51
|
Guevara RB, Fox BA, Falla A, Bzik DJ. Toxoplasma gondii Intravacuolar-Network-Associated Dense Granule Proteins Regulate Maturation of the Cyst Matrix and Cyst Wall. mSphere 2019; 4:e00487-19. [PMID: 31619500 PMCID: PMC6796980 DOI: 10.1128/msphere.00487-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
Little is known regarding how the chronic Toxoplasma gondii cyst develops. Here, we investigated intravacuolar-network-associated dense granule (GRA) proteins GRA1, GRA2, GRA4, GRA6, GRA9, and GRA12 during cyst development in vitro after differentiation of the tachyzoite-stage parasitophorous vacuole. By day 1 postdifferentiation, GRA1, GRA4, GRA6, GRA9, and GRA12 colocalized with Dolichos biflorus agglutinin stain at the cyst periphery. In contrast, GRA2 remained in the cyst matrix. By day 2 postdifferentiation, coinciding with localization of GRA2 to the cyst periphery, GRA1, GRA4, GRA6, and GRA9 established a continuous matrix pattern in the cyst. In contrast, GRA2 and GRA12 were colocalized in prominent cyst matrix puncta throughout cyst development. While GRA2, GRA6, and GRA12 localized in outer and inner layers of the cyst wall, GRA1, GRA4, and GRA9 localized predominantly in the inner layers of the cyst wall. GRA2 and GRA12 were colocalized in the cyst wall by day 7 postdifferentiation. However, by day 10 postdifferentiation, GRA12 was relocalized from the cyst wall to puncta in the cyst matrix. Differentiation of Δgra2 parasites revealed a defect in the ability to establish a normal cyst matrix. In addition, the deletion of any intravacuolar-network-associated GRA protein, except GRA1, reduced the rate of accumulation of cyst wall proteins at the cyst periphery relative to the cyst interior. Our findings reveal dynamic patterns of GRA protein localization during cyst development and suggest that intravacuolar-network-associated GRA proteins regulate the formation and maturation of the cyst matrix and cyst wall structures.IMPORTANCEToxoplasma gondii establishes chronic infection in humans by forming thick-walled cysts that persist in the brain. If host immunity wanes, cysts reactivate to cause severe, and often lethal, toxoplasmic encephalitis. There is no available therapy to eliminate cysts or to prevent their reactivation. Moreover, how the vital and characteristic cyst matrix and cyst wall structures develop is poorly understood. Here, we visualized and tracked the localization of Toxoplasma intravacuolar-network-associated dense granule (GRA) proteins during cyst development in vitro Intravacuolar-network GRAs were present within the cyst matrix and at the cyst wall in developing cysts, and genetic deletion of intravacuolar-network-associated GRAs reduced the rate of accumulation of cyst wall material at the cyst periphery. Our results show that intravacuolar-network-associated GRAs, particularly GRA2 and GRA12, play dynamic and essential roles in the development and maturation of the cyst matrix and the cyst wall structures.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alejandra Falla
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
52
|
Translocation of effector proteins into host cells by Toxoplasma gondii. Curr Opin Microbiol 2019; 52:130-138. [PMID: 31446366 DOI: 10.1016/j.mib.2019.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
The Apicomplexan parasite, Toxoplasma gondii, is an obligate intracellular organism that must co-opt its host cell to survive. To this end, Toxoplasma parasites introduce a suite of effector proteins from two secretory compartments called rhoptries and dense granules into the host cells. Once inside, these effectors extensively modify the host cell to facilitate parasite penetration, replication and persistence. In this review, we summarize the most recent advances in current understanding of effector translocation from Toxoplasma's rhoptry and dense granule organelles into the host cell, with comparisons to Plasmodium spp. for broader context.
Collapse
|
53
|
Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, Rak C, Cantillana V, Dubremetz JF, Cesbron-Delauw MF, Taylor GA, Mercier C, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Orchestrate Chronic Infection and GRA12 Underpins Resistance to Host Gamma Interferon. mBio 2019; 10:e00589-19. [PMID: 31266861 PMCID: PMC6606796 DOI: 10.1128/mbio.00589-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Toxoplasma gondii evades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronic Toxoplasma infection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cysts in vivo without affecting the parasite growth rate or the ability to differentiate into cysts in vitro Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4 mutants was reduced but not abolished. In contrast, the PruΔgra12 mutant was avirulent in mice and PruΔgra12 parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12 parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12 and type II PruΔgra12 parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80 and type II PruΔku80 strains, respectively. Despite this resistance, Δgra12 PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondii cysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cysts in vivo A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.
Collapse
Affiliation(s)
- Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Alejandra Falla
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Valeria Bellini
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Graciane Pètre
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Camille Rak
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Viviana Cantillana
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
| | - Jean-François Dubremetz
- Université Montpellier 2, Montpellier, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5235, Montpellier, France
| | - Marie-France Cesbron-Delauw
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - Gregory A Taylor
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Geriatrics, Duke University Medical Center, Durham, North Carolina, USA
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, North Carolina, USA
- Geriatric Research, Education and Clinical Center, VA Medical Center, Durham, North Carolina, USA
| | - Corinne Mercier
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématiques, Applications, Grenoble (TIMC-IMAG), Université Grenoble Alpes, Grenoble, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5525, Grenoble, France
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
54
|
Lentini G, Dubois DJ, Maco B, Soldati-Favre D, Frénal K. The roles of Centrin 2 and Dynein Light Chain 8a in apical secretory organelles discharge of Toxoplasma gondii. Traffic 2019; 20:583-600. [PMID: 31206964 DOI: 10.1111/tra.12673] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/31/2022]
Abstract
To efficiently enter host cells, apicomplexan parasites such as Toxoplasma gondii rely on an apical complex composed of tubulin-based structures as well as two sets of secretory organelles named micronemes and rhoptries. The trafficking and docking of these organelles to the apical pole of the parasite is crucial for the discharge of their contents. Here, we describe two proteins typically associated with microtubules, Centrin 2 (CEN2) and Dynein Light Chain 8a (DLC8a), that are required for efficient host cell invasion. CEN2 localizes to four different compartments, and remarkably, conditional depletion of the protein occurs in stepwise manner, sequentially depleting the protein pools from each location. This phenomenon allowed us to discern the essential function of the apical pool of CEN2 for microneme secretion, motility, invasion and egress. DLC8a localizes to the conoid, and its depletion also perturbs microneme exocytosis in addition to the apical docking of the rhoptry organelles, causing a severe defect in host cell invasion. Phenotypic characterization of CEN2 and DLC8a indicates that while both proteins participate in microneme secretion, they likely act at different steps along the cascade of events leading to organelle exocytosis.
