51
|
Tesli N, Westlye LT, Storvestre GB, Gurholt TP, Agartz I, Melle I, Andreassen OA, Haukvik UK. White matter microstructure in schizophrenia patients with a history of violence. Eur Arch Psychiatry Clin Neurosci 2021; 271:623-634. [PMID: 30694361 DOI: 10.1007/s00406-019-00988-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022]
Abstract
Schizophrenia (SCZ) is associated with increased risk of violence compared to the general population. Neuroimaging research suggests SCZ to be a disorder of disrupted connectivity, with diffusion tensor imaging (DTI) indicating white matter (WM) abnormalities. It has been hypothesized that SCZ patients with a history of violence (SCZ-V) have brain abnormalities distinguishing them from SCZ patients with no history of violence (SCZ-NV). Yet, a thorough investigation of the neurobiological underpinnings of state and trait measures of violence and aggression in SCZ derived from DTI indices is lacking. Using tract-based spatial statistics, we compared DTI-derived microstructural indices: fractional anisotropy (FA), mean, axial (AD) and radial diffusivity across the brain; (1) between SCZ-V (history of murder, attempted murder, or severe assault towards other people, n = 24), SCZ-NV (n = 52) and healthy controls (HC, n = 94), and (2) associations with current aggression scores among both SCZ groups. Then, hypothesis-driven region of interest analyses of the uncinate fasciculus and clinical characteristics including medication use were performed. SCZ-V and SCZ-NV showed decreased FA and AD in widespread regions compared to HC. There were no significant differences on any DTI-based measures between SCZ-V and SCZ-NV, and no significant associations between state or trait measures of aggression and any of the DTI metrics in the ROI analyses. The DTI-derived WM differences between SCZ and HC are in line with previous findings, but the results do not support the hypothesis of specific brain WM microstructural correlates of violence or aggression in SCZ.
Collapse
Affiliation(s)
- Natalia Tesli
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Nydalen, P.O. Box 4956, 0424, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Tiril P Gurholt
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Nydalen, P.O. Box 4956, 0424, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Nydalen, P.O. Box 4956, 0424, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Nydalen, P.O. Box 4956, 0424, Oslo, Norway
| | - Unn K Haukvik
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Nydalen, P.O. Box 4956, 0424, Oslo, Norway. .,Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
52
|
Interference of commissural connections through the genu of the corpus callosum specifically impairs sensorimotor gating. Behav Brain Res 2021; 411:113383. [PMID: 34048871 DOI: 10.1016/j.bbr.2021.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/20/2022]
Abstract
White matter abnormalities in schizophrenic patients are characterized as regional tract-specific. Myelin loss at the genu of the corpus callosum (GCC) is one of the most consistent findings in schizophrenic patients across the different populations. We characterized the axons that pass through the GCC by stereotactically injecting an anterograde axonal tracing viral vector into the forceps minor of the corpus callosum in one hemisphere, and identified the homotopic brain structures that have commissural connections in the two hemispheres of the prefrontal cortex, including the anterior cingulate area, the prelimbic area, the secondary motor area, and the dorsal part of the agranular insular area, along with commissural connections with the primary motor area, caudoputamen, and claustrum. To investigate whether dysmyelination in these commissural connections is critical for the development of schizophrenia symptoms, we generated a mouse model with focal demyelination at the GCC by stereotactically injecting demyelinating agent lysolecithin into this site, and tested these mice in a battery of behavioral tasks that are used to model the schizophrenia-like symptom domains. We found that demyelination at the GCC influenced neither the social interest or mood state, nor the locomotive activity or motor coordination. Nevertheless, it specifically reduced the prepulse inhibition of acoustic startle that is a well-known measure of sensorimotor gating. This study advances our understanding of the pathophysiological contributions of the GCC-specific white matter lesion to the related disease, and demonstrates an indispensable role of interhemispheric communication between the frontal cortices for the top-down regulation of the sensorimotor gating.
Collapse
|
53
|
Chamera K, Szuster-Głuszczak M, Basta-Kaim A. Shedding light on the role of CX3CR1 in the pathogenesis of schizophrenia. Pharmacol Rep 2021; 73:1063-1078. [PMID: 34021899 PMCID: PMC8413165 DOI: 10.1007/s43440-021-00269-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Schizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regulation of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 dysfunctions in the course of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland.
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| |
Collapse
|
54
|
Pawełczyk A, Łojek E, Żurner N, Gawłowska-Sawosz M, Gębski P, Pawełczyk T. The correlation between white matter integrity and pragmatic language processing in first episode schizophrenia. Brain Imaging Behav 2021; 15:1068-1084. [PMID: 32710335 PMCID: PMC8032571 DOI: 10.1007/s11682-020-00314-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective: Higher-order language disturbances could be the result of white matter tract abnormalities. The study explores the relationship between white matter and pragmatic skills in first-episode schizophrenia. Methods: Thirty-four first-episode patients with schizophrenia and 32 healthy subjects participated in a pragmatic language and Diffusion Tensor Imaging study, where fractional anisotropy of the arcuate fasciculus, corpus callosum and cingulum was correlated with the Polish version of the Right Hemisphere Language Battery. Results: The patients showed reduced fractional anisotropy in the right arcuate fasciculus, left anterior cingulum bundle and left forceps minor. Among the first episode patients, reduced understanding of written metaphors correlated with reduced fractional anisotropy of left forceps minor, and greater explanation of written and picture metaphors correlated with reduced fractional anisotropy of the left anterior cingulum. Conclusions: The white matter dysfunctions may underlie the pragmatic language impairment in schizophrenia. Our results shed further light on the functional neuroanatomical basis of pragmatic language use by patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Łódź, Poland.
| | | | - Natalia Żurner
- Adolescent Ward, Central Clinical Hospital of Medical University of Łódź, Łódź, Poland
| | | | - Piotr Gębski
- Scanlab Diagnostyka Medyczna Księży Młyn, Medical Examination Centre, Medical University of Łódź, Łódź, Poland
| | - Tomasz Pawełczyk
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
55
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Dopamine receptor density and white mater integrity: 18F-fallypride positron emission tomography and diffusion tensor imaging study in healthy and schizophrenia subjects. Brain Imaging Behav 2021; 14:736-752. [PMID: 30523488 DOI: 10.1007/s11682-018-0012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopaminergic dysfunction and changes in white matter integrity are among the most replicated findings in schizophrenia. A modulating role of dopamine in myelin formation has been proposed in animal models and healthy human brain, but has not yet been systematically explored in schizophrenia. We used diffusion tensor imaging and 18F-fallypride positron emission tomography in 19 healthy and 25 schizophrenia subjects to assess the relationship between gray matter dopamine D2/D3 receptor density and white matter fractional anisotropy in each diagnostic group. AFNI regions of interest were acquired for 42 cortical Brodmann areas and subcortical gray matter structures as well as stereotaxically placed in representative white matter areas implicated in schizophrenia neuroimaging literature. Welch's t-test with permutation-based p value adjustment was used to compare means of z-transformed correlations between fractional anisotropy and 18F-fallypride binding potentials in hypothesis-driven regions of interest in the diagnostic groups. Healthy subjects displayed an extensive pattern of predominantly negative correlations between 18F-fallypride binding across a range of cortical and subcortical gray matter regions and fractional anisotropy in rostral white matter regions (internal capsule, frontal lobe, anterior corpus callosum). These patterns were disrupted in subjects with schizophrenia, who displayed significantly weaker overall correlations as well as comparatively scant numbers of significant correlations with the internal capsule and frontal (but not temporal) white matter, especially for dopamine receptor density in thalamic nuclei. Dopamine D2/D3 receptor density and white matter integrity appear to be interrelated, and their decreases in schizophrenia may stem from hyperdopaminergia with dysregulation of dopaminergic impact on axonal myelination.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY, 11373, USA.
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA.,Department of Psychiatry and Human Behavior, Irvine School of Medicine, University of California, 101 The City Dr. S, Orange, CA, 92868, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI, 53705, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St, Toronto, ON, M6A 2E1, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, Irvine School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| |
Collapse
|
56
|
Guo JY, Lesh TA, Niendam TA, Ragland JD, Tully LM, Carter CS. Brain free water alterations in first-episode psychosis: a longitudinal analysis of diagnosis, course of illness, and medication effects. Psychol Med 2021; 51:1001-1010. [PMID: 31910929 PMCID: PMC7340574 DOI: 10.1017/s0033291719003969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple lines of evidence suggest the presence of altered neuroimmune processes in patients with schizophrenia (Sz) and severe mood disorders. Recent studies using a novel free water diffusion tensor imaging (FW DTI) approach, proposed as a putative biomarker of neuroinflammation, atrophy, or edema, have shown significantly increased FW in patients with Sz. However no studies to date have investigated the longitudinal stability of FW alterations during the early course of psychosis, nor have studies focused separately on FE psychosis patients with Sz or bipolar disorder (BD) with psychotic features. METHODS The current study included 188 participants who underwent diffusion magnetic resonance imaging scanning at baseline. Sixty-four participants underwent follow-up rescanning after 12 months. DTI-based alterations in patients were calculated using voxelwise tract-based spatial statistics and region of interest analyses. RESULTS Patients with FE psychosis, both Sz and BD, exhibited increased FW at illness onset which remained unchanged over the 12-month follow-up period. Preliminary analyses suggested that antipsychotic medication exposure was associated with higher FW in gray matter that reached significance in the BD group. Higher FW in white matter correlated with negative symptom severity. CONCLUSIONS Our results support the presence of elevated FW at the onset of psychosis in both Sz and BD, which remains stable during the early course of the illness, with no evidence of either progression or remission.
Collapse
Affiliation(s)
- J. Y. Guo
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Center for Neuroscience, the University of California at Davis, Davis, CA, USA
| | - T. A. Lesh
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - T. A. Niendam
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - J. D. Ragland
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - L. M. Tully
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - C. S. Carter
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Center for Neuroscience, the University of California at Davis, Davis, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| |
Collapse
|
57
|
Turner S, Lazarus R, Marion D, Main KL. Molecular and Diffusion Tensor Imaging Biomarkers of Traumatic Brain Injury: Principles for Investigation and Integration. J Neurotrauma 2021; 38:1762-1782. [PMID: 33446015 DOI: 10.1089/neu.2020.7259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The last 20 years have seen the advent of new technologies that enhance the diagnosis and prognosis of traumatic brain injury (TBI). There is recognition that TBI affects the brain beyond initial injury, in some cases inciting a progressive neuropathology that leads to chronic impairments. Medical researchers are now searching for biomarkers to detect and monitor this condition. Perhaps the most promising developments are in the biomolecular and neuroimaging domains. Molecular assays can identify proteins indicative of neuronal injury and/or degeneration. Diffusion imaging now allows sensitive evaluations of the brain's cellular microstructure. As the pace of discovery accelerates, it is important to survey the research landscape and identify promising avenues of investigation. In this review, we discuss the potential of molecular and diffusion tensor imaging (DTI) biomarkers in TBI research. Integration of these technologies could advance models of disease prognosis, ultimately improving care. To date, however, few studies have explored relationships between molecular and DTI variables in patients with TBI. Here, we provide a short primer on each technology, review the latest research, and discuss how these biomarkers may be incorporated in future studies.
Collapse
Affiliation(s)
- Stephanie Turner
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Rachel Lazarus
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Donald Marion
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Keith L Main
- Defense and Veterans Brain Injury Center, Silver Spring, Maryland, USA.,General Dynamics Information Technology, Falls Church, Virginia, USA
| |
Collapse
|
58
|
Abnormal white matter functional connectivity density in antipsychotic-naive adolescents with schizophrenia. Clin Neurophysiol 2021; 132:1025-1032. [PMID: 33743297 DOI: 10.1016/j.clinph.2020.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This study aimed to assess the white matter (WM) functional hubs and abnormal functional connectivity pattern in adolescents with schizophrenia (AOS) and to explore the potential mechanisms. METHODS Based on resting-state fMRI data, we measured the WM functional connectivity density (FCD) at local- and long- ranges in 39 AOS and 31 healthy controls (HCs). Group comparison was conducted between the two groups. Spearman rank correlation analysis between the altered WM FCD and clinical PANSS scores was performed. RESULTS In the local scale, the functional hubs of the WM were mainly located in the corona radiata and cerebellum. Compared with HCs, AOS patients exhibited decreased FCD in the superior corona radiata. In the long-range, the functional hubs of the WM were mainly located in the external capsule and pons. AOS patients exhibited increased FCD in the cingulum but decreased FCD in the right dorsal raphe nuclei (DR). Furthermore, the aberrant long-range FCD in the right DR was inversely proportional to the clinical symptoms. CONCLUSION These findings indicated that the pathophysiology of schizophrenia may also lie in WM functional dysconnectivity. SIGNIFICANCE The current results provided initial evidence for the hypothesis of abnormal WM functional connectivity in schizophrenia.
