51
|
Tao W, Conte MA, Wang D, Kocher TD. Network architecture and sex chromosome turnovers: Do epistatic interactions shape patterns of sex chromosome replacement? Bioessays 2020; 43:e2000161. [PMID: 33283342 DOI: 10.1002/bies.202000161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022]
Abstract
Recent studies have revealed an astonishing diversity of sex chromosomes in many vertebrate lineages, prompting questions about the mechanisms of sex chromosome turnover. While there is considerable population genetic theory about the evolutionary forces promoting sex chromosome replacement, this theory has not yet been integrated with our understanding of the molecular and developmental genetics of sex determination. Here, we review recent data to examine four questions about how the structure of gene networks influences the evolution of sex determination. We argue that patterns of epistasis, arising from the structure of genetic networks, may play an important role in regulating the rates and patterns of sex chromosome replacement.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
52
|
Carleton KL, Conte MA, Malinsky M, Nandamuri SP, Sandkam BA, Meier JI, Mwaiko S, Seehausen O, Kocher TD. Movement of transposable elements contributes to cichlid diversity. Mol Ecol 2020; 29:4956-4969. [PMID: 33049090 DOI: 10.1111/mec.15685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
African cichlid fishes are a prime model for studying speciation mechanisms. Despite the development of extensive genomic resources, it has been difficult to determine which sources of genetic variation are responsible for cichlid phenotypic variation. One of their most variable phenotypes is visual sensitivity, with some of the largest spectral shifts among vertebrates. These shifts arise primarily from differential expression of seven cone opsin genes. By mapping expression quantitative trait loci (eQTL) in intergeneric crosses of Lake Malawi cichlids, we previously identified four causative genetic variants that correspond to indels in the promoters of either key transcription factors or an opsin gene. In this comprehensive study, we show that these indels are the result of the movement of transposable elements (TEs) that correlate with opsin expression variation across the Malawi flock. In tracking the evolutionary history of these particular indels, we found they are endemic to Lake Malawi, suggesting that these TEs are recently active and are segregating within the Malawi cichlid lineage. However, an independent indel has arisen at a similar genomic location in one locus outside of the Malawi flock. The convergence in TE movement suggests these loci are primed for TE insertion and subsequent deletions. Increased TE mobility may be associated with interspecific hybridization, which disrupts mechanisms of TE suppression. This might provide a link between cichlid hybridization and accelerated regulatory variation. Overall, our study suggests that TEs may be an important driver of key regulatory changes, facilitating rapid phenotypic change and possibly speciation in African cichlids.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Milan Malinsky
- Wellcome Sanger Institute, Cambridge, UK
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | - Joana I Meier
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Computational and Molecular Population Genetics Laboratory, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Salome Mwaiko
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
53
|
Tao W, Xu L, Zhao L, Zhu Z, Wu X, Min Q, Wang D, Zhou Q. High-quality chromosome-level genomes of two tilapia species reveal their evolution of repeat sequences and sex chromosomes. Mol Ecol Resour 2020; 21:543-560. [PMID: 33035394 DOI: 10.1111/1755-0998.13273] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 01/05/2023]
Abstract
Tilapias are one of the most farmed fishes that are coined as "aquatic chicken" by the food industry. Nile tilapia and blue tilapia exhibit very recent transition of sex chromosome systems since their divergence approximately five million years ago, making them a great model for elucidating the molecular and evolutionary mechanisms of sex chromosome turnovers. Studies of their sex-determining pathways are also critical for developing genetic sex control in aquaculture. We report here the newly produced genomes of Nile tilapia and blue tilapia that integrate long-read sequencing and chromatin conformation data. The two nearly complete genomes have anchored over 97% of the sequences into linkage