859448 DOI: 10.4137/bic.s33376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
BMI1 oncogene is a catalytic member of epigenetic repressor polycomb group proteins. It plays a critical role in the regulation of gene expression pattern and consequently several cellular processes during development, including cell cycle progression, senescence, aging, apoptosis, angiogenesis, and importantly self-renewal of adult stem cells of several lineages. Preponderance of evidences indicates that deregulated expression of PcG protein BMI1 is associated with several human malignancies, cancer stem cell maintenance, and propagation. Importantly, overexpression of BMI1 correlates with therapy failure in cancer patients and tumor relapse. This review discusses the diverse mode of BMI1 regulation at transcriptional, posttranscriptional, and posttranslational levels as well as at various critical signaling pathways regulated by BMI1 activity. Furthermore, this review highlights the role of BMI1 as a biomarker and therapeutic target for several subtypes of hematologic malignancies and the importance to target this biomarker for therapeutic applications.
Collapse
Affiliation(s)
- Anagh A Sahasrabuddhe
- Department of Biotechnology, Pandit Ravishankar Shukla University, Chhattisgarh, India
| |
Collapse
|
60
|
Yang XX, Sang MX, Zhu SC, Liu ZK, Ma M. Radiosensitization of esophageal carcinoma cells by the silencing of BMI-1. Oncol Rep 2016; 35:3669-78. [PMID: 27108688 DOI: 10.3892/or.2016.4744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/08/2016] [Indexed: 11/05/2022] Open
Abstract
Radiotherapy (RT) has been widely used to treat cancer patients, particularly esophageal cancer patients. B-cell-specific Moloney murine leukemia virus integration site-1 (BMI-1) plays an important role in promoting the growth of cancer cells after exposure to irradiation. The present study aimed to characterize the effects of BMI-1 on the proliferation and invasion of cancer cells, as well as the mechanism involved in the regulation of the growth of esophageal cancer ECA109 and TE13 cells. The expression levels of the BMI-1 gene and protein in esophageal cancer ECA109 and TE13 cells were determined by quantitative PCR and western blotting after transfection. Co-immunoprecipitation (Co-IP) assay was employed to detect the interaction of BMI-1 with r-H2AX and H2AK119ub. We used flow cytometry to analyze the cell cycle distribution and apoptosis of transfected cells after irradiation or not, and examined cellular growth and invasion in vitro by MTS and Transwell assays. The results revealed that shRNA targeting the BMI-1 gene and protein downregulated BMI-1 expression after transfection for 24 h. The proliferation and invasion of tumor cells in the BMI-1‑shRNA group were suppressed after RT. In addition, the interaction of BMI-1, H2AK119ub and r-H2AX was increased after exposure to IR, followed by an increased apoptosis rate and decreased percentage of cells arrested at the G2/M phase after irradiation and silencing of BMI-1 by shRNA. Knockdown of BMI-1 expression decreased the phosphorylation of H2AX, upregulated p16, and induced the radiosensitivity of esophageal cancer ECA109 and TE13 cells in vitro and significantly inhibited the growth and invasion of tumor cells. The mechanisms were found to be abrogation of cell cycle arrest at the G2/M stage and promotion of apoptosis.
Collapse
Affiliation(s)
- Xing-Xiao Yang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Mei-Xiang Sang
- Research Centre, Department of Biotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shu-Chai Zhu
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhi-Kun Liu
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ming Ma
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
61
|
Non-canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Rep 2016; 14:332-46. [DOI: 10.1016/j.celrep.2015.12.034] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/26/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
|
62
|
Gao R, Chen S, Kobayashi M, Yu H, Zhang Y, Wan Y, Young SK, Soltis A, Yu M, Vemula S, Fraenkel E, Cantor A, Antipin Y, Xu Y, Yoder MC, Wek RC, Ellis SR, Kapur R, Zhu X, Liu Y. Bmi1 promotes erythroid development through regulating ribosome biogenesis. Stem Cells 2015; 33:925-38. [PMID: 25385494 DOI: 10.1002/stem.1896] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 12/26/2022]
Abstract
While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in decreased transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including Diamond-Blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies.
Collapse
Affiliation(s)
- Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Nishida Y, Maeda A, Chachad D, Ishizawa J, Qiu YH, Kornblau SM, Kimura S, Andreeff M, Kojima K. Preclinical activity of the novel B-cell-specific Moloney murine leukemia virus integration site 1 inhibitor PTC-209 in acute myeloid leukemia: Implications for leukemia therapy. Cancer Sci 2015; 106:1705-13. [PMID: 26450753 PMCID: PMC4714665 DOI: 10.1111/cas.12833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Curing patients with acute myeloid leukemia (AML) remains a therapeutic challenge. The polycomb complex protein B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is required for the self-renewal and maintenance of leukemia stem cells. We investigated the prognostic significance of BMI-1 in AML and the effects of a novel small molecule selective inhibitor of BMI-1, PTC-209. BMI-1 protein expression was determined in 511 newly diagnosed AML patients together with 207 other proteins using reverse-phase protein array technology. Patients with unfavorable cytogenetics according to Southwest Oncology Group criteria had higher levels of BMI-1 compared to those with favorable (P = 0.0006) or intermediate cytogenetics (P = 0.0061), and patients with higher levels of BMI-1 had worse overall survival (55.3 weeks vs. 42.8 weeks, P = 0.046). Treatment with PTC-209 reduced protein level of BMI-1 and its downstream target mono-ubiquitinated histone H2A and triggered several molecular events consistent with the induction of apoptosis, this is, loss of mitochondrial membrane potential, caspase-3 cleavage, BAX activation, and phosphatidylserine externalization. PTC-209 induced apoptosis in patient-derived CD34(+)CD38(low/-) AML cells and, less prominently, in CD34(-) differentiated AML cells. BMI-1 reduction by PTC-209 directly correlated with apoptosis induction in CD34(+) primary AML cells (r = 0.71, P = 0.022). However, basal BMI-1 expression was not a determinant of AML sensitivity. BMI-1 inhibition, which targets a primitive AML cell population, might offer a novel therapeutic strategy for AML.