Collapse
Affiliation(s)
- Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - David J Dubois
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland.,Microbiologie Fondamentale et Pathogénicité, University of Bordeaux, CNRS UMR 5234, Bordeaux Cedex, France
| |
Collapse
|
55
|
Tu V, Mayoral J, Sugi T, Tomita T, Han B, Ma YF, Weiss LM. Enrichment and Proteomic Characterization of the Cyst Wall from In Vitro Toxoplasma gondii Cysts. mBio 2019; 10:e00469-19. [PMID: 31040239 PMCID: PMC6495374 DOI: 10.1128/mbio.00469-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 01/08/2023] Open
Abstract
The tissue cyst of Toxoplasma gondii, found in latent infection, serves a critical role in both transmission and reactivation of this organism. Within infected cells, slowly replicating parasites (bradyzoites) are surrounded by a cyst matrix, cyst wall, and cyst membrane. The cyst wall is clearly delineated by ultrastructural analysis; however, the composition and function of this layer in host-parasite interactions are not fully understood. In order to understand the composition of the cyst wall, a proteomic analysis of purified cyst wall fragments, that were enriched with Percoll gradients and subsequently immunoprecipitated with CST1 antibody, was performed. Known cyst wall proteins, such as CST1, BPK1, MCP4, MAG1, GRA2, GRA3, and GRA5, were identified in this preparation by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, dense granule proteins (GRAs) not previously shown to associate with the cyst wall, as well as uncharacterized hypothetical proteins, were identified in this cyst wall preparation. Several of these hypothetical cyst wall (CST) proteins were epitope tagged, and immunofluorescence assays confirmed their localization as novel cyst matrix and cyst wall proteins. Expression of two of these newly identified cyst wall proteins was eliminated by gene knockout (CST2-KO and CST3-KO). CST2-KO parasites were highly attenuated in virulence and did not establish detectable cyst burdens. This targeted proteomic approach allowed the identification of new components of the cyst wall that probably have roles in the parasite/host interface.IMPORTANCEToxoplasma gondii is a highly prevalent parasite worldwide that presents life-threatening risks to immunocompromised and pregnant individuals. Whereas the life stage responsible for acute infection can be treated, the life stage responsible for chronic infection is refractory to currently available therapeutics. Little is known about the protein composition of the cyst wall, an amorphous structure formed by parasites that is suspected to facilitate persistence within muscle and nervous tissue during chronic (latent) infection. By implementing a refined approach to selectively purify cyst wall fragments, we identified several known and novel cyst wall proteins from our sample preparations. We confirmed the localizations of several proteins from this data set and identified one that is involved in parasite virulence. These data will propel further studies on cyst wall structure and function, leading to therapeutic strategies that can eliminate the chronic infection stage.
Collapse
Affiliation(s)
- Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tatsuki Sugi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- IVD Development Unit, Medical & Biological Laboratories Co. Ltd., Ina, Nagano, Japan
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bing Han
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yan Fen Ma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
56
|
Panas MW, Naor A, Cygan AM, Boothroyd JC. Toxoplasma Controls Host Cyclin E Expression through the Use of a Novel MYR1-Dependent Effector Protein, HCE1. mBio 2019; 10:e00674-19. [PMID: 31040242 PMCID: PMC6495377 DOI: 10.1128/mbio.00674-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 01/27/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that establishes a favorable environment in the host cells in which it replicates. We have previously reported that it uses MYR-dependent translocation of dense granule proteins to elicit a key set of host responses related to the cell cycle, specifically, E2F transcription factor targets, including cyclin E. We report here the identification of a novel Toxoplasma effector protein that is exported from the parasitophorous vacuole in a MYR1-dependent manner and localizes to the host's nucleus. Parasites lacking this inducer of host cyclin E (HCE1) are unable to modulate E2F transcription factor target genes and exhibit a substantial growth defect. Immunoprecipitation of HCE1 from infected host cells showed that HCE1 efficiently binds elements of the cyclin E regulatory complex, namely, DP1 and its partners E2F3 and E2F4. Expression of HCE1 in Neospora caninum, or in uninfected human foreskin fibroblasts (HFFs), showed localization of the expressed protein to the host nuclei and strong cyclin E upregulation. Thus, HCE1 is a novel effector protein that is necessary and sufficient to impact the E2F axis of transcription, resulting in co-opting of host functions to the advantage of ToxoplasmaIMPORTANCE Like most Apicomplexan parasites, Toxoplasma gondii has the remarkable ability to invade and establish a replicative niche within another eukaryotic cell, in this case, any of a large number of cell types in almost any warm-blooded animals. Part of the process of establishing this niche is the export of effector proteins to co-opt host cell functions in favor of the parasite. Here we identify a novel effector protein, HCE1, that the parasites export into the nucleus of human cells, where it modulates the expression of multiple genes, including the gene encoding cyclin E, one of the most crucial proteins involved in controlling when and whether a human cell divides. We show that HCE1 works through binding to specific transcription factors, namely, E2F3, E2F4, and DP1, that normally carefully regulate these all-important pathways. This represents a new way in which these consummately efficient infectious agents co-opt the human cells that they so efficiently grow within.
Collapse
Affiliation(s)
- Michael W Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Adit Naor
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Alicja M Cygan
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
57
|
Matthews KM, Pitman EL, de Koning-Ward TF. Illuminating how malaria parasites export proteins into host erythrocytes. Cell Microbiol 2019; 21:e13009. [PMID: 30656810 DOI: 10.1111/cmi.13009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Plasmodium parasites that cause the disease malaria have developed an elaborate trafficking pathway to facilitate the export of hundreds of effector proteins into their host cell, the erythrocyte. In this review, we outline how certain effector proteins contribute to parasite survival, virulence, and immune evasion. We also highlight how parasite proteins destined for export are recognised at the endoplasmic reticulum to facilitate entry into the export pathway and how the effector proteins are able to transverse the bounding parasitophorous vaculoar membrane via the Plasmodium translocon of exported proteins to gain access to the host cell. Some of the gaps in our understanding of the export pathway are also presented. Finally, we examine the degree of conservation of some of the key components of the Plasmodium export pathway in closely related apicomplexan parasites, which may provide insight into how the diverse apicomplexan parasites have adapted to survival pressures encountered within their respective host cells.
Collapse
Affiliation(s)
| | - Ethan L Pitman
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | |
Collapse
|
58
|
Tosetti N, Dos Santos Pacheco N, Soldati-Favre D, Jacot D. Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii. eLife 2019; 8:e42669. [PMID: 30753127 PMCID: PMC6372287 DOI: 10.7554/elife.42669] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii possesses a limited set of actin-regulatory proteins and relies on only three formins (FRMs) to nucleate and polymerize actin. We combined filamentous actin (F-actin) chromobodies with gene disruption to assign specific populations of actin filaments to individual formins. FRM2 localizes to the apical juxtanuclear region and participates in apicoplast inheritance. Restricted to the residual body, FRM3 maintains the intravacuolar cell-cell communication. Conoidal FRM1 initiates a flux of F-actin crucial for motility, invasion and egress. This flux depends on myosins A and H and is controlled by phosphorylation via PKG (protein kinase G) and CDPK1 (calcium-dependent protein kinase 1) and by methylation via AKMT (apical lysine methyltransferase). This flux is independent of microneme secretion and persists in the absence of the glideosome-associated connector (GAC). This study offers a coherent model of the key players controlling actin polymerization, stressing the importance of well-timed post-translational modifications to power parasite motility.
