51
|
Observed transaminitis with a unique bacteriophage therapy protocol to treat recalcitrant Staphylococcal biofilm infections. Infection 2021; 50:281-283. [PMID: 34328615 DOI: 10.1007/s15010-021-01675-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
|
52
|
Avershina E, Shapovalova V, Shipulin G. Fighting Antibiotic Resistance in Hospital-Acquired Infections: Current State and Emerging Technologies in Disease Prevention, Diagnostics and Therapy. Front Microbiol 2021; 12:707330. [PMID: 34367112 PMCID: PMC8334188 DOI: 10.3389/fmicb.2021.707330] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Rising antibiotic resistance is a global threat that is projected to cause more deaths than all cancers combined by 2050. In this review, we set to summarize the current state of antibiotic resistance, and to give an overview of the emerging technologies aimed to escape the pre-antibiotic era recurrence. We conducted a comprehensive literature survey of >150 original research and review articles indexed in the Web of Science using "antimicrobial resistance," "diagnostics," "therapeutics," "disinfection," "nosocomial infections," "ESKAPE pathogens" as key words. We discuss the impact of nosocomial infections on the spread of multi-drug resistant bacteria, give an overview over existing and developing strategies for faster diagnostics of infectious diseases, review current and novel approaches in therapy of infectious diseases, and finally discuss strategies for hospital disinfection to prevent MDR bacteria spread.
Collapse
Affiliation(s)
- Ekaterina Avershina
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
- Laboratory or Postgenomic Technologies, Izmerov Research Institute of Occupational Health, Moscow, Russia
| | - Valeria Shapovalova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| |
Collapse
|
53
|
Fehring TK, Fehring KA, Hewlett A, Higuera CA, Otero JE, Tande AJ. What's New in Musculoskeletal Infection. J Bone Joint Surg Am 2021; 103:1251-1258. [PMID: 34048412 DOI: 10.2106/jbjs.21.00311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Thomas K Fehring
- OrthoCarolina Hip & Knee Center, Charlotte, North Carolina.,Atrium Musculoskeletal Institute, Charlotte, North Carolina
| | | | | | | | - Jesse E Otero
- OrthoCarolina Hip & Knee Center, Charlotte, North Carolina.,Atrium Musculoskeletal Institute, Charlotte, North Carolina
| | | |
Collapse
|
54
|
Figueiredo CM, Malvezzi Karwowski MS, da Silva Ramos RCP, de Oliveira NS, Peña LC, Carneiro E, Freitas de Macedo RE, Rosa EAR. Bacteriophages as tools for biofilm biocontrol in different fields. BIOFOULING 2021; 37:689-709. [PMID: 34304662 DOI: 10.1080/08927014.2021.1955866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial biofilms are difficult to control due to the limited accessibility that antimicrobial drugs and chemicals have to the entrapped inner cells. The extracellular matrix, binds water, contributes to altered cell physiology within biofilms and act as a barrier for most antiproliferative molecules. Thus, new strategies need to be developed to overcome biofilm vitality. In this review, based on 223 documents, the advantages, recommendations, and limitations of using bacteriophages as 'biofilm predators' are presented. The plausibility of using phages (bacteriophages and mycoviruses) to control biofilms grown in different environments is also discussed. The topics covered here include recent historical experiences in biofilm control/eradication using phages in medicine, dentistry, veterinary, and food industries, the pros and cons of their use, and the development of microbial resistance/immunity to such viruses.
