99951
|
Xiao M, Cui X, Xu C, Xin L, Zhao J, Yang S, Hong B, Tan Y, Zhang J, Li X, Li J, Kang C, Fang C. Deep-targeted gene sequencing reveals ARID1A mutation as an important driver of glioblastoma. CNS Neurosci Ther 2024; 30:e14698. [PMID: 38600891 PMCID: PMC11007544 DOI: 10.1111/cns.14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS To investigate the key factors influencing glioma progression and the emergence of treatment resistance by examining the intrinsic connection between mutations in DNA damage and repair-related genes and the development of chemoresistance in gliomas. METHODS We conducted a comprehensive analysis of deep-targeted gene sequencing data from 228 glioma samples. This involved identifying differentially mutated genes across various glioma grades, assessing their functions, and employing I-TASSER for homology modeling. We elucidated the functional changes induced by high-frequency site mutations in these genes and investigated their impact on glioma progression. RESULTS The analysis of sequencing mutation results of deep targeted genes in integration revealed that ARID1A gene mutation occurs frequently in glioblastoma and alteration of ARID1A could affect the tolerance of glioma cells to temozolomide treatment. The deletion of proline at position 16 in the ARID1A protein affected the stability of binding of the SWI/SNF core subunit BRG1, which in turn affected the stability of the SWI/SNF complex and led to altered histone modifications in the CDKN1A promoter region, thereby affecting the biological activity of glioma cells, as inferred from modeling and protein interaction analysis. CONCLUSION The ARID1A gene is a critical predictive biomarker for glioma. Mutations at the ARID1A locus alter the stability of the SWI/SNF complex, leading to changes in transcriptional regulation in glioma cells. This contributes to an increased malignant phenotype of GBM and plays a pivotal role in mediating chemoresistance.
Collapse
Affiliation(s)
- Menglin Xiao
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Xiaoteng Cui
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Can Xu
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Lei Xin
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Jixing Zhao
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Shixue Yang
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Biao Hong
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Yanli Tan
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingChina
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Jie Zhang
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Xiang Li
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Jie Li
- Department of ProteomicsTianjin Enterprise Key Laboratory of Clinical Multi‐omicsTianjinChina
| | - Chunsheng Kang
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Chuan Fang
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| |
Collapse
|
99952
|
Conley J, Perry JR, Ashford B, Ranson M. Ex vivo therapeutic screening of metastatic cSCC: A review of methodological considerations for clinical implementation. Exp Dermatol 2024; 33:e15089. [PMID: 38659312 DOI: 10.1111/exd.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy worldwide, with most deaths caused by locally advanced and metastatic disease. Treatment of resectable metastases is typically limited to invasive surgery with adjuvant radiotherapy; however, many patients fail to respond and there is minimal data to predict response or propose effective alternatives. Precision medicine could improve this, though genomic biomarkers remain elusive in the high mutational background and genomic complexity of cSCC. A phenotypic approach to precision medicine using patient-derived ex vivo tumour models is gaining favour for its capacity to directly assess biological responses to therapeutics as a functional, predictive biomarker. However, the use of ex vivo models for guiding therapeutic selection has yet to be employed for metastatic cSCC. This review will therefore evaluate the existing experimental models of metastatic cSCC and discuss how ex vivo methods could overcome the shortcomings of these existing models. Disease-specific considerations for a prospective methodological pipeline will also be discussed in the context of precision medicine.
Collapse
Affiliation(s)
- Jessica Conley
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jay R Perry
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Marie Ranson
- Faculty of Science, Medicine and Health, School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
99953
|
Thomas KL, Jesse R, Mehtani NJ, Mitchell JM, Anderson BT. Commentary: Evidence-Informed Recommendation to Achieve Approximate Parity in the Allowed Number of Doses for Common Psychedelics. J Psychoactive Drugs 2024; 56:206-210. [PMID: 37061961 DOI: 10.1080/02791072.2023.2201244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/09/2023] [Indexed: 04/17/2023]
Abstract
In recent years, policymakers have proposed and implemented regulatory changes promoting the deprioritization, decriminalization, or state-level legalization of one or more psychedelic substances, usually referencing data from clinical trials as reasons to support liberalizing drug control policies. As psychedelic policies continue to be drafted, personal possession limits may be considered for inclusion in those regulations. If "allowable amount" limits are to be written into law to set personal possession limits, then such amounts should be more consistently related to psychedelic doses found to be safe and efficacious in clinical trials, existing data on moderate-high doses commonly used in various naturalistic settings, and the few studies that estimate psychedelic dose equivalence based on the intensity of subjective effects. In this commentary, we provide an evidence-informed table of typical moderate-high doses for seven commonly used psychedelic substances. These estimates of comparable moderate-high doses can be used to inform "allowable amount" values for psychedelic substances. When such limits are written into legislation, the adoption of evidence-informed comparable limits akin to those presented here would be an important first step toward ensuring greater parity and consistency in drug policy, relative to limits that have little or no scientific basis.
Collapse
Affiliation(s)
- Kelan L Thomas
- College of Pharmacy, Touro University California, Vallejo, CA, USA
| | - Robert Jesse
- Council on Spiritual Practices, Occidental, CA, USA
| | - Nicky J Mehtani
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer M Mitchell
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Center for the Science of Psychedelics, University of California Berkeley, Berkeley, CA, USA
| | - Brian T Anderson
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
99954
|
Liu M, Zhu Y, Yuan Y, Wang Y, Liu X, Li L, Gao Y, Yan H, Liu R, Cheng L, Yuan J, Wang Q, Li S, Liu Y, Wang Y, Shi C, Xu Y, Yang J. Plasma neurofilament light as a promising biomarker in neuronal intranuclear inclusion disease. J Neurol 2024; 271:2042-2052. [PMID: 38189920 DOI: 10.1007/s00415-023-12160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder lacking reliable biomarkers. This study investigates plasma protein levels as potential biomarkers of disease severity and progression in NIID. In this study, we enrolled 30 NIID patients and 36 age- and sex-matched controls, following them for 1-2 years. Plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and tau were measured using ultrasensitive single molecule array (Simoa) assays. Disease severity was evaluated with the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Activities of Daily Living (ADL), and CNS symptom counts, in addition to neuroimaging data. Our study revealed that NIID patients has significantly higher plasma NfL (median, 35.2 vs. 8.61 pg/mL, p < 0.001) and GFAP (102 vs. 79.0 pg/mL, p = 0.010) levels compared to controls, with NfL emerging as a robust diagnostic marker (AUC = 0.956). NfL levels were notably higher in acute-onset NIID (77.5 vs. 28.8 pg/mL, p = 0.001). NfL correlated strongly with disease severity, including MMSE (ρ = - 0.687, p < 0.001), MoCA (ρ = - 0.670, p < 0.001), ADL (ρ = 0.587, p = 0.001), CNS symptoms (ρ = 0.369, p = 0.045), and white matter hyperintensity volume (ρ = 0.620, p = 0.004). Higher baseline NfL (≥ 35.2 pg/mL) associated with increased ADL scores, CNS symptoms, and white matter hyperintensity at follow-up. UCH-L1 and total tau levels showed no significant differences. Our results suggested the potential of NfL as a promising biomarker of disease severity and progression in NIID.
Collapse
Affiliation(s)
- Minglei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yuru Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Yan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Ruoyu Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Lin Cheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jing Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Shuo Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yutao Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
99955
|
Akinyemi AJ, Du XQ, Aguilan J, Sidoli S, Hirsch D, Wang T, Reznik S, Fuloria M, Charron MJ. Human cord plasma proteomic analysis reveals sexually dimorphic proteins associated with intrauterine growth restriction. Proteomics 2024; 24:e2300260. [PMID: 38059784 DOI: 10.1002/pmic.202300260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Intrauterine growth restriction (IUGR) is associated with increased risk of cardiometabolic disease later in life and has been shown to affect female and male offspring differently, but the mechanisms remain unclear. The purpose of this study was to identify proteomic differences and metabolic risk markers in IUGR male and female neonates when compared to appropriate for gestational age (AGA) babies that will provide a better understanding of IUGR pathogenesis and its associated risks. Our results revealed alterations in IUGR cord plasma proteomes with most of the differentially abundant proteins implicated in peroxisome pathways. This effect was evident in females but not in males. Furthermore, we observed that catalase activity, a peroxisomal enzyme, was significantly increased in females (p < 0.05) but unchanged in males. Finally, we identified risk proteins associated with obesity, type-2 diabetes, and glucose intolerance such as EGF containing fibulin extracellular matrix protein 1 (EFEMP1), proprotein convertase subtilisin/kexin type 9 (PCSK9) and transforming growth factor beta receptor 3 (TGFBR3) proteins unique to females while coagulation factor IX (C9) and retinol binding protein 4 (RBP4) are unique in males. In conclusion, IUGR may display sexual dimorphism which may be associated with differences in lifelong risk for cardiometabolic disease between males and females.