Collapse
Affiliation(s)
- Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, CMUUniversity of GenevaGenevaSwitzerland
| | | | | | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMUUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
59
|
Wang Y, Cirelli KM, Barros PDC, Sangaré LO, Butty V, Hassan MA, Pesavento P, Mete A, Saeij JPJ. Three Toxoplasma gondii Dense Granule Proteins Are Required for Induction of Lewis Rat Macrophage Pyroptosis. mBio 2019; 10:e02388-18. [PMID: 30622189 PMCID: PMC6325250 DOI: 10.1128/mbio.02388-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
Upon invasion of Lewis rat macrophages, Toxoplasma rapidly induces programmed cell death (pyroptosis), which prevents Toxoplasma replication, possibly explaining the resistance of the Lewis rat to Toxoplasma Using a chemical mutagenesis screen, we identified Toxoplasma mutants that no longer induced pyroptosis. Whole-genome sequencing led to the identification of three Toxoplasma parasitophorous vacuole-localized dense granule proteins, GRA35, GRA42, and GRA43, that are individually required for induction of Lewis rat macrophage pyroptosis. Macrophage infection with Δgra35, Δgra42, and Δgra43 parasites led to greatly reduced cell death rates and enhanced parasite replication. Lewis rat macrophages infected with parasites containing a single, double, or triple deletion of these GRAs showed similar levels of cell viability, suggesting that the three GRAs function in the same pathway. Deletion of GRA42 or GRA43 resulted in GRA35 (and other GRAs) being retained inside the parasitophorous vacuole instead of being localized to the parasitophorous vacuole membrane. Despite having greatly enhanced replication in Lewis rat macrophages in vitro, Δgra35, Δgra42, and Δgra43 parasites did not establish a chronic infection in Lewis rats. Toxoplasma did not induce F344 rat macrophage pyroptosis, but F344 rats infected with Δgra35, Δgra42, and Δgra43 parasites had reduced cyst numbers. Thus, these GRAs determined parasite in vivo fitness in F344 rats. Overall, our data suggest that these three Toxoplasma dense granule proteins play a critical role in establishing a chronic infection in vivo, independently of their role in mediating macrophage pyroptosis, likely due to their importance in regulating protein localization to the parasitophorous vacuole membrane.IMPORTANCE Inflammasomes are major components of the innate immune system and are responsible for detecting various microbial and environmental danger signals. Upon invasion of Lewis rat macrophages, the parasite rapidly activates the NLRP1 inflammasome, resulting in pyroptosis and elimination of the parasite's replication niche. The work reported here revealed that Toxoplasma GRA35, GRA42, and GRA43 are required for induction of Lewis rat macrophage pyroptosis. GRA42 and GRA43 mediate the correct localization of other GRAs, including GRA35, to the parasitophorous vacuole membrane. These three GRAs were also found to be important for parasite in vivo fitness in a Toxoplasma-susceptible rat strain, independently of their role in NLRP1 inflammasome activation, suggesting that they perform other important functions. Thus, this study identified three GRAs that mediate the induction of Lewis rat macrophage pyroptosis and are required for pathogenesis of the parasite.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kimberly M Cirelli
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Patricio D C Barros
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Vincent Butty
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Musa A Hassan
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Center for Tropical Livestock Health and Genetics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Patricia Pesavento
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Asli Mete
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
60
|
Tyebji S, Seizova S, Hannan AJ, Tonkin CJ. Toxoplasmosis: A pathway to neuropsychiatric disorders. Neurosci Biobehav Rev 2018; 96:72-92. [PMID: 30476506 DOI: 10.1016/j.neubiorev.2018.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/24/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that resides, in a latent form, in the human central nervous system. Infection with Toxoplasma drastically alters the behaviour of rodents and is associated with the incidence of specific neuropsychiatric conditions in humans. But the question remains: how does this pervasive human pathogen alter behaviour of the mammalian host? This fundamental question is receiving increasing attention as it has far reaching public health implications for a parasite that is very common in human populations. Our current understanding centres on neuronal changes that are elicited directly by this intracellular parasite versus indirect changes that occur due to activation of the immune system within the CNS, or a combination of both. In this review, we explore the interactions between Toxoplasma and its host, the proposed mechanisms and consequences on neuronal function and mental health, and discuss Toxoplasma infection as a public health issue.
Collapse
Affiliation(s)
- Shiraz Tyebji
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Victoria, Australia.
| | - Simona Seizova
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, 3052, Victoria, Australia.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| |
Collapse
|
61
|
Aspartyl Protease 5 Matures Dense Granule Proteins That Reside at the Host-Parasite Interface in Toxoplasma gondii. mBio 2018; 9:mBio.01796-18. [PMID: 30377279 PMCID: PMC6212819 DOI: 10.1128/mbio.01796-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Toxoplasma gondii is one of the most successful human parasites. Central to its success is the arsenal of virulence proteins introduced into the infected host cell. Several of these virulence proteins require direct maturation by the aspartyl protease ASP5, and all require ASP5 for translocation into the host cell, yet the true number of ASP5 substrates and complete repertoire of effectors is currently unknown. Here we selectively enrich N-terminally derived peptides using Terminal Amine Isotopic Labeling of Substrates (TAILS) and use quantitative proteomics to reveal novel ASP5 substrates. We identify, using two different enrichment techniques, new ASP5 substrates and their specific cleavage sites. ASP5 substrates include two kinases and one phosphatase that reside at the host-parasite interface, which are important for infection. Toxoplasma gondii infects approximately 30% of the world’s population, causing disease primarily during pregnancy and in individuals with weakened immune systems. Toxoplasma secretes and exports effector proteins that modulate the host during infection, and several of these proteins are processed by the Golgi-associated aspartyl protease 5 (ASP5). Here, we identify ASP5 substrates by selectively enriching N-terminally derived peptides from wild-type and Δasp5 parasites. We reveal more than 2,000 unique Toxoplasma N-terminal peptides, mapping to both natural N termini and protease cleavage sites. Several of these peptides mapped directly downstream of the characterized ASP5 cleavage site, arginine-arginine-leucine (RRL). We validate candidates as true ASP5 substrates, revealing they are not processed in parasites lacking ASP5 or in wild-type parasites following mutation of the motif from RRL to ARL. All identified ASP5 substrates are dense granule proteins, and interestingly, none appear to be exported, thus differing from the analogous system in related Plasmodium spp. Instead we show that the majority of substrates reside within the parasitophorous vacuole (PV), and its membrane (the PVM), including two kinases and one phosphatase. We show that genetic deletion of WNG2 leads to attenuation in a mouse model, suggesting that this putative kinase is a new virulence factor in Toxoplasma. Collectively, these data constitute the first in-depth analyses of ASP5 substrates and shed new light on the role of ASP5 as a maturase of dense granule proteins during the Toxoplasma lytic cycle.
Collapse
|
62
|
Krishnamurthy S, Saeij JPJ. Toxoplasma Does Not Secrete the GRA16 and GRA24 Effectors Beyond the Parasitophorous Vacuole Membrane of Tissue Cysts. Front Cell Infect Microbiol 2018; 8:366. [PMID: 30406043 PMCID: PMC6201044 DOI: 10.3389/fcimb.2018.00366] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/03/2022] Open
Abstract
After invasion, Toxoplasma resides in a parasitophorous vacuole (PV) that is surrounded by the PV membrane (PVM). Once inside the PV, tachyzoites secrete dense granule proteins (GRAs) of which some, such as GRA16 and GRA24, are transported beyond the PVM likely via a putative translocon. However, once tachyzoites convert into bradyzoites within cysts, it is not known if secreted GRAs can traffic beyond the cyst wall membrane. We used the tetracycline inducible system to drive expression of HA epitope tagged GRA16 and GRA24 after inducing stage conversion and show that these proteins are not secreted beyond the cyst wall membrane. This suggests that secretion of GRA beyond the PVM is not important for the tissue cyst stage of Toxoplasma.
Collapse
Affiliation(s)
- Shruthi Krishnamurthy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
63
|
He H, Brenier-Pinchart MP, Braun L, Kraut A, Touquet B, Couté Y, Tardieux I, Hakimi MA, Bougdour A. Characterization of a Toxoplasma effector uncovers an alternative GSK3/β-catenin-regulatory pathway of inflammation. eLife 2018; 7:39887. [PMID: 30320549 PMCID: PMC6214654 DOI: 10.7554/elife.39887] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii, hijacks evolutionarily conserved host processes by delivering effector proteins into the host cell that shift gene expression in a timely fashion. We identified a parasite dense granule protein as GRA18 that once released in the host cell cytoplasm forms versatile complexes with regulatory elements of the β-catenin destruction complex. By interacting with GSK3/PP2A-B56, GRA18 drives β-catenin up-regulation and the downstream effects on host cell gene expression. In the context of macrophages infection, GRA18 induces the expression of a specific set of genes commonly associated with an anti-inflammatory response that includes those encoding chemokines CCL17 and CCL22. Overall, this study adds another original strategy by which T. gondii tachyzoites reshuffle the host cell interactome through a GSK3/β-catenin axis to selectively reprogram immune gene expression.
