51
|
Ramba M, Bogunovic D. The immune system in Down Syndrome: Autoimmunity and severe infections. Immunol Rev 2024; 322:300-310. [PMID: 38050836 PMCID: PMC10950520 DOI: 10.1111/imr.13296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Over 200,000 individuals in the United States alone live with Down Syndrome (DS), the most common genetic disorder associated with intellectual disability. DS has a constellation of features across the body, including dysregulation of the immune system. Individuals with DS have both a higher frequency of autoimmunity and more severe infections than the general population, highlighting the importance of understanding the immune system in this population. Individuals with DS present with dysregulation of both the innate and adaptive immune systems. Elevated cytokine levels, increased type I and type II IFN signaling, a shift toward memory phenotypes in T cells, and a decrease in the size of the B-cell compartment are observed in individuals with DS, which contribute to both autoinflammation and severe infections. Herein, we discuss the current knowledge of the immune system in individuals with Down Syndrome as well as ideas of necessary further investigations to decipher the mechanisms by which trisomy 21 leads to immune dysregulation, with the ultimate goal of identifying clinical targets to improve treatment.
Collapse
Affiliation(s)
- Meredith Ramba
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
52
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
53
|
Oftedal BE, Sjøgren T, Wolff ASB. Interferon autoantibodies as signals of a sick thymus. Front Immunol 2024; 15:1327784. [PMID: 38455040 PMCID: PMC10917889 DOI: 10.3389/fimmu.2024.1327784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Type I interferons (IFN-I) are key immune messenger molecules that play an important role in viral defense. They act as a bridge between microbe sensing, immune function magnitude, and adaptive immunity to fight infections, and they must therefore be tightly regulated. It has become increasingly evident that thymic irregularities and mutations in immune genes affecting thymic tolerance can lead to the production of IFN-I autoantibodies (autoAbs). Whether these biomarkers affect the immune system or tissue integrity of the host is still controversial, but new data show that IFN-I autoAbs may increase susceptibility to severe disease caused by certain viruses, including SARS-CoV-2, herpes zoster, and varicella pneumonia. In this article, we will elaborate on disorders that have been identified with IFN-I autoAbs, discuss models of how tolerance to IFN-Is is lost, and explain the consequences for the host.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thea Sjøgren
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
54
|
Chen Y, Han Z, Zhang S, Liu H, Wang K, Liu J, Liu F, Yu S, Sai N, Mai H, Zhou X, Zhou C, Wen Q, Ma L. ERK1/2-CEBPB Axis-Regulated hBD1 Enhances Anti-Tuberculosis Capacity in Alveolar Type II Epithelial Cells. Int J Mol Sci 2024; 25:2408. [PMID: 38397085 PMCID: PMC10889425 DOI: 10.3390/ijms25042408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a global health crisis with substantial morbidity and mortality rates. Type II alveolar epithelial cells (AEC-II) play a critical role in the pulmonary immune response against Mtb infection by secreting effector molecules such as antimicrobial peptides (AMPs). Here, human β-defensin 1 (hBD1), an important AMP produced by AEC-II, has been demonstrated to exert potent anti-tuberculosis activity. HBD1 overexpression effectively inhibited Mtb proliferation in AEC-II, while mice lacking hBD1 exhibited susceptibility to Mtb and increased lung tissue inflammation. Mechanistically, in A549 cells infected with Mtb, STAT1 negatively regulated hBD1 transcription, while CEBPB was the primary transcription factor upregulating hBD1 expression. Furthermore, we revealed that the ERK1/2 signaling pathway activated by Mtb infection led to CEBPB phosphorylation and nuclear translocation, which subsequently promoted hBD1 expression. Our findings suggest that the ERK1/2-CEBPB-hBD1 regulatory axis can be a potential therapeutic target for anti-tuberculosis therapy aimed at enhancing the immune response of AEC-II cells.
Collapse
Affiliation(s)
- Yaoxin Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Sian Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Ke Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Jieyu Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Feichang Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Shiyun Yu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Na Sai
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Haiyan Mai
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; (Y.C.); (Z.H.); (S.Z.); (H.L.); (K.W.); (J.L.); (F.L.); (S.Y.); (N.S.); (H.M.); (X.Z.); (C.Z.)
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| |
Collapse
|
55
|
Liu N, De Souza M, Hullah E, Das P, Cook R, Siddik D. Working at the interface: lessons from a joined-up approach between oral medicine and paediatric dentistry. Br Dent J 2024; 236:261-267. [PMID: 38388595 DOI: 10.1038/s41415-024-7069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 02/24/2024]
Abstract
Oral mucosal and other head and neck conditions in children have a variety of presentations. The joint oral medicine and paediatric (JOMP) dental clinic is a specialised unit within a London teaching hospital, developed to manage a wide range of oral conditions with an absolute commitment to a child-centred care approach. The authors present eight cases from the JOMP clinic experience at Guy's and St Thomas' NHS Foundation trust, over a nine-year period. Each case is unique in its presentation, diagnosis and bespoke management, tailored to the nuance of each individual patient and their unique position. The eight clinical cases demonstrate the success of the JOMP team in achieving good patient outcomes, in terms of providing accurate diagnoses for their oral conditions and for appropriately tailored management/ treatment. The cases also serve to raise awareness of some of the more unusual oral conditions affecting paediatric patients among our professional colleagues.
Collapse
Affiliation(s)
- Natalie Liu
- Dental Core Trainee, Royal National ENT and Eastman Dental Hospital, London, UK
| | - Michelle De Souza
- Consultant in Paediatric Dentistry, Guy´s and St Thomas´ NHS Foundation Trust, London, UK
| | - Esther Hullah
- Consultant in Oral Medicine, Guy´s and St Thomas´ NHS Foundation Trust, London, UK; Honorary Clinical Senior Lecturer, Faculty of Dentistry, Oral and Craniofacial Sciences, Guy´s Campus, King´s College London, UK
| | - Piali Das
- Speciality Dentist in Oral Medicine, Guy´s and St Thomas´ NHS Foundation Trust, London, UK
| | - Richard Cook
- Honorary Consultant in Oral Medicine, Guy´s and St Thomas´ NHS Foundation Trust, London, UK; Professor of Diagnostic Technologies, Faculty of Dentistry, Oral and Craniofacial Sciences, Guy´s Campus, King´s College London, UK
| | - Dania Siddik
- Consultant in Paediatric Dentistry, Guy´s and St Thomas´ NHS Foundation Trust, London, UK; Honorary Clinical Senior Lecturer, Faculty of Dentistry, Oral and Craniofacial Sciences, King´s College London, UK.
| |
Collapse
|
56
|
Jing D, Liang G, Li X, Liu W. Progress in molecular diagnosis and treatment of chronic mucocutaneous candidiasis. Front Immunol 2024; 15:1343138. [PMID: 38327523 PMCID: PMC10847319 DOI: 10.3389/fimmu.2024.1343138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections with Candida of the skin, nails, and mucous membrane. It is a rare and severe disease resulting from autoimmune defects or immune dysregulations. Nonetheless, the diagnosis and treatment of CMC still pose significant challenges. Erroneous or delayed diagnoses remain prevalent, while the long-term utility of traditional antifungals often elicits adverse reactions and promotes the development of acquired resistance. Furthermore, disease relapse can occur during treatment with traditional antifungals. In this review, we delineate the advancements in molecular diagnostic and therapeutic approaches to CMC. Genetic and biomolecular analyses are increasingly employed as adjuncts to clinical manifestations and fungal examinations for accurate diagnosis. Simultaneously, a range of therapeutic interventions, including Janus kinase (JAK) inhibitors, hematopoietic stem cell transplantation (HSCT), cytokines therapy, novel antifungal agents, and histone deacetylase (HDAC) inhibitors, have been integrated into clinical practice. We aim to explore insights into early confirmation of CMC as well as novel therapeutic options for these patients.
Collapse
Affiliation(s)
- Danrui Jing
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Guanzhao Liang
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Chinese Academy of Medical Sciences Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China
| | - Xiaofang Li
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Chinese Academy of Medical Sciences Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China
| | - Weida Liu
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Chinese Academy of Medical Sciences Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
57
|
Tesser A, Valencic E, Boz V, Tornese G, Pastore S, Zanatta M, Tommasini A. Rheumatological complaints in H syndrome: from inflammatory profiling to target treatment in a case study. Pediatr Rheumatol Online J 2024; 22:21. [PMID: 38263041 PMCID: PMC10807099 DOI: 10.1186/s12969-023-00950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND H Syndrome is a rare genetic condition caused by biallelic pathogenic variants in the SLC29A3 gene. It is characterized by a wide range of clinical manifestations, many of which are related to the immune-rheumatological field. These include scleroderma-like skin changes, deforming arthritis, and enlarged lymph nodes. The condition also features cardiac and endocrine defects, as well as hearing loss, for which the immune pathogenesis appears less clear. Immunomodulatory medications have been shown to improve many symptoms in recent experiences. CASE PRESENTATION A 21-year-old girl was referred to our institute after being diagnosed with H syndrome. Her medical history was characterized by the development of finger and toe deformities, which developed since the first years of life and progressively worsened with clinodactyly. At 6 years of age, she was diagnosed with diabetes mellitus without typical autoantibodies and with bilateral sensorineural hearing loss. She also complained of frequent episodes of lymphadenopathy, sometimes with colliquation and growth retardation due to pancreatic insufficiency. It wasn't until the genetic diagnosis of H syndrome that the continual increase in acute phase reactants was noticed, suggesting that an immunological pathogenesis may be the source of her problems. During her visit to our institute, she reported serious pain in both feet and hands and difficulty walking due to knee arthritis and muscle contractures. Conventional therapy with steroid injection in affected joints and methotrexate only led to partial improvement. After a thorough assessment of her inflammatory profile showing a high interferon score, the girl received treatment with baricitinib. Furthermore, based on recent data showing that SLC29A3 deficiency results in interferon production because of Toll-like Receptor 7 activation in lysosomes, hydroxychloroquine was also added. The combination of the two drugs resulted for the first time in a rapid and persistent normalization of inflammatory markers, paralleled by a dramatic improvement in symptoms. CONCLUSIONS We describe the results of inhibiting IFN inflammation in H syndrome and discuss how JAK inhibitors and antimalarials might represent a mechanistically based treatment for this orphan drug disorder.