groups (LGs), and assembled majorities of complex repetitive regions including telomeres, centromeres and rDNA clusters. In particular, we inferred two episodes of repeat expansion at LG3 respectively in the ancestor of cichlids and that of tilapias. The consequential large heterochromatic region concentrated at one end of LG3 comprises tandem arrays of mRNA and small RNA genes, among which we have identified a candidate female determining gene Paics in blue tilapia. Paics shows female-specific patterns of single-nucleotide variants, copy numbers and expression patterns in gonads during early gonadogenesis. Our work provides a very important genomic resource for functional studies of cichlids, and suggested that unequal distribution of repeat content that impacts the local recombination rate might make some chromosomes more likely to become sex chromosomes.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Luohao Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Lin Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zexian Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Qianwen Min
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.,Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
54
|
Sassi FDMC, Deon GA, Moreira-Filho O, Vicari MR, Bertollo LAC, Liehr T, de Oliveira EA, Cioffi MB. Multiple Sex Chromosomes and Evolutionary Relationships in Amazonian Catfishes: The Outstanding Model of the Genus Harttia (Siluriformes: Loricariidae). Genes (Basel) 2020; 11:genes11101179. [PMID: 33050411 PMCID: PMC7600804 DOI: 10.3390/genes11101179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
The armored Harttia catfishes present great species diversity and remarkable cytogenetic variation, including different sex chromosome systems. Here we analyzed three new species, H. duriventris, H. villasboas and H. rondoni, using both conventional and molecular cytogenetic techniques (Giemsa-staining and C-banding), including the mapping of repetitive DNAs using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) experiments. Both H. duriventris and H. villasboas have 2n = ♀56/♂55 chromosomes, and an X1X1X2X2 /X1X2Y sex chromosome system, while a proto or neo-XY system is proposed for H. rondoni (2n = 54♀♂). Single motifs of 5S and 18S rDNA occur in all three species, with the latter being also mapped in the sex chromosomes. The results confirm the general evolutionary trend that has been noticed for the genus: an extensive variation on their chromosome number, single sites of rDNA sequences and the occurrence of multiple sex chromosomes. Comparative genomic analyses with another congeneric species, H. punctata, reveal that the X1X2Y sex chromosomes of these species share the genomic contents, indicating a probable common origin. The remarkable karyotypic variation, including sex chromosomes systems, makes Harttia a suitable model for evolutionary studies focusing on karyotype differentiation and sex chromosome evolution among lower vertebrates.
Collapse
Affiliation(s)
- Francisco de M. C. Sassi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
| | - Geize A. Deon
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84010-330, Brazil;
| | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84010-330, Brazil;
| | - Marcelo R. Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR 84010-330, Brazil;
| | - Luiz A. C. Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena 07747, Germany
- Correspondence: ; Tel.: +49-3641-9396850; Fax: +49-3641-9396852
| | | | - Marcelo B. Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São, Carlos, São Carlos, SP 13565-905, Brazil; (F.d.M.C.S.); (G.A.D.); (O.M.-F.); (L.A.C.B.); (M.B.C.)
| |
Collapse
|
55
|
Abstract
Understanding the evolution of sex determination mechanisms and sex chromosomes is of fundamental importance in biology. Here we have reconstructed the evolution of the sex-determining region in the Atlantic herring. The region is small and contains only three intact genes. The candidate sex-determining factor BMPR1BBY is an evolutionary innovation in the herring lineage. It encodes a truncated form of a BMP type I receptor, which originated by gene duplication and underwent rapid protein evolution. The receptor has maintained its kinase activity and has the potential to induce development of testis. The other two genes in the sex-determining region, CATSPERG and CATSPER3Y, are male beneficial genes because they encode proteins predicted to be essential for sperm to fertilize the egg. The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.