Collapse
|
59
|
Lin X, Li W, Dong G, Wang Q, Sun H, Shi J, Fan Y, Li P, Lu L. Characteristics of Multimodal Brain Connectomics in Patients With Schizophrenia and the Unaffected First-Degree Relatives. Front Cell Dev Biol 2021; 9:631864. [PMID: 33718367 PMCID: PMC7947240 DOI: 10.3389/fcell.2021.631864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Increasing pieces of evidence suggest that abnormal brain connectivity plays an important role in the pathophysiology of schizophrenia. As an essential strategy in psychiatric neuroscience, the research of brain connectivity-based neuroimaging biomarkers has gained increasing attention. Most of previous studies focused on a single modality of the brain connectomics. Multimodal evidence will not only depict the full profile of the brain abnormalities of patients but also contribute to our understanding of the neurobiological mechanisms of this disease. METHODS In the current study, 99 schizophrenia patients, 69 sex- and education-matched healthy controls, and 42 unaffected first-degree relatives of patients were recruited and scanned. The brain was parcellated into 246 regions and multimodal network analyses were used to construct brain connectivity networks for each participant. RESULTS Using the brain connectomics from three modalities as the features, the multi-kernel support vector machine method yielded high discrimination accuracies for schizophrenia patients (94.86%) and for the first-degree relatives (95.33%) from healthy controls. Using an independent sample (49 patients and 122 healthy controls), we tested the model and achieved a classification accuracy of 64.57%. The convergent pattern within the basal ganglia and thalamus-cortex circuit exhibited high discriminative power during classification. Furthermore, substantial overlaps of the brain connectivity abnormality between patients and the unaffected first-degree relatives were observed compared to healthy controls. CONCLUSION The current findings demonstrate that decreased functional communications between the basal ganglia, thalamus, and the prefrontal cortex could serve as biomarkers and endophenotypes for schizophrenia.
Collapse
Affiliation(s)
- Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - WeiKai Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Guangheng Dong
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| | - Qiandong Wang
- Department of Psychology, Beijing Normal University, Beijing, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
- National Institute on Drug Dependence and Beijing Key Laboratory on Drug Dependence Research, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
60
|
Lyall AE, Nägele FL, Pasternak O, Gallego JA, Malhotra AK, McNamara RK, Kubicki M, Peters BD, Robinson DG, Szeszko PR. A 16-week randomized placebo-controlled trial investigating the effects of omega-3 polyunsaturated fatty acid treatment on white matter microstructure in recent-onset psychosis patients concurrently treated with risperidone. Psychiatry Res Neuroimaging 2021; 307:111219. [PMID: 33221631 PMCID: PMC8127861 DOI: 10.1016/j.pscychresns.2020.111219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022]
Abstract
We examined the impact of treatment with fish oil (FO), a rich source of omega-3 polyunsaturated fatty acids (n-3 PUFA), on white matter in 37 recent-onset psychosis patients receiving risperidone in a double-blind placebo-controlled randomized clinical trial. Patients were scanned at baseline and randomly assigned to receive 16-weeks of treatment with risperidone + FO or risperidone + placebo. Eighteen patients received follow-up MRIs (FO, n = 10/Placebo, n = 8). Erythrocyte levels of n-3 PUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA) were obtained at both time points. We employed Free Water Imaging metrics representing the extracellular free water fraction (FW) and fractional anisotropy of the tissue (FA-t). Analyses were conducted using Tract-Based-Spatial-Statistics and nonparametric permutation-based tests with family-wise error correction. There were significant positive correlations of FA-t with DHA and DPA among all patients at baseline. Patients treated with risperidone + placebo demonstrated reductions in FA-t and increases in FW, whereas patients treated with risperidone + FO exhibited no significant changes in FW and FA-t reductions were largely attenuated. The correlations of DPA and DHA with baseline FA-t support the hypothesis that n-3 PUFA intake or biosynthesis are associated with white matter abnormalities in psychosis. Adjuvant FO treatment may partially mitigate against white matter alterations observed in recent-onset psychosis patients following risperidone treatment.
Collapse
Affiliation(s)
- Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Felix L Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Juan A Gallego
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Anil K Malhotra
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Lipidomics Research Program, University of Cincinnati, United States
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bart D Peters
- Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Delbert G Robinson
- Departments of Psychiatry and of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States; Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
61
|
Reavis EA, Lee J, Altshuler LL, Cohen MS, Engel SA, Glahn DC, Jimenez AM, Narr KL, Nuechterlein KH, Riedel P, Wynn JK, Green MF. Structural and Functional Connectivity of Visual Cortex in Schizophrenia and Bipolar Disorder: A Graph-Theoretic Analysis. ACTA ACUST UNITED AC 2020; 1:sgaa056. [PMID: 33313506 PMCID: PMC7712743 DOI: 10.1093/schizbullopen/sgaa056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Visual processing abnormalities in schizophrenia (SZ) are poorly understood, yet predict functional outcomes in the disorder. Bipolar disorder (BD) may involve similar visual processing deficits. Converging evidence suggests that visual processing may be relatively normal at early stages of visual processing such as early visual cortex (EVC), but that processing abnormalities may become more pronounced by mid-level visual areas such as lateral occipital cortex (LO). However, little is known about the connectivity of the visual system in SZ and BD. If the flow of information to, from, or within the visual system is disrupted by reduced connectivity, this could help to explain perceptual deficits. In the present study, we performed a targeted analysis of the structural and functional connectivity of the visual system using graph-theoretic metrics in a sample of 48 SZ, 46 BD, and 47 control participants. Specifically, we calculated parallel measures of local efficiency for EVC and LO from both diffusion weighted imaging data (structural) and resting-state (functional) imaging data. We found no structural connectivity differences between the groups. However, there was a significant group difference in functional connectivity and a significant group-by-region interaction driven by reduced LO connectivity in SZ relative to HC, whereas BD was approximately intermediate to the other 2 groups. We replicated this pattern of results using a different brain atlas. These findings support and extend theoretical models of perceptual dysfunction in SZ, providing a framework for further investigation of visual deficits linked to functional outcomes in SZ and related disorders.
Collapse
Affiliation(s)
- Eric A Reavis
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA.,Desert Pacific Mental Illness Research, Education, and Clinical Center Greater Los Angeles VA Healthcare System, Los Angeles, CA
| | - Junghee Lee
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA.,Desert Pacific Mental Illness Research, Education, and Clinical Center Greater Los Angeles VA Healthcare System, Los Angeles, CA
| | - Lori L Altshuler
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| | - Mark S Cohen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA.,Departments of Neurology, Radiology, Biomedical Physics, and Bioengineering University of California, Los Angeles, Los Angeles, CA
| | - Stephen A Engel
- Department of Psychology, University of Minnesota, Minneapolis, MN
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of Psychiatry Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Amy M Jimenez
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA.,Desert Pacific Mental Illness Research, Education, and Clinical Center Greater Los Angeles VA Healthcare System, Los Angeles, CA
| | - Katherine L Narr
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA
| | - Keith H Nuechterlein
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA.,Department of Psychology, University of California, Los Angeles, Los Angeles, CA
| | - Philipp Riedel
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA.,Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Jonathan K Wynn
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA.,Desert Pacific Mental Illness Research, Education, and Clinical Center Greater Los Angeles VA Healthcare System, Los Angeles, CA
| | - Michael F Green
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA.,Desert Pacific Mental Illness Research, Education, and Clinical Center Greater Los Angeles VA Healthcare System, Los Angeles, CA
| |
Collapse
|
62
|
Saito J, Nemoto T, Katagiri N, Hori M, Tagata H, Funatogawa T, Yamaguchi T, Tsujino N, Mizuno M. Can reduced leftward asymmetry of white matter integrity be a marker of transition to psychosis in at-risk mental state? Asian J Psychiatr 2020; 54:102450. [PMID: 33271729 DOI: 10.1016/j.ajp.2020.102450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
As a biomarker for the degree of psychosis development, the lateral asymmetry of white matter (WM) integrity in each area of the cerebrum has been investigated; as a result, a reduced leftward asymmetry of WM integrity has been reported in patients with schizophrenia. Although individuals with an at-risk mental state for psychosis (ARMS) who subsequently develop psychosis are believed to have poorer social functioning, only a few studies have actually examined the associations between WM abnormalities and social functioning. The aim of the present study was to clarify the possibly predictive association between a reduced asymmetry of WM integrity and impairments in social functioning in patients with ARMS. Thirty ARMS subjects underwent MRI scanning and were assessed using the Social Functioning Scale (SFS). We examined the fractional anisotropy (FA) values in the cingulum bundle (CB) and the uncinate fasciculus (UF) using a tract-specific analysis. Lateral asymmetry was assessed using the laterality index (LI). The LI of the FA value was positive (leftward) in the CB and negative (rightward) in the UF. Although the LI was not correlated with the Scale of Prodromal Symptoms (SOPS) score, the LI in the CB was positively correlated with the SFS score. In ARMS patients, the degree of reduced leftward asymmetry in the CB might affect deteriorations in social functioning and may be useful as a biomarker for predicting future outcomes at an early stage of psychosis.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan; Department of Psychiatry, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan.
| | - Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiromi Tagata
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Tomoyuki Funatogawa
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Taiju Yamaguchi
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| | - Naohisa Tsujino
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan; Department of Psychiatry, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
63
|
Yang M, Gao S, Zhang X. Cognitive deficits and white matter abnormalities in never-treated first-episode schizophrenia. Transl Psychiatry 2020; 10:368. [PMID: 33139736 PMCID: PMC7608674 DOI: 10.1038/s41398-020-01049-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is viewed as a core symptom of schizophrenia (SCZ), but its pathophysiological mechanism remains unclear. White matter (WM) disruption is considered to be a central abnormality that may contribute to cognitive impairment in SCZ patients. However, few studies have addressed the association between cognition and WM integrity in never-treated first-episode (NTFE) patients with SCZ. In this study, we used the MATRICS Consensus Cognitive Battery (MCCB) to evaluate cognitive function in NTFE patients (n = 39) and healthy controls (n = 30), and associated it with whole-brain fractional anisotropy (FA) values obtained via voxel-based diffusion tensor imaging. We found that FA was lower in five brain areas of SCZ patients, including the cingulate gyrus, internal capsule, corpus callosum, cerebellum, and brainstem. Compared with the healthy control group, the MCCB's total score and 8 out of 10 subscores were significantly lower in NTFE patients (all p < 0.001). Moreover, in patients but not healthy controls, the performance in the Trail Making Test was negatively correlated with the FA value in the left cingulate. Our findings provide evidence that WM disconnection is involved in some cognitive impairment in the early course of SCZ.