Collapse
Affiliation(s)
- Huan He
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Marie-Pierre Brenier-Pinchart
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Laurence Braun
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Alexandra Kraut
- University of Grenoble Alpes, CEA, Inserm, BIG-BGE, Grenoble, France
| | - Bastien Touquet
- Team Membrane and Cell Dynamics of Host Parasite Interactions, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Yohann Couté
- University of Grenoble Alpes, CEA, Inserm, BIG-BGE, Grenoble, France
| | - Isabelle Tardieux
- Team Membrane and Cell Dynamics of Host Parasite Interactions, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Mohamed-Ali Hakimi
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Alexandre Bougdour
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| |
Collapse
|
64
|
Tu V, Yakubu R, Weiss LM. Observations on bradyzoite biology. Microbes Infect 2018; 20:466-476. [PMID: 29287987 PMCID: PMC6019562 DOI: 10.1016/j.micinf.2017.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023]
Abstract
Tachyzoites of the Apicomplexan Toxoplasma gondii cause acute infection, disseminate widely in their host, and eventually differentiate into a latent encysted form called bradyzoites that are found within tissue cysts. During latent infection, whenever transformation to tachyzoites occurs, any tachyzoites that develop are removed by the immune system. In contrast, cysts containing bradyzoites are sequestered from the immune system. In the absence of an effective immune response released organisms that differentiate into tachyzoites cause acute infection. Tissue cysts, therefore, serve as a reservoir for the reactivation of toxoplasmosis when the host becomes immunocompromised by conditions such as HIV infection, organ transplantation, or due to the impaired immune response that occurs when pathogens are acquired in utero. While tachyzoites and bradyzoites are well defined morphologically, there is no clear consensus on how interconversion occurs or what exact signal(s) mediate this transformation. Advances in research methods have facilitated studies on T. gondii bradyzoites providing important new insights into the biology of latent infection.
Collapse
Affiliation(s)
- Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rama Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
65
|
Benns HJ, Tate EW, Child MA. Activity-Based Protein Profiling for the Study of Parasite Biology. Curr Top Microbiol Immunol 2018; 420:155-174. [PMID: 30105424 DOI: 10.1007/82_2018_123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Parasites exist within most ecological niches, often transitioning through biologically and chemically complex host environments over the course of their parasitic life cycles. While the development of technologies for genetic engineering has revolutionised the field of functional genomics, parasites have historically been less amenable to such modification. In light of this, parasitologists have often been at the forefront of adopting new small-molecule technologies, repurposing drugs into biological tools and probes. Over the last decade, activity-based protein profiling (ABPP) has evolved into a powerful and versatile chemical proteomic platform for characterising the function of enzymes. Central to ABPP is the use of activity-based probes (ABPs), which covalently modify the active sites of enzyme classes ranging from serine hydrolases to glycosidases. The application of ABPP to cellular systems has contributed vastly to our knowledge on the fundamental biology of a diverse range of organisms and has facilitated the identification of potential drug targets in many pathogens. In this chapter, we provide a comprehensive review on the different forms of ABPP that have been successfully applied to parasite systems, and highlight key biological insights that have been enabled through their application.
Collapse
Affiliation(s)
- Henry J Benns
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | - Matthew A Child
- Life Sciences, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
66
|
Hammoudi PM, Maco B, Dogga SK, Frénal K, Soldati-Favre D. Toxoplasma gondiiTFP1 is an essential transporter family protein critical for microneme maturation and exocytosis. Mol Microbiol 2018; 109:225-244. [DOI: 10.1111/mmi.13981] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine; University of Geneva, 1 Rue Michel-Servet; Geneva 1206 Switzerland
| |
Collapse
|
67
|
Trusch F, Loebach L, Wawra S, Durward E, Wuensch A, Iberahim NA, de Bruijn I, MacKenzie K, Willems A, Toloczko A, Diéguez-Uribeondo J, Rasmussen T, Schrader T, Bayer P, Secombes CJ, van West P. Cell entry of a host-targeting protein of oomycetes requires gp96. Nat Commun 2018; 9:2347. [PMID: 29904064 PMCID: PMC6002402 DOI: 10.1038/s41467-018-04796-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2018] [Indexed: 12/02/2022] Open
Abstract
The animal-pathogenic oomycete Saprolegnia parasitica causes serious losses in aquaculture by infecting and killing freshwater fish. Like plant-pathogenic oomycetes, S. parasitica employs similar infection structures and secretes effector proteins that translocate into host cells to manipulate the host. Here, we show that the host-targeting protein SpHtp3 enters fish cells in a pathogen-independent manner. This uptake process is guided by a gp96-like receptor and can be inhibited by supramolecular tweezers. The C-terminus of SpHtp3 (containing the amino acid sequence YKARK), and not the N-terminal RxLR motif, is responsible for the uptake into host cells. Following translocation, SpHtp3 is released from vesicles into the cytoplasm by another host-targeting protein where it degrades nucleic acids. The effector translocation mechanism described here, is potentially also relevant for other pathogen-host interactions as gp96 is found in both animals and plants.
Collapse
Grants
- BB/E007120/1 Biotechnology and Biological Sciences Research Council
- BB/G012075/1 Biotechnology and Biological Sciences Research Council
- Biotechnology and Biological Sciences Research Council (BBSRC)
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Our work is supported by the [European Community's] Seventh Framework Programme [FP7/2007-2013] under grant agreement no [238550] (LL, JDU, CJS, PvW); BBSRC [BBE007120/1, BB/J018333/1 and BB/G012075/1] (FT, IdB, CJS, SW, PvW); Newton Global partnership Award [BB/N005058/1] (FT, PvW), the University of Aberdeen (ADT, TR, CJS, PvW) and Deutsche Forschungsgemeinschaft [CRC1093] (PB, TS). We would like to acknowledge the Ministry of Higher Education Malaysia for funding INA. We would like to thank Brian Haas for his bioinformatics support. We would like to acknowledge Neil Gow and Johannes van den Boom for critical reading of the manuscript. We would like to acknowledge Svetlana Rezinciuc for technical help with pH-studies.
Collapse
Affiliation(s)
- Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Lars Loebach
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Stephan Wawra
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- Botanical Institute, Genetical Institute, University of Cologne, Cologne, 50674, Germany
| | - Elaine Durward
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Andreas Wuensch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Nurul Aqilah Iberahim
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Irene de Bruijn
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- Netherlands Institute for Ecology (NIOO), Wageningen, 6708 PB, Netherlands
| | - Kevin MacKenzie
- Microscopy and Histology Facility, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Ariane Willems
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Aleksandra Toloczko
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Tim Rasmussen
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Thomas Schrader
- Organic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, 45117, Germany
| | - Chris J Secombes
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, Scotland, UK
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
- International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| |
Collapse
|
68
|
Mukherjee B, Tessaro F, Vahokoski J, Kursula I, Marq JB, Scapozza L, Soldati-Favre D. Modeling and resistant alleles explain the selectivity of antimalarial compound 49c towards apicomplexan aspartyl proteases. EMBO J 2018. [PMID: 29519896 DOI: 10.15252/embj.201798047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Toxoplasma gondii aspartyl protease 3 (TgASP3) phylogenetically clusters with Plasmodium falciparum Plasmepsins IX and X (PfPMIX, PfPMX). These proteases are essential for parasite survival, acting as key maturases for secreted proteins implicated in invasion and egress. A potent antimalarial peptidomimetic inhibitor (49c) originally developed against Plasmepsin II selectively targets TgASP3, PfPMIX, and PfPMX To unravel the molecular basis for the selectivity of 49c, we constructed homology models of PfPMIX, PfPMX, and TgASP3 that were first validated by identifying the determinants of microneme and rhoptry substrate recognition. The flap and flap-like structures of several reported Plasmepsins are highly flexible and critically modulate the access to the binding cavity. Molecular docking of 49c to TgASP3, PfPMIX, and PfPMX models predicted that the conserved phenylalanine residues in the flap, F344, F291, and F305, respectively, account for the sensitivity toward 49c. Concordantly, phenylalanine mutations in the flap of the three proteases increase twofold to 15-fold the IC50 values of 49c. Compellingly the selection of mutagenized T. gondii resistant strains to 49c reproducibly converted F344 to a cysteine residue.