Collapse
|
56
|
Structure and Sequence of the Sex Determining Locus in Two Wild Populations of Nile Tilapia. Genes (Basel) 2020; 11:genes11091017. [PMID: 32872430 PMCID: PMC7563666 DOI: 10.3390/genes11091017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
In domesticated strains of the Nile tilapia, phenotypic sex has been linked to genetic variants on linkage groups 1, 20 and 23. This diversity of sex-loci might reflect a naturally polymorphic sex determination system in Nile tilapia, or it might be an artefact arising from the process of domestication. Here, we searched for sex-determiners in wild populations from Kpandu, Lake Volta (Ghana-West Africa), and from Lake Koka (Ethiopia-East Africa) that have not been subjected to any genetic manipulation. We analysed lab-reared families using double-digest Restriction Associated DNA sequencing (ddRAD) and analysed wild-caught males and females with pooled whole-genome sequencing (WGS). Strong sex-linked signals were found on LG23 in both populations, and sex-linked signals with LG3 were observed in Kpandu samples. WGS uncovered blocks of high sequence coverage, suggesting the presence of B chromosomes. We confirmed the existence of a tandem amh duplication in LG23 in both populations and determined its breakpoints between the oaz1 and dot1l genes. We found two common deletions of ~5 kb in males and confirmed the presence of both amhY and amh∆Y genes. Males from Lake Koka lack both the previously reported 234 bp deletion and the 5 bp frameshift-insertion that creates a premature stop codon in amh∆Y.
Collapse
|
57
|
Junker J, Rick JA, McIntyre PB, Kimirei I, Sweke EA, Mosille JB, Wehrli B, Dinkel C, Mwaiko S, Seehausen O, Wagner CE. Structural genomic variation leads to genetic differentiation in Lake Tanganyika's sardines. Mol Ecol 2020; 29:3277-3298. [PMID: 32687665 DOI: 10.1111/mec.15559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Identifying patterns in genetic structure and the genetic basis of ecological adaptation is a core goal of evolutionary biology and can inform the management and conservation of species that are vulnerable to population declines exacerbated by climate change. We used reduced-representation genomic sequencing methods to gain a better understanding of genetic structure among and within populations of Lake Tanganyika's two sardine species, Limnothrissa miodon and Stolothrissa tanganicae. Samples of these ecologically and economically important species were collected across the length of Lake Tanganyika, as well as from nearby Lake Kivu, where L. miodon was introduced in 1959. Our results reveal differentiation within both S. tanganicae and L. miodon that is not explained by geography. Instead, this genetic differentiation is due to the presence of large sex-specific regions in the genomes of both species, but involving different polymorphic sites in each species. Our results therefore indicate rapidly evolving XY sex determination in the two species. Additionally, we found evidence of a large chromosomal rearrangement in L. miodon, creating two homokaryotypes and one heterokaryotype. We found all karyotypes throughout Lake Tanganyika, but the frequencies vary along a north-south gradient and differ substantially in the introduced Lake Kivu population. We do not find evidence for significant isolation by distance, even over the hundreds of kilometres covered by our sampling, but we do find shallow population structure.
Collapse
Affiliation(s)
- Julian Junker
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
| | - Jessica A Rick
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Peter B McIntyre
- Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | - Ismael Kimirei
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Emmanuel A Sweke
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania.,Deep Sea Fishing Authority (DSFA), Zanzibar, Tanzania
| | - Julieth B Mosille
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Bernhard Wehrli
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland
| | - Christian Dinkel
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Salome Mwaiko
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology, Institute of Ecology & Evolution, University of Bern, Bern, Switzerland
| | - Catherine E Wagner
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
58
|
Rometsch SJ, Torres-Dowdall J, Meyer A. Evolutionary dynamics of pre- and postzygotic reproductive isolation in cichlid fishes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190535. [PMID: 32654645 DOI: 10.1098/rstb.2019.0535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cichlid fishes are exceptionally species-rich, speciated at explosive rates and, hence, are a model system in speciation research. Yet, their reproductive isolating barriers have, so far, not been comprehensively studied. Here, we review current knowledge on pre- and postzygotic mechanisms in cichlids. While premating isolation is the norm in cichlids, its strength varies across lineages and with the geographical setting. Moreover, manipulations of ambient conditions tended to reduce assortative mating among closely related species, suggesting that premating isolation in cichlids is often fragile and