Collapse
Affiliation(s)
- Yuki Nishida
- Division of Medicine, Department of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, Japan
| | - Aya Maeda
- Division of Medicine, Department of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, Japan
| | - Dhruv Chachad
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yi Hua Qiu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven M Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shinya Kimura
- Division of Medicine, Department of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, Japan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kensuke Kojima
- Division of Medicine, Department of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, Japan.,Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
64
|
Haladyna JN, Yamauchi T, Neff T, Bernt KM. Epigenetic modifiers in normal and malignant hematopoiesis. Epigenomics 2015; 7:301-20. [PMID: 25942537 DOI: 10.2217/epi.14.88] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genome scale sequencing in patients with cancer has revealed a lower frequency of genetic aberrations in hematologic disorders compared with most other malignancies, suggesting a prominent role for epigenetic mechanisms. In parallel, epigenetic modifiers that are altered in cancer play critical roles in normal hematopoietic development, influencing both self-renewal of hematopoietic stem cells and differentiation into the different lineages. In this review, we aim to compare the role of several key DNA or histone modifying enzymes and complexes in normal development and hematopoietic malignancies, including DNMT3A, TET2, IDH1, IDH2, MLL1, MLL4, DOT1L, PRC1/2 and WSHC1/NSD2/MMSET. Insights into their biological mechanisms led to the development of therapies designed to target mutant IDH1 and IDH2, DOT1L in MLL-rearranged leukemias and EZH2 in several cancer types including lymphomas. Inhibitors for these enzymes are currently in clinical trials.
Collapse
Affiliation(s)
- Jessica N Haladyna
- Division of Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine & Children's Hospital Colorado, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
65
|
Chen CC, You JY, Gau JP, Huang CE, Chen YY, Tsai YH, Chou HJ, Lung J, Yang MH. Favorable clinical outcome and unique characteristics in association with Twist1 overexpression in de novo acute myeloid leukemia. Blood Cancer J 2015; 5:e339. [PMID: 26832848 PMCID: PMC4558591 DOI: 10.1038/bcj.2015.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 02/03/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process for inducing stem-like properties of epithelial cancer cells. However, the role of EMT inducers in hematological malignancies is unknown. Twist1, an EMT inducer necessary for cell migration, has recently been found to have transcriptionally regulatory activity on the expression of Bmi1, and these two are capable of promoting tumorigenesis in a synergized manner. Knowing that Bmi1 expression is essential for maintenance of leukemic stem cells, we speculate that Twist1 might govern the pathogenesis of acute myeloid leukemia (AML) development as well. We found that upregulated Twist1 increased Bmi1 expression in AML and endued leukemic cells a higher proliferative potential and increased resistance to apoptosis. In primary AML samples, there was strong positive correlation between the expression levels of Twist1 and Bmi1. AML patients whose leukemic blasts harbored overexpressed Twist1 had a more aggressive clinical phenotype, but they were more likely to have a better clinical outcome after standard therapy. In vitro studies confirmed that Twist1-overexpressing leukemic cells were more susceptible to cytarabine, but not daunorubicin, cytotoxicity. Our findings suggest that, in a subset of AML patients, Twist1 has a prominent role in the pathogenesis of the disease that leads to unique clinical phenotypes.
Collapse
Affiliation(s)
- C-C Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan.,College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - J-Y You
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - J-P Gau
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - C-E Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Y-Y Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Y-H Tsai
- College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - H-J Chou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - J Lung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - M-H Yang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Immunology Research Center, National Yang-Ming University, Taipei, Taiwan.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
66
|
Arsenic Primes Human Bone Marrow CD34+ Cells for Erythroid Differentiation. Bioinorg Chem Appl 2015; 2015:751013. [PMID: 26170775 PMCID: PMC4480244 DOI: 10.1155/2015/751013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 11/17/2022] Open
Abstract
Arsenic trioxide exhibits therapeutic effects on certain blood malignancies, at least partly by modulating cell differentiation. Previous in vitro studies in human hematopoietic progenitor cells have suggested that arsenic may inhibit erythroid differentiation. However, these effects were all observed in the presence of arsenic compounds, while the concomitant cytostatic and cytotoxic actions of arsenic might mask a prodifferentiating activity. To eliminate the potential impacts of the cytostatic and cytotoxic actions of arsenic, we adopted a novel protocol by pretreating human bone marrow CD34+ cells with a low, noncytotoxic concentration of arsenic trioxide, followed by assaying the colony forming activities in the absence of the arsenic compound. Bone marrow specimens were obtained from chronic myeloid leukemia patients who achieved complete cytogenetic remission. CD34+ cells were isolated by magnetic-activated cell sorting. We discovered that arsenic trioxide enhanced the erythroid colony forming activity, which was accompanied by a decrease in the granulomonocytic differentiation function. Moreover, in erythroleukemic K562 cells, we showed that arsenic trioxide inhibited erythrocyte maturation, suggesting that arsenic might have biphasic effects on erythropoiesis. In conclusion, our data provided the first evidence showing that arsenic trioxide could prime human hematopoietic progenitor cells for enhanced erythroid differentiation.
Collapse
|
67
|
Bhattacharya R, Mustafi SB, Street M, Dey A, Dwivedi SKD. Bmi-1: At the crossroads of physiological and pathological biology. Genes Dis 2015; 2:225-239. [PMID: 26448339 PMCID: PMC4593320 DOI: 10.1016/j.gendis.2015.04.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bmi-1 is a member of the Polycomb repressor complex 1 that mediates gene silencing by regulating chromatin structure and is indispensable for self-renewal of both normal and cancer stem cells. Despite three decades of research that have elucidated the transcriptional regulation, post-translational modifications and functions of Bmi-1 in regulating the DNA damage response, cellular bioenergetics, and pathologies, the entire potential of a protein with such varied functions remains to be realized. This review attempts to synthesize the current knowledge on Bmi-1 with an emphasis on its role in both normal physiology and cancer. Additionally, since cancer stem cells are emerging as a new paradigm for therapy resistance, the role of Bmi-1 in this perspective is also highlighted. The wide spectrum of malignancies that implicate Bmi-1 as a signature for stemness and oncogenesis also make it a suitable candidate for therapy. Nonetheless, new approaches are vitally needed to further characterize physiological roles of Bmi-1 with the long-term goal of using Bmi-1 as a prognostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Resham Bhattacharya
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States of America
| | - Soumyajit Banerjee Mustafi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States of America
| | - Mark Street
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States of America
| | - Anindya Dey
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States of America
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, United States of America
| |
Collapse
|
68
|
Xenograft models for normal and malignant stem cells. Blood 2015; 125:2630-40. [DOI: 10.1182/blood-2014-11-570218] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/04/2015] [Indexed: 12/18/2022] Open
Abstract
Abstract
The model systems available for studying human hematopoiesis, malignant hematopoiesis, and hematopoietic stem cell (HSC) function in vivo have improved dramatically over the last decade, primarily due to improvements in xenograft mouse strains. Several recent reviews have focused on the historic development of immunodeficient mice over the last 2 decades, as well as their use in understanding human HSC and leukemia stem cell (LSC) biology and function in the context of a humanized mouse. However, in the intervening time since these reviews, a number of new mouse models, technical approaches, and scientific advances have been made. In this review, we update the reader on the newest and best models and approaches available for studying human malignant and normal HSCs in immunodeficient mice, including newly developed mice for use in chemotherapy testing and improved techniques for humanizing mice without laborious purification of HSC. We also review some relevant scientific findings from xenograft studies and highlight the continued limitations that confront researchers working with human HSC and LSC in vivo.