Collapse
Affiliation(s)
| | - Xiu Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jennifer Aguilan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Hirsch
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tao Wang
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sandra Reznik
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pharmaceutical Sciences, St. John's University College of Pharmacy and Health Sciences, Jamaica, New York, USA
| | - Mamta Fuloria
- Department of Pediatrics, Division of Neonatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Division of Endocrinology, Norman Fleisher Institute, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
99956
|
Mangini C, Zarantonello L, Formentin C, Giusti G, Domenie ED, Ruggerini D, Costa R, Skene DJ, Basso D, Battagliarin L, Di Bella A, Angeli P, Montagnese S. Managing Circadian Disruption due to Hospitalization: A Pilot Randomized Controlled Trial of the CircadianCare Inpatient Management System. J Biol Rhythms 2024; 39:183-199. [PMID: 38153134 DOI: 10.1177/07487304231213916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The objective of the present study was to test the effects of an inpatient management system (CircadianCare) aimed at limiting the negative impact of hospitalization on sleep by enhancing circadian rhythmicity. Fifty inpatients were randomized to either CircadianCare (n = 25; 18 males, 62.4 ± 1.9 years) or standard of care (n = 25; 14 males, 64.5 ± 2.3 years). On admission, all underwent a full sleep-wake evaluation; they then completed daily sleep diaries and wore an actigraph for the whole length of hospitalization. On days 1 (T0), 7 (T1), and 14 (T2, if still hospitalized), salivary melatonin for dim light melatonin onset (DLMO) and 24-h skin temperature were recorded. In addition, environmental noise, temperature, and illuminance were monitored. Patients in the CircadianCare arm followed 1 of 3 schedules for light/dark, meal, and physical activity timings, based on their diurnal preference/habits. They wore short-wavelength-enriched light-emitting glasses for 45 min after awakening and short-wavelength light filter shades from 18:00 h until sleep onset. While the first, primary registered outcome (reduced sleep-onset latency on actigraphy or diary) was not met, based on sleep diaries, there was a trend (0.05 < p < 0.1) toward an advance in bedtime for CircadianCare compared to standard of care patients between T0 and T1. Similarly, DLMO time significantly advanced in the small group of patients for whom it could be computed on both occasions, with untreated ones starting from earlier baseline values. Patients sleeping near the window had significantly higher sleep efficiency, regardless of treatment arm. As noise fluctuation increased, so did the number of night awakenings, regardless of treatment arm. In conclusion, the CircadianCare management system showed positive results in terms of advancing sleep timing and the circadian rhythm of melatonin. Furthermore, our study identified a combination of environmental noise and lighting indices, which could be easily modulated to prevent hospitalization-related insomnia.
Collapse
Affiliation(s)
- Chiara Mangini
- Department of Medicine, University of Padova, Padova, Italy
| | | | | | - Gianluca Giusti
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | - Rodolfo Costa
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Debra J Skene
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Daniela Basso
- Department of Medicine, University of Padova, Padova, Italy
| | - Lisa Battagliarin
- Department of Industrial Engineering, University of Padova, Padova, Italy
- Iuav University of Venice, Venice, Italy
| | - Antonino Di Bella
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Paolo Angeli
- Department of Medicine, University of Padova, Padova, Italy
| | - Sara Montagnese
- Department of Medicine, University of Padova, Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
99957
|
Kitamura W, Urata T, Fujii K, Fukumi T, Ikeuchi K, Seike K, Fujiwara H, Asada N, Ennishi D, Matsuoka KI, Otsuka F, Maeda Y, Fujii N. Collection efficiency and safety of large-volume leukapheresis for the manufacturing of tisagenlecleucel. Transfusion 2024; 64:674-684. [PMID: 38419458 DOI: 10.1111/trf.17765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND In patients with relapsed or refractory B cell acute lymphoblastic leukemia or B cell non-Hodgkin lymphoma (r/r B-ALL/B-NHL) with low CD3+ cells in the peripheral blood (PB), sufficient CD3+ cell yield in a single day may not be obtained with normal-volume leukapheresis (NVL). Large-volume leukapheresis (LVL) refers to the processing of more than three times the total blood volume (TBV) in a single session for PB apheresis; however, the efficiency and safety of LVL for manufacturing of tisagenlecleucel (tisa-cel) remain unclear. This study aimed to investigate the tolerability of LVL. STUDY DESIGN AND METHODS We retrospectively collected data on LVL (≥3-fold TBV) and NVL (<3-fold TBV) performed for patients with r/r B-ALL/B-NHL in our institution during November 2019 and September 2023. All procedures were performed using a continuous mononuclear cell collection (cMNC) protocol with the Spectra Optia. RESULTS Although pre-apheresis CD3+ cells in the PB were significantly lower in LVL procedures (900 vs. 348/μL, p < .01), all patients could obtain sufficient CD3+ cell yield in a single day with a comparably successful rate of final products (including out-of-specification) between the two groups (97.2% vs. 100.0%, p = 1.00). The incidence and severity of citrate toxicity (no patients with grade ≥ 3) during procedures was not significantly different between the two groups (22.2% vs. 26.1%, p = .43) and no patient discontinued leukapheresis due to any complications. CONCLUSION LVL procedures using Spectra Optia cMNC protocol was well tolerated and did not affect the manufacturing of tisa-cel.
Collapse
Affiliation(s)
- Wataru Kitamura
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Tomohiro Urata
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Keiko Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Clinical Laboratory, Okayama University Hospital, Okayama, Japan
| | - Takuya Fukumi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Kazuhiro Ikeuchi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Keisuke Seike
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Daisuke Ennishi
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Fumio Otsuka
- Division of Clinical Laboratory, Okayama University Hospital, Okayama, Japan
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Nobuharu Fujii
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
99958
|
Rog CJ, Puzanov I, Skitzki J. Optimal Practices for Suspected Nodal Melanoma-The Role of the General Surgeon. JAMA Surg 2024; 159:361-362. [PMID: 38416463 DOI: 10.1001/jamasurg.2023.7451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This Viewpoint describes results of trials on neoadjuvant checkpoint inhibitor immunotherapy for patients with metastatic melanoma and recommends increased use of this approach.
Collapse
Affiliation(s)
- Colin J Rog
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Melanoma Section, Buffalo, New York
| | - Joseph Skitzki
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
99959
|
Hayashi H, Chamoto K, Hatae R, Kurosaki T, Togashi Y, Fukuoka K, Goto M, Chiba Y, Tomida S, Ota T, Haratani K, Takahama T, Tanizaki J, Yoshida T, Iwasa T, Tanaka K, Takeda M, Hirano T, Yoshida H, Ozasa H, Sakamori Y, Sakai K, Higuchi K, Uga H, Suminaka C, Hirai T, Nishio K, Nakagawa K, Honjo T. Soluble immune checkpoint factors reflect exhaustion of antitumor immunity and response to PD-1 blockade. J Clin Invest 2024; 134:e168318. [PMID: 38557498 PMCID: PMC10977985 DOI: 10.1172/jci168318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUNDPrecise stratification of patients with non-small cell lung cancer (NSCLC) is needed for appropriate application of PD-1/PD-L1 blockade therapy.METHODSWe measured soluble forms of the immune-checkpoint molecules PD-L1, PD-1, and CTLA-4 in plasma of patients with advanced NSCLC before PD-1/PD-L1 blockade. A prospective biomarker-finding trial (cohort A) included 50 previously treated patients who received nivolumab. A retrospective observational study was performed for patients treated with any PD-1/PD-L1 blockade therapy (cohorts B and C), cytotoxic chemotherapy (cohort D), or targeted therapy (cohort E). Plasma samples from all patients were assayed for soluble immune-checkpoint molecules with a highly sensitive chemiluminescence-based assay.RESULTSNonresponsiveness to PD-1/PD-L1 blockade therapy was associated with higher concentrations of these soluble immune factors among patients with immune-reactive (hot) tumors. Such an association was not apparent for patients treated with cytotoxic chemotherapy or targeted therapy. Integrative analysis of tumor size, PD-L1 expression in tumor tissue (tPD-L1), and gene expression in tumor tissue and peripheral CD8+ T cells revealed that high concentrations of the 3 soluble immune factors were associated with hyper or terminal exhaustion of antitumor immunity. The combination of soluble PD-L1 (sPD-L1) and sCTLA-4 efficiently discriminated responsiveness to PD-1/PD-L1 blockade among patients with immune-reactive tumors.CONCLUSIONCombinations of soluble immune factors might be able to identify patients unlikely to respond to PD-1/PD-L1 blockade as a result of terminal exhaustion of antitumor immunity. Our data suggest that such a combination better predicts, along with tPD-L1, for the response of patients with NSCLC.TRIAL REGISTRATIONUMIN000019674.FUNDINGThis study was funded by Ono Pharmaceutical Co. Ltd. and Sysmex Corporation.