Collapse
Affiliation(s)
- Mi Yang
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China ,grid.54549.390000 0004 0369 4060School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, China ,The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Shan Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
64
|
Sone D, Sato N, Shigemoto Y, Kimura Y, Maikusa N, Ota M, Foong J, Koepp M, Matsuda H. Disrupted White Matter Integrity and Structural Brain Networks in Temporal Lobe Epilepsy With and Without Interictal Psychosis. Front Neurol 2020; 11:556569. [PMID: 33071943 PMCID: PMC7542674 DOI: 10.3389/fneur.2020.556569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Despite the importance of psychosis as a comorbidity of temporal lobe epilepsy (TLE), the underlying neural mechanisms are still unclear. We aimed to investigate abnormalities specific to psychosis in TLE, using diffusion MRI parameters and graph-theoretical network analysis. Material and Methods: We recruited 49 patients with TLE (20 with and 29 without interictal schizophrenia-like psychosis) and 42 age-/gender-matched healthy controls. We performed 3-tesla MRI scans including 3D T1-weighted imaging and diffusion tensor imaging in all participants. Among the three groups, fractional anisotropy (FA), mean diffusivity (MD), and global network metrics were compared by analyses of covariance. Regional connectivity strength was compared by network-based statistics. Results: Compared to controls, TLE patients showed significant temporal and extra-temporal changes in FA, and MD, which were more severe and widespread in patients with than without psychosis. We observed distinct differences between TLE patients with and without psychosis in the anterior thalamic radiation (ATR), inferior fronto-occipital fasciculus (IFOF), and inferior longitudinal fasciculus (ILF). Similarly, for network metrics, global, and local efficiency and increased path length were significantly reduced in TLE patients compared to controls, but with more severe changes in TLE with psychosis than without psychosis. Network-based statistics detected significant differences between TLE with and without psychosis mainly involving the left limbic and prefrontal areas. Conclusion: TLE patients with interictal schizophrenia-like psychosis showed more widespread and severe white matter impairment, involving the ATR, IFOF and ILF, as well as disrupted network connectivity, particularly in the left limbic and prefrontal cortex, than patients without psychosis.
Collapse
Affiliation(s)
- Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Division of Clinical Medicine, Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Jacqueline Foong
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, United Kingdom
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
65
|
Dazzan P, Lawrence AJ, Reinders AATS, Egerton A, van Haren NEM, Merritt K, Barker GJ, Perez-Iglesias R, Sendt KV, Demjaha A, Nam KW, Sommer IE, Pantelis C, Wolfgang Fleischhacker W, van Rossum IW, Galderisi S, Mucci A, Drake R, Lewis S, Weiser M, Martinez Diaz-Caneja CM, Janssen J, Diaz-Marsa M, Rodríguez-Jimenez R, Arango C, Baandrup L, Broberg B, Rostrup E, Ebdrup BH, Glenthøj B, Kahn RS, McGuire P. Symptom Remission and Brain Cortical Networks at First Clinical Presentation of Psychosis: The OPTiMiSE Study. Schizophr Bull 2020; 47:444-455. [PMID: 33057670 PMCID: PMC7965060 DOI: 10.1093/schbul/sbaa115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Individuals with psychoses have brain alterations, particularly in frontal and temporal cortices, that may be particularly prominent, already at illness onset, in those more likely to have poorer symptom remission following treatment with the first antipsychotic. The identification of strong neuroanatomical markers of symptom remission could thus facilitate stratification and individualized treatment of patients with schizophrenia. We used magnetic resonance imaging at baseline to examine brain regional and network correlates of subsequent symptomatic remission in 167 medication-naïve or minimally treated patients with first-episode schizophrenia, schizophreniform disorder, or schizoaffective disorder entering a three-phase trial, at seven sites. Patients in remission at the end of each phase were randomized to treatment as usual, with or without an adjunctive psycho-social intervention for medication adherence. The final follow-up visit was at 74 weeks. A total of 108 patients (70%) were in remission at Week 4, 85 (55%) at Week 22, and 97 (63%) at Week 74. We found no baseline regional differences in volumes, cortical thickness, surface area, or local gyrification between patients who did or did not achieved remission at any time point. However, patients not in remission at Week 74, at baseline showed reduced structural connectivity across frontal, anterior cingulate, and insular cortices. A similar pattern was evident in patients not in remission at Week 4 and Week 22, although not significantly. Lack of symptom remission in first-episode psychosis is not associated with regional brain alterations at illness onset. Instead, when the illness becomes a stable entity, its association with the altered organization of cortical gyrification becomes more defined.
Collapse
Affiliation(s)
- Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK,To whom correspondence should be addressed; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London SE5 8AF, UK; tel: +44 0207-848-0700, fax: +44 (0)207 848 0287, e-mail:
| | - Andrew J Lawrence
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Antje A T S Reinders
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Alice Egerton
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Neeltje E M van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Sophia Children’s Hospital, Rotterdam, The Netherlands,Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Kate Merritt
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gareth J Barker
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Rocio Perez-Iglesias
- Early Intervention in Psychosis Service, Department of Psychiatry, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Kyra-Verena Sendt
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Arsime Demjaha
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Kie W Nam
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, Rijksuniversiteit Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
| | - W Wolfgang Fleischhacker
- Medical University of Innsbruck, Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I, Innsbruck, Austria
| | - Inge Winter van Rossum
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Richard Drake
- Division of Psychology and Mental Health, School of Health Sciences, University of Manchester, Manchester, UK,Greater Manchester Mental Health Foundation Trust, Manchester, UK,Manchester Academic Health Sciences Centre, Manchester, UK
| | - Shon Lewis
- Division of Psychology and Mental Health, School of Health Sciences, University of Manchester, Manchester, UK,Greater Manchester Mental Health Foundation Trust, Manchester, UK,Manchester Academic Health Sciences Centre, Manchester, UK
| | - Mark Weiser
- Department of Psychiatry, Sheba Medical Center, Tel Aviv, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Covadonga M Martinez Diaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense Madrid, Madrid, Spain
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense Madrid, Madrid, Spain
| | - Marina Diaz-Marsa
- Department of Psychiatry, Instituto de Investigación Sanitaria Hospital Clínico San Carlos; CIBERSAM; Universidad Complutense Madrid, Madrid, Spain
| | - Roberto Rodríguez-Jimenez
- Department of Psychiatry, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12); CIBERSAM; Universidad Complutense Madrid, Madrid, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañon, IiSGM, CIBERSAM, School of Medicine, Universidad Complutense Madrid, Madrid, Spain
| | - Lone Baandrup
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Broberg
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birte Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, CNSR, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS, Mental Health Centre Glostrup, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rene S Kahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip McGuire
- National Institute for Health Research Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | |
Collapse
|
66
|
Enhanced carbonyl stress and disrupted white matter integrity in schizophrenia. Schizophr Res 2020; 223:242-248. [PMID: 32843203 DOI: 10.1016/j.schres.2020.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022]
Abstract
Carbonyl stress is a state caused by an increase in rich reactive carbonyl compounds (RCOs); RCOs facilitate the formation of advanced glycation end products (AGEs), which are associated with various age-related illnesses. Recently, enhanced carbonyl stress and lower levels of pyridoxal, a kind of vitamin B6 that scavenges RCOs, have been shown to be associated with schizophrenia. Meanwhile, lower levels of pyridoxal have been reported to decrease myelination through the biochemical process of carbonyl stress. Despite a number of reports on white matter disruption in schizophrenia, it is unclear whether this disruption is related to enhanced carbonyl stress. Therefore, we investigated the relationship between carbonyl stress and white matter integrity in schizophrenia using diffusion tensor imaging. A total of 53 patients with schizophrenia and 83 age- and gender-matched healthy controls were recruited. We used plasma pentosidine, an AGE, and serum pyridoxal as carbonyl stress markers. Between-group differences in these carbonyl stress markers and their relationships with white matter integrity were investigated using Tract-Based Spatial Statistics. In the schizophrenia group, plasma pentosidine level was significantly higher and serum pyridoxal level was lower than those of controls. There was a significant negative correlation between plasma pentosidine and white matter integrity in the schizophrenia group, but not in the control group. Our findings suggest that enhanced carbonyl stress is a possible underlying mechanism of white matter microstructural disruption in schizophrenia.
Collapse
|
67
|
Abdolalizadeh A, Ostadrahimi H, Mohajer B, Darvishi A, Sattarian M, Bayani Ershadi AS, Abbasi N. White Matter Microstructural Properties Associated with Impaired Attention in Chronic Schizophrenia: A Multi-Center Study. Psychiatry Res Neuroimaging 2020; 302:111105. [PMID: 32498000 DOI: 10.1016/j.pscychresns.2020.111105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
Attention as a key cognitive function is impaired in schizophrenia, interfering with the normal daily life of the patients. Previous studies on the microstructural correlates of attention in schizophrenia were limited to single fibers, did not include a control group, or did not adjust for drug dosage. In the current study, we investigated the association between microstructural properties of the white matter fibers and attention tests in 81 patients and 79 healthy controls from the Mind Clinical Imaging Consortium database. Integrity measures of superior longitudinal fasciculus, cingulum, genu, and splenium were extracted after tractography. Using an interaction model between diagnosis and microstructural properties, and adjusting for age, gender, acquisition site, education, and cumulative drug usage dose, and after correcting for family-wise error, we showed decreased integrity in the patients and a significant negative association between fractional anisotropy of the tracts and trail making test part A with a greater expected decrease in the attention per unit of decrease of integrity in the patients compared to the healthy controls. Our findings suggest that decreased integrity of the bilateral cingulum, and splenium, are independent of the cumulative drug dosage, age, gender, and site, and may underlie the impaired attention in the schizophrenia.
Collapse
Affiliation(s)
| | - Hamidreza Ostadrahimi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohajer
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Darvishi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Sattarian
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nooshin Abbasi
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
68
|
Benson CA, Powell HR, Liput M, Dinham S, Freedman DA, Ignatowski TA, Stachowiak EK, Stachowiak MK. Immune Factor, TNFα, Disrupts Human Brain Organoid Development Similar to Schizophrenia-Schizophrenia Increases Developmental Vulnerability to TNFα. Front Cell Neurosci 2020; 14:233. [PMID: 33005129 PMCID: PMC7484483 DOI: 10.3389/fncel.2020.00233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Schizophrenia (SZ) is a neurodevelopmental genetic disorder in which maternal immune activation (MIA) and increased tumor necrosis factor-α (TNF-α) may contribute. Previous studies using iPSC-derived cerebral organoids and neuronal cells demonstrated developmental malformation and transcriptional dysregulations, including TNF receptors and their signaling genes, common to SZ patients with diverse genetic backgrounds. In the present study, we examined the significance of the common TNF receptor dysregulations by transiently exposing cerebral organoids from embryonic stem cells (ESC) and from representative control and SZ patient iPSCs to TNF. In control iPSC organoids, TNF produced malformations qualitatively similar in, but generally less pronounced than, the malformations of the SZ iPSC-derived organoids. TNF and SZ alone disrupted subcortical rosettes and dispersed proliferating Ki67+ neural progenitor cells (NPC) from the organoid ventricular zone (VZ) into the cortical zone (CZ). In the CZ, the absence of large ramified pan-Neu+ neurons coincided with loss of myelinated neurites despite increased cortical accumulation of O4+ oligodendrocytes. The number of calretinin+ interneurons increased; however, they lacked the preferential parallel orientation to the organoid surface. SZ and SZ+TNF affected fine cortical and subcortical organoid structure by replacing cells with extracellular matrix (ECM)-like fibers The SZ condition increased developmental vulnerability to TNF, leading to more pronounced changes in NPC, pan-Neu+ neurons, and interneurons. Both SZ- and TNF-induced malformations were associated with the loss of nuclear (n)FGFR1 form in the CZ and its upregulation in deep IZ regions, while in earlier studies blocking nFGFR1 reproduced cortical malformations observed in SZ. Computational analysis of ChiPseq and RNAseq datasets shows that nFGFR1 directly targets neurogenic, oligodendrogenic, cell migration, and ECM genes, and that the FGFR1-targeted TNF receptor and signaling genes are overexpressed in SZ NPC. Through these changes, the developing brain with the inherited SZ genome dysregulation may suffer increased vulnerability to TNF and thus, MIA.
Collapse
Affiliation(s)
- Courtney A Benson
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hana R Powell
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michal Liput
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Stem Cells Bioengineering, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Siddhartha Dinham
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - David A Freedman
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Ewa K Stachowiak
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michal K Stachowiak
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
69
|
Metzak PD, Devoe DJ, Iwaschuk A, Braun A, Addington J. Brain changes associated with negative symptoms in clinical high risk for psychosis: A systematic review. Neurosci Biobehav Rev 2020; 118:367-383. [PMID: 32768487 DOI: 10.1016/j.neubiorev.2020.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 02/05/2023]
Abstract
The negative symptoms of schizophrenia are linked to poorer functional outcomes and decreases in quality of life, and are often the first to develop in individuals who are at clinical high risk (CHR) for psychosis. However, the accompanying neurobiological changes are poorly understood. Therefore, we conducted a systematic review of the studies that have examined the brain metrics associated with negative symptoms in those at CHR. Electronic databases were searched from inception to August 2019. Studies were selected if they mentioned negative symptoms in youth at CHR for psychosis, and brain imaging. Of 261 citations, 43 studies with 2144 CHR participants met inclusion criteria. Too few studies were focused on the same brain regions using similar neuroimaging methods to perform a meta-analysis, however, the results of this systematic review suggest a relationship between negative symptom increases and decreases in grey matter. The paucity of studies linking changes in brain structure and function with negative symptoms in those at CHR suggests that future work should focus on examining these relationships.