context dependent. The observed lack of complete reproductive isolation is supported by past and present hybridization events that have contributed to diversity by creating novel allelic combinations. On the other hand, our meta-analysis highlights that intrinsic postzygotic isolation might accumulate faster than assumed. Mild forms of genetic incompatibilities, such as sex ratio distortion, can already be observed among closely related species. Therefore, cessation of gene flow by strong reproductive isolation in cichlids requires a combination of premating prezygotic isolation supplemented with intrinsic and extrinsic postzygotic barriers. Further, we suggest crucial next steps to improve our knowledge about reproductive barriers in cichlids to understand the evolutionary dynamics of pre- and postzygotic isolation mechanisms during adaptive radiations. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Sina J Rometsch
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Julián Torres-Dowdall
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
59
|
Meisel RP. Evolution of Sex Determination and Sex Chromosomes: A Novel Alternative Paradigm. Bioessays 2020; 42:e1900212. [DOI: 10.1002/bies.201900212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Richard P. Meisel
- Department of Biology and Biochemistry University of Houston 3455 Cullen Blvd Houston TX 77204‐5001 USA
| |
Collapse
|
60
|
Furman BLS, Metzger DCH, Darolti I, Wright AE, Sandkam BA, Almeida P, Shu JJ, Mank JE. Sex Chromosome Evolution: So Many Exceptions to the Rules. Genome Biol Evol 2020; 12:750-763. [PMID: 32315410 PMCID: PMC7268786 DOI: 10.1093/gbe/evaa081] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 01/10/2023] Open
Abstract
Genomic analysis of many nonmodel species has uncovered an incredible diversity of sex chromosome systems, making it possible to empirically test the rich body of evolutionary theory that describes each stage of sex chromosome evolution. Classic theory predicts that sex chromosomes originate from a pair of homologous autosomes and recombination between them is suppressed via inversions to resolve sexual conflict. The resulting degradation of the Y chromosome gene content creates the need for dosage compensation in the heterogametic sex. Sex chromosome theory also implies a linear process, starting from sex chromosome origin and progressing to heteromorphism. Despite many convergent genomic patterns exhibited by independently evolved sex chromosome systems, and many case studies supporting these theoretical predictions, emerging data provide numerous interesting exceptions to these long-standing theories, and suggest that the remarkable diversity of sex chromosomes is matched by a similar diversity in their evolution. For example, it is clear that sex chromosome pairs are not always derived from homologous autosomes. In addition, both the cause and the mechanism of recombination suppression between sex chromosome pairs remain unclear, and it may be that the spread of recombination suppression is a more gradual process than previously thought. It is also clear that dosage compensation can be achieved in many ways, and displays a range of efficacy in different systems. Finally, the remarkable turnover of sex chromosomes in many systems, as well as variation in the rate of sex chromosome divergence, suggest that assumptions about the inevitable linearity of sex chromosome evolution are not always empirically supported, and the drivers of the birth-death cycle of sex chromosome evolution remain to be elucidated. Here, we concentrate on how the diversity in sex chromosomes across taxa highlights an equal diversity in each stage of sex chromosome evolution.
Collapse
Affiliation(s)
- Benjamin L S Furman
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C H Metzger
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iulia Darolti
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Benjamin A Sandkam
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Jacelyn J Shu
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E Mank
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
61
|
Clark FE, Kocher TD. Changing sex for selfish gain: B chromosomes of Lake Malawi cichlid fish. Sci Rep 2019; 9:20213. [PMID: 31882583 PMCID: PMC6934658 DOI: 10.1038/s41598-019-55774-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/02/2019] [Indexed: 01/16/2023] Open
Abstract
B chromosomes are extra, non-essential chromosomes present in addition to the normal complement of A chromosomes. Many species of cichlid fish in Lake Malawi carry a haploid, female-restricted B chromosome. Here we show that this B chromosome exhibits drive, with an average transmission rate of 70%. The offspring of B-transmitting females exhibit a strongly female-biased sex ratio. Genotyping of these offspring reveals the B chromosome carries a female sex determiner that is epistatically dominant to an XY system on linkage group 7. We suggest that this sex determiner evolved to enhance the meiotic drive of the B chromosome. This is some of the first evidence that female meiotic drive can lead to the invasion of new sex chromosomes solely to benefit the driver, and not to compensate for skewed sex ratios.