Collapse
Affiliation(s)
| | | | | | | | - Lorena Caroline Peña
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Everdan Carneiro
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Edvaldo Antonio Ribeiro Rosa
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Graduate Program in Animal Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
55
|
Cano EJ, Caflisch KM, Bollyky PL, Van Belleghem JD, Patel R, Fackler J, Brownstein MJ, Horne B, Biswas B, Henry M, Malagon F, Lewallen DG, Suh GA. Phage Therapy for Limb-threatening Prosthetic Knee Klebsiella pneumoniae Infection: Case Report and In Vitro Characterization of Anti-biofilm Activity. Clin Infect Dis 2021; 73:e144-e151. [PMID: 32699879 PMCID: PMC8246933 DOI: 10.1093/cid/ciaa705] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/01/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Prosthetic joint infection (PJI) is a potentially limb-threatening complication of total knee arthroplasty. Phage therapy is a promising strategy to manage such infections including those involving antibiotic-resistant microbes, and to target microbial biofilms. Experience with phage therapy for infections associated with retained hardware is limited. A 62-year-old diabetic man with a history of right total knee arthroplasty 11 years prior who had suffered multiple episodes of prosthetic knee infection despite numerous surgeries and prolonged courses of antibiotics, with progressive clinical worsening and development of severe allergies to antibiotics, had been offered limb amputation for persistent right prosthetic knee infection due to Klebsiella pneumoniae complex. Intravenous phage therapy was initiated as a limb-salvaging intervention. METHODS The patient received 40 intravenous doses of a single phage (KpJH46Φ2) targeting his bacterial isolate, alongside continued minocycline (which he had been receiving when he developed increasing pain, swelling, and erythema prior to initiation of phage therapy). Serial cytokine and biomarker measurements were performed before, during, and after treatment. The in vitro anti-biofilm activity of KpJH46Φ2, minocycline and the combination thereof was evaluated against a preformed biofilm of the patient's isolate and determined by safranin staining. RESULTS Phage therapy resulted in resolution of local symptoms and signs of infection and recovery of function. The patient did not experience treatment-related adverse effects and remained asymptomatic 34 weeks after completing treatment while still receiving minocycline. A trend in biofilm biomass reduction was noted 22 hours after exposure to KpJH46Φ2 (P = .063). The addition of phage was associated with a satisfactory outcome in this case of intractable biofilm-associated prosthetic knee infection. Pending further studies to assess its efficacy and safety, phage therapy holds promise for treatment of device-associated infections.
Collapse
Affiliation(s)
- Edison J Cano
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine M Caflisch
- Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jonas D Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Robin Patel
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Infectious Diseases Research Laboratory, Mayo Clinic, Rochester, Minnesota, USA
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph Fackler
- Adaptive Phage Therapeutics, Gaithersburg, Maryland, USA
| | | | - Bri’Anna Horne
- Adaptive Phage Therapeutics, Gaithersburg, Maryland, USA
| | - Biswajit Biswas
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland, USA
| | - Matthew Henry
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland, USA
- Geneva Foundation, Tacoma, Washington, USA
| | - Francisco Malagon
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland, USA
| | - David G Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Gina A Suh
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
56
|
Liu D, Van Belleghem JD, de Vries CR, Burgener E, Chen Q, Manasherob R, Aronson JR, Amanatullah DF, Tamma PD, Suh GA. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses 2021; 13:1268. [PMID: 34209836 PMCID: PMC8310247 DOI: 10.3390/v13071268] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing rates of infection by antibiotic resistant bacteria have led to a resurgence of interest in bacteriophage (phage) therapy. Several phage therapy studies in animals and humans have been completed over the last two decades. We conducted a systematic review of safety and toxicity data associated with phage therapy in both animals and humans reported in English language publications from 2008-2021. Overall, 69 publications met our eligibility criteria including 20 animal studies, 35 clinical case reports or case series, and 14 clinical trials. After summarizing safety and toxicity data from these publications, we discuss potential approaches to optimize safety and toxicity monitoring with the therapeutic use of phage moving forward. In our systematic review of the literature, we found some adverse events associated with phage therapy, but serious events were extremely rare. Comprehensive and standardized reporting of potential toxicities associated with phage therapy has generally been lacking in the published literature. Structured safety and tolerability endpoints are necessary when phages are administered as anti-infective therapeutics.
Collapse
Affiliation(s)
- Dan Liu
- Department of Burn, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China;
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Elizabeth Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA;
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Robert Manasherob
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.M.); (D.F.A.)
| | - Jenny R. Aronson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; (J.D.V.B.); (C.R.d.V.); (Q.C.); (J.R.A.)
| | - Derek F. Amanatullah
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA; (R.M.); (D.F.A.)