Collapse
Affiliation(s)
- Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Immuno-Oncology PDT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Hatae
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kurosaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuya Fukuoka
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | | | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Shuta Tomida
- Department of Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Takayo Ota
- Department of Medical Oncology, Izumi City General Hospital, Izumi, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takeshi Yoshida
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Cancer Genomics and Medical Oncology, Nara Medical University School of Medicine, Nara, Japan
| | - Tomoko Hirano
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Sakamori
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | | | | | | | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
99960
|
Lin X, Chen S, Su Y, Wu Y, Huang L, Ye Q, Song J. Ultrasound Activated Nanobowls with Deep Penetration for Enhancing Sonodynamic Therapy of Orthotopic Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306301. [PMID: 38247202 PMCID: PMC10987158 DOI: 10.1002/advs.202306301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Indexed: 01/23/2024]
Abstract
Owing to the high penetration ability and the safety of ultrasound (US) of sonodynamic therapy (SDT), it has gained significant attention in tumor treatment. However, its therapeutic efficiency depends on the performance of the sonosensitizers. The hypoxic microenvironment and abnormal stromal matrix restrict the full potential of sonosensitizers. In this study, a US-activated bowl-shaped nanobomb (APBN) is designed as a novel sonosensitizer to enhance the SDT effect through various means. This enhancement strategy combines three major characteristics: relieving tumor hypoxia, amplifying bubble cavitation damage, and US-movement-enhanced permeation. The unique bowl-shaped structure of APBN provides more favorable attachment sites for the generated oxygen gas bubbles. Thus, when catalase-like APBN catalyzes endogenous hydrogen peroxide to produce oxygen, bubbles accumulate at the groove, preventing the dissipation of oxygen and increasing the number of cavitation nuclei to improve the acoustic cavitation effect. This approach differs from traditional SDT strategies because it couples the sonodynamic effect with reactive oxygen species generation and bubble cavitation damage rather than a single action. Additionally, the asymmetric bowl-shaped structure generates a driving force under the US field, improving the distribution of sonosensitizers in the tumors. Using US and photoacoustic imaging for dual localization, these sonosensitizers can improve the accuracy of orthotopic liver tumor treatment, which presents a promising avenue for the treatment of deep tumors.
Collapse
Affiliation(s)
- Xiahui Lin
- School of Medical ImagingFujian Medical UniversityFuzhouFujian350122P. R. China
| | - Shan Chen
- College of Geography and OceanMinjiang UniversityFuzhou350108P. R. China
| | - Yina Su
- School of Medical ImagingFujian Medical UniversityFuzhouFujian350122P. R. China
| | - Ying Wu
- College of ChemistryBeijing University of Chemical TechnologyBeijing10010P. R. China
| | - Linjie Huang
- School of Medical ImagingFujian Medical UniversityFuzhouFujian350122P. R. China
| | - Qin Ye
- Department of UltrasoundUnion HospitalFujian Medical UniversityFujian Institute of Ultrasonic MedicineFuzhou350108P. R. China
| | - Jibin Song
- College of ChemistryBeijing University of Chemical TechnologyBeijing10010P. R. China
| |
Collapse
|
99961
|
Li X, Sun S, Zhang W, Liang Z, Fang Y, Sun T, Wan Y, Ma X, Zhang S, Xu Y, Tian R. Identification of genetic modifiers enhancing B7-H3-targeting CAR T cell therapy against glioblastoma through large-scale CRISPRi screening. J Exp Clin Cancer Res 2024; 43:95. [PMID: 38561797 PMCID: PMC10986136 DOI: 10.1186/s13046-024-03027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.
Collapse
Affiliation(s)
- Xing Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Shiyu Sun
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Wansong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Ziwei Liang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Yitong Fang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Tianhu Sun
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China
| | - Yong Wan
- Department of Neurosurgery, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, China
| | - Xingcong Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China.
| | - Yang Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China.
| | - Ruilin Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518055, China.
| |
Collapse
|
99962
|
Hao J, Liu C, Gu Z, Yang X, Lan X, Guo X. Dysregulation of Wnt/β-catenin signaling contributes to intestinal inflammation through regulation of group 3 innate lymphoid cells. Nat Commun 2024; 15:2820. [PMID: 38561332 PMCID: PMC10985070 DOI: 10.1038/s41467-024-45616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
RORγt+ group 3 innate lymphoid cells (ILC3s) are essential for intestinal homeostasis. Dysregulation of ILC3s has been found in the gut of patients with inflammatory bowel disease and colorectal cancer, yet the specific mechanisms still require more investigation. Here we observe increased β-catenin in intestinal ILC3s from inflammatory bowel disease and colon cancer patients compared with healthy donors. In contrast to promoting RORγt expression in T cells, activation of Wnt/β-catenin signaling in ILC3s suppresses RORγt expression, inhibits its proliferation and function, and leads to a deficiency of ILC3s and subsequent intestinal inflammation in mice. Activated β-catenin and its interacting transcription factor, TCF-1, cannot directly suppress RORγt expression, but rather alters global chromatin accessibility and inhibits JunB expression, which is essential for RORγt expression in ILC3s. Together, our findings suggest that dysregulated Wnt/β-catenin signaling impairs intestinal ILC3s through TCF-1/JunB/RORγt regulation, further disrupting intestinal homeostasis, and promoting inflammation and cancer.
Collapse
Affiliation(s)
- Jiacheng Hao
- Institute for Immunology, Tsinghua University, 100084, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Zhijie Gu
- Institute for Immunology, Tsinghua University, 100084, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, 100084, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
99963
|
Staresina BP. Coupled sleep rhythms for memory consolidation. Trends Cogn Sci 2024; 28:339-351. [PMID: 38443198 DOI: 10.1016/j.tics.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
99964
|
Chitturi P, Leask A. The role of positional information in determining dermal fibroblast diversity. Matrix Biol 2024; 128:31-38. [PMID: 38423396 DOI: 10.1016/j.matbio.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The largest mammalian organ, skin, consisting of a dermal connective tissue layer that underlies and supports the epidermis, acts as a protective barrier that excludes external pathogens and disseminates sensory signals emanating from the local microenvironment. Dermal connective tissue is comprised of a collagen-rich extracellular matrix (ECM) that is produced by connective tissue fibroblasts resident within the dermis. When wounded, a tissue repair program is induced whereby fibroblasts, in response to alterations in the microenvironment, produce new ECM components, resulting in the formation of a scar. Failure to terminate the normal tissue repair program causes fibrotic conditions including: hypertrophic scars, keloids, and the systemic autoimmune connective tissue disease scleroderma (systemic sclerosis, SSc). Histological and single-cell RNA sequencing (scRNAseq) studies have revealed that fibroblasts are heterogeneous and highly plastic. Understanding how this diversity contributes to dermal homeostasis, wounding, fibrosis, and cancer may ultimately result in novel anti-fibrotic therapies and personalized medicine. This review summarizes studies supporting this concept.
Collapse
Affiliation(s)
- Pratyusha Chitturi
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
99965
|
Fritsch EF, Ott PA. Personalized Cancer Vaccines Directed against Tumor Mutations: Building Evidence from Mice to Humans. Cancer Res 2024; 84:953-955. [PMID: 38558128 DOI: 10.1158/0008-5472.can-24-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
Personalized vaccines directed to tumor mutations have recently gained significant momentum. On the basis of the concept of stimulating T-cell responses against neoantigens encoded by a tumor's host of personal mutations, these vaccines utilize genome or exome sequencing, mutation calling, and epitope prediction followed by manufacturing of a customized vaccine for each patient. In their 2012 Cancer Research publication, Castle and colleagues provided evidence that vaccinating with long peptide vaccines encompassing neoantigens can generate robust immune responses and induce antitumor activity in a mouse B16F10 melanoma. This approach, harnessing the exquisite specificity of mutations to the tumor and thus providing an effective target for cancer vaccines, was subsequently shown to be safe and immunogenic in a series of small first in man trials in patients with melanoma. The field has accelerated and expanded substantially over the last 5 years, propelled by increasing evidence for vaccine-mediated clinical efficacy, leading to ongoing registrational trials using personalized RNA neoantigen vaccines in patients with melanoma and several other malignancies. See related article by Castle and colleagues, Cancer Res 2012;72:1081-91.