Collapse
Affiliation(s)
- Frances E Clark
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA.
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA
| |
Collapse
|
62
|
Scharmann M, Grafe TU, Metali F, Widmer A. Sex is determined by XY chromosomes across the radiation of dioecious Nepenthes pitcher plants. Evol Lett 2019; 3:586-597. [PMID: 31867120 PMCID: PMC6906984 DOI: 10.1002/evl3.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Species with separate sexes (dioecy) are a minority among flowering plants, but dioecy has evolved multiple times independently in their history. The sex-determination system and sex-linked genomic regions are currently identified in a limited number of dioecious plants only. Here, we study the sex-determination system in a genus of dioecious plants that lack heteromorphic sex chromosomes and are not amenable to controlled breeding: Nepenthes pitcher plants. We genotyped wild populations of flowering males and females of three Nepenthes taxa using ddRAD-seq and sequenced a male inflorescence transcriptome. We developed a statistical tool (privacy rarefaction) to distinguish true sex specificity from stochastic noise in read coverage of sequencing data from wild populations and identified male-specific loci and XY-patterned single nucleotide polymorphsims (SNPs) in all three Nepenthes taxa, suggesting the presence of homomorphic XY sex chromosomes. The male-specific region of the Y chromosome showed little conservation among the three taxa, except for the essential pollen development gene DYT1 that was confirmed as male specific by PCR in additional Nepenthes taxa. Hence, dioecy and part of the male-specific region of the Nepenthes Y-chromosomes likely have a single evolutionary origin.
Collapse
Affiliation(s)
- Mathias Scharmann
- Institute of Integrative BiologyETH ZurichZürich8092Switzerland
- Department of Ecology and EvolutionUniversity of LausanneLausanne1015Switzerland
| | - T. Ulmar Grafe
- Faculty of ScienceUniversiti Brunei DarussalamGadongBE 1410Brunei Darussalam
| | - Faizah Metali
- Faculty of ScienceUniversiti Brunei DarussalamGadongBE 1410Brunei Darussalam
| | - Alex Widmer
- Institute of Integrative BiologyETH ZurichZürich8092Switzerland
| |
Collapse
|
63
|
Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat Ecol Evol 2019; 3:1632-1641. [DOI: 10.1038/s41559-019-1050-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/24/2019] [Indexed: 11/08/2022]
|
64
|
Charlesworth D. Young sex chromosomes in plants and animals. THE NEW PHYTOLOGIST 2019; 224:1095-1107. [PMID: 31222890 DOI: 10.1111/nph.16002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 05/28/2023]
Abstract
A major reason for studying plant sex chromosomes is that they may often be 'young' systems. There is considerable evidence for the independent evolution of separate sexes within plant families or genera, in some cases showing that the maximum possible time during which their sex-determining genes have existed must be much shorter than those of several animal taxa. Consequently, their sex-linked regions could either have evolved soon after genetic sex determination arose or considerably later. Plants, therefore, include species with both young and old systems. I review several questions about the evolution of sex-determining systems and sex chromosomes that require studies of young systems, including: the kinds of mutations involved in the transition to unisexual reproduction from hermaphroditism or monoecy (a form of functional hermaphroditism); the times when they arose; and the extent to which the properties of sex-linked regions of genomes reflect responses to new selective situations created by the presence of a sex-determining locus. I also evaluate which questions are best studied in plants, vs other suitable candidate organisms. Studies of young plant systems can help understand general evolutionary processes that are shared with the sex chromosomes of other organisms.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3LF, UK
| |
Collapse
|
65
|
Xu D, Sember A, Zhu Q, Oliveira EAD, Liehr T, Al-Rikabi ABH, Xiao Z, Song H, Cioffi MDB. Deciphering the Origin and Evolution of the X 1X 2Y System in Two Closely-Related Oplegnathus Species (Oplegnathidae and Centrarchiformes). Int J Mol Sci 2019; 20:E3571. [PMID: 31336568 PMCID: PMC6678977 DOI: 10.3390/ijms20143571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 01/18/2023] Open
Abstract