Collapse
Affiliation(s)
- Budhaditya Mukherjee
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva 4, Switzerland
| | - Francesca Tessaro
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Lausanne University of Geneva CMU, Geneva, Switzerland
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva 4, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Lausanne University of Geneva CMU, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva 4, Switzerland
| |
Collapse
|
69
|
Marino ND, Panas MW, Franco M, Theisen TC, Naor A, Rastogi S, Buchholz KR, Lorenzi HA, Boothroyd JC. Identification of a novel protein complex essential for effector translocation across the parasitophorous vacuole membrane of Toxoplasma gondii. PLoS Pathog 2018; 14:e1006828. [PMID: 29357375 PMCID: PMC5794187 DOI: 10.1371/journal.ppat.1006828] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/01/2018] [Accepted: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can infect virtually all nucleated cells in warm-blooded animals. The ability of Toxoplasma tachyzoites to infect and successfully manipulate its host is dependent on its ability to transport "GRA" proteins that originate in unique secretory organelles called dense granules into the host cell in which they reside. GRAs have diverse roles in Toxoplasma's intracellular lifecycle, including co-opting crucial host cell functions and proteins, such as the cell cycle, c-Myc and p38 MAP kinase. Some of these GRA proteins, such as GRA16 and GRA24, are secreted into the parasitophorous vacuole (PV) within which Toxoplasma replicates and are transported across the PV membrane (PVM) into the host cell, but the translocation process and its machinery are not well understood. We previously showed that TgMYR1, which is cleaved by TgASP5 into two fragments, localizes to the PVM and is essential for GRA transport into the host cell. To identify additional proteins necessary for effector transport, we screened Toxoplasma mutants defective in c-Myc up-regulation for their ability to export GRA16 and GRA24 to the host cell nucleus. Here we report that novel proteins MYR2 and MYR3 play a crucial role in translocation of a subset of GRAs into the host cell. MYR2 and MYR3 are secreted into the PV space and co-localize with PV membranes and MYR1. Consistent with their predicted transmembrane domains, all three proteins are membrane-associated, and MYR3, but not MYR2, stably associates with MYR1, whose N- and C-terminal fragments are disulfide-linked. We further show that fusing intrinsically disordered effectors to a structured DHFR domain blocks the transport of other effectors, consistent with a translocon-based model of effector transport. Overall, these results reveal a novel complex at the PVM that is essential for effector translocation into the host cell.
Collapse
Affiliation(s)
- Nicole D. Marino
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael W. Panas
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Magdalena Franco
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Terence C. Theisen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Adit Naor
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Suchita Rastogi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kerry R. Buchholz
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
70
|
Insights into the molecular basis of host behaviour manipulation by Toxoplasma gondii infection. Emerg Top Life Sci 2017; 1:563-572. [PMID: 33525856 DOI: 10.1042/etls20170108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Typically illustrating the 'manipulation hypothesis', Toxoplasma gondii is widely known to trigger sustainable behavioural changes during chronic infection of intermediate hosts to enhance transmission to its feline definitive hosts, ensuring survival and dissemination. During the chronic stage of infection in rodents, a variety of neurological dysfunctions have been unravelled and correlated with the loss of cat fear, among other phenotypic impacts. However, the underlying neurological alteration(s) driving these behavioural modifications is only partially understood, which makes it difficult to draw more than a correlation between T. gondii infection and changes in brain homeostasis. Moreover, it is barely known which among the brain regions governing fear and stress responses are preferentially affected during T. gondii infection. Studies aiming at an in-depth dissection of underlying molecular mechanisms occurring at the host and parasite levels will be discussed in this review. Addressing this reminiscent topic in the light of recent technical progress and new discoveries regarding fear response, olfaction and neuromodulator mechanisms could contribute to a better understanding of this complex host-parasite interaction.
Collapse
|
71
|
Dogga SK, Mukherjee B, Jacot D, Kockmann T, Molino L, Hammoudi PM, Hartkoorn RC, Hehl AB, Soldati-Favre D. A druggable secretory protein maturase of Toxoplasma essential for invasion and egress. eLife 2017; 6. [PMID: 28898199 PMCID: PMC5595437 DOI: 10.7554/elife.27480] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
Micronemes and rhoptries are specialized secretory organelles that deploy their contents at the apical tip of apicomplexan parasites in a regulated manner. The secretory proteins participate in motility, invasion, and egress and are subjected to proteolytic maturation prior to organellar storage and discharge. Here we establish that Toxoplasma gondii aspartyl protease 3 (ASP3) resides in the endosomal-like compartment and is crucially associated to rhoptry discharge during invasion and to host cell plasma membrane lysis during egress. A comparison of the N-terminome, by terminal amine isotopic labelling of substrates between wild type and ASP3 depleted parasites identified microneme and rhoptry proteins as repertoire of ASP3 substrates. The role of ASP3 as a maturase for previously described and newly identified secretory proteins is confirmed in vivo and in vitro. An antimalarial compound based on a hydroxyethylamine scaffold interrupts the lytic cycle of T. gondii at submicromolar concentration by targeting ASP3.
Collapse
Affiliation(s)
- Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Budhaditya Mukherjee
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Luca Molino
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Ruben C Hartkoorn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,Chemical Biology of Antibiotics, Center for Infection and Immunity, Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Lille, France
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
72
|
Olias P, Etheridge RD, Zhang Y, Holtzman MJ, Sibley LD. Toxoplasma Effector Recruits the Mi-2/NuRD Complex to Repress STAT1 Transcription and Block IFN-γ-Dependent Gene Expression. Cell Host Microbe 2017; 20:72-82. [PMID: 27414498 DOI: 10.1016/j.chom.2016.06.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 06/09/2016] [Indexed: 12/12/2022]
Abstract
Interferon gamma (IFN-γ) is an essential mediator of host defense against intracellular pathogens, including the protozoan parasite Toxoplasma gondii. However, prior T. gondii infection blocks IFN-γ-dependent gene transcription, despite the downstream transcriptional activator STAT1 being activated and bound to cognate nuclear promoters. We identify the parasite effector that blocks STAT1-dependent transcription and show it is associated with recruitment of the Mi-2 nucleosome remodeling and deacetylase (NuRD) complex, a chromatin-modifying repressor. This secreted effector, toxoplasma inhibitor of STAT1-dependent transcription (TgIST), translocates to the host cell nucleus, where it recruits Mi-2/NuRD to STAT1-dependent promoters, resulting in altered chromatin and blocked transcription. TgIST is conserved across strains, underlying their shared ability to block IFN-γ-dependent transcription. TgIST deletion results in increased parasite clearance in IFN-γ-activated cells and reduced mouse virulence, which is restored in IFN-γ-receptor-deficient mice. These findings demonstrate the importance of both IFN-γ responses and the ability of pathogens to counteract these defenses.
Collapse
Affiliation(s)
- Philipp Olias
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ronald D Etheridge
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yong Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Holtzman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
73
|
Abou-El-Naga IF, El Kerdany ED, Mady RF, Shalaby TI, Zaytoun EM. The effect of lopinavir/ritonavir and lopinavir/ritonavir loaded PLGA nanoparticles on experimental toxoplasmosis. Parasitol Int 2017; 66:735-747. [PMID: 28838776 DOI: 10.1016/j.parint.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
A marked reduction has been achieved in the incidence and clinical course of toxoplasmic encephalitis after the introduction of protease inhibitors within the treatment regimen of HIV (HIV-PIs). This work was undertaken to study for the first time, the efficacy of HIV-PIs, lopinavir/ritonavir (L/R), as a therapeutic agent in acute experimental toxoplasmosis. Lopinavir/ritonavir (L/R) were used in the same ratio present in aluvia, a known HIV-PIs drug used in the developing countries in the treatment regimens of AID's patient. Poly lactic-co-glycolic acid (PLGA) nanoparticles were used as a delivery system to L/R therapy. L/R alone or after its encapsulation on PLGA were given to Swiss strain albino mice that were infected with RH virulent toxoplasma strain. Both forms caused parasitological improvement in both mortality rate and parasite count. The higher efficacy was achieved by using L/R PLGA together with minimizing the effective dose. There was significant reduction in the parasite count in the peritoneal fluid and the liver. Parasite viability and infectivity were also significantly reduced. The anti-toxoplasma effect of the drug was attributed to the morphological distortion of the tachyzoites as evident by the ultrastructure examination and suppressed the egress of tachyzoites. L/R also induced changes that suggest apoptosis and autophagy of tachyzoites. The parasitophorous vacuole membrane was disrupted and vesiculated. The nanotubular networks inside the parasitophorous vacuole were disrupted. Therefore, the present work opens a new possible way for the approved HIV-PIs as an alternative treatment against acute toxoplasmosis. Furthermore, it increases the list of the opportunistic parasites that can be treated by this drug. The successful in vivo effect of HIV-PIs against Toxoplasma gondii suggests that this parasite may be a target in HIV treated patients, thus decrease the possibility of toxoplasmic encephalitis development.