Collapse
|
69
|
Chen Y, Li L, Ni W, Zhang Y, Sun S, Miao D, Chai R, Li H. Bmi1 regulates auditory hair cell survival by maintaining redox balance. Cell Death Dis 2015; 6:e1605. [PMID: 25611380 PMCID: PMC4669747 DOI: 10.1038/cddis.2014.549] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) accumulation are involved in noise- and ototoxic drug-induced hair cell loss, which is the major cause of hearing loss. Bmi1 is a member of the Polycomb protein family and has been reported to regulate mitochondrial function and ROS level in thymocytes and neurons. In this study, we reported the expression of Bmi1 in mouse cochlea and investigated the role of Bmi1 in hair cell survival. Bmi1 expressed in hair cells and supporting cells in mouse cochlea. Bmi1−/− mice displayed severe hearing loss and patched outer hair cell loss from postnatal day 22. Ototoxic drug-induced hair cells loss dramatically increased in Bmi1−/− mice compared with that in wild-type controls both in vivo and in vitro, indicating Bmi1−/− hair cells were significantly more sensitive to ototoxic drug-induced damage. Cleaved caspase-3 and TUNEL staining demonstrated that apoptosis was involved in the increased hair cell loss of Bmi1−/− mice. Aminophenyl fluorescein and MitoSOX Red staining showed the level of free radicals and mitochondrial ROS increased in Bmi1−/− hair cells due to the aggravated disequilibrium of antioxidant–prooxidant balance. Furthermore, the antioxidant N-acetylcysteine rescued Bmi1−/− hair cells from neomycin injury both in vitro and in vivo, suggesting that ROS accumulation was mainly responsible for the increased aminoglycosides sensitivity in Bmi1−/− hair cells. Our findings demonstrate that Bmi1 has an important role in hair cell survival by controlling redox balance and ROS level, thus suggesting that Bmi1 may work as a new therapeutic target for the prevention of hair cell death.
Collapse
Affiliation(s)
- Y Chen
- 1] Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China [2] Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - L Li
- Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - W Ni
- Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Y Zhang
- 1] Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China [2] Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China [3] Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - S Sun
- 1] Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China [2] Central Laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - D Miao
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing 210096, China
| | - R Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - H Li
- 1] Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China [2] Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China [3] State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
70
|
Gjerstorff MF, Relster MM, Greve KBV, Moeller JB, Elias D, Lindgreen JN, Schmidt S, Mollenhauer J, Voldborg B, Pedersen CB, Brückmann NH, Møllegaard NE, Ditzel HJ. SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression. Nucleic Acids Res 2014; 42:11433-46. [PMID: 25249625 PMCID: PMC4191419 DOI: 10.1093/nar/gku852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polycomb group (PcG) complexes regulate cellular identity through epigenetic programming of chromatin. Here, we show that SSX2, a germline-specific protein ectopically expressed in melanoma and other types of human cancers, is a chromatin-associated protein that antagonizes BMI1 and EZH2 PcG body formation and derepresses PcG target genes. SSX2 further negatively regulates the level of the PcG-associated histone mark H3K27me3 in melanoma cells, and there is a clear inverse correlation between SSX2/3 expression and H3K27me3 in spermatogenesis. However, SSX2 does not affect the overall composition and stability of PcG complexes, and there is no direct concordance between SSX2 and BMI1/H3K27me3 presence at regulated genes. This suggests that SSX2 antagonizes PcG function through an indirect mechanism, such as modulation of chromatin structure. SSX2 binds double-stranded DNA in a sequence non-specific manner in agreement with the observed widespread association with chromatin. Our results implicate SSX2 in regulation of chromatin structure and function.
Collapse
Affiliation(s)
- Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Mette Marie Relster
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Katrine Buch Viden Greve
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Jesper Bonnet Moeller
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Daniel Elias
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Jonas Nørrelund Lindgreen
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Steffen Schmidt
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark The Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Jan Mollenhauer
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark The Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Bjørn Voldborg
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Christina Bøg Pedersen
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Nadine Heidi Brückmann
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Niels Erik Møllegaard
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Denmark
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, DK-5000, Denmark The Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense, DK-5000, Denmark Department of Oncology, Odense University Hospital, Odense, DK-5000, Denmark
| |
Collapse
|
71
|
Abstract
Asingle cells in undifferentiated spermatogonia are considered to be the most primitive forms of germ stem cells (GSCs). Although GFRα1 is thought to be a marker of Asingle cells, we found that Bmi1(High) is more specific than GFRα1 for Asingle cells. Bmi1(High) expression in Asingle cells is correlated with seminiferous stages, and its expression was followed by the proliferative stage of Asingle GSCs. In contrast, GFRα1 expression was seminiferous stage-independent. Fate analyses of EdU-positive Bmi1(High)-positive cell-derived Asingle cells revealed that these cells self-renewed or generated transient amplifying Apaired cells. Bmi1(High)-positive cells were resistant to irradiation-induced injury, after which they regenerated. Elimination of Bmi1(High)-positive cells from seminiferous tubules resulted in the appearance of tubules with seminiferous stage mismatches. Thus, in this study, we found that Bmi1(High) is a seminiferous stage-dependent marker for long-term GSCs and that Bmi1(High)-positive cells play important roles in maintaining GSCs and in regenerating spermatogenic progenitors after injury.
Collapse
|
72
|
Lian X, Wang H, Wei X, Wang Y, Wang Q, Guo L, Zhao Y, Chen X. BMI‑1 is important in bufalin‑induced apoptosis of K562 cells. Mol Med Rep 2014; 9:1209-17. [PMID: 24566825 DOI: 10.3892/mmr.2014.1980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/23/2014] [Indexed: 11/06/2022] Open
Abstract
The purpose of this study was to analyze the effects of bufalin on the gene expression of K562 cells and on the expression of BMI‑1 pathway constituents in K562 cell apoptosis. K562 cells were treated with bufalin, and the inhibition rate and apoptosis were detected by an MTT assay, flow cytometry and a microarray assay. BMI‑1, p16INK4a and p14ARF were examined by quantitative polymerase chain reaction (qPCR). Bufalin induced significant changes in the gene expression of the K562 cells; 4296 genes were differentially expressed, 2185 were upregulated and 2111 were downregulated. The most upregulated genes were associated with transcription regulation, while the most downregulated genes were associated with the non-coding RNA metabolic processes and DNA repair. qPCR analysis demonstrated that BMI‑1 was overexpressed in the K562 cells. Bufalin is able to downregulate BMI‑1 expression levels in K562 cells prematurely and cause an increase in the expression levels of p16INK4a and p14ARF. Moreover, bufalin downregulated BCR/ABL expression levels in a time‑dependent manner, and the expression of BCR/ABL was not associated with the upregulation or downregulation of BMI‑1 expression. Bufalin may induce K562 cell apoptosis by downregulating BMI‑1 expression levels and accordingly upregulating the expression levels of p16INK4a and p14ARF. Bufalin may also induce K562 cell apoptosis via downregulating BCR/ABL expression levels, and this pathway may be independent of the BMI‑1 pathway.