Collapse
Affiliation(s)
- Paul D Metzak
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Daniel J Devoe
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Amanda Iwaschuk
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Amy Braun
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| | - Jean Addington
- Hotchkiss Brain Institute, Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada; Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
70
|
Sampedro A, Peña J, Ibarretxe-Bilbao N, Cabrera-Zubizarreta A, Sánchez P, Gómez-Gastiasoro A, Iriarte-Yoller N, Pavón C, Ojeda N. Brain White Matter Correlates of Creativity in Schizophrenia: A Diffusion Tensor Imaging Study. Front Neurosci 2020; 14:572. [PMID: 32655352 PMCID: PMC7324653 DOI: 10.3389/fnins.2020.00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
The relationship between creativity and psychopathology has been a controversial research topic for decades. Specifically, it has been shown that people with schizophrenia have an impairment in creative performance. However, little is known about the brain correlates underlying this impairment. Therefore, the aim of this study was to analyze whole brain white matter (WM) correlates of several creativity dimensions in people with schizophrenia. Fifty-five patients with schizophrenia underwent diffusion-weighted imaging on a 3T magnetic resonance imaging machine as well as a clinical and a creativity assessment, including verbal and figural creativity measures. Tract-based spatial statistic, implemented in FMRIB Software Library (FSL), was used to assess whole brain WM correlates with different creativity dimensions, controlling for sex, age, premorbid IQ, and medication. Mean fractional anisotropy (FA) in frontal, temporal, subcortical, brain stem, and interhemispheric regions correlated positively with figural originality. The most significant clusters included the right corticospinal tract (cerebral peduncle part) and the right body of the corpus callosum. Verbal creativity did not show any significant correlation. As a whole, these findings suggest that widespread WM integrity is involved in creative performance of patients with schizophrenia. Many of these areas have also been related to creativity in healthy people. In addition, some of these regions have shown to be particularly impaired in schizophrenia, suggesting that these WM alterations could be underlying the worse creative performance found in this pathology.
Collapse
Affiliation(s)
- Agurne Sampedro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | | | - Pedro Sánchez
- Refractory Psychosis Unit, Hospital Psiquiátrico de Álava, Vitoria-Gasteiz, Spain.,Department of Neuroscience, Psychiatry Section, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | | | - Cristóbal Pavón
- Refractory Psychosis Unit, Hospital Psiquiátrico de Álava, Vitoria-Gasteiz, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| |
Collapse
|
71
|
Płonka O, Krześniak A, Adamczyk P. Analysis of local gyrification index using a novel shape-adaptive kernel and the standard FreeSurfer spherical kernel - evidence from chronic schizophrenia outpatients. Heliyon 2020; 6:e04172. [PMID: 32551394 PMCID: PMC7287247 DOI: 10.1016/j.heliyon.2020.e04172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia can be considered a brain disconnectivity condition related to aberrant neurodevelopment that causes alterations in the brain structure, including gyrification of the cortex. Literature findings on cortical folding are incoherent: they report hypogyria in the frontal, superior-parietal and temporal cortices, but also frontal hypergyria. This discrepancy in local gyrification index (LGI) results could be due to the commonly used spherical kernel (Freesurfer), which is a method of analysis that is still not spatially precise enough. In this study we would like to test the spatial accuracy of a novel method based on a shape-adaptive kernel (Cmorph). The analysis of differences in gyrification between chronic schizophrenia outpatients (n = 30) and healthy controls (n = 30) was conducted with two methods: Freesurfer LGI and Cmorph LGI. Widespread differences in the LGI between schizophrenia outpatients and healthy controls were found using both methods. Freesurfer showed hypogyria in the superior temporal gyrus and the right temporal pole; it also showed hypergyria in the rostral-middle-frontal cortex in schizophrenia outpatients. In comparison, Cmorph revealed that hypergyria is equally represented as hypogyria in orbitofrontal and central brain regions. The clusters from Cmorph were smaller and distributed more broadly, covering all lobes of the brain. The presented evidence from disrupted cortical folding in schizophrenia indicates that the shape-adaptive kernel approach has a potential to improve the knowledge on the disrupted cortical folding in schizophrenia; therefore, it could be a valuable tool for further investigation on big sample size.
Collapse
Affiliation(s)
- Olga Płonka
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Alicja Krześniak
- Institute of Psychology, Jagiellonian University, Krakow, Poland.,Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
72
|
Mithani K, Davison B, Meng Y, Lipsman N. The anterior limb of the internal capsule: Anatomy, function, and dysfunction. Behav Brain Res 2020; 387:112588. [PMID: 32179062 DOI: 10.1016/j.bbr.2020.112588] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/22/2019] [Accepted: 02/28/2020] [Indexed: 12/22/2022]
Abstract
The last two decades have seen a re-emergence of neurosurgery for severe, refractory psychiatric diseases, largely due to the advent of more precise and safe operative techniques. Nevertheless, the optimal targets for these surgeries remain a matter of debate, and are often grandfathered from experiences in the late 20th century. To better explore the rationale for one target in particular - the anterior limb of the internal capsule (ALIC) - we comprehensively reviewed all available literature on its role in the pathophysiology and treatment of mental illness. We first provide an overview of its functional anatomy, followed by a discussion on its role in several prevalent psychiatric diseases. Given its structural integration into the limbic system and involvement in a number of cognitive and emotional processes, the ALIC is a robust target for surgical treatment of refractory psychiatric diseases. The advent of novel neuroimaging techniques, coupled with image-guided therapeutics and neuromodulatory treatments, will continue to enable study on the ALIC in mental illness.
Collapse
Affiliation(s)
- Karim Mithani
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Ying Meng
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
73
|
Affiliation(s)
- Nicolas Garel
- From the Department of Psychiatry, McGill University (Garel, Joober); and the Douglas Mental Health University Institute, (Joober) Montreal, Que, Canada
| | - Ridha Joober
- From the Department of Psychiatry, McGill University (Garel, Joober); and the Douglas Mental Health University Institute, (Joober) Montreal, Que, Canada
| |
Collapse
|
74
|
Min B, Kim M, Lee J, Byun JI, Chu K, Jung KY, Lee SK, Kwon JS. Prediction of individual responses to electroconvulsive therapy in patients with schizophrenia: Machine learning analysis of resting-state electroencephalography. Schizophr Res 2020; 216:147-153. [PMID: 31883932 DOI: 10.1016/j.schres.2019.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) has strong efficacy in patients with treatment refractory schizophrenia. However, access to ECT has been limited by high costs, professional labor, treatment duration, and significant adverse effects. To provide support for the decision to perform ECT, we aimed to predict individual responses to ECT among patients with schizophrenia using machine learning analysis of resting-state electroencephalography (EEG). METHODS Forty-seven patients diagnosed with schizophrenia or schizoaffective disorder with EEG recordings before the course of ECT were treated at Seoul National University Hospital. Among these patients, 29 were responders who showed scores of 3 or less on the Clinical Global Impression Severity scale after the course of ECT. Transfer entropy (TE), which represents information flow, was extracted from baseline EEG data and used as a feature. Feature selection was performed with four methods, including Random Subset Feature Selection (RSFS). The random forest classifier was used to predict individual ECT responses. RESULTS The averaged TE, especially in frontal regions, was higher in ECT responders than in nonresponders. A predictive model using the RSFS method classified ECT responders and nonresponders with 85.3% balanced accuracy, 85.2% accuracy, 88.7% sensitivity, and 81.8% specificity. The positive predictive value was 82.6%, and the negative predictive value was 88.2%. CONCLUSIONS The results of the current study suggest that higher effective connectivity in frontal areas may be associated with a favorable ECT response. Furthermore, personalized decisions to perform ECT in clinical practice could be augmented by resting-state EEG biomarkers of the ECT response in schizophrenia patients.
Collapse
Affiliation(s)
- Beomjun Min
- Department of Public Health Medical Services, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Junhee Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Ick Byun
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea; Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kon Chu
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki-Young Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Kun Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Center for Medical Innovations, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| |
Collapse
|
75
|
Machine learning technique reveals intrinsic characteristics of schizophrenia: an alternative method. Brain Imaging Behav 2020; 13:1386-1396. [PMID: 30159765 DOI: 10.1007/s11682-018-9947-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Machine learning technique has long been utilized to assist disease diagnosis, increasing clinical physicians' confidence in their decision and expediting the process of diagnosis. In this case, machine learning technique serves as a tool for distinguishing patients from healthy people. Additionally, it can also serve as an exploratory method to reveal intrinsic characteristics of a disease based on discriminative features, which was demonstrated in this study. Resting-state functional magnetic resonance imaging (fMRI) data were obtained from 148 participants (including patients with schizophrenia and healthy controls). Connective strengths were estimated by Pearson correlation for each pair of brain regions partitioned according to automated anatomical labelling atlas. Subsequently, consensus connections with high discriminative power were extracted under the circumstance of the best classification accuracy. Investigating these consensus connections, we found that schizophrenia group predominately exhibited weaker strengths of inter-regional connectivity compared to healthy group. Aberrant connectivities in both intra- and inter-hemispherical connections were observed. Within intra-hemispherical connections, the number of aberrant connections in the right hemisphere was more than that of the left hemisphere. In the exploration of large regions, we revealed that the serious dysconnectivities mainly appeared on temporal and occipital regions for the within-large-region connections; while connectivity disruption was observed on the connections from temporal region to occipital, insula and limbic regions for the between-large-region connections. The findings of this study corroborate previous conclusion of dysconnectivity in schizophrenia and further shed light on distribution patterns of dysconnectivity, which deepens the understanding of pathological mechanism of schizophrenia.
Collapse
|
76
|
Ruan H, Luo Q, Palaniyappan L, Lu W, Huang CC, Zac Lo CY, Yang AC, Liu ME, Tsai SJ, Lin CP, Feng J. Topographic diversity of structural connectivity in schizophrenia. Schizophr Res 2020; 215:181-189. [PMID: 31706787 DOI: 10.1016/j.schres.2019.10.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
The neurobiological heterogeneity of schizophrenia is widely accepted, but it is unclear how mechanistic differences converge to produce the observed phenotype. Establishing a pathophysiological model that accounts for both neurobiological heterogeneity and phenotypic similarity is essential to inform stratified treatment approaches. In this cross-sectional diffusion tensor imaging study, we recruited 77 healthy controls, and 70 patients with DSM-IV diagnosis of schizophrenia. We first confirmed the heterogeneity in structural connectivity by showing a reduced between-individual similarity of the structural connectivity in patients compared to healthy controls. Second, at a system level, we found the diversity of the topographic distribution of the strength of structural connectivity was significantly reduced in patients (P = 7.21 × 10-7, T142 = 5.19 [95% CI: 3.37-7.52], Cohen's d = 0.91), and this affected 65 of the 90 brain regions examined (False Discovery Rate <5%). Third, when topographic diversity was used as a discriminant feature to train a model for classifying patients from controls, it significantly improved the accuracy on an independent sample (T99 = 5.54; P < 0.001). These findings suggest a highly individualized pattern of structural dysconnectivity underlies the heterogeneity of schizophrenia, but these disruptions likely converge on an emergent common pathway to generate the clinical phenotype of the disorder.