Collapse
Affiliation(s)
| | | | - Rasha Fadly Mady
- Medical Parasitology Department, Alexandria Faculty of Medicine, Egypt.
| | | | | |
Collapse
|
74
|
Ma L, Liu G, Liu J, Li M, Zhang H, Tang D, Liu Q. Neospora caninum ROP16 play an important role in the pathogenicity by phosphorylating host cell STAT3. Vet Parasitol 2017; 243:135-147. [DOI: 10.1016/j.vetpar.2017.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/25/2022]
|
75
|
Frénal K, Jacot D, Hammoudi PM, Graindorge A, Maco B, Soldati-Favre D. Myosin-dependent cell-cell communication controls synchronicity of division in acute and chronic stages of Toxoplasma gondii. Nat Commun 2017; 8:15710. [PMID: 28593938 PMCID: PMC5477499 DOI: 10.1038/ncomms15710] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/17/2017] [Indexed: 01/20/2023] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii possesses a repertoire of 11 myosins. Three class XIV motors participate in motility, invasion and egress, whereas the class XXII myosin F is implicated in organelle positioning and inheritance of the apicoplast. Here we provide evidence that TgUNC acts as a chaperone dedicated to the folding, assembly and function of all Toxoplasma myosins. The conditional ablation of TgUNC recapitulates the phenome of the known myosins and uncovers two functions in parasite basal complex constriction and synchronized division within the parasitophorous vacuole. We identify myosin J and centrin 2 as essential for the constriction. We demonstrate the existence of an intravacuolar cell–cell communication ensuring synchronized division, a process dependent on myosin I. This connectivity contributes to the delayed death phenotype resulting from loss of the apicoplast. Cell–cell communication is lost in activated macrophages and during bradyzoite differentiation resulting in asynchronized, slow division in the cysts. The mechanism by which Toxoplasma gondii achieves synchronized cell division is incompletely understood. Here, the authors identify an intravacuolar cell-cell communication that ensures synchronized division and depends on myosin I.
Collapse
Affiliation(s)
- Karine Frénal
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Arnault Graindorge
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| |
Collapse
|
76
|
Wawra S, Trusch F, Matena A, Apostolakis K, Linne U, Zhukov I, Stanek J, Koźmiński W, Davidson I, Secombes CJ, Bayer P, van West P. The RxLR Motif of the Host Targeting Effector AVR3a of Phytophthora infestans Is Cleaved before Secretion. THE PLANT CELL 2017; 29:1184-1195. [PMID: 28522546 PMCID: PMC5502441 DOI: 10.1105/tpc.16.00552] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/04/2017] [Accepted: 05/10/2017] [Indexed: 05/17/2023]
Abstract
When plant-pathogenic oomycetes infect their hosts, they employ a large arsenal of effector proteins to establish a successful infection. Some effector proteins are secreted and are destined to be translocated and function inside host cells. The largest group of translocated proteins from oomycetes is the RxLR effectors, defined by their conserved N-terminal Arg-Xaa-Leu-Arg (RxLR) motif. However, the precise role of this motif in the host cell translocation process is unclear. Here, detailed biochemical studies of the RxLR effector AVR3a from the potato pathogen Phytophthora infestans are presented. Mass spectrometric analysis revealed that the RxLR sequence of native AVR3a is cleaved off prior to secretion by the pathogen and the N terminus of the mature effector was found likely to be acetylated. High-resolution NMR structure analysis of AVR3a indicates that the RxLR motif is well accessible to potential processing enzymes. Processing and modification of AVR3a is to some extent similar to events occurring with the export element (PEXEL) found in malaria effector proteins from Plasmodium falciparum These findings imply a role for the RxLR motif in the secretion of AVR3a by the pathogen, rather than a direct role in the host cell entry process itself.
Collapse
Affiliation(s)
- Stephan Wawra
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Anja Matena
- Structural and Medicinal Biochemistry, Centre of Medicinal Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Kostis Apostolakis
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Uwe Linne
- Core Facility for Mass Spectrometry and Chemistry, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Jan Stanek
- Biological and Chemical Research Centre (CENT III), Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Biological and Chemical Research Centre (CENT III), Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Ian Davidson
- Proteomics Facility, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Centre of Medicinal Biotechnology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
77
|
Abstract
Early electron microscopy studies revealed the elaborate cellular features that define the unique adaptations of apicomplexan parasites. Among these were bulbous rhoptry (ROP) organelles and small, dense granules (GRAs), both of which are secreted during invasion of host cells. These early morphological studies were followed by the exploration of the cellular contents of these secretory organelles, revealing them to be comprised of highly divergent protein families with few conserved domains or predicted functions. In parallel, studies on host-pathogen interactions identified many host signaling pathways that were mysteriously altered by infection. It was only with the advent of forward and reverse genetic strategies that the connections between individual parasite effectors and the specific host pathways that they targeted finally became clear. The current repertoire of parasite effectors includes ROP kinases and pseudokinases that are secreted during invasion and that block host immune pathways. Similarly, many secretory GRA proteins alter host gene expression by activating host transcription factors, through modification of chromatin, or by inducing small noncoding RNAs. These effectors highlight novel mechanisms by which T. gondii has learned to harness host signaling to favor intracellular survival and will guide future studies designed to uncover the additional complexity of this intricate host-pathogen interaction.
Collapse
|
78
|
Chen AL, Moon AS, Bell HN, Huang AS, Vashisht AA, Toh JY, Lin AH, Nadipuram SM, Kim EW, Choi CP, Wohlschlegel JA, Bradley PJ. Novel insights into the composition and function of the Toxoplasma IMC sutures. Cell Microbiol 2017; 19:10.1111/cmi.12678. [PMID: 27696623 PMCID: PMC5909696 DOI: 10.1111/cmi.12678] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 09/28/2016] [Indexed: 12/29/2022]
Abstract
The Toxoplasma inner membrane complex (IMC) is a specialized organelle underlying the parasite's plasma membrane that consists of flattened rectangular membrane sacs that are sutured together and positioned atop a supportive cytoskeleton. We have previously identified a novel class of proteins localizing to the transverse and longitudinal sutures of the IMC, which we named IMC sutures components (ISCs). Here, we have used proximity-dependent biotin identification at the sutures to better define the composition of this IMC subcompartment. Using ISC4 as bait, we demonstrate biotin-dependent labeling of the sutures and have uncovered two new ISCs. We also identified five new proteins that exclusively localize to the transverse sutures that we named transverse sutures components (TSCs), demonstrating that components of the IMC sutures consist of two groups: those that localize to the transverse and longitudinal sutures (ISCs) and those residing only in the transverse sutures (TSCs). In addition, we functionally analyze the ISC protein ISC3 and demonstrate that ISC3-null parasites have morphological defects and reduced fitness in vitro. Most importantly, Δisc3 parasites exhibit a complete loss of virulence in vivo. These studies expand the known composition of the IMC sutures and highlight the contribution of ISCs to the ability of the parasite to proliferate and cause disease.