Collapse
Affiliation(s)
- Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy.
| | - Valentina Boz
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
| | - Gianluca Tornese
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste, 34149, Italy
| | - Serena Pastore
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
| | - Manuela Zanatta
- Centro di Coordinamento Regionale Malattie Rare ASUFC, Piazzale Santa Maria della Misericordia, Udine, 33100, Italy
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, via dell'Istria 65/1, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, Trieste, 34149, Italy
| |
Collapse
|
58
|
Cacheiro P, Lawson S, Van den Veyver IB, Marengo G, Zocche D, Murray SA, Duyzend M, Robinson PN, Smedley D. Lethal phenotypes in Mendelian disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301168. [PMID: 38260283 PMCID: PMC10802756 DOI: 10.1101/2024.01.12.24301168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Essential genes are those whose function is required for cell proliferation and/or organism survival. A gene's intolerance to loss-of-function can be allocated within a spectrum, as opposed to being considered a binary feature, since this function might be essential at different stages of development, genetic backgrounds or other contexts. Existing resources that collect and characterise the essentiality status of genes are based on either proliferation assessment in human cell lines, embryonic and postnatal viability evaluation in different model organisms, and gene metrics such as intolerance to variation scores derived from human population sequencing studies. There are also several repositories available that document phenotypic annotations for rare disorders in humans such as the Online Mendelian Inheritance in Man (OMIM) and the Human Phenotype Ontology (HPO) knowledgebases. This raises the prospect of being able to use clinical data, including lethality as the most severe phenotypic manifestation, to further our characterisation of gene essentiality. Here we queried OMIM for terms related to lethality and classified all Mendelian genes into categories, according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. To showcase this curated catalogue of human essential genes, we developed the Lethal Phenotypes Portal (https://lethalphenotypes.research.its.qmul.ac.uk), where we also explore the relationships between these lethality categories, constraint metrics and viability in cell lines and mouse. Further analysis of the genes in these categories reveals differences in the mode of inheritance of the associated disorders, physiological systems affected and disease class. We highlight how the phenotypic similarity between genes in the same lethality category combined with gene family/group information can be used for novel disease gene discovery. Finally, we explore the overlaps and discrepancies between the lethal phenotypes observed in mouse and human and discuss potential explanations that include differences in transcriptional regulation, functional compensation and molecular disease mechanisms. We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Ignatia B. Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel Marengo
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park & St Mark’s Hospitals, London, UK
| | | | | | - Peter N. Robinson
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
59
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
60
|
Fischer M, Olbrich P, Hadjadj J, Aumann V, Bakhtiar S, Barlogis V, von Bismarck P, Bloomfield M, Booth C, Buddingh EP, Cagdas D, Castelle M, Chan AY, Chandrakasan S, Chetty K, Cougoul P, Crickx E, Dara J, Deyà-Martínez A, Farmand S, Formankova R, Gennery AR, Gonzalez-Granado LI, Hagin D, Hanitsch LG, Hanzlikovà J, Hauck F, Ivorra-Cortés J, Kisand K, Kiykim A, Körholz J, Leahy TR, van Montfrans J, Nademi Z, Nelken B, Parikh S, Plado S, Ramakers J, Redlich A, Rieux-Laucat F, Rivière JG, Rodina Y, Júnior PR, Salou S, Schuetz C, Shcherbina A, Slatter MA, Touzot F, Unal E, Lankester AC, Burns S, Seppänen MRJ, Neth O, Albert MH, Ehl S, Neven B, Speckmann C. JAK inhibitor treatment for inborn errors of JAK/STAT signaling: An ESID/EBMT-IEWP retrospective study. J Allergy Clin Immunol 2024; 153:275-286.e18. [PMID: 37935260 DOI: 10.1016/j.jaci.2023.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Inborn errors of immunity (IEI) with dysregulated JAK/STAT signaling present with variable manifestations of immune dysregulation and infections. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but initially reported outcomes were poor. JAK inhibitors (JAKi) offer a targeted treatment option that may be an alternative or bridge to HSCT. However, data on their current use, treatment efficacy and adverse events are limited. OBJECTIVE We evaluated the current off-label JAKi treatment experience for JAK/STAT inborn errors of immunity (IEI) among European Society for Immunodeficiencies (ESID)/European Society for Blood and Marrow Transplantation (EBMT) Inborn Errors Working Party (IEWP) centers. METHODS We conducted a multicenter retrospective study on patients with a genetic disorder of hyperactive JAK/STAT signaling who received JAKi treatment for at least 3 months. RESULTS Sixty-nine patients (72% children) were evaluated (45 STAT1 gain of function [GOF], 21 STAT3-GOF, 1 STAT5B-GOF, 1 suppressor of cytokine signaling 1 [aka SOCS1] loss of function, 1 JAK1-GOF). Ruxolitinib was the predominantly prescribed JAKi (80%). Overall, treatment resulted in improvement (partial or complete remission) of clinical symptoms in 87% of STAT1-GOF and in 90% of STAT3-GOF patients. We documented highly heterogeneous dosing and monitoring regimens. The response rate and time to response varied across different diseases and manifestations. Adverse events including infection and weight gain were frequent (38% of patients) but were mild (grade I-II) and transient in most patients. At last follow-up, 52 (74%) of 69 patients were still receiving JAKi treatment, and 11 patients eventually underwent HSCT after receipt of previous JAKi bridging therapy, with 91% overall survival. CONCLUSIONS Our study suggests that JAKi may be highly effective to treat symptomatic JAK/STAT IEI patients. Prospective studies to define optimal JAKi dosing for the variable clinical presentations and age ranges should be pursued.
Collapse
Affiliation(s)
- Marco Fischer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Immunology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/ Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Seville, Spain; Departamento de Pediatría, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jérôme Hadjadj
- Sorbonne University, Department of Internal Medicine, APHP, Saint-Antoine Hospital, F-75012 Paris, France
| | - Volker Aumann
- Pediatric Oncology Department, Otto von Guericke University Children's Hospital Magdeburg, Magdeburg, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Vincent Barlogis
- Pediatric Hematology Unit, Latimone University Hospital, Marseille, France
| | - Philipp von Bismarck
- Clinic for General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Markéta Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Claire Booth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital London, London, England, United Kingdom
| | - Emmeline P Buddingh
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey
| | - Martin Castelle
- Immuno-hematology and Rheumatology Unit, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM 1163, Institut Imagine, Paris, Île-de-France, France
| | - Alice Y Chan
- Division of Allergy, Immunology, Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, Calif
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Kritika Chetty
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital London, London, England, United Kingdom
| | - Pierre Cougoul
- Oncopole, Institut Universitaire du cancer de toulouse, Toulouse, France
| | - Etienne Crickx
- Internal Medicine Department, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Jasmeen Dara
- Division of Allergy, Immunology, Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, Calif
| | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain; Universitat de Barcelona Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renata Formankova
- Department of Paediatric Haematology and Oncology, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrew R Gennery
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Hospital 12 Octubre Research Institute, Hospital 12 Octubre (i+12) Complutense University School of Medicine, Madrid, Spain
| | - David Hagin
- Allergy and Clinical Immunology Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Leif Gunnar Hanitsch
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and the Berlin Institute of Health (BIH), BIH Center for Regenerative Therapies, Berlin, Germany
| | - Jana Hanzlikovà
- Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital, Pilsen, Czech Republic
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - José Ivorra-Cortés
- Rheumatology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Pediatric Immunology and Allergy, Istanbul, Turkey
| | - Julia Körholz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timothy Ronan Leahy
- Children's Health Ireland, Crumlin, Dublin, Ireland; University of Dublin, Trinity College, Dublin, Ireland
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Zohreh Nademi
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Brigitte Nelken
- Pediatric Hematology Unit, Centre Hospitalier Universitaire Regional de Lille, Lille, France
| | - Suhag Parikh
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Silvi Plado
- Department of Pediatrics, Tallinn Children's Hospital, Tallinn, Estonia
| | - Jan Ramakers
- Department of Pediatrics. Hospital Universitari Son Espases, Palma, Spain; Multidisciplinary Group for Research in Pediatrics, Hospital Universtari Son Espases, Balearic Island Health Research Institute (IdISBa), Palma, Spain
| | - Antje Redlich
- Pediatric Oncology Department, Otto von Guericke University Children's Hospital Magdeburg, Magdeburg, Germany
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM, UMR 1163, Paris, France
| | - Jacques G Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Pérsio Roxo Júnior
- Division of Pediatric Immunology and Allergy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Sarah Salou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Mary A Slatter
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Fabien Touzot
- Department of Pediatrics, CHU Ste-Justine, Université de Montréal, Montreal, Canada
| | - Ekrem Unal
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Siobhan Burns
- Institute of Immunity and Transplantation, University College London, London, England, United Kingdom
| | - Mikko R J Seppänen
- The Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents and Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and HUS Helsinki, University Hospital, Helsinki, Finland
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/ Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Seville, Spain
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Immuno-hematology and Rheumatology Unit, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM 1163, Institut Imagine, Paris, Île-de-France, France
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
61
|
Liongue C, Sobah ML, Ward AC. Signal Transducer and Activator of Transcription Proteins at the Nexus of Immunodeficiency, Autoimmunity and Cancer. Biomedicines 2023; 12:45. [PMID: 38255152 PMCID: PMC10813391 DOI: 10.3390/biomedicines12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The signal transducer and activator of transcription (STAT) family of proteins has been demonstrated to perform pivotal roles downstream of a myriad of cytokines, particularly those that control immune cell production and function. This is highlighted by both gain-of-function (GOF) and loss-of-function (LOF) mutations being implicated in various diseases impacting cells of the immune system. These mutations are typically inherited, although somatic GOF mutations are commonly observed in certain immune cell malignancies. This review details the growing appreciation of STAT proteins as a key node linking immunodeficiency, autoimmunity and cancer.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; (C.L.); (M.L.S.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Mohamed Luban Sobah
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; (C.L.); (M.L.S.)