Collapse
Affiliation(s)
- Xiaoyun Lian
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hao Wang
- Department of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Xucang Wei
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yi Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Qishan Wang
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Liang Guo
- Department of Hematology, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Yuan Zhao
- Department of Hematology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiequn Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
73
|
Gu M, Shen L, Bai L, Gao J, Marshall C, Wu T, Ding J, Miao D, Xiao M. Heterozygous knockout of the Bmi-1 gene causes an early onset of phenotypes associated with brain aging. AGE (DORDRECHT, NETHERLANDS) 2014; 36:129-139. [PMID: 23771506 PMCID: PMC3889899 DOI: 10.1007/s11357-013-9552-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Previous studies reported that the polycomb group gene Bmi-1 is downregulated in the aging brain. The aim of this study was to investigate whether decreased Bmi-1 expression accelerates brain aging by analyzing the brain phenotype of adult Bmi-1 heterozygous knockout (Bmi-1(+/-)) mice. An 8-month-old Bmi-1(+/-) brains demonstrated mild oxidative stress, revealed by significant increases in hydroxy radical and nitrotyrosine, and nonsignificant increases in reactive oxygen species and malonaldehyde compared with the wild-type littermates. Bmi-1(+/-) hippocampus had high apoptotic percentage and lipofuscin deposition in pyramidal neurons associated with upregulation of cyclin-dependent kinase inhibitors p19, p27, and p53 and downregulation of anti-apoptotic protein Bcl-2. Mild activation of astrocytes was also observed in Bmi-1(+/-) hippocampus. Furthermore, Bmi-1(+/-) mice showed mild spatial memory impairment in the Morris Water Maze test. These results demonstrate that heterozygous Bmi-1 gene knockout causes an early onset of age-related brain changes, suggesting that Bmi-1 has a role in regulating brain aging.
Collapse
Affiliation(s)
- Minxia Gu
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Lihua Shen
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Lei Bai
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Junying Gao
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Charles Marshall
- />Department of Rehabilitation Sciences, University of Kentucky Center for Excellence in Rural Health, Hazard, KY 41701 USA
| | - Ting Wu
- />Department of Neurology, the First Affiliated Hospital of Nanjing Medical University Nanjing, Jiangsu, 210029 China
| | - Jiong Ding
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Dengshun Miao
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| | - Ming Xiao
- />Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu 210029 China
| |
Collapse
|
74
|
Sontakke P, Carretta M, Capala M, Schepers H, Schuringa JJ. Ex vivo assays to study self-renewal, long-term expansion, and leukemic transformation of genetically modified human hematopoietic and patient-derived leukemic stem cells. Methods Mol Biol 2014; 1185:195-210. [PMID: 25062630 DOI: 10.1007/978-1-4939-1133-2_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
With the emergence of the concept of the leukemic stem cell (LSC), assays to study them remain pivotal in understanding (leukemic) stem cell biology. Although the in vivo NOD-SCID or NSG xenotransplantation model is currently still the favored assay of choice in most cases, this system has some limitations as well such as its cost-effectiveness, duration, and lack of engraftability of cells from some acute myeloid leukemia (AML) patients. Here, we describe in vitro assays in which long-term expansion and self-renewal of LSCs isolated from AML patients can be evaluated. We have optimized lentiviral transduction procedures in order to stably express genes of interest or stably downmodulate genes using RNAi in primary AML cells, and these approaches are described in detail here. Also, we describe bone marrow stromal coculture systems in which cobblestone area-forming cell activity, self-renewal, long-term expansion, and in vitro myeloid or lymphoid transformation can be evaluated in human CD34(+) cells of fetal or adult origin that are engineered to express oncogenes. Together, these tools should allow a further molecular elucidation of derailed signal transduction in LSCs.
Collapse
Affiliation(s)
- Pallavi Sontakke
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
75
|
Mahmud N, Petro B, Baluchamy S, Li X, Taioli S, Lavelle D, Quigley JG, Suphangul M, Araki H. Differential effects of epigenetic modifiers on the expansion and maintenance of human cord blood stem/progenitor cells. Biol Blood Marrow Transplant 2013; 20:480-9. [PMID: 24374212 DOI: 10.1016/j.bbmt.2013.12.562] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/13/2013] [Indexed: 01/27/2023]
Abstract
Epigenetic therapies, including DNA methyltransferase and histone deacetylase (HDAC) inhibitors, are increasingly being considered to treat hematological malignancies, but their effects on normal hematopoietic stem cells (HSCs) remain largely unexplored. We compared the effects of several HDAC inhibitors, including valproic acid (VPA) and trichostatin A (TSA), alone or in combination with 5-aza-2'-deoxycytidine (5azaD) on the expansion of HSCs. VPA induced the highest expansion of CD34+CD90+ cells and progenitor cells compared with other HDAC inhibitors or the sequential addition of 5azaD/TSA in culture. Xenotransplantation studies demonstrated that VPA prevents HSC loss, whereas 5azaD/TSA treatment leads to a net expansion of HSCs that retain serial transplantation ability. 5azaD/TSA-mediated HSC expansion was associated with increased histone acetylation and transient DNA demethylation, which corresponded with higher gene transcript levels. However, some genes with increased transcript levels lacked changes in methylation. Importantly, a global microarray analysis revealed a set of differentially expressed genes in 5azaD/TSA- and VPA-expanded CD34+ cells that might be involved in the expansion and maintenance of transplantable HSCs, respectively. In summary, our data indicate that treatment of HSCs with different chromatin-modifying agents results in either the expansion or maintenance of HSCs, an observation of potential therapeutic importance.