Collapse
Affiliation(s)
- Hongtao Ruan
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Department of Psychology and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Brain Science and Human Phenome Institute, Fudan University, Shanghai, China.
| | - Lena Palaniyappan
- Departments of Psychiatry &Medical Biophysics, University of Western Ontario, London, Canada; Robarts Research Institute & Lawson Health Research Institute, London, Canada
| | - Wenlian Lu
- School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Chu-Chung Huang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mu-En Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jianfeng Feng
- School of Mathematical Sciences, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; Shanghai Center for Mathematical Sciences, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, UK; Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
77
|
Jiang JB, Cao Y, An NY, Yang Q, Cui LB. Magnetic Resonance Imaging-Based Connectomics in First-Episode Schizophrenia: From Preclinical Study to Clinical Translation. Front Psychiatry 2020; 11:565056. [PMID: 33061921 PMCID: PMC7518111 DOI: 10.3389/fpsyt.2020.565056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/24/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
- Jin-Bo Jiang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Yang Cao
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ning-Yu An
- Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qun Yang
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Clinical Psychology, School of Medical Psychology, Fourth Military Medical University, Xi'an, China.,Department of Radiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
78
|
Makowski C, Lewis JD, Lepage C, Malla AK, Joober R, Lepage M, Evans AC. Structural Associations of Cortical Contrast and Thickness in First Episode Psychosis. Cereb Cortex 2019; 29:5009-5021. [PMID: 30844050 PMCID: PMC6918925 DOI: 10.1093/cercor/bhz040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 01/22/2023] Open
Abstract
There is growing evidence that psychosis is characterized by brain network abnormalities. Analyzing morphological abnormalities with T1-weighted structural MRI may be limited in discovering the extent of deviations in cortical associations. We assess whether structural associations of either cortical white-gray contrast (WGC) or cortical thickness (CT) allow for a better understanding of brain structural relationships in first episode of psychosis (FEP) patients. Principal component and structural covariance analyses were applied to WGC and CT derived from T1-weighted MRI for 116 patients and 88 controls, to explore sets of brain regions that showed group differences, and associations with symptom severity and cognitive ability in patients. We focused on 2 principal components: one encompassed primary somatomotor regions, which showed trend-like group differences in WGC, and the second included heteromodal cortices. Patients' component scores were related to general psychopathology for WGC, but not CT. Structural covariance analyses with WGC revealed group differences in pairwise correlations across widespread brain regions, mirroring areas derived from PCA. More group differences were uncovered with WGC compared with CT. WGC holds potential as a proxy measure of myelin from commonly acquired T1-weighted MRI and may be sensitive in detecting systems-level aberrations in early psychosis, and relationships with clinical/cognitive profiles.
Collapse
Affiliation(s)
- Carolina Makowski
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
- Department of Psychiatry, McGill University, Verdun, Canada
| | - John D Lewis
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Claude Lepage
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Ashok K Malla
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Martin Lepage
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| |
Collapse
|
79
|
Intson K, van Eede MC, Islam R, Milenkovic M, Yan Y, Salahpour A, Henkelman RM, Ramsey AJ. Progressive neuroanatomical changes caused by Grin1 loss-of-function mutation. Neurobiol Dis 2019; 132:104527. [DOI: 10.1016/j.nbd.2019.104527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/07/2019] [Accepted: 07/06/2019] [Indexed: 02/04/2023] Open
|
80
|
Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM, Lizano P. Neuroimaging in Schizophrenia. Neuroimaging Clin N Am 2019; 30:73-83. [PMID: 31759574 DOI: 10.1016/j.nic.2019.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Schizophrenia is a chronic psychotic disorder with a lifetime prevalence of about 1%. Onset is typically in adolescence or early adulthood; characteristic symptoms include positive symptoms, negative symptoms, and impairments in cognition. Neuroimaging studies have shown substantive evidence of brain structural, functional, and neurochemical alterations that are more pronounced in the association cortex and subcortical regions. These abnormalities are not sufficiently specific to be of diagnostic value, but there may be a role for imaging techniques to provide predictions of outcome. Incorporating multimodal imaging datasets using machine learning approaches may offer better diagnostic and predictive value in schizophrenia.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA.
| | - Guusje Collin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA; University Medical Center Utrecht Brain Center, Heidelberglaan 100, Postbus 85500, 3508 GA, Utrecht, the Netherlands
| | - Synthia Guimond
- Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Sinead Kelly
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA
| | - Konasale M Prasad
- University of Pittsburgh School of Medicine, Suite 279, 3811 O'Hara St, Pittsburgh, PA 15213, USA; Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Paulo Lizano
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW We review the ongoing research in the area of acute and transient psychotic disorders (ATPDs) with regard to their nosology, epidemiology, clinical description, genetics, and neurobiology, examining evidence for distinctiveness or otherwise of ATPDs. We further highlight the lacuna in research in ATPDs. RECENT FINDINGS Studies on ATPDs as defined in the ICD 10 have been reported from different parts of the world, more so from the developing countries. There is consistent evidence that there exist a group of ATPDs that occur more commonly among females, are often precipitated by stressful life events or exposure to physiological stresses like fever, child birth, are associated with well-adjusted premorbid personality, and show complete recovery in a short period. Although in some cases of ATPDs, there is symptomatic overlap with schizophrenic symptoms in the acute phase, they follow a completely different course and outcome, exhibit genetic distinctiveness, and do not share genetic relationship with schizophrenias or bipolar affective disorder (BPAD). Comparative studies on neurophysiology and neuroimaging in ATPDs and schizophrenias have demonstrated evidence of hyper arousal and hyper metabolism in ATPDs vs hypo arousal and hypo metabolism as noted in the P300 response and on FDG PET studies, respectively. Immune markers such as IL-6, TNF-alpha, and TGF-beta show higher levels in ATPDs as compared to healthy controls. Findings on the neurobiological mechanisms underlying ATPDs, so far, point towards significant differences from those in schizophrenia or BPAD. Although the studies are few and far between, nevertheless, these point towards the possibility of ATPDs as a distinct entity and underscore the need for pursuing alternate hypothesis such as neuro inflammatory or metabolic. Research on ATPDs is limited due to many reasons including lack of harmony between the ICD and DSM diagnostic systems and clinician biases. Available research data supports the validity of ATPDs as a distinct clinical entity. There is also evidence that ATPDs are different from schizophrenias or BPAD on genetic, neuroimaging, neurophysiological, and immunological markers and require further studies.
Collapse
|
82
|
Vanes LD, Moutoussis M, Ziegler G, Goodyer IM, Fonagy P, Jones PB, Bullmore ET, Dolan RJ. White matter tract myelin maturation and its association with general psychopathology in adolescence and early adulthood. Hum Brain Mapp 2019; 41:827-839. [PMID: 31661180 PMCID: PMC7268015 DOI: 10.1002/hbm.24842] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Adolescence is a time period associated with marked brain maturation that coincides with an enhanced risk for onset of psychiatric disorder. White matter tract myelination, a process that continues to unfold throughout adolescence, is reported to be abnormal in several psychiatric disorders. Here, we ask whether psychiatric vulnerability is linked to aberrant developmental myelination trajectories. We assessed a marker of myelin maturation, using magnetisation transfer (MT) imaging, in 10 major white matter tracts. We then investigated its relationship to the expression of a general psychopathology "p-factor" in a longitudinal analysis of 293 healthy participants between the ages of 14 and 24. We observed significant longitudinal MT increase across the full age spectrum in anterior thalamic radiation, hippocampal cingulum, dorsal cingulum and superior longitudinal fasciculus. MT increase in the inferior fronto-occipital fasciculus, inferior longitudinal fasciculus and uncinate fasciculus was pronounced in younger participants but levelled off during the transition into young adulthood. Crucially, longitudinal MT increase in dorsal cingulum and uncinate fasciculus decelerated as a function of mean p-factor scores over the study period. This suggests that an increased expression of psychopathology is closely linked to lower rates of myelin maturation in selective brain tracts over time. Impaired myelin growth in limbic association fibres may serve as a neural marker for emerging mental illness during the course of adolescence and early adulthood.
Collapse
Affiliation(s)
- Lucy D Vanes
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Michael Moutoussis
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ian M Goodyer
- Department of Psychiatry, University of Cambridge Clinical School, Cambridge, UK
| | - Peter Fonagy
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge Clinical School, Cambridge, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge Clinical School, Cambridge, UK
| | -
- Department of Psychiatry, University of Cambridge Clinical School, Cambridge, UK
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
83
|
Briggs RG, Conner AK, Sali G, Rahimi M, Baker CM, Burks JD, Glenn CA, Battiste JD, Sughrue ME. A Connectomic Atlas of the Human Cerebrum-Chapter 17: Tractographic Description of the Cingulum. Oper Neurosurg (Hagerstown) 2019; 15:S462-S469. [PMID: 30260430 DOI: 10.1093/ons/opy271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
In this supplement, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In this chapter, we specifically address regions integrating to form the cingulum.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Goksel Sali
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Meherzad Rahimi
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Cordell M Baker
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Joshua D Burks
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - James D Battiste
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Department of Neurosurgery, Prince of Wales Private Hospital, Sydney, Australia
| |
Collapse
|
84
|
Tang Y, Pasternak O, Kubicki M, Rathi Y, Zhang T, Wang J, Li H, Woodberry KA, Xu L, Qian Z, Zhu A, Whitfield-Gabrieli S, Keshavan MS, Niznikiewicz M, Stone WS, McCarley RW, Shenton ME, Wang J, Seidman LJ. Altered Cellular White Matter But Not Extracellular Free Water on Diffusion MRI in Individuals at Clinical High Risk for Psychosis. Am J Psychiatry 2019; 176:820-828. [PMID: 31230461 PMCID: PMC7142275 DOI: 10.1176/appi.ajp.2019.18091044] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Detecting brain abnormalities in clinical high-risk populations before the onset of psychosis is important for tracking pathological pathways and for identifying possible intervention strategies that may impede or prevent the onset of psychotic disorders. Co-occurring cellular and extracellular white matter alterations have previously been implicated after a first psychotic episode. The authors investigated whether or not cellular and extracellular alterations are already present in a predominantly medication-naive cohort of clinical high-risk individuals experiencing attenuated psychotic symptoms. METHODS Fifty individuals at clinical high risk, of whom 40 were never medicated, were compared with 50 healthy control subjects, group-matched for age, gender, and parental socioeconomic status. 3-T multishell diffusion MRI data were obtained to estimate free-water imaging white matter measures, including fractional anisotropy of cellular tissue (FAT) and the volume fraction of extracellular free water (FW). RESULTS Significantly lower FAT was observed in the clinical high-risk group compared with the healthy control group, but no statistically significant FW alterations were observed between groups. Lower FAT in the clinical high-risk group was significantly associated with a decline in Global Assessment of Functioning Scale (GAF) score compared with highest GAF score in the previous 12 months. CONCLUSIONS Cellular but not extracellular alterations characterized the clinical high-risk group, especially in those who experienced a decline in functioning. These cellular changes suggest an early deficit that possibly reflects a predisposition to develop attenuated psychotic symptoms. In contrast, extracellular alterations were not observed in this clinical high-risk sample, suggesting that previously reported extracellular abnormalities may reflect an acute response to psychosis, which plays a more prominent role closer to or at onset of psychosis.