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; (C.L.); (M.L.S.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| |
Collapse
|
62
|
Noma K, Tsumura M, Nguyen T, Asano T, Sakura F, Tamaura M, Imanaka Y, Mizoguchi Y, Karakawa S, Hayakawa S, Shoji T, Hosokawa J, Izawa K, Ling Y, Casanova JL, Puel A, Tangye SG, Ma CS, Ohara O, Okada S. Isolated Chronic Mucocutaneous Candidiasis due to a Novel Duplication Variant of IL17RC. J Clin Immunol 2023; 44:18. [PMID: 38129603 PMCID: PMC10807285 DOI: 10.1007/s10875-023-01601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Inborn errors of the IL-17A/F-responsive pathway lead to chronic mucocutaneous candidiasis (CMC) as a predominant clinical phenotype, without other significant clinical manifestations apart from mucocutaneous staphylococcal diseases. Among inborn errors affecting IL-17-dependent immunity, autosomal recessive (AR) IL-17RC deficiency is a rare disease with only three kindreds described to date. The lack of an in vitro functional evaluation system of IL17RC variants renders its diagnosis difficult. We sought to characterize a 7-year-old Japanese girl with CMC carrying a novel homozygous duplication variant of IL17RC and establish a simple in vitro system to evaluate the impact of this variant. METHODS Flow cytometry, qPCR, RNA-sequencing, and immunoblotting were conducted, and an IL17RC-knockout cell line was established for functional evaluation. RESULTS The patient presented with oral and mucocutaneous candidiasis without staphylococcal diseases since the age of 3 months. Genetic analysis showed that the novel duplication variant (Chr3: 9,971,476-9,971,606 dup (+131bp)) involving exon 13 of IL17RC results in a premature stop codon (p.D457Afs*16 or p.D457Afs*17). Our functional evaluation system revealed this duplication to be loss-of-function and enabled discrimination between loss-of-function and neutral IL17RC variants. The lack of response to IL-17A by the patient's SV40-immortalized fibroblasts was restored by introducing WT-IL17RC, suggesting that the genotype identified is responsible for her clinical phenotype. CONCLUSIONS The clinical and cellular phenotype of the current case of AR IL-17RC deficiency supports a previous report on this rare disorder. Our newly established evaluation system will be useful for the diagnosis of AR IL-17RC deficiency, providing accurate validation of unknown IL17RC variants.
Collapse
Affiliation(s)
- Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tina Nguyen
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Moe Tamaura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yusuke Imanaka
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takayo Shoji
- Division of Pediatric Infectious Diseases, Shizuoka Children's Hospital, Shizuoka, Japan
| | | | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Stuart G Tangye
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Cindy S Ma
- Immunology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Osamu Ohara
- Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
63
|
Shim J, Park S, Venkateswaran S, Kumar D, Prince C, Parihar V, Maples L, Waller EK, Kugathasan S, Briones M, Lee M, Henry CJ, Prahalad S, Chandrakasan S. Early B-cell development and B-cell maturation are impaired in patients with active hemophagocytic lymphohistiocytosis. Blood 2023; 142:1972-1984. [PMID: 37624902 PMCID: PMC10731577 DOI: 10.1182/blood.2023020426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is characterized by hyperinflammation and multiorgan dysfunction. Infections, including the reactivation of viruses, contribute to significant disease mortality in HLH. Although T-cell and natural killer cell-driven immune activation and dysregulation are well described, limited data exist on the status of B-cell compartment and humoral immune function in HLH. We noted marked suppression of early B-cell development in patients with active HLH. In vitro B-cell differentiation studies after exposure to HLH-defining cytokines, such as interferon gamma (IFN-γ) and tumor necrosis factor, recapitulated B-cell development arrest. Messenger RNA sequencing of human CD34+ cells exposed to IFN-γ demonstrated changes in genes and pathways affecting B-cell development and maturation. In addition, patients with active HLH exhibited a marked decrease in class-switched memory B (CSMB) cells and a decrease in bone marrow plasmablast/plasma cell compartments. The decrease in CSMB cells was associated with a decrease in circulating T follicular helper (cTfh) cells. Finally, lymph node and spleen evaluation in a patient with HLH revealed absent germinal center formation and hemophagocytosis with associated lymphopenia. Reassuringly, the frequency of CSMB and cTfh improved with the control of T-cell activation. Taken together, in patients with active HLH, these changes in B cells may affect the humoral immune response; however, further immune studies are needed to determine its clinical significance.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sunita Park
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Deepak Kumar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Chengyu Prince
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Vaunita Parihar
- Cancer Tissue and Pathology Shared Resource Core, Emory University School of Medicine, Atlanta, GA
| | - Larkin Maples
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Michael Briones
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Miyoung Lee
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Curtis J. Henry
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sampath Prahalad
- Division of Pediatric Rheumatology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
64
|
Senter J, Wagner K, Gabryszewski SJ, Wolfset N, Reid W, Sun D. Severe Pneumonia in a Previously Healthy Infant. Clin Pediatr (Phila) 2023; 62:1595-1598. [PMID: 36964682 DOI: 10.1177/00099228231163381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Affiliation(s)
- James Senter
- Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristina Wagner
- Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stanislaw J Gabryszewski
- Division of Allergy and Immunology, Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nicole Wolfset
- Division of Allergy and Immunology, Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Whitney Reid
- Division of Allergy and Immunology, Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Di Sun
- Division of Allergy and Immunology, Department of General Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
65
|
Feng L, Li W, Li X, Li X, Ran Y, Yang X, Deng Z, Li H. N-MYC-interacting protein enhances type II interferon signaling by inhibiting STAT1 sumoylation. FASEB J 2023; 37:e23281. [PMID: 37933920 DOI: 10.1096/fj.202301450rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
Signaling desensitization is key to limiting signal transduction duration and intensity. Signal transducer and activator of transcription 1 (STAT1) can mediate type II interferon (IFNγ)-induced immune responses, which are enhanced and inhibited by STAT1 phosphorylation and sumoylation, respectively. Here, we identified an N-MYC interacting protein, NMI, which can enhance STAT1 phosphorylation and STAT1-mediated IFNγ immune responses by binding and sequestering the E2 SUMO conjugation enzyme, UBC9, and blocking STAT1 sumoylation. NMI facilitates UBC9 nucleus-to-cytoplasm translocation in response to IFNγ, thereby inhibiting STAT1 sumoylation. STAT1 phosphorylation at Y701 and sumoylation at K703 are mutually exclusive modifications that regulate IFNγ-dependent transcriptional responses. NMI could not alter the phosphorylation level of sumoylation-deficient STAT1 after IFNγ treatment. Thus, IFNγ signaling is modulated by NMI through sequestration of UBC9 in the cytoplasm, leading to inhibition of STAT1 sumoylation. Hence, NMI functions as a switch for STAT1 activation/inactivation cycles by modulating an IFNγ-induced desensitization mechanism.
Collapse
Affiliation(s)
- Linyuan Feng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wanwei Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaowen Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaotian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yanhong Ran
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoping Yang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zemin Deng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Stat Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| |
Collapse
|
66
|
Deng R, Wang X, Li R. Dermatophyte infection: from fungal pathogenicity to host immune responses. Front Immunol 2023; 14:1285887. [PMID: 38022599 PMCID: PMC10652793 DOI: 10.3389/fimmu.2023.1285887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Dermatophytosis is a common superficial infection caused by dermatophytes, a group of pathogenic keratinophilic fungi. Apart from invasion against skin barrier, host immune responses to dermatophytes could also lead to pathologic inflammation and tissue damage to some extent. Therefore, it is of great help to understand the pathogenesis of dermatophytes, including fungal virulence factors and anti-pathogen immune responses. This review aims to summarize the recent advances in host-fungal interactions, focusing on the mechanisms of anti-fungal immunity and the relationship between immune deficiency and chronic dermatophytosis, in order to facilitate novel diagnostic and therapeutic approaches to improve the outcomes of these patients.