Collapse
Affiliation(s)
- Nadim Mahmud
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; University of Illinois Cancer Center, Chicago, Illinois.
| | - Benjamin Petro
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sudhakar Baluchamy
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Xinmin Li
- Clinical Microarray Core, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Simona Taioli
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Donald Lavelle
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - John G Quigley
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; University of Illinois Cancer Center, Chicago, Illinois
| | - Montha Suphangul
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Hiroto Araki
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
76
|
Faridi F, Ponnusamy K, Quagliano-Lo Coco I, Chen-Wichmann L, Grez M, Henschler R, Wichmann C. Aberrant epigenetic regulators control expansion of human CD34+ hematopoietic stem/progenitor cells. Front Genet 2013; 4:254. [PMID: 24348510 PMCID: PMC3842847 DOI: 10.3389/fgene.2013.00254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/08/2013] [Indexed: 12/02/2022] Open
Abstract
Transcription is a tightly regulated process ensuring the proper expression of numerous genes regulating all aspects of cellular behavior. Transcription factors regulate multiple genes including other transcription factors that together control a highly complex gene network. The transcriptional machinery can be “hijacked” by oncogenic transcription factors, thereby leading to malignant cell transformation. Oncogenic transcription factors manipulate a variety of epigenetic control mechanisms to fulfill gene regulatory and cell transforming functions. These factors assemble epigenetic regulators at target gene promoter sequences, thereby disturbing physiological gene expression patterns. Retroviral vector technology and the availability of “healthy” human hematopoietic CD34+ progenitor cells enable the generation of pre-leukemic cell models for the analysis of aberrant human hematopoietic progenitor cell expansion mediated by leukemogenic transcription factors. This review summarizes recent findings regarding the mechanism by which leukemogenic gene products control human hematopoietic CD34+ progenitor cell expansion by disrupting the normal epigenetic program.
Collapse
Affiliation(s)
- Farnaz Faridi
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany
| | - Kanagaraju Ponnusamy
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany ; Institute of Transfusion Medicine and Immunohematology, Goethe University Frankfurt, Germany
| | | | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany
| | - Manuel Grez
- Institute for Biomedical Research Georg-Speyer-Haus, Frankfurt, Germany
| | - Reinhard Henschler
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostasis, Ludwig-Maximilian University Hospital Munich, Germany
| |
Collapse
|
77
|
Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood 2013; 122:3322-30. [DOI: 10.1182/blood-2013-04-491944] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Key Points
More than 60% of primary AML blasts constitutively produce high levels of NOX-derived reactive oxygen species (ROS), which drives AML proliferation. High ROS AMLs show depleted antioxidant defenses but evade the oxidative stress response through suppression of p38MAPK signaling.
Collapse
|
78
|
Chen S, Su Y, Wang J. ROS-mediated platelet generation: a microenvironment-dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death Dis 2013; 4:e722. [PMID: 23846224 PMCID: PMC3730424 DOI: 10.1038/cddis.2013.253] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/18/2022]
Abstract
Platelets have an important role in the body because of their manifold functions in haemostasis, thrombosis, and inflammation. Platelets are produced by megakaryocytes (MKs) that are differentiated from haematopoietic stem cells via several consecutive stages, including MK lineage commitment, MK progenitor proliferation, MK differentiation and maturation, cell apoptosis, and platelet release. During differentiation, the cells migrate from the osteoblastic niche to the vascular niche in the bone marrow, which is accompanied by reactive oxygen species (ROS)-dependent oxidation state changes in the microenvironment, suggesting that ROS can distinctly influence platelet generation and function in a microenvironment-dependent manner. The objective of this review is to reveal the role of ROS in regulating MK proliferation, differentiation, maturation, and platelet activation, thereby providing new insight into the mechanism of platelet generation, which may lead to the development of new therapeutic agents for thrombocytopenia and/or thrombosis.
Collapse
Affiliation(s)
- S Chen
- College of Preventive Medicine, State Key Laboratory of Trauma and Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | |
Collapse
|
79
|
Zhou F, Shen Q, Claret FX. Novel roles of reactive oxygen species in the pathogenesis of acute myeloid leukemia. J Leukoc Biol 2013; 94:423-9. [PMID: 23715741 DOI: 10.1189/jlb.0113006] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has become apparent that regulation of ROS is important in cell signaling and homeostasis. Accumulation of ROS triggers oxidative stress in various cell types and contributes to the development, progression, and persistence of cancer. Recent research has demonstrated that redox dysregulation caused by ROS promotes proliferation, differentiation, genomic, and epigenetic alterations; immune evasion; and survival in leukemic cells. ROS act as signaling molecules to regulate redox-sensitive transcriptional factors, enzymes, oncogenes, and other downstream effectors. Thus, a thorough understanding the role of ROS as key mediators in leukemogenesis is likely to provide opportunities for improved pharmacological intervention. In this review, we summarize the recent findings that support a role for ROS in the pathogenesis of AML and outline innovative approaches in the implementation of redox therapies for myeloid malignancies.
Collapse
Affiliation(s)
- Fuling Zhou
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
80
|
RUNX1/AML1 mutant collaborates with BMI1 overexpression in the development of human and murine myelodysplastic syndromes. Blood 2013; 121:3434-46. [DOI: 10.1182/blood-2012-06-434423] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Key Points
BMI1 overexpression is one of the second hit partner genes of RUNX1 mutations that contribute to the development of MDSs.
Collapse
|
81
|
Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells. Blood 2013; 121:2452-61. [DOI: 10.1182/blood-2012-08-451666] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Knockdown of individual PRC1 members in human stem/progenitor cells revealed a lack of redundancy between various paralog family members. CBX2 was identified as an important regulator of p21/CDKN1A independent of BMI1/PCGF4.
Collapse
|
82
|
Esmailpour T, Huang T. TBX3 promotes human embryonic stem cell proliferation and neuroepithelial differentiation in a differentiation stage-dependent manner. Stem Cells 2013; 30:2152-63. [PMID: 22865636 DOI: 10.1002/stem.1187] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T-box 3 (Tbx3) is a member of the T-box family of genes. Mutations that result in the haploinsufficiency of TBX3 cause ulnar mammary syndrome in humans characterized by mammary gland hypoplasia as well as other congenital defects. In mice, homozygous mutations are embryonic lethal, suggesting that Tbx3 is essential for embryo development. Studies in mice have shown that Tbx3 is essential in the maintenance of mouse embryonic stem cell (ESC) self-renewal and in their differentiation into extraembryonic endoderm (ExEn). The role TBX3 plays in regulating human ESCs (hESCs) has not been explored. Since mouse and hESCs are known to represent distinct pluripotent states, it is important to address the role of TBX3 in hESC self-renewal and differentiation. Using overexpression and knockdown strategies, we found that TBX3 overexpression promotes hESC proliferation possibly by repressing the expression of both NFκBIB and p14(ARF) , known cell cycle regulators. During differentiation, TBX3 knockdown resulted in decreased neural rosette formation and in decreased expression of neuroepithelial and neuroectoderm markers (PAX6, LHX2, FOXG1, and RAX). Taken together, our data suggest a role for TBX3 in hESC proliferation and reveal an unrecognized novel role of TBX3 in promoting neuroepithelial differentiation. Our results suggest that TBX3 plays distinct roles in regulating self-renewal and differentiation in both hESCs and mouse ESCs.