| | - Pranita D. Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Gina A. Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
57
|
Wang J, Wang L. Novel therapeutic interventions towards improved management of septic arthritis. BMC Musculoskelet Disord 2021; 22:530. [PMID: 34107951 PMCID: PMC8191206 DOI: 10.1186/s12891-021-04383-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Septic arthritis (SA) represents a medical emergency that needs immediate diagnosis and urgent treatment. Despite aggressive treatment and rapid diagnosis of the causative agent, the mortality and lifelong disability, associated with septic arthritis remain high as close to 11%. Moreover, with the rise in drug resistance, the rates of failure of conventional antibiotic therapy have also increased. Among the etiological agents frequently isolated from cases of septic arthritis, Staphylococcus aureus emerges as a dominating pathogen, and to worsen, the rise in methicillin-resistant S. aureus (MRSA) isolates in bone and joint infections is worrisome. MRSA associated cases of septic arthritis exhibit higher mortality, longer hospital stay, and higher treatment failure with poorer clinical outcomes as compared to cases caused by the sensitive strain i.e methicillin-sensitive S. aureus (MSSA). In addition to this, equal or even greater damage is imposed by the exacerbated immune response mounted by the patient’s body in a futile attempt to eradicate the bacteria. The antibiotic therapy may not be sufficient enough to control the progression of damage to the joint involved thus, adding to higher mortality and disability rates despite the prompt and timely start of treatment. This situation implies that efforts and focus towards studying/understanding new strategies for improved management of sepsis arthritis is prudent and worth exploring. The review article aims to give a complete insight into the new therapeutic approaches studied by workers lately in this field. To the best of our knowledge studies highlighting the novel therapeutic strategies against septic arthritis are limited in the literature, although articles on pathogenic mechanism and choice of antibiotics for therapy, current treatment algorithms followed have been discussed by workers in the past. The present study presents and discusses the new alternative approaches, their mechanism of action, proof of concept, and work done so far towards their clinical success. This will surely help to enlighten the researchers with comprehensive knowledge of the new interventions that can be used as an adjunct therapy along with conventional treatment protocol for improved success rates.
Collapse
Affiliation(s)
- Jian Wang
- Department of Nursing, The Third Hospital of Jinan, Shandong Province, Jinan, 250132, China.
| | - Liucai Wang
- Hand and Foot Surgery, Shandong Provincial Hospital, Jinan, 250000, China
| |
Collapse
|
58
|
Bichet MC, Chin WH, Richards W, Lin YW, Avellaneda-Franco L, Hernandez CA, Oddo A, Chernyavskiy O, Hilsenstein V, Neild A, Li J, Voelcker NH, Patwa R, Barr JJ. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience 2021; 24:102287. [PMID: 33855278 PMCID: PMC8024918 DOI: 10.1016/j.isci.2021.102287] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
It is increasingly apparent that bacteriophages, viruses that infect bacteria and more commonly referred to as simply phages, have tropisms outside their bacterial hosts. Using live tissue culture cell imaging, we demonstrate that cell type, phage size, and morphology play a major role in phage internalization. Uptake was validated under physiological conditions using a microfluidic device. Phages adhered to mammalian tissues, with adherent phages being subsequently internalized by macropinocytosis, with functional phages accumulating intracellularly. We incorporated these results into a pharmacokinetic model demonstrating the potential impact of phage accumulation by cell layers, which represents a potential sink for circulating phages in the body. During phage therapy, high doses of phages are directly administered to a patient in order to treat a bacterial infection, thereby facilitating broad interactions between phages and mammalian cells. Understanding these interactions will have important implications on innate immune responses, phage pharmacokinetics, and the efficacy of phage therapy.
Collapse
Affiliation(s)
- Marion C. Bichet
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Wai Hoe Chin
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - William Richards
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Yu-Wei Lin
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Laura Avellaneda-Franco
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Catherine A. Hernandez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Arianna Oddo
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, VIC, 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
| | | | - Volker Hilsenstein
- Monash Micro Imaging, Monash University, Clayton Campus, Clayton, VIC, 3800, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, Clayton, VIC 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Nicolas Hans Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, VIC, 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia
| | - Ruzeen Patwa
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton Campus, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| |
Collapse
|
59
|
Doub JB, Ng VY, Wilson E, Corsini L, Chan BK. Successful Treatment of a Recalcitrant Staphylococcus epidermidis Prosthetic Knee Infection with Intraoperative Bacteriophage Therapy. Pharmaceuticals (Basel) 2021; 14:ph14030231. [PMID: 33800146 PMCID: PMC7998749 DOI: 10.3390/ph14030231] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Here, we present a case of a 79-year-old female with a recalcitrant Staphylococcal epidermidis prosthetic knee infection that was successfully treated with a single dose of adjuvant intra-articular bacteriophage therapy after debridement and implant retention surgery. The bacteriophage used in this case, PM448, is the first ɛ2 bacteriophage to be used in vivo. Currently the patient is without evidence of clinical recurrence and, interestingly, the patient had also suffered from debilitating aplastic anemia for over 2 years, which is recovering since receiving adjuvant bacteriophage therapy.