Collapse
Affiliation(s)
- Ruixin Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
67
|
Kudou M, Fukai K, Yamaguchi S, Omine T, Miyagi T, Utsumi D, Takahashi K. Chronic mucocutaneous candidiasis due to STAT1 gene mutation. J Dermatol 2023; 50:e379-e380. [PMID: 37408503 DOI: 10.1111/1346-8138.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Mami Kudou
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Kyoko Fukai
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Sayaka Yamaguchi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Takuya Omine
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Takuya Miyagi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Daisuke Utsumi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Kenzo Takahashi
- Department of Dermatology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| |
Collapse
|
68
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
69
|
Peng XP, Al-Ddafari MS, Caballero-Oteyza A, El Mezouar C, Mrovecova P, Dib SE, Massen Z, Smahi MCE, Faiza A, Hassaïne RT, Lefranc G, Aribi M, Grimbacher B. Next generation sequencing (NGS)-based approach to diagnosing Algerian patients with suspected inborn errors of immunity (IEIs). Clin Immunol 2023; 256:109758. [PMID: 37678716 DOI: 10.1016/j.clim.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
The advent of next-generation sequencing (NGS) technologies has greatly expanded our understanding of both the clinical spectra and genetic landscape of inborn errors of immunity (IEIs). Endogamous populations may be enriched for unique, ancestry-specific disease-causing variants, a consideration that significantly impacts molecular testing and analysis strategies. Herein, we report on the application of a 2-step NGS-based testing approach beginning with targeted gene panels (TGPs) tailored to specific IEI subtypes and reflexing to whole exome sequencing (WES) if negative for Northwest Algerian patients with suspected IEIs. Our overall diagnostic yield of 57% is comparable to others broadly applying short-read NGS to IEI detection, but data from our localized cohort show some similarities and differences from NGS studies performed on larger regional IEI cohorts. This suggests the importance of tailoring diagnostic strategies to local demographics and needs, but also highlights ongoing concerns inherent to the application of genomics for clinical IEI diagnostics.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Moudjahed Saleh Al-Ddafari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Andres Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| | - Chahrazed El Mezouar
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Pavla Mrovecova
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Saad Eddin Dib
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Zoheir Massen
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Specialized Mother-Child Hospital of Tlemcen, Department of Neonatology, Faculty of Medicine, University of Tlemcen, Algeria
| | - Alddafari Faiza
- Department of Internal Medicine, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Tlemcen, Algeria
| | | | - Gérard Lefranc
- Institute of Human Genetics, UMR 9002 CNRS-University of Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| |
Collapse
|
70
|
Tsilifis C, Slatter MA, Gennery AR. Too much of a good thing: a review of primary immune regulatory disorders. Front Immunol 2023; 14:1279201. [PMID: 38022498 PMCID: PMC10645063 DOI: 10.3389/fimmu.2023.1279201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity caused by a loss in the regulatory mechanism of the inflammatory or immune response, leading to impaired immunological tolerance or an exuberant inflammatory response to various stimuli due to loss or gain of function mutations. Whilst PIRDs may feature susceptibility to recurrent, severe, or opportunistic infection in their phenotype, this group of syndromes has broadened the spectrum of disease caused by defects in immunity-related genes to include autoimmunity, autoinflammation, lymphoproliferation, malignancy, and allergy; increasing focus on PIRDs has thus redefined the classical 'primary immunodeficiency' as one aspect of an overarching group of inborn errors of immunity. The growing number of genetic defects associated with PIRDs has expanded our understanding of immune tolerance mechanisms and prompted identification of molecular targets for therapy. However, PIRDs remain difficult to recognize due to incomplete penetrance of their diverse phenotype, which may cross organ systems and present to multiple clinical specialists prior to review by an immunologist. Control of immune dysregulation with immunosuppressive therapies must be balanced against the enhanced infective risk posed by the underlying defect and accumulated end-organ damage, posing a challenge to clinicians. Whilst allogeneic hematopoietic stem cell transplantation may correct the underlying immune defect, identification of appropriate patients and timing of transplant is difficult. The relatively recent description of many PIRDs and rarity of individual genetic entities that comprise this group means data on natural history, clinical progression, and treatment are limited, and so international collaboration will be needed to better delineate phenotypes and the impact of existing and potential therapies. This review explores pathophysiology, clinical features, current therapeutic strategies for PIRDs including cellular platforms, and future directions for research.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mary A. Slatter
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R. Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
71
|
Parackova Z, Vrabcova P, Zentsova I, Sediva A, Bloomfield M. Neutrophils in STAT1 Gain-Of-Function Have a Pro-inflammatory Signature Which Is Not Rescued by JAK Inhibition. J Clin Immunol 2023; 43:1640-1659. [PMID: 37358695 PMCID: PMC10499747 DOI: 10.1007/s10875-023-01528-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/28/2023] [Indexed: 06/27/2023]
Abstract
STAT1 gain-of-function (GOF) mutations cause an inborn error of immunity with diverse phenotype ranging from chronic mucocutaneous candidiasis (CMC) to various non-infectious manifestations, the most precarious of which are autoimmunity and vascular complications. The pathogenesis centers around Th17 failure but is far from being understood. We hypothesized that neutrophils, whose functions have not been explored in the context of STAT1 GOF CMC yet, might be involved in the associated immunodysregulatory and vascular pathology. In a cohort of ten patients, we demonstrate that STAT1 GOF human ex-vivo peripheral blood neutrophils are immature and highly activated; have strong propensity for degranulation, NETosis, and platelet-neutrophil aggregation; and display marked inflammatory bias. STAT1 GOF neutrophils exhibit increased basal STAT1 phosphorylation and expression of IFN stimulated genes, but contrary to other immune cells, STAT1 GOF neutrophils do not display hyperphosphorylation of STAT1 molecule upon stimulation with IFNs. The patient treatment with JAKinib ruxolitinib does not ameliorate the observed neutrophil aberrations. To our knowledge, this is the first work describing features of peripheral neutrophils in STAT1 GOF CMC. The presented data suggest that neutrophils may contribute to the immune pathophysiology of the STAT1 GOF CMC.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic.
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, V Uvalu 84, 515006, Prague, Czech Republic
| |
Collapse
|
72
|
Solimando AG, Desantis V, Palumbo C, Marasco C, Pappagallo F, Montagnani M, Ingravallo G, Cicco S, Di Paola R, Tabares P, Beilhack A, Dammacco F, Ria R, Vacca A. STAT1 overexpression triggers aplastic anemia: a pilot study unravelling novel pathogenetic insights in bone marrow failure. Clin Exp Med 2023; 23:2687-2694. [PMID: 36826612 PMCID: PMC10543574 DOI: 10.1007/s10238-023-01017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
We identified STAT1 gain of function (GOF) in a 32-year-old female with pallor, weakness, cough, and dyspnea admitted to our Division of Medicine. She had severe oral ulcers (OU), type 1 diabetes (T1DM), and pancytopenia. Bone marrow (BM) biopsy showed the absence of erythroid precursors. Peripheral blood parameters such as neutrophils < 500/mL, reticulocytes < 2%, and BM hypo-cellularity allowed to diagnose severe aplastic anemia. A heterozygous variant (p.520T>C, p.Cys174Arg) of STAT1 was uncovered. Thus, p.Cys174Arg mutation was investigated as potentially responsible for the patient's inborn immunity error and aplastic anemia. Although STAT1 GOF is rare, aplastic anemia is a more common condition; therefore, we explored STAT1 functional role in the pathobiology of BM failure. Interestingly, in a cohort of six patients with idiopathic aplastic anemia, enhanced phospho-STAT1 levels were observed on BM immunostaining. Next, the most remarkable features associated with STAT1 signaling dysregulation were examined: in both pure red cell aplasia and aplastic anemia, CD8+ T cell genetic variants and mutations display enhanced signaling activities related to the JAK-STAT pathway. Inborn errors of immunity may represent a paradigmatic condition to unravel crucial pathobiological mechanisms shared by common pathological conditions. Findings from our case-based approach and the phenotype correspondence to idiopathic aplastic anemia cases prompt further statistically powered prospective studies aiming to elucidate the exact role and theragnostic window for JAK/STAT targeting in this clinical context. Nonetheless, we demonstrate how a comprehensive study of patients with primary immunodeficiencies can lead to pathophysiologic insights and potential therapeutic approaches within a broader spectrum of aplastic anemia cases.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Unit of Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy.
| | - Vanessa Desantis
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Carmen Palumbo
- Unit of Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Carolina Marasco
- Unit of Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Fabrizio Pappagallo
- Unit of Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Monica Montagnani
- Section of Pharmacology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Sebastiano Cicco
- Unit of Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Cappuccini, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Paula Tabares
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
- Interdisciplinary Center for Clinical Research Laboratory, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Beilhack
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
- Interdisciplinary Center for Clinical Research Laboratory, University Hospital of Würzburg, Würzburg, Germany
| | - Franco Dammacco
- Unit of Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Roberto Ria
- Unit of Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Angelo Vacca
- Unit of Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro" Medical School, Bari, Italy
| |
Collapse
|
73
|
Kunvarjee B, Bidgoli A, Madan RP, Vidal E, McAvoy D, Hosszu KK, Scaradavou A, Spitzer BG, Curran KJ, Cancio M, Harris AC, O'Reilly RJ, Kung AL, Prockop S, Boelens JJ, Oved JH. Emapalumab as bridge to hematopoietic cell transplant for STAT1 gain-of-function mutations. J Allergy Clin Immunol 2023; 152:815-817. [PMID: 37367708 PMCID: PMC11066755 DOI: 10.1016/j.jaci.2023.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Affiliation(s)
- Binni Kunvarjee
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan Bidgoli
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rebecca Pellett Madan
- Department of Pediatrics, NYU Grossman School of Medicine and Hassenfeld Children's Hospital at NYU Langone, New York, NY
| | - Esther Vidal
- Immune Discovery and Modeling Service, Sloan Kettering Institute, New York, NY
| | - Devin McAvoy
- Immune Discovery and Modeling Service, Sloan Kettering Institute, New York, NY
| | - Kinga K Hosszu
- Immune Discovery and Modeling Service, Sloan Kettering Institute, New York, NY
| | - Andromachi Scaradavou
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Barbara G Spitzer
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin J Curran
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Cancio
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew C Harris
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard J O'Reilly
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew L Kung
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan Prockop
- Hematopoietic Stem Cell Transplant Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass
| | - Jaap Jan Boelens
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joseph H Oved
- Pediatric Bone Marrow Transplant and Cellular Therapy Program, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
74
|
Abreu NCD, França SDT, Marcelo Júnior HB, Ladeira AN. Case for diagnosis. Disseminated erythematous and scaly plaques: chronic mucocutaneous candidiasis. An Bras Dermatol 2023; 98:691-694. [PMID: 37202247 PMCID: PMC10404544 DOI: 10.1016/j.abd.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 05/20/2023] Open
Affiliation(s)
- Nathalia Chebli de Abreu
- Department of Dermatology, Hospital Infantil João Paulo II, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Dermatology, Hospital Eduardo de Menezes, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Samuel Duarte Timponi França
- Department of Dermatology, Hospital Infantil João Paulo II, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Dermatology, Hospital Eduardo de Menezes, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Amanda Neto Ladeira
- Department of Dermatology, Hospital Infantil João Paulo II, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
75
|
Gagne S, Sivaraman V, Akoghlanian S. Interferonopathies masquerading as non-Mendelian autoimmune diseases: pattern recognition for early diagnosis. Front Pediatr 2023; 11:1169638. [PMID: 37622085 PMCID: PMC10445166 DOI: 10.3389/fped.2023.1169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Type I interferonopathies are a broad category of conditions associated with increased type I interferon gene expression and include monogenic autoinflammatory diseases and non-Mendelian autoimmune diseases such as dermatomyositis and systemic lupus erythematosus. While a wide range of clinical presentations among type I interferonopathies exists, these conditions often share several clinical manifestations and implications for treatment. Presenting symptoms may mimic non-Mendelian autoimmune diseases, including vasculitis and systemic lupus erythematosus, leading to delayed or missed diagnosis. This review aims to raise awareness about the varied presentations of monogenic interferonopathies to provide early recognition and appropriate treatment to prevent irreversible damage and improve quality of life and outcomes in this unique patient population.