Collapse
Affiliation(s)
- Taraneh Esmailpour
- Department of Pediatrics, Division of Human Genetics, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
83
|
Urao N, Ushio-Fukai M. Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 2013; 54:26-39. [PMID: 23085514 PMCID: PMC3637653 DOI: 10.1016/j.freeradbiomed.2012.10.532] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 01/19/2023]
Abstract
Bone marrow (BM)-derived stem and progenitor cell functions including self-renewal, differentiation, survival, migration, proliferation, and mobilization are regulated by unique cell-intrinsic and -extrinsic signals provided by their microenvironment, also termed the "niche." Reactive oxygen species (ROS), especially hydrogen peroxide (H(2)O(2)), play important roles in regulating stem and progenitor cell functions in various physiologic and pathologic responses. The low level of H(2)O(2) in quiescent hematopoietic stem cells (HSCs) contributes to maintaining their "stemness," whereas a higher level of H(2)O(2) within HSCs or their niche promotes differentiation, proliferation, migration, and survival of HSCs or stem/progenitor cells. Major sources of ROS are NADPH oxidase and mitochondria. In response to ischemic injury, ROS derived from NADPH oxidase are increased in the BM microenvironment, which is required for hypoxia and hypoxia-inducible factor-1α expression and expansion throughout the BM. This, in turn, promotes progenitor cell expansion and mobilization from BM, leading to reparative neovascularization and tissue repair. In pathophysiological states such as aging, atherosclerosis, heart failure, hypertension, and diabetes, excess amounts of ROS create an inflammatory and oxidative microenvironment, which induces cell damage and apoptosis of stem and progenitor cells. Understanding the molecular mechanisms of how ROS regulate the functions of stem and progenitor cells and their niche in physiological and pathological conditions will lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
84
|
Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms. Leukemia 2012; 27:523-33. [PMID: 23257781 DOI: 10.1038/leu.2012.368] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are histone modifiers that reside in two multi-protein complexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). The existence of multiple orthologs for each Polycomb gene allows the formation of a multitude of distinct PRC1 and PRC2 sub-complexes. Changes in the expression of individual PcG genes are likely to cause perturbations in the composition of the PRC, which affect PRC enzymatic activity and target selectivity. An interesting recent development is that aberrant expression of, and mutations in, PcG genes have been shown to occur in hematopoietic neoplasms, where they display both tumor-suppressor and oncogenic activities. We therefore comprehensively reviewed the latest research on the role of PcG genes in normal and malignant blood cell development. We conclude that future research to elucidate the compositional changes of the PRCs and methods to intervene in PRC assembly will be of great therapeutic relevance to combat hematological malignancies.
Collapse
|
85
|
Schnerch A, Lee JB, Graham M, Guezguez B, Bhatia M. Human embryonic stem cell-derived hematopoietic cells maintain core epigenetic machinery of the polycomb group/Trithorax Group complexes distinctly from functional adult hematopoietic stem cells. Stem Cells Dev 2012; 22:73-89. [PMID: 22800282 DOI: 10.1089/scd.2012.0204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic cells derived from human embryonic stem cells (hESCs) have a number of potential utilities, including the modeling of hematological disorders in vitro, whereas the use for cell replacement therapies has proved to be a loftier goal. This is due to the failure of differentiated hematopoietic cells, derived from human pluripotent stem cells (hPSCs), to functionally recapitulate the in vivo properties of bona fide adult hematopoietic stem/progenitor cells (HSPCs). To better understand the limitations of differentiation programming at the molecular level, we have utilized differential gene expression analysis of highly purified cells that are enriched for hematopoietic repopulating activity across embryonic, fetal, and adult human samples, including in vivo explants of human HSPCs 8-weeks post-transplantation. We reveal that hESC-derived hematopoietic progenitor cells (eHPCs) fail to express critical transcription factors which are known to govern self-renewal and myeloid/lymphoid development and instead retain the expression of Polycomb Group (PcG) and Trithorax Group (TrxG) factors which are more prevalent in embryonic cell types that include EZH1 and ASH1L, respectively. These molecular profiles indicate that the differential expression of the core epigenetic machinery comprising PcGs/TrxGs in eHPCs may serve as previously unexplored molecular targets that direct hematopoietic differentiation of PSCs toward functional HSPCs in humans.
Collapse
Affiliation(s)
- Angelique Schnerch
- Faculty of Health Sciences, Stem Cell and Cancer Research Institute (SCC-RI), McMaster University, Hamilton, Canada
| | | | | | | | | |
Collapse
|
86
|
Romanski A, Schwarz K, Keller M, Wietbrauk S, Vogel A, Roos J, Oancea C, Brill B, Krämer OH, Serve H, Ruthardt M, Bug G. Deacetylase inhibitors modulate proliferation and self-renewal properties of leukemic stem and progenitor cells. Cell Cycle 2012; 11:3219-26. [PMID: 22895185 DOI: 10.4161/cc.21565] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly malignant disease that is not curable in the majority of patients. Numerous non-random genetic abnormalities are known, among which several translocations such as PLZF/RARα or AML1/ETO are known to aberrantly recruit histone deacetylases. Deacetylase inhibitors (DACi) are promising drugs leading to growth inhibition, cell cycle arrest, premature senescence and apoptosis in malignant cells. It is believed that DACi may have clinical efficacy by eradicating the most primitive population of leukemic stem and progenitor cells, possibly by interfering with self-renewal. The aim of the study was to investigate the effects of DACi on leukemic stem and progenitor cells using murine transduction-transplantation models of hematopoietic cells harboring the leukemia-associated fusion proteins (LAFP) PLZF/RARα or a truncated AML1/ETO protein (AML1/ETO exon 9). We show that the self-renewal and short-term repopulation capacity of AML1/ETO- or PLZF/RARα-expressing Sca1+/lin- stem and progenitor cells are profoundly inhibited by clinically applicable concentrations of the DACi dacinostat and vorinostat. To further investigate the mechanisms underlying these effects, we examined the impact of DACi on the transcription factor c-MYC and the Polycomb group protein BMI1, which are induced by LAFP and involved in leukemic transformation. In AML1/ETO or PLZF/RARα-positive 32D cells, DACi-mediated antiproliferative effects were associated with downregulation of BMI1 and c-MYC protein levels. Similar effects were demonstrated in primary samples of cytogenetically defined high-risk AML patients. In conclusion, DACi may be effective as maintenance therapy by negatively interfering with signaling pathways that control survival and proliferation of leukemic stem and progenitor cells.
