51
|
Wrangle JM, Patterson A, Johnson CB, Neitzke DJ, Mehrotra S, Denlinger CE, Paulos CM, Li Z, Cole DJ, Rubinstein MP. IL-2 and Beyond in Cancer Immunotherapy. J Interferon Cytokine Res 2018; 38:45-68. [PMID: 29443657 PMCID: PMC5815463 DOI: 10.1089/jir.2017.0101] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/26/2017] [Indexed: 12/11/2022] Open
Abstract
The development of the T- and natural killer (NK) cell growth factor IL-2 has been a sentinel force ushering in the era of immunotherapy in cancer. With the advent of clinical grade recombinant IL-2 in the mid-1980s, oncologists could for the first time directly manipulate lymphocyte populations with systemic therapy. By itself, recombinant IL-2 can induce clinical responses in up to 15% of patients with metastatic cancer or renal cell carcinoma. When administered with adoptively transferred tumor-reactive lymphocytes, IL-2 promotes T cell engraftment and response rates of up to 50% in metastatic melanoma patients. Importantly, these IL-2-driven responses can yield complete and durable responses in a subset of patients. However, the use of IL-2 is limited by toxicity and concern of the expansion of T regulatory cells. To overcome these limitations and improve response rates, other T cell growth factors, including IL-15 and modified forms of IL-2, are in clinical development. Administering T cell growth factors in combination with other agents, such as immune checkpoint pathway inhibitors, may also improve efficacy. In this study, we review the development of T- and NK cell growth factors and highlight current combinatorial approaches based on these reagents.
Collapse
Affiliation(s)
- John M. Wrangle
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Alicia Patterson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - C. Bryce Johnson
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel J. Neitzke
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chadrick E. Denlinger
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chrystal M. Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - David J. Cole
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Mark P. Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
52
|
Chinen J, Badran YR, Geha RS, Chou JS, Fried AJ. Advances in basic and clinical immunology in 2016. J Allergy Clin Immunol 2017; 140:959-973. [DOI: 10.1016/j.jaci.2017.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
|
53
|
Struja T, Kutz A, Fischli S, Meier C, Mueller B, Recher M, Schuetz P. Is Graves' disease a primary immunodeficiency? New immunological perspectives on an endocrine disease. BMC Med 2017; 15:174. [PMID: 28942732 PMCID: PMC5611589 DOI: 10.1186/s12916-017-0939-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/04/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Uncertainty about factors influencing the susceptibility and triggers for Graves' disease persists, along with a wide variation in the response to anti-thyroid drugs, currently at approximately 50% of non-responders. The aim of this narrative review is to summarize immunological concepts, with a combined endocrine and immunological perspective, to highlight potential new areas of research. MAIN TEXT Relevant studies were identified through a systematic literature search using the PubMed and EMBASE databases in March 2016. No cut-offs regarding dates were imposed. We used the terms "Graves' Disease" or "Basedow" or "thyrotoxicosis" together with the terms "etiology", "pathophysiology", "immunodeficiency", "causality", and "autoimmunity". The terms "orbitopathy", "ophthalmopathy", and "amiodarone" were excluded. Articles in English, French, German, Croatian, Spanish, and Italian were eligible for inclusion. CONCLUSIONS While concepts such as the impact of iodine, smoking, human leucocyte antigen, infections, and ethnicity are established, new ideas have emerged. Pertaining evidence suggests the involvement of autoimmunity and immunodeficiency in the pathophysiology of Graves' disease. Recent studies point to specific immunological mechanisms triggering the onset of disease, which may also serve as targets for more specific therapies.