Collapse
Affiliation(s)
- Samuel Gagne
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Vidya Sivaraman
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Shoghik Akoghlanian
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
76
|
Colvin A, Petukhova L. Inborn Errors of Immunity in Hidradenitis Suppurativa Pathogenesis and Disease Burden. J Clin Immunol 2023; 43:1040-1051. [PMID: 37204644 DOI: 10.1007/s10875-023-01518-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Hidradenitis suppurativa (HS), also known as Verneuil's disease and acne inversa, is a prevalent, debilitating, and understudied inflammatory skin disease. It is marked by repeated bouts of pathological inflammation causing pain, hyperplasia, aberrant healing, and fibrosis. HS is difficult to manage and has many unmet medical needs. There is clinical and pharmacological evidence for extensive etiological heterogeneity with HS, suggesting that this clinical diagnosis is capturing a spectrum of disease entities. Human genetic studies provide robust insight into disease pathogenesis. They also can be used to resolve etiological heterogeneity and to identify drug targets. However, HS has not been extensively investigated with well-powered genetic studies. Here, we review what is known about its genetic architecture. We identify overlap in molecular, cellular, and clinical features between HS and inborn errors of immunity (IEI). This evidence indicates that HS may be an underrecognized component of IEI and suggests that undiagnosed IEI are present in HS cohorts. Inborn errors of immunity represent a salient opportunity for rapidly resolving the immunological landscape of HS pathogenesis, for prioritizing drug repurposing studies, and for improving the clinical management of HS.
Collapse
Affiliation(s)
- Annelise Colvin
- Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Lynn Petukhova
- Department of Dermatology, Vagelos College of Physicians & Surgeons, Columbia University, New York City, NY, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, #527, York City, NY, USA.
| |
Collapse
|
77
|
Noma K, Tsumura M, Nguyen T, Asano T, Sakura F, Tamaura M, Imanaka Y, Mizoguchi Y, Karakawa S, Hayakawa S, Shoji T, Hosokawa J, Izawa K, Ling Y, Casanova JL, Puel A, Tangye SG, Ma CS, Ohara O, Okada S. Isolated chronic mucocutaneous candidiasis due to a novel duplication variant of IL17RC. RESEARCH SQUARE 2023:rs.3.rs-3062583. [PMID: 37577484 PMCID: PMC10418529 DOI: 10.21203/rs.3.rs-3062583/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Purpose Inborn errors of the IL-17A/F-responsive pathway lead to chronic mucocutaneous candidiasis (CMC) as a predominant clinical phenotype, without other significant clinical manifestations apart from mucocutaneous staphylococcal diseases. Amongst inborn errors affecting IL-17-dependent immunity, autosomal recessive (AR) IL-17RC deficiency is a rare disease with only three kindreds described to date. The lack of an in vitro functional evaluation system of IL17RC variants renders its diagnosis difficult. We sought to characterize a seven-year-old Japanese girl with CMC carrying a novel homozygous duplication variant of IL17RC and establish a simple in vitro system to evaluate the impact of this variant. Methods Flow cytometry, qPCR, RNA-sequencing, and immunoblotting were conducted, and an IL17RC-knockout cell line was established for functional evaluation. Results The patient presented with oral and mucocutaneous candidiasis without staphylococcal diseases since the age of three months. Genetic analysis showed that the novel duplication variant (Chr3: 9,971,476-9,971,606 dup (+ 131bp)) involving exon 13 of IL17RC results in a premature stop codon (p.D457Afs*16 or p.D457Afs*17). Our functional evaluation system revealed this duplication to be loss-of-function and enabled discrimination between loss-of-function and neutral IL17RC variants. The lack of response to IL-17A by the patient's SV40-immortalized fibroblasts was restored by introducing WT-IL17RC, suggesting that the genotype identified is responsible for her clinical phenotype. Conclusions The clinical and cellular phenotype of the current case of AR IL-17RC deficiency supports a previous report on this rare disorder. Our newly established evaluation system will be useful for diagnosis of AR IL-17RC deficiency, providing accurate validation of unknown IL17RC variants.
Collapse
Affiliation(s)
- Kosuke Noma
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Miyuki Tsumura
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Tina Nguyen
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Takaki Asano
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Fumiaki Sakura
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Moe Tamaura
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yusuke Imanaka
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yoko Mizoguchi
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Shuhei Karakawa
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Seiichi Hayakawa
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Takayo Shoji
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Junichi Hosokawa
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Kazushi Izawa
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yun Ling
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | - Anne Puel
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Stuart G Tangye
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Cindy S Ma
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Osamu Ohara
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences
| |
Collapse
|
78
|
Largent AD, Lambert K, Chiang K, Shumlak N, Liggitt D, Oukka M, Torgerson TR, Buckner JH, Allenspach EJ, Rawlings DJ, Jackson SW. Dysregulated IFN-γ signals promote autoimmunity in STAT1 gain-of-function syndrome. Sci Transl Med 2023; 15:eade7028. [PMID: 37406138 PMCID: PMC11645977 DOI: 10.1126/scitranslmed.ade7028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Heterozygous signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations promote a clinical syndrome of immune dysregulation characterized by recurrent infections and predisposition to humoral autoimmunity. To gain insights into immune characteristics of STAT1-driven inflammation, we performed deep immunophenotyping of pediatric patients with STAT1 GOF syndrome and age-matched controls. Affected individuals exhibited dysregulated CD4+ T cell and B cell activation, including expansion of TH1-skewed CXCR3+ populations that correlated with serum autoantibody titers. To dissect underlying immune mechanisms, we generated Stat1 GOF transgenic mice (Stat1GOF mice) and confirmed the development of spontaneous humoral autoimmunity that recapitulated the human phenotype. Despite clinical resemblance to human regulatory T cell (Treg) deficiency, Stat1GOF mice and humans with STAT1 GOF syndrome exhibited normal Treg development and function. In contrast, STAT1 GOF autoimmunity was characterized by adaptive immune activation driven by dysregulated STAT1-dependent signals downstream of the type 1 and type 2 interferon (IFN) receptors. However, in contrast to the prevailing type 1 IFN-centric model for STAT1 GOF autoimmunity, Stat1GOF mice lacking the type 1 IFN receptor were only partially protected from STAT1-driven systemic inflammation, whereas loss of type 2 IFN (IFN-γ) signals abrogated autoimmunity. Last, germline STAT1 GOF alleles are thought to enhance transcriptional activity by increasing total STAT1 protein, but the underlying biochemical mechanisms have not been defined. We showed that IFN-γ receptor deletion normalized total STAT1 expression across immune lineages, highlighting IFN-γ as the critical driver of feedforward STAT1 elevation in STAT1 GOF syndrome.
Collapse
Affiliation(s)
| | | | - Kristy Chiang
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Natali Shumlak
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Present address: Division of Medical Genetics, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Mohammed Oukka
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Immunology, University of Washington School of Medicine; Seattle, WA 98195, USA
| | | | | | - Eric J. Allenspach
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - David J. Rawlings
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Immunology, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Shaun W. Jackson
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine; Seattle, WA 98195, USA
| |
Collapse
|
79
|
Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol 2023; 23:433-452. [PMID: 36600071 PMCID: PMC9812358 DOI: 10.1038/s41577-022-00826-w] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
Pathogenic fungi have emerged as significant causes of infectious morbidity and death in patients with acquired immunodeficiency conditions such as HIV/AIDS and following receipt of chemotherapy, immunosuppressive agents or targeted biologics for neoplastic or autoimmune diseases, or transplants for end organ failure. Furthermore, in recent years, the spread of multidrug-resistant Candida auris has caused life-threatening outbreaks in health-care facilities worldwide and raised serious concerns for global public health. Rapid progress in the discovery and functional characterization of inborn errors of immunity that predispose to fungal disease and the development of clinically relevant animal models have enhanced our understanding of fungal recognition and effector pathways and adaptive immune responses. In this Review, we synthesize our current understanding of the cellular and molecular determinants of mammalian antifungal immunity, focusing on observations that show promise for informing risk stratification, prognosis, prophylaxis and therapies to combat life-threatening fungal infections in vulnerable patient populations.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Rebecca A Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
80
|
Tangye SG, Puel A. The Th17/IL-17 Axis and Host Defense Against Fungal Infections. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1624-1634. [PMID: 37116791 DOI: 10.1016/j.jaip.2023.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Chronic mucocutaneous candidiasis (CMC) was recognized as a primary immunodeficiency in the early 1970s. However, for almost 40 years, its genetic etiology remained unknown. The progressive molecular and cellular description of inborn errors of immunity (IEI) with syndromic CMC pointed toward a possible role of IL-17-mediated immunity in protecting against fungal infection and CMC. Since 2011, novel IEI affecting either the response to or production of IL-17A and/or IL-17F (IL-17A/F) in patients with isolated or syndromic CMC provided formal proof of the pivotal role of the IL-17 axis in mucocutaneous immunity to Candida spp, and, to a lesser extent, to Staphylococcus aureus in humans. In contrast, IL-17-mediated immunity seems largely redundant against other common microbes in humans. In this review, we outline the current knowledge of IEI associated with impaired IL-17A/F-mediated immunity, highlighting our current understanding of the role of IL-17A/F in human immunity.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Faculty of Medicine & Health, Darlinghurst, NSW, Australia.