Collapse
Affiliation(s)
- Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China;,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Junjie Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China;,Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL, USA
| | - Kristen A. Woodberry
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anni Zhu
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Whitfield-Gabrieli
- McGovern Institute for Brain Research and Poitras Center for Affective Disorders Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matcheri S. Keshavan
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Margaret Niznikiewicz
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - William S. Stone
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert W. McCarley
- Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA;,Research and Development, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China;,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China;,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China
| | - Larry J. Seidman
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA;,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
85
|
Michielse S, Rakijo K, Peeters S, Viechtbauer W, van Os J, Marcelis M. Microstructural white matter network-connectivity in individuals with psychotic disorder, unaffected siblings and controls. NEUROIMAGE-CLINICAL 2019; 23:101931. [PMID: 31491817 PMCID: PMC6658824 DOI: 10.1016/j.nicl.2019.101931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/08/2019] [Accepted: 07/10/2019] [Indexed: 02/08/2023]
Abstract
Background Altered structural network-connectivity has been reported in psychotic disorder but whether these alterations are associated with genetic vulnerability, and/or with phenotypic variation, has been less well examined. This study examined i) whether differences in network-connectivity exist between patients with psychotic disorder, siblings of patients with psychotic disorder and controls, and ii) whether network-connectivity alterations vary with (subclinical) symptomatology. Methods Network-connectivity measures (global efficiency (GE), density, local efficiency (LE), clustering coefficient (CC)) were derived from diffusion weighted imaging (DWI) and were compared between 85 patients with psychotic disorder, 93 siblings without psychotic disorder and 80 healthy comparison subjects using multilevel regression models. In patients, associations between Positive and Negative Syndrome Scale (PANSS) symptoms and topological measures were examined. In addition, interactions between subclinical psychopathology and sibling/healthy comparison subject status were examined in models of topological measures. Results While there was no main effect of group with respect to GE, density, LE and CC, siblings had a significantly higher CC compared to patients (B = 0.0039, p = .002). In patients, none of the PANSS symptom domains were significantly associated with any of the four network-connectivity measures. The two-way interaction between group and SIR-r positive score in the model of LE was significant (χ2 = 6.24, p = .01, df = 1). In the model of CC, the interactions between group and respectively SIS-r positive (χ2 = 5.59, p = .02, df = 1) and negative symptom scores (χ2 = 4.71, p = .03, df = 1) were significant. Stratified analysis showed that, in siblings, decreased LE and CC was significantly associated with increased SIS-r positive scores (LE: B = −0.0049, p = .003, CC: B = −0.0066, p = .01) and that decreased CC was significantly associated with increased SIS-r negative scores (B = −0.012, p = .003). There were no significant interactions between group and SIS-r scores in the models of GE and density. Conclusion The findings indicate absence of structural network-connectivity alterations in individuals with psychotic disorder and in individuals at higher than average genetic risk for psychotic disorder, in comparison with healthy subjects. The differential subclinical symptom-network connectivity associations in siblings with respect to controls may be a sign of psychosis vulnerability in the siblings. Patients with psychotic disorder had unchanged network efficiency and clustering. Siblings of patients had higher clustering coefficient compared to patients. Lower clustering/efficiency was associated with higher positive symptoms in siblings. Decreased clustering was associated with increased negative symptoms in siblings.
Collapse
Affiliation(s)
- Stijn Michielse
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, Maastricht 6200, MD, the Netherlands.
| | - Kimberley Rakijo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, Maastricht 6200, MD, the Netherlands
| | - Sanne Peeters
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, Maastricht 6200, MD, the Netherlands; Faculty of Psychology and Educational Sciences, Open University of the Netherlands, Heerlen, the Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, Maastricht 6200, MD, the Netherlands
| | - Jim van Os
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, Maastricht 6200, MD, the Netherlands; King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, UK; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Machteld Marcelis
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616, Maastricht 6200, MD, the Netherlands; Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, the Netherlands
| | | |
Collapse
|
86
|
Nucifora LG, MacDonald ML, Lee BJ, Peters ME, Norris AL, Orsburn BC, Yang K, Gleason K, Margolis RL, Pevsner J, Tamminga CA, Sweet RA, Ross CA, Sawa A, Nucifora FC. Increased Protein Insolubility in Brains From a Subset of Patients With Schizophrenia. Am J Psychiatry 2019; 176:730-743. [PMID: 31055969 DOI: 10.1176/appi.ajp.2019.18070864] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The mechanisms leading to schizophrenia are likely to be diverse. However, there may be common pathophysiological pathways for subtypes of the disease. The authors tested the hypothesis that increased protein insolubility and ubiquitination underlie the pathophysiology for a subtype of schizophrenia. METHODS Prefrontal cortex and superior temporal gyrus from postmortem brains of individuals with and without schizophrenia were subjected to cold sarkosyl fractionation, separating proteins into soluble and insoluble fractions. Protein insolubility and ubiquitin levels were quantified for each insoluble fraction, with normalization to total homogenate protein. Mass spectrometry analysis was then performed to identify the protein contents of the insoluble fractions. The potential biological relevance of the detected proteins was assessed using Gene Ontology enrichment analysis and Ingenuity Pathway Analysis. RESULTS A subset of the schizophrenia brains showed an increase in protein insolubility and ubiquitination in the insoluble fraction. Mass spectrometry of the insoluble fraction revealed that brains with increased insolubility and ubiquitination exhibited a similar peptide expression by principal component analysis. The proteins that were significantly altered in the insoluble fraction were enriched for pathways relating to axon target recognition as well as nervous system development and function. CONCLUSIONS This study suggests a pathological process related to protein insolubility for a subset of patients with schizophrenia. Determining the molecular mechanism of this subtype of schizophrenia could lead to a better understanding of the pathways underlying the clinical phenotype in some patients with major mental illness as well as to improved nosology and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Leslie G Nucifora
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Matthew L MacDonald
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Brian J Lee
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Matthew E Peters
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Alexis L Norris
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Benjamin C Orsburn
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Kun Yang
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Kelly Gleason
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Russell L Margolis
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Jonathan Pevsner
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Carol A Tamminga
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Robert A Sweet
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Christopher A Ross
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Akira Sawa
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| | - Frederick C Nucifora
- The Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore (L.G. Nucifora, Lee, Peters, Yang, Margolis, Pevsner, Ross, Sawa, F.C. Nucifora); the Departments of Psychiatry and Neurology, University of Pittsburgh, and the VISN 4 Mental Illness Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh (MacDonald, Sweet); the Department of Neurology, Kennedy Krieger Institute, Baltimore (Norris, Pevsner); the Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore (Norris, Pevsner, Ross, Sawa); Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Md. (Orsburn); the Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Gleason, Tamminga); the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore (Margolis, Ross, Sawa, F.C. Nucifora); Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore (Lee, Sawa); the Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore (Ross)
| |
Collapse
|
87
|
Alvarez-Astorga A, Sotelo E, Lubeiro A, de Luis R, Gomez-Pilar J, Becoechea B, Molina V. Social cognition in psychosis: Predictors and effects of META-cognitive training. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109672. [PMID: 31228639 DOI: 10.1016/j.pnpbp.2019.109672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 11/25/2022]
Abstract
Social cognition deficits are found in schizophrenia and bipolar disorder, but its neural underpinnings are poorly understood. Given the complexity of psychological functions underlying this kind of cognition, we hypothesized that alterations in global structural connectivity could contribute to those deficits. To test this hypothesis, we studied a group of schizophrenia and bipolar patients with connectomics based on diffusion magnetic resonance imaging and assessments of general and social cognition. The latter was assessed using the Mayer, Salovey and Caruso Emotional Intelligence Test (MSCEIT) for emotional intelligence and the Spanish Group for Schizophrenia Treatment Optimization (Grupo Español para la OPtimización del Tratamiento de la Esquizofrenia, GEOPTE) test for behavioral aspects of social cognition. Graph theory applied to fractional anisotropy for the connections among cortical regions was used to obtain the small-world (SW) index of the structural connectivity network. In addition, we assessed the possibility of predicting the response of social cognition deficits to Meta-cognitive Training based on their possible underpinnings in a subgroup of patients. Patients showed lower scores in emotional intelligence and behavioral social cognition. MSCEIT scores were associated with SW index and working memory, and GEOPTE scores were related to verbal memory. Improvement in social cognition after Meta-cognitive Training was associated with lower scores of the social cognition in the baseline, according to the GEOPTE scale. Our findings support structural connectivity as one of the factors underlying emotional intelligence in schizophrenia, and the use of Meta-cognitive Training to improve social cognition in patients with larger deficits.
Collapse
Affiliation(s)
| | - Eva Sotelo
- Psychiatry Service, Clinical University Hospital of Valladolid, Valladolid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Spain
| | - Rodrigo de Luis
- Imaging Processing Laboratory, University of Valladolid, Valladolid, Spain
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
| | - Begoña Becoechea
- Psychiatry Service, Clinical University Hospital of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Psychiatry Service, Clinical University Hospital of Valladolid, Valladolid, Spain; Psychiatry Department, School of Medicine, University of Valladolid, Spain.
| |
Collapse
|
88
|
Ohoshi Y, Takahashi S, Yamada S, Ishida T, Tsuda K, Tsuji T, Terada M, Shinosaki K, Ukai S. Microstructural abnormalities in callosal fibers and their relationship with cognitive function in schizophrenia: A tract-specific analysis study. Brain Behav 2019; 9:e01357. [PMID: 31283112 PMCID: PMC6710197 DOI: 10.1002/brb3.1357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The corpus callosum serves the essential role of relaying cognitive information between the homologous regions in the left and the right hemispheres of the brain. Cognitive impairment is a core dysfunction of schizophrenia, but much of its pathophysiology is unknown. The aim of this study was to elucidate the association between microstructural abnormalities of the corpus callosum and cognitive dysfunction in schizophrenia. METHODS We examined stepwise multiple regression analysis to investigate the relationship of the fractional anisotropy (FA) of callosal fibers in each segment with z-scores of each brief assessment of cognition in schizophrenia subtest and cognitive composite score in all subjects (19 patients with schizophrenia [SZ group] and 19 healthy controls [HC group]). Callosal fibers were separated into seven segments based on their cortical projection using tract-specific analysis of diffusion tensor imaging. RESULTS The FA of callosal fibers in the temporal segment was significantly associated with z-scores of token motor test, Tower of London test, and the composite score. In the SZ group, the FA of callosal fibers in the temporal segment was significantly associated with the z-score of the Tower of London test. In addition, the FA of callosal fibers in temporal segment showed significant negative association with the positive and negative syndrome scale negative score in the SZ group. Compared to the HC group, the FA in temporal segment was significantly decreased in the SZ group. CONCLUSION Our results suggest that microstructural abnormalities in the callosal white matter fibers connecting bilateral temporal lobe cortices contribute to poor executive function and severe negative symptom in patients with schizophrenia.
Collapse
Affiliation(s)
- Yuji Ohoshi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kumi Tsuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | | | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Asakayama General Hospital, Osaka, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
89
|
Duchatel RJ, Shannon Weickert C, Tooney PA. White matter neuron biology and neuropathology in schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:10. [PMID: 31285426 PMCID: PMC6614474 DOI: 10.1038/s41537-019-0078-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Abstract
Schizophrenia is considered a neurodevelopmental disorder as it often manifests before full brain maturation and is also a cerebral cortical disorder where deficits in GABAergic interneurons are prominent. Whilst most neurons are located in cortical and subcortical grey matter regions, a smaller population of neurons reside in white matter tracts of the primate and to a lesser extent, the rodent brain, subjacent to the cortex. These interstitial white matter neurons (IWMNs) have been identified with general markers for neurons [e.g., neuronal nuclear antigen (NeuN)] and with specific markers for neuronal subtypes such as GABAergic neurons. Studies of IWMNs in schizophrenia have primarily focused on their density underneath cortical areas known to be affected in schizophrenia such as the dorsolateral prefrontal cortex. Most of these studies of postmortem brains have identified increased NeuN+ and GABAergic IWMN density in people with schizophrenia compared to healthy controls. Whether IWMNs are involved in the pathogenesis of schizophrenia or if they are increased because of the cortical pathology in schizophrenia is unknown. We also do not understand how increased IWMN might contribute to brain dysfunction in the disorder. Here we review the literature on IWMN pathology in schizophrenia. We provide insight into the postulated functional significance of these neurons including how they may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Ryan J Duchatel
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, 13210, USA
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
90
|
Molina V, Bachiller A, de Luis R, Lubeiro A, Poza J, Hornero R, Alonso JF, Mañanas MA, Marqués P, Romero S. Topography of activation deficits in schizophrenia during P300 task related to cognition and structural connectivity. Eur Arch Psychiatry Clin Neurosci 2019; 269:419-428. [PMID: 29396752 DOI: 10.1007/s00406-018-0877-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND The study of cerebral underpinnings of schizophrenia may benefit from the high temporal resolution of electromagnetic techniques, but its spatial resolution is low. However, source imaging approaches such as low-resolution brain electromagnetic tomography (LORETA) allow for an acceptable compromise between spatial and temporal resolutions. METHODS We combined LORETA with 32 channels and 3-Tesla diffusion magnetic resonance (Dmr) to study cerebral dysfunction in 38 schizophrenia patients (17 first episodes, FE), compared to 53 healthy controls. The EEG was acquired with subjects performing an odd-ball task. Analyses included an adaptive window of interest to take into account the interindividual variability of P300 latency. We compared source activation patters to distractor (P3a) and target (P3b) tones within- and between-groups. RESULTS Patients showed a reduced activation in anterior cingulate and lateral and medial prefrontal cortices, as well as inferior/orbital frontal regions. This was also found in the FE patients alone. The activation was directly related to IQ in the patients and controls and to working memory performance in controls. Symptoms were unrelated to source activation. Fractional anisotropy in the tracts connecting lateral prefrontal and anterior cingulate regions predicted source activation in these regions in the patients. CONCLUSIONS These results replicate the source activation deficit found in a previous study with smaller sample size and a lower number of sensors and suggest an association between structural connectivity deficits and functional alterations.