Collapse
Affiliation(s)
- Edward F Fritsch
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Patrick A Ott
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
99966
|
Leung CW, Odoms-Young A, Essel K. Food Insecurity Is a Source of Toxic Stress. JAMA Pediatr 2024; 178:327-328. [PMID: 38315497 DOI: 10.1001/jamapediatrics.2023.6400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This Viewpoint discusses food insecurity as a source of toxic stress that can affect children’s health and advocates for developing research, clinical, and policy approaches to address the root causes of food insecurity.
Collapse
Affiliation(s)
- Cindy W Leung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Kofi Essel
- George Washington University School of Medicine & Health Sciences, Washington, DC
- Elevance Health, Indianapolis, Indiana
| |
Collapse
|
99967
|
Leserri S, Segura-Amil A, Nowacki A, Debove I, Petermann K, Schäppi L, Preti MG, Van De Ville D, Pollo C, Walther S, Nguyen TAK. Linking connectivity of deep brain stimulation of nucleus accumbens area with clinical depression improvements: a retrospective longitudinal case series. Eur Arch Psychiatry Clin Neurosci 2024; 274:685-696. [PMID: 37668723 PMCID: PMC10994999 DOI: 10.1007/s00406-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Treatment-resistant depression is a severe form of major depressive disorder and deep brain stimulation is currently an investigational treatment. The stimulation's therapeutic effect may be explained through the functional and structural connectivities between the stimulated area and other brain regions, or to depression-associated networks. In this longitudinal, retrospective study, four female patients with treatment-resistant depression were implanted for stimulation in the nucleus accumbens area at our center. We analyzed the structural and functional connectivity of the stimulation area: the structural connectivity was investigated with probabilistic tractography; the functional connectivity was estimated by combining patient-specific stimulation volumes and a normative functional connectome. These structural and functional connectivity profiles were then related to four clinical outcome scores. At 1-year follow-up, the remission rate was 66%. We observed a consistent structural connectivity to Brodmann area 25 in the patient with the longest remission phase. The functional connectivity analysis resulted in patient-specific R-maps describing brain areas significantly correlated with symptom improvement in this patient, notably the prefrontal cortex. But the connectivity analysis was mixed across patients, calling for confirmation in a larger cohort and over longer time periods.
Collapse
Affiliation(s)
- Simona Leserri
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alba Segura-Amil
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katrin Petermann
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lea Schäppi
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Radiology and Medical InformaticsFaculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - T A Khoa Nguyen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- ARTORG Center for Biomedical Engineering Research, University Bern, Bern, Switzerland.
- ARTORG IGT, Murtenstrasse 50, 3008, Bern, Switzerland.
| |
Collapse
|
99968
|
Yoshida Y, Shibata H. Relations between glomerular hyperfiltration and podocyte injury: potential role of Piezo1 in the Rac1-mineralocorticoid receptor activation pathway. Hypertens Res 2024; 47:1092-1094. [PMID: 38337007 DOI: 10.1038/s41440-024-01603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Yuichi Yoshida
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, Japan.
| |
Collapse
|
99969
|
Laurent J, Diop M, Amara R, Fisson C, Armengaud J, Labadie P, Budzinski H, Couteau J, Maillet G, Le Floch S, Laroche J, Pichereau V. Relevance of flounder caging and proteomics to explore the impact of a major industrial accident caused by fire on the Seine estuarine water quality. MARINE POLLUTION BULLETIN 2024; 201:116178. [PMID: 38401391 DOI: 10.1016/j.marpolbul.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
On September 26th 2019, a major fire occurred in the Lubrizol factory located near the Seine estuary, in Rouen-France. Juvenile flounders were captured in the Canche estuary (a reference system) and caged one month in the Canche and in the Seine downstream the accident site. No significant increases of PAHs, PCBs and PFAS was detected in Seine vs Canche sediments after the accident, but a significant increase of dioxins and furans was observed in water and sewage sludge in the Rouen wastewater treatment plant. The proteomics approach highlighted a dysregulation of proteins associated with cholesterol synthesis and lipid metabolism, in fish caged in the Seine. The overall results suggested that the fire produced air borne dioxins and furans that got deposited on soil and subsequently entered in the Seine estuarine waters via runoff; thus contaminating fish preys and caged flounders in the Seine estuary.
Collapse
Affiliation(s)
- Jennifer Laurent
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France; CEDRE, 715 rue Alain Colas, 29200 Brest, France.
| | - Mamadou Diop
- Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Cédric Fisson
- GIP Seine-Aval, Hangar C - Espace des Marégraphes, CS 41174, 76176 Rouen Cedex 1, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRAe, F-30207 Bagnols-sur-Cèze, France
| | - Pierre Labadie
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Hélène Budzinski
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Jérôme Couteau
- TOXEM, 12 rue des 4 saisons, 76290 Montivilliers, France
| | | | | | - Jean Laroche
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France
| | - Vianney Pichereau
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France.
| |
Collapse
|
99970
|
So C, Zhang T, Wang Q, Qiu C, Elie DLA, Pan F. The response of retinal ganglion cells to optical defocused visual stimuli in mouse retinas. Exp Eye Res 2024; 241:109834. [PMID: 38382575 DOI: 10.1016/j.exer.2024.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Myopia and astigmatism are two primary types of refractive errors characterized by inaccurate focusing images on the retina. This study aimed to investigate the response characteristics of Retinal Ganglion Cells (RGCs), represented by alpha (α) RGCs, when exposed to focused, simulated spherically defocused images and astigmatically defocused images projected onto mouse retinas. Negative pressure was applied to stretch the soma of RGC in vitro to simulate myopia using a 7-8 μm diameter glass microelectrode, resulting in a 5% increase in the cell's diameter. A custom-made device was utilized to project spherically (equal to ±10 and ± 20 D) and astigmatically (+6.00 D) defocused images onto the retinas. As a control for a deficient intact retinal circuit, αRGCs of connexin 36 knockout (Cx36 KO) mice were used. The response of αRGCs varied significantly in terms of spikes, excitatory postsynaptic currents (EPSCs) and capacitances under stretching conditions to mimic myopia. Significant differences in the amplitudes of EPSCs were observed in the majority of αRGCs when exposed to focused and spherically defocused images in normal and mechanically simulated myopic retinas. However, this difference was not observed in αRGCs of Cx36 KO mice. αRGCs demonstrated significant differences in response between focused and astigmatically defocused images. Once again, αRGCs of Cx36 KO mice did not display differences. αRGCs have the ability to detect focused, spherically, and astigmatically defocused images and exhibit differential responses ex vivo. Gap junction subunit Cx36 may play a crucial role in transmitting visual signals associated with developing and perceiving refractive errors.
Collapse
Affiliation(s)
- Chunghim So
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ting Zhang
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Qin Wang
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Chunting Qiu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | - Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong; Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong; Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
99971
|
Zhang Y, Guo D, Zhu Y, Liu L. Inhibition of mitochondrial function by approved drugs overcomes nasopharyngeal carcinoma chemoresistance. Anticancer Drugs 2024; 35:317-324. [PMID: 38215016 DOI: 10.1097/cad.0000000000001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The development of chemo-resistance in nasopharyngeal carcinoma (NPC) presents a significant therapeutic challenge, and its underlying mechanisms remain poorly understood. In our previous studies, we highlighted the association between isoprenylcysteine carboxylmethyltransferase (ICMT) and chemoresistance in NPC. In this current research, we revealed that both 5-FU and cisplatin-resistant NPC cells exhibited elevated mitochondrial function and increased expression of mitochondrial genes, independent of ICMT. Our investigations further showed that classic mitochondrial inhibitors, such as oligomycin, antimycin, and rotenone, were notably more effective in reducing viability in chemo-resistant NPC cells compared to parental cells. Moreover, we identified two antimicrobial drugs, tigecycline and atovaquone, recognized as mitochondrial inhibitors, as potent agents for decreasing chemo-resistant NPC cells by targeting mitochondrial respiration. Remarkably, tigecycline and atovaquone, administered at tolerable doses, inhibited chemo-resistant NPC growth in mouse models and extended overall survival rates. This work unveils the efficacy of mitochondrial inhibition as a promising strategy to overcome chemo-resistance in NPC. Additionally, our findings highlight the potential repurposing of clinically available drugs like tigecycline and atovaquone for treating NPC patients who develop chemoresistance.