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, NY, USA
| |
Collapse
|
81
|
Waugh KA, Minter R, Baxter J, Chi C, Galbraith MD, Tuttle KD, Eduthan NP, Kinning KT, Andrysik Z, Araya P, Dougherty H, Dunn LN, Ludwig M, Schade KA, Tracy D, Smith KP, Granrath RE, Busquet N, Khanal S, Anderson RD, Cox LL, Estrada BE, Rachubinski AL, Lyford HR, Britton EC, Fantauzzo KA, Orlicky DJ, Matsuda JL, Song K, Cox TC, Sullivan KD, Espinosa JM. Triplication of the interferon receptor locus contributes to hallmarks of Down syndrome in a mouse model. Nat Genet 2023; 55:1034-1047. [PMID: 37277650 PMCID: PMC10260402 DOI: 10.1038/s41588-023-01399-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 04/14/2023] [Indexed: 06/07/2023]
Abstract
Down syndrome (DS), the genetic condition caused by trisomy 21, is characterized by variable cognitive impairment, immune dysregulation, dysmorphogenesis and increased prevalence of diverse co-occurring conditions. The mechanisms by which trisomy 21 causes these effects remain largely unknown. We demonstrate that triplication of the interferon receptor (IFNR) gene cluster on chromosome 21 is necessary for multiple phenotypes in a mouse model of DS. Whole-blood transcriptome analysis demonstrated that IFNR overexpression associates with chronic interferon hyperactivity and inflammation in people with DS. To define the contribution of this locus to DS phenotypes, we used genome editing to correct its copy number in a mouse model of DS, which normalized antiviral responses, prevented heart malformations, ameliorated developmental delays, improved cognition and attenuated craniofacial anomalies. Triplication of the Ifnr locus modulates hallmarks of DS in mice, suggesting that trisomy 21 elicits an interferonopathy potentially amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Katherine A Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross Minter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Baxter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Congwu Chi
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathryn D Tuttle
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neetha P Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kohl T Kinning
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zdenek Andrysik
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paula Araya
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah Dougherty
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren N Dunn
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kyndal A Schade
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dayna Tracy
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicolas Busquet
- Animal Behavior Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Santosh Khanal
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan D Anderson
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Liza L Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Belinda Enriquez Estrada
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hannah R Lyford
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eleanor C Britton
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine A Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer L Matsuda
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Kunhua Song
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- The Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy C Cox
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
82
|
De George DJ, Ge T, Krishnamurthy B, Kay TWH, Thomas HE. Inflammation versus regulation: how interferon-gamma contributes to type 1 diabetes pathogenesis. Front Cell Dev Biol 2023; 11:1205590. [PMID: 37293126 PMCID: PMC10244651 DOI: 10.3389/fcell.2023.1205590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with onset from early childhood. The insulin-producing pancreatic beta cells are destroyed by CD8+ cytotoxic T cells. The disease is challenging to study mechanistically in humans because it is not possible to biopsy the pancreatic islets and the disease is most active prior to the time of clinical diagnosis. The NOD mouse model, with many similarities to, but also some significant differences from human diabetes, provides an opportunity, in a single in-bred genotype, to explore pathogenic mechanisms in molecular detail. The pleiotropic cytokine IFN-γ is believed to contribute to pathogenesis of type 1 diabetes. Evidence of IFN-γ signaling in the islets, including activation of the JAK-STAT pathway and upregulation of MHC class I, are hallmarks of the disease. IFN-γ has a proinflammatory role that is important for homing of autoreactive T cells into islets and direct recognition of beta cells by CD8+ T cells. We recently showed that IFN-γ also controls proliferation of autoreactive T cells. Therefore, inhibition of IFN-γ does not prevent type 1 diabetes and is unlikely to be a good therapeutic target. In this manuscript we review the contrasting roles of IFN-γ in driving inflammation and regulating the number of antigen specific CD8+ T cells in type 1 diabetes. We also discuss the potential to use JAK inhibitors as therapy for type 1 diabetes, to inhibit both cytokine-mediated inflammation and proliferation of T cells.
Collapse
Affiliation(s)
- David J. De George
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Balasubramaniam Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
83
|
Scott O, Visuvanathan S, Reddy E, Mahamed D, Gu B, Roifman CM, Cohn RD, Guidos CJ, Ivakine EA. The human Stat1 gain-of-function T385M mutation causes expansion of activated T-follicular helper/T-helper 1-like CD4 T cells and sex-biased autoimmunity in specific pathogen-free mice. Front Immunol 2023; 14:1183273. [PMID: 37275873 PMCID: PMC10235531 DOI: 10.3389/fimmu.2023.1183273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined. Methods We generated Stat1T385M/+ mutant mice to model the immune impacts of STAT1 DBD GOF under specific-pathogen free (SPF) conditions. Results Stat1T385M/+ lymphocytes had more total Stat1 at baseline and also higher amounts of IFNg-induced pStat1. Young mutants exhibited expansion of Tfh-like cells, while older mutants developed autoimmunity accompanied by increased Tfh-like cells, B cell activation and germinal center (GC) formation. Mutant females exhibited these immune changes sooner and more robustly than males, identifying significant sex effects of Stat1T385M-induced immune dysregulation. Single cell RNA-Seq (scRNA-Seq) analysis revealed that Stat1T385M activated transcription of GC-associated programs in both B and T cells. However, it had the strongest transcriptional impact on T cells, promoting aberrant CD4 T cell activation and imparting both Tfh-like and Th1-like effector programs. Discussion Collectively, these data demonstrate that in the absence of overt infection, Stat1T385M disrupted naïve CD4 T cell homeostasis and promoted expansion and differentiation of abnormal Tfh/Th1-like helper and GC-like B cells, eventually leading to sex-biased autoimmunity, suggesting a model for STAT1 GOF-induced immune dysregulation and autoimmune sequelae in humans.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shagana Visuvanathan
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Emily Reddy
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Deeqa Mahamed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Chaim M. Roifman
- Division of Immunology and Allergy, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
- The Canadian Centre for Primary Immunodeficiency and The Jeffrey Modell Research Laboratory for the diagnosis of Primary Immunodeficiency, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronald D. Cohn
- Program for Genetics & Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Clinical & Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Cynthia J. Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
84
|
Aluri J, Schmitt EG, Du M, Cooper MA. STAT1 Gain-of-Function Leading to Clinical Behçet's Syndrome. J Clin Immunol 2023:10.1007/s10875-023-01515-6. [PMID: 37188830 DOI: 10.1007/s10875-023-01515-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Jahnavi Aluri
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Box 8208, St. Louis, MO, 63110, USA
| | - Erica G Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Box 8208, St. Louis, MO, 63110, USA
| | - Matthew Du
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Box 8208, St. Louis, MO, 63110, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Box 8208, St. Louis, MO, 63110, USA.
| |
Collapse
|
85
|
Toth KA, Schmitt EG, Cooper MA. Deficiencies and Dysregulation of STAT Pathways That Drive Inborn Errors of Immunity: Lessons from Patients and Mouse Models of Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1463-1472. [PMID: 37126806 PMCID: PMC10151837 DOI: 10.4049/jimmunol.2200905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The STAT family proteins provide critical signals for immune cell development, differentiation, and proinflammatory and anti-inflammatory responses. Inborn errors of immunity (IEIs) are caused by single gene defects leading to immune deficiency and/or dysregulation, and they have provided opportunities to identify genes important for regulating the human immune response. Studies of patients with IEIs due to altered STAT signaling, and mouse models of these diseases, have helped to shape current understanding of the mechanisms whereby STAT signaling and protein interactions regulate immunity. Although many STAT signaling pathways are shared, clinical and immune phenotypes in patients with monogenic defects of STAT signaling highlight both redundant and nonredundant pathways. In this review, we provide an overview of the shared and unique signaling pathways used by STATs, phenotypes of IEIs with altered STAT signaling, and recent discoveries that have provided insight into the human immune response and treatment of disease.
Collapse
Affiliation(s)
- Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
86
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
87
|
Sharma M, Leung D, Momenilandi M, Jones LC, Pacillo L, James AE, Murrell JR, Delafontaine S, Maimaris J, Vaseghi-Shanjani M, Del Bel KL, Lu HY, Chua GT, Di Cesare S, Fornes O, Liu Z, Di Matteo G, Fu MP, Amodio D, Tam IYS, Chan GSW, Sharma AA, Dalmann J, van der Lee R, Blanchard-Rohner G, Lin S, Philippot Q, Richmond PA, Lee JJ, Matthews A, Seear M, Turvey AK, Philips RL, Brown-Whitehorn TF, Gray CJ, Izumi K, Treat JR, Wood KH, Lack J, Khleborodova A, Niemela JE, Yang X, Liang R, Kui L, Wong CSM, Poon GWK, Hoischen A, van der Made CI, Yang J, Chan KW, Rosa Duque JSD, Lee PPW, Ho MHK, Chung BHY, Le HTM, Yang W, Rohani P, Fouladvand A, Rokni-Zadeh H, Changi-Ashtiani M, Miryounesi M, Puel A, Shahrooei M, Finocchi A, Rossi P, Rivalta B, Cifaldi C, Novelli A, Passarelli C, Arasi S, Bullens D, Sauer K, Claeys T, Biggs CM, Morris EC, Rosenzweig SD, O’Shea JJ, Wasserman WW, Bedford HM, van Karnebeek CD, Palma P, Burns SO, Meyts I, Casanova JL, Lyons JJ, Parvaneh N, Nguyen ATV, Cancrini C, Heimall J, Ahmed H, McKinnon ML, Lau YL, Béziat V, Turvey SE. Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease. J Exp Med 2023; 220:e20221755. [PMID: 36884218 PMCID: PMC10037107 DOI: 10.1084/jem.20221755] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.