Collapse
Affiliation(s)
- Annette Romanski
- Department of Medicine II, Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Despite its complexity, blood is probably the best understood developmental system, largely due to seminal experimentation in the mouse. Clinically, hematopoietic stem cell (HSC) transplantation represents the most widely deployed regenerative therapy, but human HSCs have only been characterized relatively recently. The discovery that immune-deficient mice could be engrafted with human cells provided a powerful approach for studying HSCs. We highlight 2 decades of studies focusing on isolation and molecular regulation of human HSCs, therapeutic applications, and early lineage commitment steps, and compare mouse and humanized models to identify both conserved and species-specific mechanisms that will aid future preclinical research.
Collapse
Affiliation(s)
- Sergei Doulatov
- Division of Stem Cell and Developmental Biology, Campbell Family Institute for Cancer Research/Ontario Cancer Institute, Toronto, ON M5G 1L7, Canada
| | | | | | | |
Collapse
|
88
|
Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 2012; 26:2186-96. [PMID: 22652755 DOI: 10.1038/leu.2012.145] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The graft-versus-leukemia effect of allogeneic hematopoietic stem cell transplantation (HSCT) has shown that the immune system is capable of eradicating acute myeloid leukemia (AML). This knowledge, along with the identification of the target antigens against which antileukemia immune responses are directed, has provided a strong impetus for the development of antigen-targeted immunotherapy of AML. The success of any antigen-specific immunotherapeutic strategy depends critically on the choice of target antigen. Ideal molecules for immune targeting in AML are those that are: (1) leukemia-specific; (2) expressed in most leukemic blasts including leukemic stem cells; (3) important for the leukemic phenotype; (4) immunogenic; and (5) clinically effective. In this review, we provide a comprehensive overview on AML-related tumor antigens and assess their applicability for immunotherapy against the five criteria outlined above. In this way, we aim to facilitate the selection of appropriate target antigens, a task that has become increasingly challenging given the large number of antigens identified and the rapid pace at which new targets are being discovered. The information provided in this review is intended to guide the rational design of future antigen-specific immunotherapy trials, which will hopefully lead to new antileukemia therapies with more selectivity and higher efficacy.
Collapse
|
89
|
Nakamura S, Oshima M, Yuan J, Saraya A, Miyagi S, Konuma T, Yamazaki S, Osawa M, Nakauchi H, Koseki H, Iwama A. Bmi1 confers resistance to oxidative stress on hematopoietic stem cells. PLoS One 2012; 7:e36209. [PMID: 22606246 PMCID: PMC3350495 DOI: 10.1371/journal.pone.0036209] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/28/2012] [Indexed: 11/19/2022] Open
Abstract
Background The polycomb-group (PcG) proteins function as general regulators of stem cells. We previously reported that retrovirus-mediated overexpression of Bmi1, a gene encoding a core component of polycomb repressive complex (PRC) 1, maintained self-renewing hematopoietic stem cells (HSCs) during long-term culture. However, the effects of overexpression of Bmi1 on HSCs in vivo remained to be precisely addressed. Methodology/Principal findings In this study, we generated a mouse line where Bmi1 can be conditionally overexpressed under the control of the endogenous Rosa26 promoter in a hematopoietic cell-specific fashion (Tie2-Cre;R26StopFLBmi1). Although overexpression of Bmi1 did not significantly affect steady state hematopoiesis, it promoted expansion of functional HSCs during ex vivo culture and efficiently protected HSCs against loss of self-renewal capacity during serial transplantation. Overexpression of Bmi1 had no effect on DNA damage response triggered by ionizing radiation. In contrast, Tie2-Cre;R26StopFLBmi1 HSCs under oxidative stress maintained a multipotent state and generally tolerated oxidative stress better than the control. Unexpectedly, overexpression of Bmi1 had no impact on the level of intracellular reactive oxygen species (ROS). Conclusions/Significance Our findings demonstrate that overexpression of Bmi1 confers resistance to stresses, particularly oxidative stress, onto HSCs. This thereby enhances their regenerative capacity and suggests that Bmi1 is located downstream of ROS signaling and negatively regulated by it.
Collapse
Affiliation(s)
- Shunsuke Nakamura
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Jin Yuan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Takaaki Konuma
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- ERATO, Chiyoda-ku, Tokyo, Japan
| | - Mitsujiro Osawa
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- ERATO, Chiyoda-ku, Tokyo, Japan
| | - Haruhiko Koseki
- RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Japan Science and Technology Agency (JST), CREST, Tokyo, Japan
- * E-mail:
| |
Collapse
|
90
|
Nishino T, Osawa M, Iwama A. New approaches to expand hematopoietic stem and progenitor cells. Expert Opin Biol Ther 2012; 12:743-56. [DOI: 10.1517/14712598.2012.681372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
91
|
Kaplan D, Kaye N, Liu F, Fu P, Margevicius S, Meyerson HJ, Lazarus HM. The functional duality of HoxB4 in hematopoietic reconstituting cells. Cytometry A 2012; 83:127-33. [DOI: 10.1002/cyto.a.22059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 01/30/2023]
|
92
|
Affiliation(s)
- Koji Itahana
- Cancer & Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, 169857, Singapore
| | | |
Collapse
|
93
|
Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, Davis TW. BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 2012; 112:2729-41. [PMID: 21678481 DOI: 10.1002/jcb.23234] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growing evidence has demonstrated that clonogenic cancer stem (initiating) cells are responsible for tumor regrowth and disease relapse. Bmi-1 plays a critical role in the self-renewal of adult stem cells. The Bmi-1 protein is elevated in many types of cancers, and experimental reduction of Bmi-1 protein levels by small interfering RNA (siRNA) causes apoptosis and/or senescence in tumor cells in vitro and increases susceptibility to cytotoxic agents. The Bmi-1 protein has no known enzymatic activity, but serves as the key regulatory component of the PRC1 complex (polycomb repressive complex-1). This complex influences chromatin structure and regulates transcriptional activity of a number of important loci including the Ink4a locus which encodes the tumor suppressor proteins p16(Ink4a) and p14(Arf) . In this prospective study, we will discuss the implication of BMI1 in cancers, the biology of BMI1, and the regulatory control of BMI1 expression. The target validation and the future prospects of targeting BMI1 in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Liangxian Cao
- PTC Therapeutics, Inc., South Plainfield, New Jersey, New Jersey 07080, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Overexpression of BMI1 confers clonal cells resistance to apoptosis and contributes to adverse prognosis in myelodysplastic syndrome. Cancer Lett 2012; 317:33-40. [DOI: 10.1016/j.canlet.2011.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 02/02/2023]
|
95
|