Collapse
Affiliation(s)
- Yunlong Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Yangtze University
| | - Difeng Guo
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Yongbo Zhu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Yangtze University
| | - Lin Liu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Yangtze University
| |
Collapse
|
99972
|
Patel P, Hagstrom M, Sharma N, Chen A, Dhillon S, Fumero-Velázquez M, Olivares S, Gerami P. Clinical, Morphologic, and Molecular Features of MAP3K8 Rearranged Spitz Neoplasms: A Retrospective Study Documenting That Bonafide Spitz Melanomas Are Rare. Am J Surg Pathol 2024; 48:437-446. [PMID: 38233731 DOI: 10.1097/pas.0000000000002179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Previous studies regarding the clinical behavior of Spitz neoplasms lack genomic characterization. We aim to assess our hypothesis that most MAP3K8 Spitz neoplasms are indolent despite MAP3K8 being the single most common driver of Spitz melanoma. Further, we aim to identify genomic features associated with aggressive behavior and to better characterize the morphology of these cases. We analyzed the outcomes of MAP3K8 Spitz neoplasms. We also performed a meta-analysis of the outcomes of MAP3K8 Spitz from the literature. Morphologic features were compared with other variants of Spitz using a Student t test and χ 2 test. Two of 35 cases resulted in local recurrence and one of these cases had local regional metastasis; all other cases had no evidence of recurrence (mean follow-up time: 33 mo). MAP3K8 Spitz only rarely results in aggressive behavior. Metastatic cases have genomic mutations associated with tumor progression. Morphologically, MAP3K8 Spitz neoplasms frequently showed nodular silhouette, large cell size, epithelioid morphology, and severe nuclear atypia resulting in more frequent diagnosis as Spitz melanoma. Most MAP3K8 Spitz neoplasms have excellent prognoses, apart from rare cases harboring additional genomic abnormalities associated with tumor progression.
Collapse
Affiliation(s)
- Pragi Patel
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | | | | | | | | | | | | |
Collapse
|
99973
|
Slutsky I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat Rev Neurosci 2024; 25:272-284. [PMID: 38374463 DOI: 10.1038/s41583-024-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
99974
|
Fan L, Liu J, Ju B, Lou D, Tian Y. A deep learning based holistic diagnosis system for immunohistochemistry interpretation and molecular subtyping. Neoplasia 2024; 50:100976. [PMID: 38412576 PMCID: PMC10904904 DOI: 10.1016/j.neo.2024.100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Breast cancer in different molecular subtypes, which is determined by the overexpression rates of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), progesterone receptor (PR), and Ki67, exhibit distinct symptom characteristics and sensitivity to different treatment. The immunohistochemical method, one of the most common detecting tools for tumour markers, is heavily relied on artificial judgment and in clinical practice, with an inherent limitation in interpreting stability and operating efficiency. Here, a holistic intelligent breast tumour diagnosis system has been developed for tumour-markeromic analysis, combining the automatic interpretation and clinical suggestion. METHODS The holistic intelligent breast tumour diagnosis system included two main modules. The interpreting modules were constructed based on convolutional neural network, for comprehensively extracting and analyzing the multi-features of immunostaining. Referring to the clinical classification criteria, the interpreting results were encoded in a low-dimensional feature representation in the subtyping module, to efficiently output a holistic detecting result of the critical tumour-markeromic with diagnosis suggestions on molecular subtypes. RESULTS The overexpression rates of HER2, ER, PR, and Ki67, as well as an effective determination of molecular subtypes were successfully obtained by this diagnosis system, with an average sensitivity of 97.6 % and an average specificity of 96.1 %, among those, the sensitivity and specificity for interpreting HER2 were up to 99.8 % and 96.9 %. CONCLUSION The holistic intelligent breast tumour diagnosis system shows improved performance in the interpretation of immunohistochemical images over pathologist-level, which can be expected to overcome the limitations of conventional manual interpretation in efficiency, precision, and repeatability.
Collapse
Affiliation(s)
- Lin Fan
- School of Integrated Circuit Science and Engineering (Industry-Education Integration School), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China; State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, PR China; Medical School of Nanjing University, Nanjing 210093, PR China.
| | - Jiahe Liu
- School of Integrated Circuit Science and Engineering (Industry-Education Integration School), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Baoyang Ju
- School of Integrated Circuit Science and Engineering (Industry-Education Integration School), Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China
| | - Doudou Lou
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Yushen Tian
- School of Electrical Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870, PR China.
| |
Collapse
|
99975
|
Wannigama DL, Hurst C, Phattharapornjaroen P, Hongsing P, Sirichumroonwit N, Chanpiwat K, Rad S.M. AH, Storer RJ, Ounjai P, Kanthawee P, Ngamwongsatit N, Kupwiwat R, Kupwiwat C, Brimson JM, Devanga Ragupathi NK, Charuluxananan S, Leelahavanichkul A, Kanjanabuch T, Higgins PG, Badavath VN, Amarasiri M, Verhasselt V, Kicic A, Chatsuwan T, Pirzada K, Jalali F, Reiersen AM, Abe S, Ishikawa H. Early treatment with fluvoxamine, bromhexine, cyproheptadine, and niclosamide to prevent clinical deterioration in patients with symptomatic COVID-19: a randomized clinical trial. EClinicalMedicine 2024; 70:102517. [PMID: 38516100 PMCID: PMC10955208 DOI: 10.1016/j.eclinm.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Background Repurposed drugs with host-directed antiviral and immunomodulatory properties have shown promise in the treatment of COVID-19, but few trials have studied combinations of these agents. The aim of this trial was to assess the effectiveness of affordable, widely available, repurposed drugs used in combination for treatment of COVID-19, which may be particularly relevant to low-resource countries. Methods We conducted an open-label, randomized, outpatient, controlled trial in Thailand from October 1, 2021, to June 21, 2022, to assess whether early treatment within 48-h of symptoms onset with combinations of fluvoxamine, bromhexine, cyproheptadine, and niclosamide, given to adults with confirmed mild SARS-CoV-2 infection, can prevent 28-day clinical deterioration compared to standard care. Participants were randomly assigned to receive treatment with fluvoxamine alone, fluvoxamine + bromhexine, fluvoxamine + cyproheptadine, niclosamide + bromhexine, or standard care. The primary outcome measured was clinical deterioration within 9, 14, or 28 days using a 6-point ordinal scale. This trial is registered with ClinicalTrials.gov (NCT05087381). Findings Among 1900 recruited, a total of 995 participants completed the trial. No participants had clinical deterioration by day 9, 14, or 28 days among those treated with fluvoxamine plus bromhexine (0%), fluvoxamine plus cyproheptadine (0%), or niclosamide plus bromhexine (0%). Nine participants (5.6%) in the fluvoxamine arm had clinical deterioration by day 28, requiring low-flow oxygen. In contrast, most standard care arm participants had clinical deterioration by 9, 14, and 28 days. By day 9, 32.7% (110) of patients in the standard care arm had been hospitalized without requiring supplemental oxygen but needing ongoing medical care. By day 28, this percentage increased to 37.5% (21). Additionally, 20.8% (70) of patients in the standard care arm required low-flow oxygen by day 9, and 12.5% (16) needed non-invasive or mechanical ventilation by day 28. All treated groups significantly differed from the standard care group by days 9, 14, and 28 (p < 0.0001). Also, by day 28, the three 2-drug treatments were significantly better than the fluvoxamine arm (p < 0.0001). No deaths occurred in any study group. Compared to standard care, participants treated with the combination agents had significantly decreased viral loads as early as day 3 of treatment (p < 0.0001), decreased levels of serum cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) as early as day 5 of treatment, and interleukin-8 (IL-8) by day 7 of treatment (p < 0.0001) and lower incidence of post-acute sequelae of COVID-19 (PASC) symptoms (p < 0.0001). 23 serious adverse events occurred in the standard care arm, while only 1 serious adverse event was reported in the fluvoxamine arm, and zero serious adverse events occurred in the other arms. Interpretation Early treatment with these combinations among outpatients diagnosed with COVID-19 was associated with lower likelihood of clinical deterioration, and with significant and rapid reduction in the viral load and serum cytokines, and with lower burden of PASC symptoms. When started very soon after symptom onset, these repurposed drugs have high potential to prevent clinical deterioration and death in vaccinated and unvaccinated COVID-19 patients. Funding Ped Thai Su Phai (Thai Ducks Fighting Danger) social giver group.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Queensland, Australia
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530, Gothenburg, Sweden
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Natchalaikorn Sirichumroonwit
- Institute of Medical Research and Technology Assessment, Department of Medical Services, Ministry of Public Health, Thailand
| | | | - Ali Hosseini Rad S.M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9010, Otago, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phitsanuruk Kanthawee
- Public Health Major, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Rosalyn Kupwiwat
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chaisit Kupwiwat
- Department of Critical Care Medicine, Vibhavadi Hospital, Bangkok, Thailand
| | - James Michael Brimson
- Department of Innovation and International Affair, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, United Kingdom