Collapse
Affiliation(s)
- Mehul Sharma
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Daniel Leung
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Lauren C.W. Jones
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Lucia Pacillo
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Alyssa E. James
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jill R. Murrell
- Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Selket Delafontaine
- Dept. of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Immunodeficiencies Division, University Hospitals Leuven, Leuven, Belgium
| | - Jesmeen Maimaris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Maryam Vaseghi-Shanjani
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kate L. Del Bel
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Henry Y. Lu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Dept. of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Gilbert T. Chua
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Allergy Centre, Union Hospital, Hong Kong, China
| | - Silvia Di Cesare
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Zhongyi Liu
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Gigliola Di Matteo
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Maggie P. Fu
- Dept. of Medical Genetics, The University of British Columbia, Vancouver, Canada
- Genome Science and Technology Program, Faculty of Science, The University of British Columbia, Vancouver, Canada
| | - Donato Amodio
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Issan Yee San Tam
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | - Joshua Dalmann
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Géraldine Blanchard-Rohner
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
- Unit of Immunology and Vaccinology, Division of General Pediatrics, Dept. of Woman, Child, and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Susan Lin
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Phillip A. Richmond
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica J. Lee
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, Canada
| | - Allison Matthews
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Dept. of Paediatrics, University of Toronto, Toronto, Canada
| | - Michael Seear
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Alexandra K. Turvey
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Rachael L. Philips
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Terri F. Brown-Whitehorn
- Dept. of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher J. Gray
- Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - James R. Treat
- Pediatrics, Division of Pediatric Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen H. Wood
- Pathology and Laboratory Medicine, Division of Genomic Diagnostics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
| | - Asya Khleborodova
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
| | | | - Xingtian Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Rui Liang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Kui
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Dept. of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Christina Sze Man Wong
- Dept. of Medicine, Divison of Dermatology, The University of Hong Kong, Hong Kong, China
| | - Grace Wing Kit Poon
- Dept. of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, China
| | - Alexander Hoischen
- Dept. of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Jing Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Koon Wing Chan
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Jaime Sou Da Rosa Duque
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pamela Pui Wah Lee
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Marco Hok Kung Ho
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Virtus Medical, Hong Kong, China
| | - Brian Hon Yin Chung
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Huong Thi Minh Le
- Pediatric Center, Vinmec Times City International General Hospital, Hanoi, Vietnam
| | - Wanling Yang
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Pejman Rohani
- Pediatrics, Pediatric Gastroenterology and Hepatology Research Center, Pediatrics Centre of Excellence, Children’s Medical Center, University of Medical Sciences, Tehran, Iran
| | - Ali Fouladvand
- Pediatrics, Allergy and Clinical Immunology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Hassan Rokni-Zadeh
- Dept. of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mohammad Miryounesi
- Dept. of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mohammad Shahrooei
- Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Andrea Finocchi
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Paolo Rossi
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- DPUO, Research Unit of Infectivology and Pediatrics Drugs Development, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Beatrice Rivalta
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Cristina Cifaldi
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Chiara Passarelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Stefania Arasi
- Allergy Unit, Area of Translational Research in Pediatric Specialities, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Dominique Bullens
- Dept. of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Allergy Division, University Hospitals Leuven, Leuven, Belgium
| | - Kate Sauer
- Dept. of Pediatrics, Pediatric Pulmonology Division, AZ Sint-Jan Brugge, Brugge, Belgium
- Dept. of Pediatrics, Pediatric Pulmonology Division, University Hospitals Leuven, Leuven, Belgium
| | - Tania Claeys
- Dept. of Pediatrics, Pediatric Gastroenterology Division, AZ Sint-Jan Brugge, Brugge, Belgium
| | - Catherine M. Biggs
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Emma C. Morris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | | | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - H. Melanie Bedford
- Dept. of Paediatrics, University of Toronto, Toronto, Canada
- Genetics Program, North York General Hospital, Toronto, Canada
| | - Clara D.M. van Karnebeek
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Vancouver, Canada
- Depts. of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Paolo Palma
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Academic Dept. of Pediatrics (DPUO), Unit of Clinical Immunology and Vaccinology, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Siobhan O. Burns
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Dept. of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Isabelle Meyts
- Dept. of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Pediatric Immunodeficiencies Division, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jonathan J. Lyons
- Translational Allergic Immunopathology Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nima Parvaneh
- Department of Pediatrics, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anh Thi Van Nguyen
- Dept. of Immunology, Allergy and Rheumatology, Division of Primary Immunodeficiency, Vietnam National Children’s Hospital, Hanoi, Vietnam
| | - Caterina Cancrini
- Dept. of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiency, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Jennifer Heimall
- Dept. of Pediatrics, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hanan Ahmed
- Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | | | - Yu Lung Lau
- Dept. of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Stuart E. Turvey
- Dept. of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
88
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
89
|
Asano T, Utsumi T, Kagawa R, Karakawa S, Okada S. Inborn errors of immunity with loss- and gain-of-function germline mutations in STAT1. Clin Exp Immunol 2023; 212:96-106. [PMID: 36420581 PMCID: PMC10128167 DOI: 10.1093/cei/uxac106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
STAT1 dysfunction causes a wide range of immune dysregulation phenotypes, which have been classified into four disease types, namely, (i) autosomal recessive (AR) complete STAT1 deficiency, (ii) AR partial STAT1 deficiency, (iii) autosomal dominant (AD) STAT1 deficiency, and (iv) AD STAT1 gain of function (GOF), based on their mode of inheritance and function. Disease types (i, ii, and iii) are caused by STAT1 loss-of-function (LOF) mutations, whereas disease type (iv) is caused by STAT1 GOF mutations. Therefore, the functional analysis of mutations is necessary for the precise diagnosis.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takanori Utsumi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
90
|
Tangye SG, Pathmanandavel K, Ma CS. Cytokine-mediated STAT-dependent pathways underpinning human B-cell differentiation and function. Curr Opin Immunol 2023; 81:102286. [PMID: 36764056 DOI: 10.1016/j.coi.2023.102286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
B cells are fundamental to host defence against infectious diseases; indeed, the ability of humans to elicit robust antibody responses following exposure to foreign antigens underpins long-lived humoral immunity and serological memory, as well as the success of most currently administered vaccines. However, B cells also have a dark side - they can cause myriad diseases, including autoimmunity, atopy, allergy and malignancy. Thus, it is critical to understand the molecular requirements for generating effective, high-affinity, specific immune responses following natural infection or vaccination, as well as for constraining B-cell function to mitigate B-cell-mediated immune dyscrasias. In this review, we discuss recent developments that have been derived from the identification and detailed analysis of individuals with inborn errors of immunity that disrupt cytokine signalling, resulting in immune dysregulatory conditions. These studies have defined fundamental cytokine/cytokine receptor/signal transducer and activator of transcription (STAT) signalling pathways that are critical for the generation and maintenance of human memory B-cell and plasma cell subsets during host defence, as well as revealed mechanisms of disease pathogenesis causing immune deficiency, autoimmunity and atopy. More importantly, these studies have identified molecules that could be targeted to either enhance humoral immunity in the settings of infection or vaccination, or attenuate humoral immunity that contributes to antibody-mediated autoimmunity or allergy.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia.
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| |
Collapse
|
91
|
Ogishi M, Yang R, Rosain J, Bustamante J, Casanova JL, Boisson-Dupuis S. Inborn errors of human transcription factors governing IFN-γ antimycobacterial immunity. Curr Opin Immunol 2023; 81:102296. [PMID: 36867972 PMCID: PMC10023504 DOI: 10.1016/j.coi.2023.102296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Inborn errors of immunity (IEI) delineate redundant and essential defense mechanisms in humans. We review 15 autosomal-dominant (AD) or -recessive (AR) IEI involving 11 transcription factors (TFs) and impairing interferon-gamma (IFN-γ) immunity, conferring a predisposition to mycobacterial diseases. We consider three mechanism-based categories: 1) IEI mainly affecting myeloid compartment development (AD GATA2 and AR and AD IRF8 deficiencies), 2) IEI mainly affecting lymphoid compartment development (AR FOXN1, AR PAX1, AR RORγ/RORγT, AR T-bet, AR c-Rel, AD STAT3 gain-of-function (GOF), and loss-of-function (LOF) deficiencies), and 3) IEI mainly affecting myeloid and/or lymphoid function (AR and AD STAT1 LOF, AD STAT1 GOF, AR IRF1, and AD NFKB1 deficiencies). We discuss the contribution of the discovery and study of inborn errors of TFs essential for host defense against mycobacteria to molecular and cellular analyses of human IFN-γ immunity.