Collapse
Affiliation(s)
- James B. Doub
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: ; Tel.: +1-410-706-3454; Fax: +1-410-328-9106
| | - Vincent Y. Ng
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Eleanor Wilson
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | | | - Benjamin K. Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA;
| |
Collapse
|
60
|
Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). BIOFOULING 2021; 37:1-35. [PMID: 33618584 DOI: 10.1080/08927014.2020.1869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Orthopedic device related infections (ODRI's) represent a difficult to treat situation owing to their biofilm based nature. Biofilm infections once established are difficult to eradicate even with an aggressive treatment regimen due to their recalcitrance towards antibiotics and immune attack. The involvement of antibiotic resistant pathogens as the etiological agent further worsens the overall clinical picture, pressing on the need to look into alternative treatment strategies. The present review highlightes the microbiological challenges associated with treatment of ODRI's due to biofilm formation on the implant surface. Further, it details the newer anti-infective modalities that work either by preventing biofilm formation and/or through effective disruption of the mature biofilms formed on the medical implant. The study, therefore aims to provide a comprehensive insight into the newer anti-biofilm interventions (non-antibiotic approaches) and a better understanding of their mechanism of action essential for improved management of orthopedic implant infections.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Zhenwu Gao
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Zhenwei Tan
- Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China
| | - Jun Xiao
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Li Wei
- Nursing Department, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yirui Chen
- Department of Orthopedics, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
61
|
Doub JB. Bacteriophage Therapy for Clinical Biofilm Infections: Parameters That Influence Treatment Protocols and Current Treatment Approaches. Antibiotics (Basel) 2020; 9:E799. [PMID: 33198058 PMCID: PMC7697957 DOI: 10.3390/antibiotics9110799] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilm infections are extremely difficult to treat, which is secondary to the inability of conventional antibiotics to eradicate biofilms. Consequently, current definitive treatment of biofilm infections requires complete removal of the infected hardware. This causes significant morbidity and mortality to patients and therefore novel therapeutics are needed to cure these infections without removal of the infected hardware. Bacteriophages have intrinsic properties that could be advantageous in the treatment of clinical biofilm infections, but limited knowledge is known about the proper use of bacteriophage therapy in vivo. Currently titers and duration of bacteriophage therapy are the main parameters that are evaluated when devising bacteriophage protocols. Herein, several other important parameters are discussed which if standardized could allow for more effective and reproducible treatment protocols to be formulated. In addition, these parameters are correlated with the current clinical approaches being evaluated in the treatment of clinical biofilm infections.
Collapse
Affiliation(s)
- James B Doub
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
62
|
The Safety and Efficacy of Phage Therapy for Bone and Joint Infections: A Systematic Review. Antibiotics (Basel) 2020; 9:antibiotics9110795. [PMID: 33182795 PMCID: PMC7697170 DOI: 10.3390/antibiotics9110795] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/29/2022] Open
Abstract
Bacterial resistance to antibiotics has catalysed interest in alternative antimicrobial strategies. Bacteriophages (phages) are viruses of bacteria with a long history of successful therapeutic use. Phage therapy is a promising antibacterial strategy for infections with a biofilm component, including recalcitrant bone and joint infections, which have significant social, financial and human impacts. Here, we report a systematic review of the safety and efficacy of phage therapy for the treatment of bone and joint infections. Three electronic databases were systematically searched for articles that reported primary data about human phage therapy for bone and joint infections. Two authors independently assessed study eligibility and performed data extraction. Seventeen reports were eligible for inclusion in this review, representing the treatment of 277 patients. A cautionary, crude, efficacy estimate revealed that 93.1% (n = 258/277) achieved clinical resolution, 3.3% (n = 9/277) had improvement and 3.6% (n = 10/277) showed no improvement. Seven of the nine reports that directly commented on the safety of phage therapy did not express safety concerns. The adverse effects reported in the remaining two were not severe and were linked to the presence of contaminating endotoxins and pre-existing liver pathology in a patient treated with high-titre intravenous phage therapy. Three other reports, from 1940-1987, offered general comments on the safety of phage therapy and documented adverse effects consistent with endotoxin co-administration concomitant with the use of raw phage lysates. Together, the reports identified by this review suggest that appropriately purified phages represent a safe and highly efficacious treatment option for complex and intractable bone and joint infections.
Collapse
|
63
|
Luong T, Salabarria AC, Roach DR. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin Ther 2020; 42:1659-1680. [DOI: 10.1016/j.clinthera.2020.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
|