Oplegnathus fasciatus and O. punctatus (Teleostei: Centrarchiformes: Oplegnathidae), are commercially important rocky reef fishes, endemic to East Asia. Both species present an X1X2Y sex chromosome system. Here, we investigated the evolutionary forces behind the origin and differentiation of these sex chromosomes, with the aim to elucidate whether they had a single or convergent origin. To achieve this, conventional and molecular cytogenetic protocols, involving the mapping of repetitive DNA markers, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) were applied. Both species presented similar 2n, karyotype structure and hybridization patterns of repetitive DNA classes. 5S rDNA loci, besides being placed on the autosomal pair 22, resided in the terminal region of the long arms of both X1 chromosomes in females, and on the X1 and Y chromosomes in males. Furthermore, WCP experiments with a probe derived from the Y chromosome of O. fasciatus (OFAS-Y) entirely painted the X1 and X2 chromosomes in females and the X1, X2, and Y chromosomes in males of both species. CGH failed to reveal any sign of sequence differentiation on the Y chromosome in both species, thereby suggesting the shared early stage of neo-Y chromosome differentiation. Altogether, the present findings confirmed the origin of the X1X2Y sex chromosomes via Y-autosome centric fusion and strongly suggested their common origin.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316100, China
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316100, China
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Qihui Zhu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316100, China
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos SP 13565-905, Brazil
- Secretaria de Estado de Educação de Mato Grosso-SEDUC-MT, Cuiabá MT 78049-909, Brazil
| | - Thomas Liehr
- University Clinic Jena, Institute of Human Genetics, 07747 Jena, Germany
| | | | - Zhizhong Xiao
- Laboratory for Marine Biology and Biotechnology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Hongbin Song
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316100, China
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316100, China
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos SP 13565-905, Brazil.
- University Clinic Jena, Institute of Human Genetics, 07747 Jena, Germany.
| |
Collapse
|
66
|
Reply to Wright et al.: How to explain the absence of extensive Y-specific regions in the guppy sex chromosomes. Proc Natl Acad Sci U S A 2019; 116:12609-12610. [PMID: 31213530 DOI: 10.1073/pnas.1906633116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
67
|
Saunders PA, Neuenschwander S, Perrin N. Impact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogamety. Heredity (Edinb) 2019; 123:419-428. [PMID: 31028370 DOI: 10.1038/s41437-019-0225-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 01/19/2023] Open
Abstract
Deleterious mutations accumulating on non-recombining Y chromosomes can drive XY to XY turnovers, as they allow to replace the old mutation-loaded Y by a new mutation-free one. The same process is thought to prevent XY to ZW turnovers, because the latter requires fixation of the ancestral Y, assuming dominance of the emergent feminizing mutation. Using individual-based simulations, we explored whether and how an epistatically dominant W allele can spread in a young XY system that gradually accumulates deleterious mutations. We also investigated how sexually antagonistic (SA) polymorphism on the ancestral sex chromosomes and the mechanism controlling X-Y recombination suppression affect these transitions. In contrast with XY to XY turnovers, XY to ZW turnovers cannot be favored by Y chromosome mutation load. If the arrest of X-Y recombination depends on genotypic sex, transitions are strongly hindered by deleterious mutations, and totally suppressed by very small SA cost, because deleterious mutations and female-detrimental SA alleles would have to fix with the Y. If, however, the arrest of X-Y recombination depends on phenotypic sex, X and Y recombine in XY ZW females, allowing for the purge of Y-linked deleterious mutations and loss of the SA polymorphism, causing XY to ZW turnovers to occur at the same rate as in the absence of deleterious and sex-antagonistic mutations. We generalize our results to other types of turnovers (e.g., triggered by non-dominant sex-determining mutations) and discuss their empirical relevance.
Collapse
Affiliation(s)
- Paul A Saunders
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Samuel Neuenschwander
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.,Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|