Collapse
Affiliation(s)
- Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; The David Rockefeller Graduate Program, Rockefeller University, New York, NY, USA
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
92
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
93
|
Ruan P, Zhang Y, Chen H, Chen H, Dong Z. Heterozygous gain-of-function mutations in human STAT1: A case of hemophagocytic lymphohistiocytosis due to chronic mucocutaneous candidiasis in a 17-month-old male. Pediatr Blood Cancer 2023; 70:e30284. [PMID: 36881481 DOI: 10.1002/pbc.30284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Affiliation(s)
- Peisen Ruan
- Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Yizhi Zhang
- Department of Microbiology, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Haier Chen
- Department of Hematology, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Hehe Chen
- Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Zhuoya Dong
- Department of Pediatrics, Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
94
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
95
|
Zallocco F, Omenetti A, Poletti V, Cazzato S. Recurrent pneumonia and severe opportunistic infections in declining immunity and autoimmune manifestations. Pulmonology 2023; 29:167-169. [PMID: 35864056 DOI: 10.1016/j.pulmoe.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Federica Zallocco
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
| | - Alessia Omenetti
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy
| | - Venerino Poletti
- Dept of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy; Dept of Respiratory Diseases & Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Salvatore Cazzato
- Pediatric Unit, Dept of Mother and Child Health, Salesi Children's Hospital, Ancona, Italy.
| |
Collapse
|
96
|
Ramanathan S, Brilot F, Irani SR, Dale RC. Origins and immunopathogenesis of autoimmune central nervous system disorders. Nat Rev Neurol 2023; 19:172-190. [PMID: 36788293 DOI: 10.1038/s41582-023-00776-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
The field of autoimmune neurology is rapidly evolving, and recent discoveries have advanced our understanding of disease aetiologies. In this article, we review the key pathogenic mechanisms underlying the development of CNS autoimmunity. First, we review non-modifiable risk factors, such as age, sex and ethnicity, as well as genetic factors such as monogenic variants, common variants in vulnerability genes and emerging HLA associations. Second, we highlight how interactions between environmental factors and epigenetics can modify disease onset and severity. Third, we review possible disease mechanisms underlying triggers that are associated with the loss of immune tolerance with consequent recognition of self-antigens; these triggers include infections, tumours and immune-checkpoint inhibitor therapies. Fourth, we outline how advances in our understanding of the anatomy of lymphatic drainage and neuroimmune interfaces are challenging long-held notions of CNS immune privilege, with direct relevance to CNS autoimmunity, and how disruption of B cell and T cell tolerance and the passage of immune cells between the peripheral and intrathecal compartments have key roles in initiating disease activity. Last, we consider novel therapeutic approaches based on our knowledge of the immunopathogenesis of autoimmune CNS disorders.
Collapse
Affiliation(s)
- Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Concord Hospital, Sydney, New South Wales, Australia
| | - Fabienne Brilot
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- School of Medical Science, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Russell C Dale
- Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital at Westmead, Sydney, New South Wales, Australia.
- Sydney Medical School, Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- TY Nelson Department of Paediatric Neurology, Children's Hospital Westmead, Sydney, New South Wales, Australia.
| |
Collapse
|
97
|
Reduced Renal CSE/CBS/H2S Contributes to the Progress of Lupus Nephritis. BIOLOGY 2023; 12:biology12020318. [PMID: 36829595 PMCID: PMC9953544 DOI: 10.3390/biology12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
The molecular mechanisms underlying lupus nephritis (LN) pathogenesis are not fully understood. Hydrogen sulfide (H2S) is involved in many pathological and physiological processes. We sought to investigate the roles of H2S in LN pathogenesis. H2S synthase cystathionine-lyase (CSE) and cystathionine-synthetase (CBS) expression was downregulated in renal tissues of patients with LN and their levels were associated with LN's prognosis using the Nephroseq database. Reduced CSE and CBS protein expression in kidney tissues of LN patients and MRL/lpr mice were confirmed by immunohistochemistry. CSE and CBS mRNA levels were reduced in MRL/lpr and pristine- and R848-induced lupus mice. Given that H2S exerts an anti-inflammatory role partly via regulating inflammatory transcription factors (TFs), we analyzed hub TFs by using a bioinformatics approach. It showed that STAT1, RELA, and T-cell-related signaling pathways were enriched in LN. Increased STAT1 and RELA expression were confirmed in renal tissues of LN patients. Treatment of MRL/lpr and pristine mice with H2S donors alleviated systemic lupus erythematosus (SLE) phenotypes and renal injury. H2S donors inhibited RELA level and T-cell infiltration in the kidneys of MRL/lpr and pristine mice. Our data indicated that CSE/CBS/H2S contributes to LN pathogenesis. Supplementation of H2S would be a potential therapeutic strategy for LN.
Collapse
|
98
|
Stallard L, Siddiqui I, Muise A. Beyond IBD: the genetics of other early-onset diarrhoeal disorders. Hum Genet 2023; 142:655-667. [PMID: 36788146 PMCID: PMC10182111 DOI: 10.1007/s00439-023-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
Diarrhoeal disorders in childhood extend beyond the inflammatory bowel diseases. Persistent and severe forms of diarrhoea can occur from birth and are associated with significant morbidity and mortality. These disorders can affect not only the gastrointestinal tract but frequently have extraintestinal manifestations, immunodeficiencies and endocrinopathies. Genomic analysis has advanced our understanding of these conditions and has revealed precision-based treatment options such as potentially curative haematopoietic stem cell transplant. Although many new mutations have been discovered, there is frequently no clear genotype-phenotype correlation. The functional effects of gene mutations can be studied in model systems such as patient-derived organoids. This allows us to further characterise these disorders and advance our understanding of the pathophysiology of the intestinal mucosa. In this review, we will provide an up to date overview of genes involved in diarrhoeal disorders of early onset, particularly focussing on the more recently described gene defects associated with protein loosing enteropathy.
Collapse
Affiliation(s)
- Lorraine Stallard
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Iram Siddiqui
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aleixo Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada. .,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
99
|
Coelho MA, Cooper S, Strauss ME, Karakoc E, Bhosle S, Gonçalves E, Picco G, Burgold T, Cattaneo CM, Veninga V, Consonni S, Dinçer C, Vieira SF, Gibson F, Barthorpe S, Hardy C, Rein J, Thomas M, Marioni J, Voest EE, Bassett A, Garnett MJ. Base editing screens map mutations affecting interferon-γ signaling in cancer. Cancer Cell 2023; 41:288-303.e6. [PMID: 36669486 PMCID: PMC9942875 DOI: 10.1016/j.ccell.2022.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Interferon-γ (IFN-γ) signaling mediates host responses to infection, inflammation and anti-tumor immunity. Mutations in the IFN-γ signaling pathway cause immunological disorders, hematological malignancies, and resistance to immune checkpoint blockade (ICB) in cancer; however, the function of most clinically observed variants remains unknown. Here, we systematically investigate the genetic determinants of IFN-γ response in colorectal cancer cells using CRISPR-Cas9 screens and base editing mutagenesis. Deep mutagenesis of JAK1 with cytidine and adenine base editors, combined with pathway-wide screens, reveal loss-of-function and gain-of-function mutations, including causal variants in hematological malignancies and mutations detected in patients refractory to ICB. We functionally validate variants of uncertain significance in primary tumor organoids, where engineering missense mutations in JAK1 enhanced or reduced sensitivity to autologous tumor-reactive T cells. We identify more than 300 predicted missense mutations altering IFN-γ pathway activity, generating a valuable resource for interpreting gene variant function.
Collapse
Affiliation(s)
- Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Sarah Cooper
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | | | - Emre Karakoc
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Shriram Bhosle
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Emanuel Gonçalves
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Instituto Superior Técnico, Universidade de Lisboa, 1049-001, and, INESC-ID, 1000-029, Lisbon, Portugal
| | - Gabriele Picco
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Thomas Burgold
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Chiara M Cattaneo
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Open Targets, Cambridge, UK
| | - Vivien Veninga
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Open Targets, Cambridge, UK
| | - Sarah Consonni
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Cansu Dinçer
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sara F Vieira
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Freddy Gibson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Syd Barthorpe
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Claire Hardy
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Joel Rein
- Cellular Operations and Stem Cell Informatics, Wellcome Sanger Institute, Hinxton, UK
| | - Mark Thomas
- Cellular Operations and Stem Cell Informatics, Wellcome Sanger Institute, Hinxton, UK
| | - John Marioni
- EMBL-European Bioinformatics Institute, Cambridge, UK
| | - Emile E Voest
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Open Targets, Cambridge, UK
| | - Andrew Bassett
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK.
| |
Collapse
|
100
|
Parlar YE, Ayar SN, Cagdas D, Balaban YH. Liver immunity, autoimmunity, and inborn errors of immunity. World J Hepatol 2023; 15:52-67. [PMID: 36744162 PMCID: PMC9896502 DOI: 10.4254/wjh.v15.i1.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
The liver is the front line organ of the immune system. The liver contains the largest collection of phagocytic cells in the body that detect both pathogens that enter through the gut and endogenously produced antigens. This is possible by the highly developed differentiation capacity of the liver immune system between self-antigens or non-self-antigens, such as food antigens or pathogens. As an immune active organ, the liver functions as a gatekeeping barrier from the outside world, and it can create a rapid and strong immune response, under unfavorable conditions. However, the liver's assumed immune status is anti-inflammatory or immuno-tolerant. Dynamic interactions between the numerous populations of immune cells in the liver are key for maintaining the delicate balance between immune screening and immune tolerance. The anatomical structure of the liver can facilitate the preparation of lymphocytes, modulate the immune response against hepatotropic pathogens, and contribute to some of its unique immunological properties, particularly its capacity to induce antigen-specific tolerance. Since liver sinusoidal endothelial cell is fenestrated and lacks a basement membrane, circulating lymphocytes can closely contact with antigens, displayed by endothelial cells, Kupffer cells, and dendritic cells while passing through the sinusoids. Loss of immune tolerance, leading to an autoaggressive immune response in the liver, if not controlled, can lead to the induction of autoimmune or autoinflammatory diseases. This review mentions the unique features of liver immunity, and dysregulated immune responses in patients with autoimmune liver diseases who have a close association with inborn errors of immunity have also been the emphases.
Collapse
Affiliation(s)
- Yavuz Emre Parlar
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey.
| | - Sefika Nur Ayar
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara 06100, Turkey
| | - Yasemin H Balaban
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|