Collapse
Affiliation(s)
- Tristan Struja
- Medical University Department, Clinic for Endocrinology, Diabetes & Metabolism, Kantonsspital Aarau, Aarau, Switzerland.
| | - Alexander Kutz
- Medical University Department, Clinic for Endocrinology, Diabetes & Metabolism, Kantonsspital Aarau, Aarau, Switzerland
| | - Stefan Fischli
- Medical Clinic, Department for Endocrinology, Diabetes & Metabolism, Kantonsspital Luzern, Luzern, Switzerland
| | - Christian Meier
- Medical Faculty of the University of Basel, Basel, Switzerland.,Division of Endocrinology, Diabetes & Metabolism, University Hospital and University Basel, Basel, Switzerland
| | - Beat Mueller
- Medical University Department, Clinic for Endocrinology, Diabetes & Metabolism, Kantonsspital Aarau, Aarau, Switzerland.,Medical Faculty of the University of Basel, Basel, Switzerland
| | - Mike Recher
- Medical Faculty of the University of Basel, Basel, Switzerland.,Medical Outpatient Clinic and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital and University Basel, Basel, Switzerland
| | - Philipp Schuetz
- Medical University Department, Clinic for Endocrinology, Diabetes & Metabolism, Kantonsspital Aarau, Aarau, Switzerland.,Medical Faculty of the University of Basel, Basel, Switzerland
| |
Collapse
|
54
|
Interleukin-7 in the transition of bone marrow progenitors to the thymus. Immunol Cell Biol 2017; 95:916-924. [PMID: 28811625 DOI: 10.1038/icb.2017.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/03/2023]
Abstract
Interleukin-7 (IL-7) is essential for the development of T cells in humans and mice where deficiencies in IL-7 signaling result in severe immunodeficiency. T cells require IL-7 at multiple points during development; however, it is unclear when IL-7 is first necessary. We observed that mice with impaired IL-7 signaling had a large reduction in the number of early thymic progenitors (ETPs) while mice that overexpress IL-7 had greatly increased numbers of ETPs. These results indicated that the development of ETPs is sensitive to IL-7. Bone marrow progenitors of ETP are present in normal numbers in mice with impaired IL-7 signaling (IL-7Rα449F) and were efficiently recruited to the thymus. Furthermore, ETPs and their progenitors from IL-7Rα449F mice did not undergo increased apoptosis and proliferate normally compared to WT cells. Mixed bone marrow chimeras demonstrated that IL-7 signaling has a cell-intrinsic role in ETP development but was not required for development of bone marrow progenitors. We have shown a novel role for IL-7 signaling in the development of ETPs that is distinct from classic mechanisms of IL-7 regulating survival and proliferation.
Collapse
|
55
|
Interleukin-7 and Immunosenescence. J Immunol Res 2017; 2017:4807853. [PMID: 28484723 PMCID: PMC5397725 DOI: 10.1155/2017/4807853] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/01/2017] [Accepted: 02/19/2017] [Indexed: 12/21/2022] Open
Abstract
The age of an individual is an important, independent risk factor for many of the most common diseases afflicting modern societies. Interleukin-7 (IL-7) plays a central, critical role in the homeostasis of the immune system. Recent studies support a critical role for IL-7 in the maintenance of a vigorous healthspan. We describe the role of IL-7 and its receptor in immunosenescence, the aging of the immune system. An understanding of the role that IL-7 plays in aging may permit parsimonious preventative or therapeutic solutions for diverse conditions. Perhaps IL-7 might be used to "tune" the immune system to optimize human healthspan and longevity.