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
- Division of Microbial Interactions, Department of Research and Development, Bioberrys Healthcare and Research Centre, Vellore, 632009, India
| | - Somrat Charuluxananan
- Department of Anesthesiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935, Cologne, Germany
| | - Vishnu Nayak Badavath
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad, 509301, India
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Valerie Verhasselt
- Centre of Research for Immunology and Breastfeeding (CIBF), Medical School and School of Biomedical Science, University of Western Australia, Perth, Western Australia, 6009, Australia
- Immunology and Breastfeeding Group, Neonatal and Life Course Health Program, Telethon Kids Institute, Perth, Western Australia, 6009, Australia
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia
- School of Public Health, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kashif Pirzada
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Farid Jalali
- Department of Gastroenterology, Saddleback Medical Group, Laguna Hills, CA, United States
| | - Angela M. Reiersen
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata, 990-2212, Japan
| |
Collapse
|
99976
|
Wang P, Nie J, Li J, Ye C, Chen J, Zhang Z, Li B. VDRA downregulate β-catenin/Smad3 and DNA damage and repair associated with improved prognosis in ccRCC patients. Int J Biol Macromol 2024; 263:130405. [PMID: 38403213 DOI: 10.1016/j.ijbiomac.2024.130405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The clear cell renal cell carcinoma (ccRCC) spotlighted the poorest survival, while chromophobe renal cell carcinoma (chRCC) was associated with the best survival. Earlier studies corroborated vitamin D receptor (VDR) was a promising molecular for improving the prognosis of RCC. In contrast to VDRA, the one of VDR isoforms, VDRB1 (VDR isoform B1) has an N-terminal extension of 50 amino acids and is less ligand-dependent. However, the functional differences between VDRA and VDRB1, and their roles in the prognosis of ccRCC and chRCC, have not been investigated. In the present study, we uncovered that the transcripts related to vitamin D pathway and cellular calcium signaling were effectively decreased in the context of ccRCC, yet failed to exert a comparable effect within chRCC. Specially, minimally levels of VDRA wherein kidneys of patients suffering from ccRCC predict shorter survival time. In addition, the protein expressions for β-catenin/Smad3 pathway and DNA damage and repair pathways were obviously impeded in VDRA-overexpressed ccRCC cells, yet this inhibitory effect was conspicuously absent in enable VDRB1 cells. Our results provide a new idea to improve the prognosis of ccRCC via VDRA upregulation.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jin Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jiafu Li
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Caiyong Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jianwu Chen
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Fujian Province, China.
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China.
| | - Bingyan Li
- Deparment of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
99977
|
Chrzanowski S, Batra R. CRISPR-Based Gene Editing Techniques in Pediatric Neurological Disorders. Pediatr Neurol 2024; 153:166-174. [PMID: 38394831 DOI: 10.1016/j.pediatrneurol.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
The emergence of gene editing technologies offers a unique opportunity to develop mutation-specific treatments for pediatric neurological disorders. Gene editing systems can potentially alter disease trajectory by correcting dysfunctional mutations or therapeutically altering gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-based approaches are attractive gene therapy platforms to personalize treatments because of their specificity, ease of design, versatility, and cost. However, many such approaches remain in the early stages of development, with ongoing efforts to optimize editing efficiency, minimize unintended off-target effects, and mitigate pathologic immune responses. Given the rapid evolution of CRISPR-based therapies, it is prudent for the clinically based child neurologist to have a conceptual understanding of what such therapies may entail, including both benefits and risks and how such therapies may be clinically applied. In this review, we describe the fundamentals of CRISPR-based therapies, discuss the opportunities and challenges that have arisen, and highlight preclinical work in several pediatric neurological diseases.
Collapse
Affiliation(s)
- Stephen Chrzanowski
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.
| | | |
Collapse
|
99978
|
Ma Y, Zhang W, Gao M, Li J, Wang Q, Chen M, Gu L. Combined analysis of temporal metabolomics and transcriptomics reveals the metabolic patterns in goat oocytes during maturation. Theriogenology 2024; 218:69-78. [PMID: 38301509 DOI: 10.1016/j.theriogenology.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/26/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Well-balanced and orderly metabolism is a crucial prerequisite for promoting oogenesis. Involvement of single metabolites in oocyte development has been widely reported; however, the comprehensive metabolic framework controlling oocyte maturation is still lacking. In the present study, we employed an integrated temporal metabolomic and transcriptomic method to analyze metabolism in goat oocytes at GV, GVBD, and MII stages (GV, fully-grown immature oocyte; GVBD, stage of meiotic resumption; MII, mature oocyte) during in vitro maturation, revealing the global picture of the metabolic patterns during maturation. In particular, several significantly altered metabolic pathways during goat oocyte meiosis have been identified, including active serine metabolism, increased utilization of tryptophan, and marked accumulation of purine nucleotide. In summary, the current study provides transcriptomic and metabolomic datasets for goat oocyte development that can be applied in cross-species comparative studies.
Collapse
Affiliation(s)
- Yixin Ma
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Ming Gao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
99979
|
Geijs DJ, Dooper S, Aswolinskiy W, Hillen LM, Amir AL, Litjens G. Detection and subtyping of basal cell carcinoma in whole-slide histopathology using weakly-supervised learning. Med Image Anal 2024; 93:103063. [PMID: 38194735 DOI: 10.1016/j.media.2023.103063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/15/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
The frequency of basal cell carcinoma (BCC) cases is putting an increasing strain on dermatopathologists. BCC is the most common type of skin cancer, and its incidence is increasing rapidly worldwide. AI can play a significant role in reducing the time and effort required for BCC diagnostics and thus improve the overall efficiency of the process. To train such an AI system in a fully-supervised fashion however, would require a large amount of pixel-level annotation by already strained dermatopathologists. Therefore, in this study, our primary objective was to develop a weakly-supervised for the identification of basal cell carcinoma (BCC) and the stratification of BCC into low-risk and high-risk categories within histopathology whole-slide images (WSI). We compared Clustering-constrained Attention Multiple instance learning (CLAM) with StreamingCLAM and hypothesized that the latter would be the superior approach. A total of 5147 images were used to train and validate the models, which were subsequently tested on an internal set of 949 images and an external set of 183 images. The labels for training were automatically extracted from free-text pathology reports using a rule-based approach. All data has been made available through the COBRA dataset. The results showed that both the CLAM and StreamingCLAM models achieved high performance for the detection of BCC, with an area under the ROC curve (AUC) of 0.994 and 0.997, respectively, on the internal test set and 0.983 and 0.993 on the external dataset. Furthermore, the models performed well on risk stratification, with AUC values of 0.912 and 0.931, respectively, on the internal set, and 0.851 and 0.883 on the external set. In every single metric the StreamingCLAM model outperformed the CLAM model or is on par. The performance of both models was comparable to that of two pathologists who scored 240 BCC positive slides. Additionally, in the public test set, StreamingCLAM demonstrated a comparable AUC of 0.958, markedly superior to CLAM's 0.803. This difference was statistically significant and emphasized the strength and better adaptability of the StreamingCLAM approach.
Collapse
Affiliation(s)
- Daan J Geijs
- Department of Pathology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Stephan Dooper
- Department of Pathology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Witali Aswolinskiy
- Department of Pathology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa M Hillen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, MUMC+, Maastricht, The Netherlands
| | - Avital L Amir
- Department of Pathology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Litjens
- Department of Pathology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
99980
|
Schokrpur S, White MG, Roland CL, Patel SP. Immuno-Oncology: New Insights into Targets and Therapies. Surg Oncol Clin N Am 2024; 33:265-278. [PMID: 38401909 DOI: 10.1016/j.soc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
The role of immunotherapy in the care of surgical oncology patients promises to expand as investigators and clinicians evaluate new targets and approaches. Currently active clinical trials evaluate new immune checkpoints, including lymphocyte activation gene 3, T cell immunoreceptor with Ig and ITIM domains, and killer Ig-like receptor 2DL1/2L3. Vaccines delivered through mRNA have demonstrated exciting results in early clinical trials and hold promise for expanded application. Investigational approaches include dendritic cell vaccines, peptide vaccines, cytokines therapies, and cellular therapies. These studies have the potential to revolutionize the management of surgical oncology patients and promote durable cures following surgical resection.