Collapse
Affiliation(s)
- Allan L. Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Andy S. Moon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Hannah N. Bell
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Amy S. Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Ajay A. Vashisht
- Department of Biological Chemistry and Institute of Genomics and Proteomics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Justin Y. Toh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Andrew H. Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Santhosh M. Nadipuram
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Elliot W. Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Charles P. Choi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA 90095
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA 90095
| |
Collapse
|
79
|
The Toxoplasma Parasitophorous Vacuole: An Evolving Host-Parasite Frontier. Trends Parasitol 2017; 33:473-488. [PMID: 28330745 DOI: 10.1016/j.pt.2017.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/20/2017] [Accepted: 02/24/2017] [Indexed: 01/17/2023]
Abstract
The parasitophorous vacuole is a unique replicative niche for apicomplexan parasites, including Toxoplasma gondii. Derived from host plasma membrane, the vacuole is rendered nonfusogenic with the host endolysosomal system. Toxoplasma secretes numerous proteins to modify the forming vacuole, enable nutrient uptake, and set up mechanisms of host subversion. Here we describe the pathways of host-parasite interaction at the parasitophorous vacuole employed by Toxoplasma and host, leading to the intricate balance of host defence versus parasite survival.
Collapse
|
80
|
Ma L, Liu J, Li M, Fu Y, Zhang X, Liu Q. Rhoptry protein 5 ( ROP5) Is a Key Virulence Factor in Neospora caninum. Front Microbiol 2017; 8:370. [PMID: 28326073 PMCID: PMC5340095 DOI: 10.3389/fmicb.2017.00370] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/22/2017] [Indexed: 12/29/2022] Open
Abstract
Neospora caninum, of the Apicomplexa phylum, is a common cause of abortions in cattle and nervous system dysfunction in dogs. Rhoptry proteins of Apicomplexa play an important role in virulence. The objectives of this study were to study functions of NcROP5 in N. caninum by deleting the NcROP5 gene from the wild Nc-1 strain. We selected NcROP5 in ToxoDB and successfully constructed an NcROP5 gene-deleted vector, pTCR-NcROP5-CD KO. Then we screened the NcROP5 knockout strains (ΔNcROP5) at the gene, protein and transcription levels. Plaque assay, host cell invasion assay and intracellular proliferation test showed that the ΔNcROP5 strain had less plaque space, weakened invasion capacity and slower intracellular growth. Animal testing showed significantly lower cerebral load of ΔNcROP5 than the load of the Nc-1 strain, as well as a loss of virulence for the ΔNcROP5 strains. Phenotypic analyses using the label-free LC-MS/MS assay-based proteomic method and KEGG pathway enrichment analysis showed a reduction of NcGRA7 transcription and altered expression of multiple proteins including the apicomplexan family of binding proteins. The present study indicated that ROP5 is a key virulence factor in N. caninum in mice. The proteomic profiling of Nc-1 and ΔNcROP5 provided some data on differential proteins. These data provide a foundation for future research of protein functions in N. caninum.
Collapse
Affiliation(s)
- Lei Ma
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Jing Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Muzi Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Yong Fu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Xiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Qun Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| |
Collapse
|
81
|
Cassone A, Vecchiarelli A, Hube B. Aspartyl Proteinases of Eukaryotic Microbial Pathogens: From Eating to Heating. PLoS Pathog 2016; 12:e1005992. [PMID: 28005981 PMCID: PMC5179018 DOI: 10.1371/journal.ppat.1005992] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Antonio Cassone
- Polo d’innovazione della Genomica, Genetica e Biologia, University of Perugia, Perugia, Italy
| | - Anna Vecchiarelli
- Microbiology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knoell Institute, Jena, Germany
- Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany
- Friedrich-Schiller-Universität, Jena, Germany
| |
Collapse
|
82
|
Jones NG, Wang Q, Sibley LD. Secreted protein kinases regulate cyst burden during chronic toxoplasmosis. Cell Microbiol 2016; 19. [PMID: 27450947 DOI: 10.1111/cmi.12651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/12/2016] [Accepted: 07/15/2016] [Indexed: 12/29/2022]
Abstract
Toxoplasma gondii is an apicomplexan parasite that secretes a large number of protein kinases and pseudokinases from its rhoptry organelles. Although some rhoptry kinases (ROPKs) act as virulence factors, many remain uncharacterized. In this study, predicted ROPKs were assessed for bradyzoite expression then prioritized for a reverse genetic analysis in the type II strain Pru that is amenable to targeted disruption. Using CRISPR/Cas9, we engineered C-terminally epitope tagged ROP21 and ROP27 and demonstrated their localization to the parasitophorous vacuole and cyst matrix. ROP21 and ROP27 were not secreted from microneme, rhoptry, or dense granule organelles, but rather were located in small vesicles consistent with a constitutive pathway. Using CRISPR/Cas9, the genes for ROP21, ROP27, ROP28, and ROP30 were deleted individually and in combination, and the mutant parasites were assessed for growth and their ability to form tissue cysts in mice. All knockouts lines were normal for in vitro growth and bradyzoite differentiation, but a combined ∆rop21/∆rop17 knockout led to a 50% reduction in cyst burden in vivo. Our findings question the existing annotation of ROPKs based solely on bioinformatic techniques and yet highlight the importance of secreted kinases in determining the severity of chronic toxoplasmosis.
Collapse
Affiliation(s)
- Nathaniel G Jones
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
83
|
de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol 2016; 14:494-507. [DOI: 10.1038/nrmicro.2016.79] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Fernández C, Jaimes J, Ortiz MC, Ramírez JD. Host and Toxoplasma gondii genetic and non-genetic factors influencing the development of ocular toxoplasmosis: A systematic review. INFECTION GENETICS AND EVOLUTION 2016; 44:199-209. [PMID: 27389360 DOI: 10.1016/j.meegid.2016.06.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022]
Abstract
Toxoplasmosis is a cosmopolitan infection caused by the apicomplexan parasite Toxoplasma gondii. This infectious disease is widely distributed across the world where cats play an important role in its spread. The symptomatology caused by this parasite is diverse but the ocular affectation emerges as the most important clinical phenotype. Therefore, we conducted a systematic review of the current knowledge of ocular toxoplasmosis from the genetic diversity of the pathogen towards the treatment available for this infection. This review represents an update to the scientific community regarding the genetic diversity of the parasite, the genetic factors of the host, the molecular pathogenesis and its association with disease, the available diagnostic tools and the available treatment of patients undergoing ocular toxoplamosis. This review will be an update for the scientific community in order to encourage researchers to deploy cutting-edge investigation across this field.
Collapse
Affiliation(s)
- Carolina Fernández
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia; Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Jesús Jaimes
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia; Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - María Camila Ortiz
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia; Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
85
|
Sojka D, Hartmann D, Bartošová-Sojková P, Dvořák J. Parasite Cathepsin D-Like Peptidases and Their Relevance as Therapeutic Targets. Trends Parasitol 2016; 32:708-723. [PMID: 27344362 DOI: 10.1016/j.pt.2016.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/27/2016] [Accepted: 05/25/2016] [Indexed: 11/18/2022]
Abstract
Inhibition of aspartic cathepsin D-like peptidases (APDs) has been often discussed as an antiparasite intervention strategy. APDs have been considered as virulence factors of Trypanosoma cruzi and Leishmania spp., and have been demonstrated to have important roles in protein trafficking mechanisms of apicomplexan parasites. APDs also initiate blood digestion as components of multienzyme proteolytic complexes in malaria, platyhelminths, nematodes, and ticks. Increasing DNA and RNA sequencing data indicate that parasites express multiple APD isoenzymes of various functions that can now be specifically evaluated using new functional-genomic and biochemical tools, from which we can further assess the potential of APDs as targets for novel effective intervention strategies against parasitic diseases that still pose an alarming threat to mankind.
Collapse
Affiliation(s)
- Daniel Sojka
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic.
| | - David Hartmann
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Ceske Budejovice 370 05, Czech Republic
| | - Jan Dvořák
- Institute of Molecular Genetics, The Czech Academy of Sciences, Prague 14220, Czech Republic; Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 16610, Czech Republic; School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
86
|
Abstract
Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts.
Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion.
Toxoplasma gondii and
Theileria sp., besides
Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol (
T. gondii and
Plasmodium) and how a secreted protein can immortalize the host cell (
Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against
T. gondii and the liver stages of
Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected
Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen.
Collapse
Affiliation(s)
- Frank Seeber
- FG16: Mycotic and parasitic agents and mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Svenja Steinfelder
- Institute of Immunology, Center of Infection Medicine, Free University Berlin, Berlin, Germany
| |
Collapse
|
87
|
Weidner JM, Kanatani S, Uchtenhagen H, Varas-Godoy M, Schulte T, Engelberg K, Gubbels MJ, Sun HS, Harrison RE, Achour A, Barragan A. Migratory activation of parasitized dendritic cells by the protozoan Toxoplasma gondii 14-3-3 protein. Cell Microbiol 2016; 18:1537-1550. [PMID: 27018989 DOI: 10.1111/cmi.12595] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/17/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
Abstract
The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon infection, parasitized dendritic cells (DCs) and microglia exhibit a hypermigratory phenotype in vitro that has been associated with enhancing parasite dissemination in vivo in mice. One unresolved question is how parasites commandeer parasitized cells to achieve systemic dissemination by a 'Trojan-horse' mechanism. By chromatography and mass spectrometry analyses, we identified an orthologue of the 14-3-3 protein family, T. gondii 14-3-3 (Tg14-3-3), as mediator of DC hypermotility. We demonstrate that parasite-derived polypeptide fractions enriched for Tg14-3-3 or recombinant Tg14-3-3 are sufficient to induce the hypermotile phenotype when introduced by protein transfection into murine DCs, human DCs or microglia. Further, gene transfer of Tg14-3-3 by lentiviral transduction induced hypermotility in primary human DCs. In parasites expressing Tg14-3-3 in a ligand-regulatable fashion, overexpression of Tg14-3-3 was correlated with induction of hypermotility in parasitized DCs. Localization studies in infected DCs identified Tg14-3-3 within the parasitophorous vacuolar space and a rapid recruitment of host cell 14-3-3 to the parasitophorous vacuole membrane. The present work identifies a determinant role for Tg14-3-3 in the induction of the migratory activation of immune cells by T. gondii. Collectively, the findings reveal Tg14-3-3 as a novel target for an intracellular pathogen that acts by hijacking the host cell's migratory properties to disseminate.
Collapse
Affiliation(s)
- Jessica M Weidner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 09, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 86, Stockholm, Sweden
| | - Sachie Kanatani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 09, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 86, Stockholm, Sweden
| | - Hannes Uchtenhagen
- Science for Life Laboratories, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, SE-17176, Sweden
| | - Manuel Varas-Godoy
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.,Centro de Investigacion Biomedica, Faculty of Medicine, Universidad de los Andes, 755000, Santiago, Chile
| | - Tim Schulte
- Science for Life Laboratories, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, SE-17176, Sweden
| | - Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - He Song Sun
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Rene E Harrison
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Adnane Achour
- Science for Life Laboratories, Department of Medicine Solna, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Solna, SE-17176, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 09, Stockholm, Sweden. .,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 86, Stockholm, Sweden.
| |
Collapse
|
88
|
Protein trafficking in apicomplexan parasites: crossing the vacuolar Rubicon. Curr Opin Microbiol 2016; 32:38-45. [PMID: 27155394 DOI: 10.1016/j.mib.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 01/01/2023]
Abstract
Although apicomplexans like the blood stages of Plasmodium and the actively replicating 'tachyzoite' stage of Toxoplasma infect very dissimilar host cells, recent studies suggest they share molecular commonalities amongst differences at the parasitophorous vacuolar membrane (PVM) surrounding these intracellular parasites. A protein translocation export (PTEX) complex in the PVM of Plasmodium, is functionally informed by findings in Toxoplasma. Lipids play a role in trafficking to and across the PVM. Toxoplasma exploit an orthologue of a plasmodial secretory aspartyl protease but substrate cleavage yields a signal for targeting to the PVM, rather than directly to the host cell. The studies significantly advance understanding of how trafficking to and across the host-pathogen PVM boundary induces virulence and disease in different host milieu.
Collapse
|
89
|
Role of the ER and Golgi in protein export by Apicomplexa. Curr Opin Cell Biol 2016; 41:18-24. [PMID: 27019341 DOI: 10.1016/j.ceb.2016.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/31/2022]
Abstract
Apicomplexan parasites cause diseases of medical and agricultural importance linked to dramatic changes they impart upon infected host cells. Following invasion, the malaria parasite Plasmodium falciparum renovates the host erythrocyte using mechanisms previously believed to be malaria-specific. This involves proteolytic cleavage of effectors in the endoplasmic reticulum that licences proteins for translocation into the host cell. Recently, it was demonstrated that the related parasite Toxoplasma gondii, responsible for disease in immunocompromised individuals and congenital birth defects, has an analogous pathway with some differences, including proteolytic processing in the Golgi. Here we review the similarities and distinctions in export mechanisms between these and other Apicomplexan parasites to reconcile how this group of pathogens modify their host cells to survive and proliferate.
Collapse
|
90
|
The Rhoptry Pseudokinase ROP54 Modulates Toxoplasma gondii Virulence and Host GBP2 Loading. mSphere 2016; 1:mSphere00045-16. [PMID: 27303719 PMCID: PMC4863586 DOI: 10.1128/msphere.00045-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe here a T. gondii pseudokinase effector, ROP54, that localizes to the vacuole upon invasion and is critical for parasite virulence. Toxoplasma vacuoles lacking ROP54 display an increased loading of the host immune factor GBP2, but not IRGb6, indicating that ROP54 plays a distinct role in immune evasion. Toxoplasma gondii uses unique secretory organelles called rhoptries to inject an array of effector proteins into the host cytoplasm that hijack host cell functions. We have discovered a novel rhoptry pseudokinase effector, ROP54, which is injected into the host cell upon invasion and traffics to the cytoplasmic face of the parasitophorous vacuole membrane (PVM). Disruption of ROP54 in a type II strain of T. gondii does not affect growth in vitro but results in a 100-fold decrease in virulence in vivo, suggesting that ROP54 modulates some aspect of the host immune response. We show that parasites lacking ROP54 are more susceptible to macrophage-dependent clearance, further suggesting that ROP54 is involved in evasion of innate immunity. To determine how ROP54 modulates parasite virulence, we examined the loading of two known innate immune effectors, immunity-related GTPase b6 (IRGb6) and guanylate binding protein 2 (GBP2), in wild-type and ∆rop54II mutant parasites. While no difference in IRGb6 loading was seen, we observed a substantial increase in GBP2 loading on the parasitophorous vacuole (PV) of ROP54-disrupted parasites. These results demonstrate that ROP54 is a novel rhoptry effector protein that promotes Toxoplasma infections by modulating GBP2 loading onto parasite-containing vacuoles. IMPORTANCE The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe here a T. gondii pseudokinase effector, ROP54, that localizes to the vacuole upon invasion and is critical for parasite virulence. Toxoplasma vacuoles lacking ROP54 display an increased loading of the host immune factor GBP2, but not IRGb6, indicating that ROP54 plays a distinct role in immune evasion.
Collapse
|
91
|
Abstract
The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc–GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. Toxoplasma gondii is an important human pathogen and a model for the study of intracellular parasitism. Infection of the host cell with Toxoplasma tachyzoites involves the introduction of protein effectors, including many that are initially secreted into the parasitophorous vacuole but must ultimately translocate to the host cell cytosol to function. The work reported here identified a novel protein that is required for this translocation. These results give new insight into a very unusual cell biology process as well as providing a potential handle on a pathway that is necessary for virulence and, therefore, a new potential target for chemotherapy.
Collapse
|