Collapse
|
56
|
Vignesh P, Rawat A, Singh S. An Update on the Use of Immunomodulators in Primary Immunodeficiencies. Clin Rev Allergy Immunol 2017; 52:287-303. [PMID: 27873163 DOI: 10.1007/s12016-016-8591-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genomic revolution in the past decade fuelled by breathtaking advances in sequencing technologies has defined several new genetic diseases of the immune system. Many of these newly characterized diseases are a result of defects in genes involved in immune regulation. The discovery of these diseases has opened a vista of new therapeutic possibilities. Immunomodulatory agents, a hitherto unexplored therapeutic option in primary immunodeficiency diseases have been tried in a host of these newly described maladies. These agents have been shown conclusively to favorably modulate immune responses, resulting in abatement of clinical manifestations both in experimental models and patients. While some of the treatment options have been approved for therapeutic use or have been shown to be of merit in open-label trials, others have been shown to be efficacious in a handful of clinical cases, animal models, and cell lines. Interferon γ is approved for use in chronic granulomatous disease (CGD) to reduce the burden of infection and and has a good long-term efficacy. Recombinant human IL7 therapy has been shown increase the peripheral CD4 and CD8 T cell counts in patients with idiopathic CD4. Anti-IL1 agents are approved for the management of cryopyrin-related autoinflammatory syndrome, and their therapeutic efficacy is being increasingly recognized in other autoinflammatory syndromes and CGD. Mammalian target of rapamycin (mTOR) inhibitors have been proven useful in autoimmune lymphoproliferative syndrome (ALPS) and in IPEX syndrome. Therapies reported to be potential use in case reports include abatacept in CTLA4 haploinsufficiency and LRBA deficiency, ruxolitinib in gain-of-function STAT1, tocilizumab in gain-of-function STAT3 defect, mTOR inhibitors in PIK3CD activation, magnesium in XMEN syndrome, and pioglitazone in CGD. Treatment options of merit in human cell lines include interferon α and interferon β in TLR3 and UNC-93B deficiencies, anti-interferon therapy in SAVI, and Rho-kinase inhibitors in TTC7A deficiency. Anti-IL17 agents have show efficacy in animal models of leukocyte adhesion defect (LAD) and ALPS. This topical review explores the use of various immunomodulators and other biological agents in the context of primary immunodeficiency and autoinflammatory diseases.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, PGIMER, Chandigarh, India
| | - Amit Rawat
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, PGIMER, Chandigarh, India.
| | - Surjit Singh
- Pediatric Allergy and Immunology Unit, Advanced Pediatrics Centre, PGIMER, Chandigarh, India
| |
Collapse
|
57
|
Guffroy A, Gies V, Martin M, Korganow AS. [Primary immunodeficiency and autoimmunity]. Rev Med Interne 2016; 38:383-392. [PMID: 27889323 DOI: 10.1016/j.revmed.2016.10.388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022]
Abstract
Many evidences highlight that immunodeficiency and autoimmunity are two sides of a same coin. Primary immune deficiencies (PIDs), which are rare mono- or multigenic defects of innate or adaptative immunity, frequently associate with autoimmunity. Analyses of single-gene defects in immune pathways of families with PIDs, by new tools of molecular biology (next genome sequencing technologies), allowed a better understanding of the ways that could both drive immune defect with immune deficiency and autoimmunity. Moreover, genes implicated in rare single-gene defects are now known to be also involved in polygenic conventional autoimmune diseases. Here, we describe the main autoimmune symptoms occurring in PIDs and the underlying mechanisms that lead to autoimmunity in immunodeficiency. We review the links between autoimmunity and immunodeficiency and purpose some principles of care for patients with PIDs and autoimmunity.
Collapse
Affiliation(s)
- A Guffroy
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France.
| | - V Gies
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| | - M Martin
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| | - A-S Korganow
- CNRS UPR 3572 « immunopathologie et chimie thérapeutique », laboratoire d'excellence Medalis, institut de biologie moléculaire et cellulaire (IBMC), 67000 Strasbourg, France; Service d'immunologie clinique et de médecine interne, Centre national de référence des maladies auto-immunes rares, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg, France
| |
Collapse
|
58
|
Autologous Graft-versus-Tumor Effect: Reality or Fiction? Adv Hematol 2016; 2016:5385972. [PMID: 27635143 PMCID: PMC5011204 DOI: 10.1155/2016/5385972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 11/17/2022] Open
Abstract
In contrast to allogeneic hematopoietic stem cell transplantation, the current dogma is not an evidence of graft-versus-tumor effect in autologous hematopoietic stem cell transplantation; thus, it is assumed that autologous hematopoietic stem cell transplantation only relies on the high-dose chemotherapy to improve clinical outcomes. However, recent studies argue in favor of the existence of an autologous graft-versus-tumor without the detrimental complications of graft-versus-host disease due to the nonspecific immune response from the infused donor alloreactive immune effector cells in allogeneic hematopoietic stem cell transplantation. Herein, this paper reviews the clinical evidence of an autologous graft-versus-tumor effect based on the autograft collected and infused host immune effector cells and host immunity recovery after autologous hematopoietic stem cell transplantation affecting clinical outcomes in cancer patients.