Collapse
Affiliation(s)
- Shiruyeh Schokrpur
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA
| | - Michael G White
- Department of Colon & Rectal Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1401, Houston, TX 77030, USA
| | - Christina L Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1401, Houston, TX 77030, USA
| | - Sandip Pravin Patel
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| |
Collapse
|
99981
|
Amnzade A, Zarrindast MR, Khakpai F. Additive anxiolytic-like effect of citicoline and ACPA in the non-acute restraint stress (NARS) and acute restraint stress (ARS) mice. Physiol Behav 2024; 277:114506. [PMID: 38432442 DOI: 10.1016/j.physbeh.2024.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The cannabinoid system plays a key role in stress-related emotional symptoms such as anxiety. Citicoline is a supplemental substance with neuroprotective properties that alleviates anxiety-related behaviors. There is a relation between the actions of cannabinoids and cholinergic systems. So, we decided to evaluate the effects of intracerebroventricular (i.c.v.) infusion of cannabinoid CB1 receptor agents on citicoline-produced response to anxiety-like behaviors in the non-acute restraint stress (NARS) and acute restraint stress (ARS) mice. For i.c.v. microinjection of drugs, a guide cannula was inserted in the left lateral ventricle. ARS was induced by movement restraint for 4 h. Anxiety-related behaviors were assessed using an elevated plus maze (EPM). The results showed that induction of ARS for 4 h decreased the percentage of time spent in the open arms (%OAT) and the percentage of entries to the open arms (%OAE) without affecting locomotor activity, showing anxiogenic-like behaviors. i.c.v. infusion of ACPA (1 µg/mouse) induced an anxiolytic-like effect due to the enhancement of %OAT in the NARS and ARS mice. Nonetheless, i.c.v. microinjection of AM251 (1 µg/mouse) decreased %OAT in the NARS and ARS mice which suggested an anxiogenic-like response. Intraperitoneal (i.p.) administration of citicoline (80 mg/kg) induced an anxiolytic-like effect by the augmentation of %OAT in the ARS mice. Furthermore, when ACPA and citicoline were co-administrated, ACPA potentiated the anxiolytic-like effect induced by citicoline in the NARS and ARS mice. On the other hand, when AM251 and the citicoline were co-injected, AM251 reversed the anxiolytic-like response induced by the citicoline in the NARS and ARS mice. The results of this research exhibited an additive effect between citicoline and ACPA on the induction of anxiolytic-like response in the NARS and ARS mice. Our results indicated an interaction between citicoline and cannabinoid CB1 receptor drugs on the control of anxiety-like behaviors in the NARS and ARS mice.
Collapse
Affiliation(s)
- Aysan Amnzade
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
99982
|
Schache D, Peddi A, Nahardani A, Faber C, Hoerr V. Corrections for Rabi oscillations in cardiac chemical exchange saturation transfer MRI under the influence of very short preparation pulses. NMR IN BIOMEDICINE 2024; 37:e5081. [PMID: 38113906 DOI: 10.1002/nbm.5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Very short chemical exchange saturation transfer (CEST) pulses are beneficial in cardiac continuous wave (cw) CEST MRI, especially in small animals because of their rapid heartbeat; however, they result in signal modulations caused by Rabi oscillations. Therefore, we implemented two different filter techniques, DOwnsampling by SEparation of CEST spectrum into two parts (DOSE) and time domain (TD)-based filtering, to correct for these signal corruptions, allowing a reliable quantification of glucose-weighted CEST (glucoCEST) MRI contrast. In our study, cw CEST measurements were performed on a 9.4-T small animal BioSpec system using CEST pulses in the range of 10 to 200 ms. Experimental dependencies of Rabi oscillations on key MRI parameters were validated by Bloch-McConnell (BM) simulations. Filter efficiency was explored in a glucose concentration series as well as in the myocardium of healthy mice (n = 8), and glucoCEST contrast was subsequently quantified. The experimental results showed that the impact of Rabi oscillations on CEST spectra increased with decreasing CEST pulse length, optimized B0 homogeneity, and shorter T2 relaxation time, in accordance with results from BM simulations. Both investigated filter techniques reduced these signal modulations significantly, with DOSE filtering preserving the amplitude and TD filtering the spectral information of CEST data more accurately. Upon filter application, a significant decrease in glucoCEST contrast in the myocardium of healthy mice was observed after glucose infusion (pTD = 0.0079, pDOSE = 0.0044). To conclude, this study offers comprehensive experimental insights into Rabi oscillations within CEST MRI data along with methodological considerations that could be further advanced into a robust and precise cardiac cw CEST protocol by integrating DOSE and TD filtering into the standard CEST analysis pipeline.
Collapse
Affiliation(s)
- Daniel Schache
- Translational Research Imaging Center, Clinic of Radiology, University of Münster, Münster, Germany
| | - Ajay Peddi
- Translational Research Imaging Center, Clinic of Radiology, University of Münster, Münster, Germany
| | - Ali Nahardani
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Clinic of Radiology, University of Münster, Münster, Germany
| | - Verena Hoerr
- Translational Research Imaging Center, Clinic of Radiology, University of Münster, Münster, Germany
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
99983
|
Sgariglia D, Carneiro FRG, Vidal de Carvalho LA, Pedreira CE, Carels N, da Silva FAB. Optimizing therapeutic targets for breast cancer using boolean network models. Comput Biol Chem 2024; 109:108022. [PMID: 38350182 DOI: 10.1016/j.compbiolchem.2024.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Studying gene regulatory networks associated with cancer provides valuable insights for therapeutic purposes, given that cancer is fundamentally a genetic disease. However, as the number of genes in the system increases, the complexity arising from the interconnections between network components grows exponentially. In this study, using Boolean logic to adjust the existing relationships between network components has facilitated simplifying the modeling process, enabling the generation of attractors that represent cell phenotypes based on breast cancer RNA-seq data. A key therapeutic objective is to guide cells, through targeted interventions, to transition from the current cancer attractor to a physiologically distinct attractor unrelated to cancer. To achieve this, we developed a computational method that identifies network nodes whose inhibition can facilitate the desired transition from one tumor attractor to another associated with apoptosis, leveraging transcriptomic data from cell lines. To validate the model, we utilized previously published in vitro experiments where the downregulation of specific proteins resulted in cell growth arrest and death of a breast cancer cell line. The method proposed in this manuscript combines diverse data sources, conducts structural network analysis, and incorporates relevant biological knowledge on apoptosis in cancer cells. This comprehensive approach aims to identify potential targets of significance for personalized medicine.
Collapse
Affiliation(s)
| | - Flavia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, Brazil; Laboratório Interdisciplinar de Pesquisas Médicas Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil; Program of Immunology and Tumor Biology, Brazilian National Cancer Institute(INCA), Rio de Janeiro 20231050, Brazil
| | | | | | - Nicolas Carels
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, Brazil
| | | |
Collapse
|
99984
|
Mascharak S, Guo JL, Griffin M, Berry CE, Wan DC, Longaker MT. Modelling and targeting mechanical forces in organ fibrosis. NATURE REVIEWS BIOENGINEERING 2024; 2:305-323. [PMID: 39552705 PMCID: PMC11567675 DOI: 10.1038/s44222-023-00144-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/19/2024]
Abstract
Few efficacious therapies exist for the treatment of fibrotic diseases, such as skin scarring, liver cirrhosis and pulmonary fibrosis, which is related to our limited understanding of the fundamental causes and mechanisms of fibrosis. Mechanical forces from cell-matrix interactions, cell-cell contact, fluid flow and other physical stimuli may play a central role in the initiation and propagation of fibrosis. In this Review, we highlight the mechanotransduction mechanisms by which various sources of physical force drive fibrotic disease processes, with an emphasis on central pathways that may be therapeutically targeted to prevent and reverse fibrosis. We then discuss engineered models of mechanotransduction in fibrosis, as well as molecular and biomaterials-based therapeutic approaches for limiting fibrosis and promoting regenerative healing phenotypes in various organs. Finally, we discuss challenges within fibrosis research that remain to be addressed and that may greatly benefit from next-generation bioengineered model systems.