Collapse
Affiliation(s)
- Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain. .,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain. .,Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003, Valladolid, Spain. .,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, University of Salamanca, 1, 37007, Salamanca, Spain.
| | - Alejandro Bachiller
- Automatic Control Department (ESAII), Biomedical Engineering Research Center (CREB), Polytechnic University of Catalonia, Barcelona, Spain.,Biomedical Engineering Group, ETS Ingenieros de Telecomunicación, University of Paseo de Belén, 15, 47011, Valladolid, Spain
| | - Rodrigo de Luis
- Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.,Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011, Valladolid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005, Valladolid, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Jesús Poza
- Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, University of Salamanca, 1, 37007, Salamanca, Spain.,Biomedical Engineering Group, ETS Ingenieros de Telecomunicación, University of Paseo de Belén, 15, 47011, Valladolid, Spain.,Instituto de Investigación en Matemática (IMUVA), University of Valladolid, Valladolid, Spain
| | - Roberto Hornero
- Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, University of Salamanca, 1, 37007, Salamanca, Spain.,Biomedical Engineering Group, ETS Ingenieros de Telecomunicación, University of Paseo de Belén, 15, 47011, Valladolid, Spain.,Instituto de Investigación en Matemática (IMUVA), University of Valladolid, Valladolid, Spain
| | - Joan Francesc Alonso
- Automatic Control Department (ESAII), Biomedical Engineering Research Center (CREB), Polytechnic University of Catalonia, Barcelona, Spain.,CIBER-BBN, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Miguel Angel Mañanas
- Automatic Control Department (ESAII), Biomedical Engineering Research Center (CREB), Polytechnic University of Catalonia, Barcelona, Spain.,CIBER-BBN, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Patricia Marqués
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, 47003, Valladolid, Spain
| | - Sergio Romero
- Automatic Control Department (ESAII), Biomedical Engineering Research Center (CREB), Polytechnic University of Catalonia, Barcelona, Spain.,CIBER-BBN, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| |
Collapse
|
91
|
Arm J, Ribbons K, Lechner-Scott J, Ramadan S. Evaluation of MS related central fatigue using MR neuroimaging methods: Scoping review. J Neurol Sci 2019; 400:52-71. [PMID: 30903860 DOI: 10.1016/j.jns.2019.03.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/17/2019] [Accepted: 03/11/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fatigue is a common and debilitating symptom in multiple sclerosis (MS). Over the past decade, a growing body of research has focussed on the pathophysiological mechanisms underlying central (cognitive and physical) fatigue in MS. The precise mechanisms causing fatigue in MS patients are complex and poorly understood, and may differ between patients. Advanced quantitative magnetic resonance imaging (MRI) techniques allow for objective assessment of disease pathology and have been used to characterise the pathophysiology of central fatigue in MS. OBJECTIVE To systematically review the existing literature of MRI-based studies assessing the pathophysiological mechanisms of MS-related central fatigue. METHODS A systematic literature search of four major databases (PubMed, Medline, Embase, Scopus and Google Scholar) was conducted to identify MRI-based studies of MS-related fatigue published in the past 20 years. Studies using the following MRI-based methods were included: structural (lesion load/atrophy), T1 relaxation time/magnetisation transfer ratio (MTR), diffusion tensor imaging (DTI), functional MRI (fMRI) and magnetic resonance spectroscopy (MRS). RESULTS A total of 92 studies were identified as meeting the search criteria and included for review. Structurally, regional gray/white matter atrophy, cortical thinning, decreased T1 relaxation times and reduced fractional anisotropy were associated with central fatigue in MS. Functionally, hyperactivity and reduced functional connectivity in several regional areas of frontal, parietal, occipital, temporal and cerebellum were suggested as causes of central fatigue. Biochemically, a reduction in N-acetyl aspartate/creatine and increased (glutamine+glutamate)/creatine ratios were correlated with fatigue severity in MS. CONCLUSION Several advanced quantitative MRI methods have been employed in the study of central fatigue in MS. Central fatigue in MS is associated with macro/microstructural and functional changes within specific brain regions (frontal, parietal, temporal and deep gray matter) and specific pathways/networks (cortico-cortical and cortico-subcortical). Alternations in the cortico-striatal-thalamocortical (CSTC) loop are correlated with the development of fatigue in MS patients.
Collapse
Affiliation(s)
- Jameen Arm
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Karen Ribbons
- Department of Neurology, John Hunter Hospital, Lookout Road, New Lambton Heights, NSW 2305, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Department of Neurology, John Hunter Hospital, Lookout Road, New Lambton Heights, NSW 2305, Australia; Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
92
|
Gerretsen P, Rajji TK, Shah P, Shahab S, Sanches M, Graff-Guerrero A, Menon M, Pollock BG, Mamo DC, Mulsant BH, Voineskos AN. Impaired illness awareness in schizophrenia and posterior corpus callosal white matter tract integrity. NPJ SCHIZOPHRENIA 2019; 5:8. [PMID: 31036809 PMCID: PMC6488582 DOI: 10.1038/s41537-019-0076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Impaired illness awareness (Imp-IA) in schizophrenia is associated with interhemispheric imbalance, resulting in left hemisphere dominance, primarily within the posterior parietal area (PPA). This may represent an interhemispheric “disconnection syndrome” between PPAs. To test this hypothesis, we aimed to determine if diffusion-based measures of white matter integrity were disrupted in the corpus callosal tracts linking PPAs (i.e., splenium) in patients with Imp-IA in schizophrenia. T1-weighted and diffusion-weighted scans were acquired on a 1.5T GE scanner for 100 participants with a DSM-IV-TR diagnosis of schizophrenia and 134 healthy controls aged 18 to 79 years. The corpus callosal white matter tracts were compared among patients with Imp-IA (n = 40), intact illness awareness (n = 60), and healthy controls. White matter disruption was measured with fractional anisotropy (FA) and mean diffusivity (MD). Group differences in FA were found in the splenium, with patients with Imp-IA having the lowest FA, which remained significant after controlling for sex, age, global cognition, and premorbid intelligence. No group differences in MD were observed. Splenial white matter tracts of the corpus callosum appear compromised in patients with Imp-IA. Transcallosal interhemispheric PPA white matter disruption may represent a “disconnection syndrome”, manifesting as Imp-IA in schizophrenia. Future studies are required to investigate the effects of noninvasive brain stimulation interventions, such as transcranial direct current or magnetic stimulation, on Imp-IA in association with white matter changes in patients with schizophrenia.
Collapse
Affiliation(s)
- Philip Gerretsen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada. .,University of Toronto, Toronto, ON, Canada.
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Parita Shah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Saba Shahab
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Marcos Sanches
- University of Toronto, Toronto, ON, Canada.,Krembil Centre for Neuroinformatics - CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | | | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| |
Collapse
|
93
|
Gómez-Gastiasoro A, Zubiaurre-Elorza L, Peña J, Ibarretxe-Bilbao N, Rilo O, Schretlen DJ, Ojeda N. Altered frontal white matter asymmetry and its implications for cognition in schizophrenia: A tractography study. Neuroimage Clin 2019; 22:101781. [PMID: 30991613 PMCID: PMC6449782 DOI: 10.1016/j.nicl.2019.101781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND White matter (WM) alterations are well documented in schizophrenia. Abnormalities in interhemispheric fibers appear to account for altered WM asymmetry in the illness. However, the regional specificity (e.g., frontal versus occipital) of these alterations and their potential contribution to cognitive dysfunction in schizophrenia remain unknown. METHODS Forty one patients with schizophrenia and 21 healthy controls (HC) underwent diffusion-weighted imaging on a 3 Tesla MRI machine. Tract-based spatial statistic (FSL) was used to assess whole brain differences in WM. Probabilistic tractography was performed in order to separately measure frontal and occipital WM tracts. Participants also completed tests of verbal memory and processing speed. Repeated measures analyses of covariance and Pearson correlation analyses were performed. RESULTS A significant group x cerebral hemisphere interaction was found for fractional anisotropy (FA) (F(1,17) = 7.03; p = .017; ηp2 = 0.29) and radial diffusivity (RD) (F(1,17) = 4.84; p = .042; ηp2 = 0.22) in the frontal tract of patients versus HC. Healthy controls showed higher mean FA and lower mean RD in the left frontal tract compared to patients, who showed the opposite pattern. In patients with schizophrenia, mean FA and RD in the right frontal tract correlated with verbal memory (r = -0.68, p = .046; r = 0.77, p = .015). CONCLUSIONS Asymmetric WM alterations were found in a frontal tract of patients with schizophrenia. Higher mean FA in the right frontal tract correlated with worse verbal memory performance, suggesting a possible contribution these brain changes to cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Ainara Gómez-Gastiasoro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain.
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - Oiane Rilo
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| | - David J Schretlen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 218, Baltimore, MD 21287-7218. United States
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avenida de las Universidades, 24, 48007 Bilbao, Biscay, Spain
| |
Collapse
|
94
|
Subtle white matter alterations in schizophrenia identified with a new measure of fiber density. Sci Rep 2019; 9:4636. [PMID: 30874571 PMCID: PMC6420505 DOI: 10.1038/s41598-019-40070-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Altered cerebral connectivity is one of the core pathophysiological mechanism underlying the development and progression of information-processing deficits in schizophrenia. To date, most diffusion tensor imaging (DTI) studies used fractional anisotropy (FA) to investigate disrupted white matter connections. However, a quantitative interpretation of FA changes is often impeded by the inherent limitations of the underlying tensor model. A more fine-grained measure of white matter alterations could be achieved by measuring fiber density (FD) - a novel non-tensor-derived diffusion marker. This study investigates, for the first time, FD alterations in schizophrenia patients. FD and FA maps were derived from diffusion data of 25 healthy controls (HC) and 21 patients with schizophrenia (SZ). Using tract-based spatial statistics (TBSS), group differences in FD and FA were investigated across the entire white matter. Furthermore, we performed a region of interest (ROI) analysis of frontal fasciculi to detect potential correlations between FD and positive symptoms. As a result, whole brain TBSS analysis revealed reduced FD in SZ patients compared to HC in several white matter tracts including the left and right thalamic radiation (TR), superior longitudinal fasciculus (SLF), corpus callosum (CC), and corticospinal tract (CST). In contrast, there were no significant FA differences between groups. Further, FD values in the TR were negatively correlated with the severity of positive symptoms and medication dose in SZ patients. In summary, a novel diffusion-weighted data analysis approach enabled us to identify widespread FD changes in SZ patients with most prominent white matter alterations in the frontal and subcortical regions. Our findings suggest that the new FD measure may be more sensitive to subtle changes in the white matter microstructure compared to FA, particularly in the given population. Therefore, investigating FD may be a promising approach to detect subtle changes in the white matter microstructure of altered connectivity in schizophrenia.
Collapse
|
95
|
Lyall AE, Savadjiev P, del Re EC, Seitz J, O’Donnell LJ, Westin CF, Mesholam-Gately RI, Petryshen T, Wojcik JD, Nestor P, Niznikiewicz M, Goldstein J, Seidman LJ, McCarley RW, Shenton ME, Kubicki M. Utilizing Mutual Information Analysis to Explore the Relationship Between Gray and White Matter Structural Pathologies in Schizophrenia. Schizophr Bull 2019; 45:386-395. [PMID: 29618096 PMCID: PMC6403063 DOI: 10.1093/schbul/sby028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Schizophrenia has been characterized as a neurodevelopmental disorder, with structural brain abnormalities reported at all stages. However, at present, it remains unclear whether gray and white matter abnormalities represent related or independent pathologies in schizophrenia. In this study, we present findings from an integrative analysis exploring the morphological relationship between gray and white matter in 45 schizophrenia participants and 49 healthy controls. We utilized mutual information (MI), a measure of how much information two variables share, to assess the morphological dependence between gray and white matter in three segments of the corpus callsoum, and the gray matter regions these segments connect: (1) the genu and the left and right rostral middle frontal gyrus (rMFG), (2) the isthmus and the left and right superior temporal gyrus (STG), (3) the splenium and the left and right lateral occipital gyrus (LOG). We report significantly reduced MI between white matter tract dispersion of the right hemispheric callosal connections to the STG and both cortical thickness and area in the right STG in schizophrenia patients, despite a lack of group differences in cortical thickness, surface area, or dispersion. We believe that this reduction in morphological dependence between gray and white matter may reflect a possible decoupling of the developmental processes that shape morphological features of white and gray matter early in life. The present study also demonstrates the importance of studying the relationship between gray and white matter measures, as opposed to restricting analyses to gray and white matter measures independently.