Collapse
|
59
|
Ayeka PA, Bian Y, Mwitari PG, Chu X, Zhang Y, Uzayisenga R, Otachi EO. Immunomodulatory and anticancer potential of Gan cao (Glycyrrhiza uralensis Fisch.) polysaccharides by CT-26 colon carcinoma cell growth inhibition and cytokine IL-7 upregulation in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:206. [PMID: 27401917 PMCID: PMC4940688 DOI: 10.1186/s12906-016-1171-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chinese licorice, (Glycyrrhiza uralensis Fisch.) is one of the commonly prescribed herbs in Traditional Chinese Medicine (TCM). Gancao, as commonly known in China, is associated with immune-modulating and anti-tumor potential though the mechanism of action is not well known. In this study, we investigated the in vitro immunomodulatory and antitumor potential of Glycyrrhiza uralensis polysaccharides fractions of high molecular weight (fraction A), low molecular weight (fraction B) and crude extract (fraction C). METHODS Cell proliferation and cytotoxicity was investigated using Cell Counting kit 8 (CCK-8) on Intestinal epithelial cell line (IEC-6) and Colon carcinoma cell line (CT-26). IL-7 gene expression relative to GAPDH was analysed using Real time PCR. The stimulation and viability of T lymphocytes was determined by Trypan blue exclusion assay. RESULTS G.uralensis polysaccharides did not inhibit proliferation of IEC-6 cells even at high concentration. The ED50 was found to be 100 μg/ml. On the other hand, the polysaccharides inhibited the proliferation of cancer cells (CT-26) at a concentration of ≤50 μg/ml. Within 72 h of treatment with the polysaccharides, expression of IL-7 gene was up-regulated over 2 times. It was also noted that, IEC-6 cells secrete IL-7 cytokine into media when treated with G.uralensis polysaccharides. The secreted IL-7 stimulated proliferation of freshly isolated T lymphocytes within 6 h. The effect of the polysaccharides were found to be molecular weight depended, with low molecular weight having a profound effect compared to high molecular weight and total crude extract. CONCLUSION Our findings indicate that G.uralensis polysaccharides especially those of low molecular weight have a potential as anticancer agents. Of great importance, is the ability of the polysaccharides to up-regulate anticancer cytokine IL-7, which is important in proliferation and maturation of immune cells and it is associated with better prognosis in cancer. Therefore, immunomodulation is a possible mode of action of the polysaccharides in cancer therapy.
Collapse
Affiliation(s)
- Peter Amwoga Ayeka
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
- Department of Biological Sciences, Faculty of Science, Egerton University, PO BOX 536-20115, Egerton, Kenya
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China.
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China.
| | - Peter Githaiga Mwitari
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Xiaoqian Chu
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
| | - Rosette Uzayisenga
- Tianjin University of Traditional Chinese Medicine, 312 Anshan Western Road, Nankai District, Tianjin, 300193, People's Republic of China
- School of Pharmacy, Mount Kenya University/Kigali campus, P.O BOX 5826, Kigali, Rwanda
| | - Elick Onyango Otachi
- Department of Biological Sciences, Faculty of Science, Egerton University, PO BOX 536-20115, Egerton, Kenya
| |
Collapse
|
60
|
Hanoteau A, Moser M. Chemotherapy and immunotherapy: A close interplay to fight cancer? Oncoimmunology 2016; 5:e1190061. [PMID: 27622046 DOI: 10.1080/2162402x.2016.1190061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022] Open
Abstract
In theory, the immunotherapy of cancer should induce the selective destruction of cancer cells and a long-term specific protection, based on the specificity and memory of immunity. This contrasts with the collateral damages of conventional therapies and their toxic effects on host tissues. However, recent data suggest that chemotherapy may potentiate ongoing immune responses, through homeostatic mechanisms. Massive tumor death, empty "immune" niches and selected cytokines may act as a danger signal, alerting the immune system and amplifying pre-existing antitumor reactivity.
Collapse
Affiliation(s)
- Aurélie Hanoteau
- Laboratory of Immunobiology, Department of Molecular Biology, Université Libre de Bruxelles , Brussels, Belgium
| | - Muriel Moser
- Laboratory of Immunobiology, Department of Molecular Biology, Université Libre de Bruxelles , Brussels, Belgium
| |
Collapse
|