Yin T, Wei H, Leng Z, Yang Z, Gou S, Wu H, Zhao G, Hu X, Wang C. Bmi-1 promotes the chemoresistance, invasion and tumorigenesis of pancreatic cancer cells. Chemotherapy 2012; 57:488-96. [PMID: 22248802 DOI: 10.1159/000334103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/12/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS The polycomb protein Bmi-1 plays oncogenic roles in various cancers. Here we aimed to investigate the contribution of Bmi-1 on the malignant behaviors of pancreatic cancer such as chemoresistance, invasion and tumorigenesis. METHODS AND RESULTS The MTT cell proliferation assay showed that shRNA mediated Bmi-1 knockdown and enhanced the chemosensitivity of pancreatic cancer cells to gemcitabine. The transwell invasion assay showed that Bmi-1 knockdown inhibited the invasion of pancreatic cancer cells in vitro. Notably, the reduced abilities of chemoresistance and invasion were associated with the transition from the mesenchymal phenotype to the epithelial phenotype of pancreatic cancer cells. Moreover, Bmi-1 knockdown led to the inhibition of the PI3K-Akt pathway and disrupted the sphere-forming abilities of pancreatic cancer cells. A nude mouse xenograft experiment demonstrated that pancreatic cancer cells depleted of Bmi-1 showed weak tumorigenicity in vivo. CONCLUSION Our data suggest that Bmi-1 plays an important role in the progression of pancreatic cancer and represents a novel target for antitumor therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Tao Yin
- Pancreatic Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Waldron T, De Dominici M, Soliera AR, Audia A, Iacobucci I, Lonetti A, Martinelli G, Zhang Y, Martinez R, Hyslop T, Bender TP, Calabretta B. c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells. Leukemia 2011; 26:644-53. [PMID: 21960247 PMCID: PMC3252490 DOI: 10.1038/leu.2011.264] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Expression of c-Myb is required for normal hematopoiesis and for proliferation of myeloid leukemia blasts and a subset of T cell leukemia but its role in B-cell leukemogenesis is unknown. We tested the role of c-Myb in p190BCR/ABL-dependent B-cell leukemia in mice transplanted with p190BCR/ABL-transduced marrow cells with a c-Myb allele (Mybf/d) and in double transgenic p190BCR/ABL/Mybw/d mice. In both models, loss of a c-Myb allele caused a less aggressive B-cell leukemia. In p190BCR/ABL expressing human B-cell leukemia lines, knockdown of c-Myb expression suppressed proliferation and colony formation. Compared to c-Mybw/f cells, expression of Bmi1, a regulator of stem cell proliferation and maintenance, was decreased in pre-B cells from Mybw/d p190BCR/ABL transgenic mice. Ectopic expression of a mutant c-Myb or Bmi1 enhanced the proliferation and colony formation of Mybw/d p190BCR/ABL B-cells; by contrast, Bmi1 downregulation inhibited colony formation of p190BCR/ABL-expressing murine B cells and human B-cell leukemia lines. Moreover, c-Myb interacted with a segment of the human Bmi1 promoter and enhanced its activity. In blasts from nineteen Ph1 adult ALL patients, levels of c-Myb and Bmi1 showed a positive correlation. Together, these findings support the existence of a c-Myb-Bmi1 transcription regulatory pathway required for p190BCR/ABL leukemogenesis.
Collapse
Affiliation(s)
- T Waldron
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Tan L, Sui X, Deng H, Ding M. Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One 2011; 6:e23383. [PMID: 21826251 PMCID: PMC3149653 DOI: 10.1371/journal.pone.0023383] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 07/15/2011] [Indexed: 02/06/2023] Open
Abstract
Background Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells. Methodology/Principal Findings Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted. Conclusions/Significance Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3 cell line. Generation of holoclones can serve as a novel model for studying cancer stem cells, and attribute to developing new anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Tan
- College of Life Sciences, Peking University, Beijing, China
| | - Xin Sui
- College of Life Sciences, Peking University, Beijing, China
| | - Hongkui Deng
- College of Life Sciences, Peking University, Beijing, China
| | - Mingxiao Ding
- College of Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
98
|
Abstract
Abstract
Reactive oxygen species (ROS) are a heterogeneous group of molecules that are generated by mature myeloid cells during innate immune responses, and are also implicated in normal intracellular signaling. Excessive production of ROS (and/or a deficiency in antioxidant pathways) can lead to oxidative stress, a state that has been observed in several hematopoietic malignancies including acute and chronic myeloid leukemias (AML and CML). Currently it is unclear what the cause of oxidative stress might be and whether oxidative stress contributes to the development, progression, or maintenance of these diseases. This article reviews the current evidence suggesting a role for ROS both in normal hematopoiesis and in myeloid leukemogenesis, and discusses the usefulness of therapeutically targeting oxidative stress in myeloid malignancy.
Collapse
|
99
|
Yuan J, Takeuchi M, Negishi M, Oguro H, Ichikawa H, Iwama A. Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia 2011; 25:1335-43. [PMID: 21527932 DOI: 10.1038/leu.2011.85] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The polycomb group (PcG) proteins, particularly Bmi1, have an essential role in maintaining the self-renewing capacity of leukemic stem cells (LSCs). Although one of their major targets in LSCs is known to be the Ink4a/Arf tumor suppressor gene locus, the role of PcG proteins in the leukemic reprogramming of target cells into LSCs is not well characterized. In this study, Bmi1(-/-) granulocyte/macrophage progenitors (GMPs) were transformed with the leukemic fusion gene MLL-AF9. Although Bmi1 was not essential to the immortalization of GMPs in vitro, Bmi1(-/-) cells showed enhanced differentiation and retained less LSCs. A number of genes were derepressed in the absence of Bmi1 including potential tumor suppressor genes. Transplantation assays demonstrated that Bmi1 was indispensable for the development of leukemia in vivo and deletion of both the Ink4a and Arf genes only partially restored the leukemogenic capacity of Bmi1(-/-) LSCs. Of note, the complementation of immortalized Bmi1(-/-)Ink4a-Arf(-/-) GMPs with Bmi1 failed to restore the expression of the majority of deregulated genes and leukemogenic activity in vivo. These findings indicate that Bmi1 is essential for the faithful reprogramming of myeloid progenitors into LSCs and unveil that leukemic fusion genes require PcG proteins exerting an effect in concert to establish LSC-specific transcriptional profiles, which confer full leukemogenic activity on LSCs.
Collapse
Affiliation(s)
- J Yuan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
100
|
Klauke K, de Haan G. Polycomb group proteins in hematopoietic stem cell aging and malignancies. Int J Hematol 2011; 94:11-23. [PMID: 21523335 DOI: 10.1007/s12185-011-0857-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.
Collapse
Affiliation(s)
- Karin Klauke
- Department of Cell Biology, Section of Stem Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,European Research Institute on the Biology of Ageing (ERIBA), Groningen, The Netherlands
| | - Gerald de Haan
- Department of Cell Biology, Section of Stem Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,European Research Institute on the Biology of Ageing (ERIBA), Groningen, The Netherlands.
| |
Collapse
|