Collapse
Affiliation(s)
- Amanda E Lyall
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,To whom correspondence should be addressed; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, US; tel: (617)-525-6129, fax: (617)-525-6150, e-mail:
| | - Peter Savadjiev
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elisabetta C del Re
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,VA Boston Healthcare System, Brockton, MA
| | - Johanna Seitz
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lauren J O’Donnell
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, MA
| | - Carl-Fredrik Westin
- Laboratory of Mathematics in Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, MA
| | - Raquelle I Mesholam-Gately
- Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tracey Petryshen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Stanley Center of Psychiatry Research, Broad Institute MIT and Harvard, Boston, MA,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Joanne D Wojcik
- Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Paul Nestor
- Research and Development, VA Boston Healthcare System, Boston, MA,Department of Psychology, University of Massachussetts, Boston, MA
| | - Margaret Niznikiewicz
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA
| | - Jill Goldstein
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Massachusetts Mental Health Center, Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Robert W McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,VA Boston Healthcare System, Brockton, MA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
96
|
Asmal L, Kilian S, du Plessis S, Scheffler F, Chiliza B, Fouche JP, Seedat S, Dazzan P, Emsley R. Childhood Trauma Associated White Matter Abnormalities in First-Episode Schizophrenia. Schizophr Bull 2019; 45:369-376. [PMID: 29860345 PMCID: PMC6403087 DOI: 10.1093/schbul/sby062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Schizophrenia is associated with brain connection irregularities within and between brain regions. Childhood trauma increases the risk of schizophrenia suggesting that the relationships between childhood trauma and brain connectivity requires further investigation. Here, we examine the relationship between childhood trauma (as measured by the Childhood Trauma Questionnaire) and fractional anisotropy (FA) in 54 minimally treated first-episode schizophrenia (FES) patients and 51 community matched controls. Patients who experienced high levels of trauma had significantly lower FA in the inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and inferior fronto-occipital fasciculus (IFOF) compared with controls who experienced high levels of childhood trauma. A history of childhood sexual abuse in patients was associated with lower FA in the IFOF, ILF, SLF, and forceps major compared with patients without a history of sexual abuse. However, patients who had experienced childhood emotional neglect had higher FA in the right SLF compared to patients with low levels of emotional neglect. Our findings highlight altered cortico-limbic circuitry in FES patients compared with controls and differential effects of childhood emotional neglect and sexual abuse on white matter in patients. Although stress-related white matter (WM) pathways appear to be involved in both schizophrenia and otherwise healthy controls previously exposed to childhood trauma, the pattern of disruption of WM integrity in FES patients appears to be distinct.
Collapse
Affiliation(s)
- Laila Asmal
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,To whom correspondence should be addressed; Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 8001, South Africa; e-mail:
| | - Sanja Kilian
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Frederika Scheffler
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bonginkosi Chiliza
- Department of Psychiatry, University of KwaZulu Natal, Durban, South Africa
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paola Dazzan
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Robin Emsley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
97
|
Drakesmith M, Parker GD, Smith J, Linden SC, Rees E, Williams N, Owen MJ, van den Bree M, Hall J, Jones DK, Linden DEJ. Genetic risk for schizophrenia and developmental delay is associated with shape and microstructure of midline white-matter structures. Transl Psychiatry 2019; 9:102. [PMID: 30804328 PMCID: PMC6389944 DOI: 10.1038/s41398-019-0440-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022] Open
Abstract
Genomic copy number variants (CNVs) are amongst the most highly penetrant genetic risk factors for neuropsychiatric disorders. The scarcity of carriers of individual CNVs and their phenotypical heterogeneity limits investigations of the associated neural mechanisms and endophenotypes. We applied a novel design based on CNV penetrance for schizophrenia (Sz) and developmental delay (DD) that allows us to identify structural sequelae that are most relevant to neuropsychiatric disorders. Our focus on brain structural abnormalities was based on the hypothesis that convergent mechanisms contributing to neurodevelopmental disorders would likely manifest in the macro- and microstructure of white matter and cortical and subcortical grey matter. Twenty one adult participants carrying neuropsychiatric risk CNVs (including those located at 22q11.2, 15q11.2, 1q21.1, 16p11.2 and 17q12) and 15 age- and gender-matched controls underwent T1-weighted structural, diffusion and relaxometry MRI. The macro- and microstructural properties of the cingulum bundles were associated with penetrance for both developmental delay and schizophrenia, in particular curvature along the anterior-posterior axis (Sz: pcorr = 0.026; DD: pcorr = 0.035) and intracellular volume fraction (Sz: pcorr = 0.019; DD: pcorr = 0.064). Further principal component analysis showed alterations in the interrelationships between the volumes of several midline white-matter structures (Sz: pcorr = 0.055; DD: pcorr = 0.027). In particular, the ratio of volumes in the splenium and body of the corpus callosum was significantly associated with both penetrance scores (Sz: p = 0.037; DD; p = 0.006). Our results are consistent with the notion that a significant alteration in developmental trajectories of midline white-matter structures constitutes a common neurodevelopmental aberration contributing to risk for schizophrenia and intellectual disability.
Collapse
Affiliation(s)
- Mark Drakesmith
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| | - Greg D Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- Experimental MRI Centre (EMRIC), School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, CF10 3AX, Cardiff, United Kingdom
| | - Jacqueline Smith
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Stefanie C Linden
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Elliott Rees
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Nigel Williams
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Michael J Owen
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Marianne van den Bree
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, 3065, Australia
| | - David E J Linden
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- Neuroscience and Mental Health Research Institute (NMHRI), Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, United Kingdom
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
98
|
Qin J, Sui J, Ni H, Wang S, Zhang F, Zhou Z, Tian L. The Shared and Distinct White Matter Networks Between Drug-Naive Patients With Obsessive-Compulsive Disorder and Schizophrenia. Front Neurosci 2019; 13:96. [PMID: 30846924 PMCID: PMC6393388 DOI: 10.3389/fnins.2019.00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Obsessive-compulsive disorder (OCD) and schizophrenia (SZ) as two severe mental disorders share many clinical symptoms, and have a tight association on the psychopathological level. However, the neurobiological substrates between these two diseases remain unclear. To the best of our knowledge, no study has directly compared OCD with SZ from the perspective of white matter (WM) networks. Methods: Graph theory and network-based statistic methods were applied to diffusion MRI to investigate and compare the WM topological characteristics among 29 drug-naive OCDs, 29 drug-naive SZs, and 65 demographically-matched healthy controls (NC). Results: Compared to NCs, OCDs showed the alterations of nodal efficiency and strength in orbitofrontal (OFG) and middle frontal gyrus (MFG), while SZs exhibited widely-distributed abnormalities involving the OFG, MFG, fusiform gyrus, heschl gyrus, calcarine, lingual gyrus, putamen, and thalamus, and most of these regions also showed a significant difference from OCDs. Moreover, SZs had significantly fewer connections in striatum and visual/auditory cortices than OCDs. The right putamen consistently showed significant differences between both disorders on nodal characteristics and structural connectivity. Conclusions: SZ and OCD present different level of anatomical impairment and some distinct topological patterns, and the former has more serious and more widespread disruptions. The significant differences between both disorders are observed in many regions involving the frontal, temporal, occipital, and subcortical regions. Particularly, putamen may serve as a potential imaging marker to distinguish these two disorders and may be the key difference in their pathological changes.
Collapse
Affiliation(s)
- Jiaolong Qin
- The Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jing Sui
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Center for Excellence in Brain Science, Institute of Automation, Beijing, China
| | - Huangjing Ni
- Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Shuai Wang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Wuxi, China
| | - Fuquan Zhang
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Wuxi, China
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Wuxi, China
| | - Lin Tian
- The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Wuxi, China
| |
Collapse
|
99
|
Thézé R, Manuel AL, Pedrazzini E, Chantraine F, Patru MC, Nahum L, Guggisberg AG, Schnider A. Neural correlates of reality filtering in schizophrenia spectrum disorder. Schizophr Res 2019; 204:214-221. [PMID: 30057100 DOI: 10.1016/j.schres.2018.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/11/2018] [Accepted: 07/22/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND A false sense of reality is a characteristic of schizophrenia spectrum disorders (SSD). Reality confusion may also emanate from posterior orbitofrontal cortex (OFC) lesions, as evident in confabulations that patients act upon and disorientation. This confusion can be measured by repeated runs of a continuous recognition task (CRT): patients increase their false positive rate from the second run on, failing to realize that an item is not a repetition within the current run. Correct handling of these stimuli, a faculty called orbitofrontal reality filtering (ORFi), induces a distinct frontal potential at 200-300 ms, the "ORFi potential". Patients with schizophrenia have been reported to fail in this task, too. Here, we explored the electrophysiology of ORFi in SSD. METHODS Evoked potentials, source, and connectivity analyses derived from high-density electroencephalograms of 17 patients with SSD and 15 age-matched healthy controls performing two runs of a CRT. RESULTS Although the patients obtained normal performance, they did not normally express the frontal potential typical of ORFi between 200 and 300 ms. Coherence analysis demonstrated virtually absent functional connectivity in the theta band within the memory network in this period. Source analysis showed increased activity in left medial temporal and prefrontal regions in patients. CONCLUSIONS SSD patients appear to invoke compensatory resources to handle the challenges of reality filtering. An abnormal ORFi potential may be an early biomarker of SSD.
Collapse
Affiliation(s)
- Raphaël Thézé
- Laboratory of Cognitive Neurorehabilitation, Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital and University of Geneva, Geneva, Switzerland
| | - Aurélie L Manuel
- Laboratory of Cognitive Neurorehabilitation, Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital and University of Geneva, Geneva, Switzerland
| | - Elena Pedrazzini
- Laboratory of Cognitive Neurorehabilitation, Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital and University of Geneva, Geneva, Switzerland
| | - Fabrice Chantraine
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Switzerland
| | - Maria Cristina Patru
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Switzerland
| | - Louis Nahum
- Laboratory of Cognitive Neurorehabilitation, Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital and University of Geneva, Geneva, Switzerland
| | - Adrian G Guggisberg
- Laboratory of Cognitive Neurorehabilitation, Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital and University of Geneva, Geneva, Switzerland
| | - Armin Schnider
- Laboratory of Cognitive Neurorehabilitation, Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
100
|
Widespread white-matter microstructure integrity reduction in first-episode schizophrenia patients after acute antipsychotic treatment. Schizophr Res 2019; 204:238-244. [PMID: 30177343 DOI: 10.1016/j.schres.2018.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023]
Abstract
Potential effects of initiating acute antipsychotic treatment on white matter (WM) microstructure in schizophrenia patients remain poorly characterized. Thirty-five drug-naïve first-episode schizophrenia patients were scanned before and after six weeks of treatment with second-generation antipsychotic medications. Nineteen demographically matched healthy subjects were scanned twice over the same time interval. Tract-based spatial statistics was used to test for changes in WM microstructural integrity after treatment. Widespread fractional anisotropy (FA) decrease was found in patients after antipsychotic treatment in bilateral posterior corona radiata, anterior corona radiata, superior corona radiata and posterior thalamic radiation, left posterior limb of the internal capsule, and mid-body of the corpus callosum. These effects appeared to result primarily from decreased axial diffusivity. These findings suggest an effect on brain white matter from acute antipsychotic therapy in schizophrenia.
Collapse
|