Collapse
Affiliation(s)
- Shamik Mascharak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Jason L. Guo
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Shamik Mascharak, Jason L. Guo, Michelle Griffin
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T. Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
99985
|
Gordon MJ, Duan Z, Zhao H, Nastoupil L, Iyer S, Ferrajoli A, Danilov AV, Giordano SH. Comparison of Comorbidity Models Within a Population-Based Cohort of Older Adults With Non-Hodgkin Lymphoma. JCO Clin Cancer Inform 2024; 8:e2300223. [PMID: 38684043 PMCID: PMC11476108 DOI: 10.1200/cci.23.00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
PURPOSE Compare the association of individual comorbidities, comorbidity indices, and survival in older adults with non-Hodgkin lymphoma (NHL), including in specific NHL subtypes. METHODS Data source was SEER-Medicare, a population-based registry of adults age 65 years and older with cancer. We included all incident cases of NHL diagnosed during 2008-2017 who met study inclusion criteria. Comorbidities were classified using the three-factor risk estimate scale (TRES), Charlson comorbidity index (CCI), and National Cancer Institute (NCI) comorbidity index categories and weights. Overall survival (OS) and lymphoma-specific survival, with death from other causes treated as a competing risk, were estimated using the Kaplan-Meier method from time of diagnosis. Multivariable Cox models were constructed, and Harrel C-statistics were used to compare comorbidity models. A two-sided P value of <.05 was considered significant. RESULTS A total of 40,486 patients with newly diagnosed NHL were included. Patients with aggressive NHL had higher rates of baseline comorbidity. Despite differences in baseline comorbidity between NHL subtypes, cardiovascular, pulmonary, diabetes, and renal comorbidities were frequent and consistently associated with OS in most NHL subtypes. These categories were used to construct a candidate comorbidity score, the non-Hodgkin lymphoma 5 (NHL-5). Comparing three validated comorbidity scores, TRES, CCI, NCI, and the novel NHL-5 score, we found similar associations with OS and lymphoma-specific survival, which was confirmed in sensitivity analyses by NHL subtypes. CONCLUSION The optimal measure of comorbidity in NHL is unknown. Here, we demonstrate that the three-category TRES and five-category NHL-5 scores perform as well as the 14-16 category CCI and NCI scores in terms of association with OS and lymphoma-specific survival. These simple scores could be more easily used in clinical practice without prognostic loss.
Collapse
Affiliation(s)
- Max J. Gordon
- The University of Texas MD Anderson Cancer Center, Department of Cancer Medicine, Houston, TX, USA
- National Cancer Institute, Lymphoid Malignancy Branch, Bethesda, MD, USA
| | - Zhigang Duan
- The University of Texas MD Anderson Cancer Center, Department of Health Services Research, Houston, TX, USA
| | - Hui Zhao
- The University of Texas MD Anderson Cancer Center, Department of Health Services Research, Houston, TX, USA
| | - Loretta Nastoupil
- The University of Texas MD Anderson Cancer Center, Department of Lymphoma and Myeloma, Houston, TX, USA
| | - Swaminathan Iyer
- The University of Texas MD Anderson Cancer Center, Department of Lymphoma and Myeloma, Houston, TX, USA
| | - Alessandra Ferrajoli
- The University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX, USA
| | - Alexey V. Danilov
- City of Hope National Medical Center, Department of Hematology & Hematopoietic Cell Transplantation, Duarte, CA, USA
| | - Sharon H. Giordano
- The University of Texas MD Anderson Cancer Center, Department of Health Services Research, Houston, TX, USA
| |
Collapse
|
99986
|
Woldegiorgis M, Cadby G, Ngeh S, Korda RJ, Armstrong PK, Maticevic J, Knight P, Jardine A, Bloomfield LE, Effler PV. Long COVID in a highly vaccinated but largely unexposed Australian population following the 2022 SARS-CoV-2 Omicron wave: a cross-sectional survey. Med J Aust 2024; 220:323-330. [PMID: 38508863 DOI: 10.5694/mja2.52256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/25/2023] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To estimate the prevalence of long COVID among Western Australian adults, a highly vaccinated population whose first major exposure to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was during the 2022 Omicron wave, and to assess its impact on health service use and return to work or study. STUDY DESIGN Follow-up survey (completed online or by telephone). SETTING, PARTICIPANTS Adult Western Australians surveyed 90 days after positive SARS-CoV-2 test results (polymerase chain reaction or rapid antigen testing) during 16 July - 3 August 2022 who had consented to follow-up contact for research purposes. MAIN OUTCOME MEASURES Proportion of respondents with long COVID (ie, reporting new or ongoing symptoms or health problems, 90 days after positive SARS-CoV-2 test result); proportion with long COVID who sought health care for long COVID-related symptoms two to three months after infection; proportion who reported not fully returning to previous work or study because of long COVID-related symptoms. RESULTS Of the 70 876 adults with reported SARS-CoV-2 infections, 24 024 consented to contact (33.9%); after exclusions, 22 744 people were invited to complete the survey, of whom 11 697 (51.4%) provided complete responses. Our case definition for long COVID was satisfied by 2130 respondents (18.2%). The risk of long COVID was greater for women (v men: adjusted risk ratio [aRR], 1.5; 95% confidence interval [CI], 1.4-1.6) and for people aged 50-69 years (v 18-29 years: aRR, 1.6; 95% CI, 1.4-1.9) or with pre-existing health conditions (aRR, 1.5; 95% CI, 1.4-1.7), as well as for people who had received two or fewer COVID-19 vaccine doses (v four or more: aRR, 1.4; 95% CI, 1.2-1.8) or three doses (aRR, 1.3; 95% CI, 1.1-1.5). The symptoms most frequently reported by people with long COVID were fatigue (1504, 70.6%) and concentration difficulties (1267, 59.5%). In the month preceding the survey, 814 people had consulted general practitioners (38.2%) and 34 reported being hospitalised (1.6%) with long COVID. Of 1779 respondents with long COVID who had worked or studied before the infection, 318 reported reducing or discontinuing this activity (17.8%). CONCLUSION Ninety days after infection with the Omicron SARS-CoV-2 variant, 18.2% of survey respondents reported symptoms consistent with long COVID, of whom 38.7% (7.1% of all survey respondents) sought health care for related health concerns two to three months after the acute infection.
Collapse
Affiliation(s)
- Mulu Woldegiorgis
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth, WA
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
| | - Gemma Cadby
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth, WA
| | - Sera Ngeh
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth, WA
| | - Rosemary J Korda
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT
| | - Paul K Armstrong
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth, WA
| | - Jelena Maticevic
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth, WA
| | - Paul Knight
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth, WA
| | - Andrew Jardine
- Environmental Health Directorate, Western Australia Department of Health, Perth, WA
| | - Lauren E Bloomfield
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth, WA
- The University of Notre Dame Australia, Fremantle, WA
| | - Paul V Effler
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth, WA
| |
Collapse
|
99987
|
Morrison AI, Mikula AM, Spiekstra SW, de Kok M, Affandi AJ, Roest HP, van der Laan LJW, de Winde CM, Koning JJ, Gibbs S, Mebius RE. An Organotypic Human Lymph Node Model Reveals the Importance of Fibroblastic Reticular Cells for Dendritic Cell Function. Tissue Eng Regen Med 2024; 21:455-471. [PMID: 38114886 PMCID: PMC10987465 DOI: 10.1007/s13770-023-00609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited. METHODS Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC). To study and characterise the cellular interactions seen in this 3D FRC-DC organotypic model compared to the native HuLN; flow cytometry, immunohistochemistry, immunofluorescence and cytokine/chemokine analysis were performed. RESULTS FRCs were pivotal for survival, proliferation and localisation of MUTZ-3 DCs. Additionally, we found that CD1a expression was absent on MUTZ-3 DCs that developed in the presence of FRCs during cytokine-induced MUTZ-3 DC differentiation, which was also seen with primary monocyte-derived DCs (moDCs). This phenotype resembled HuLN-resident DCs, which we detected in primary HuLNs, and these CD1a- MUTZ-3 DCs induced T cell proliferation within a mixed leukocyte reaction (MLR), indicating a functional DC status. FRCs expressed podoplanin (PDPN), CD90 (Thy-1), CD146 (MCAM) and Gremlin-1, thereby resembling the DC supporting stromal cell subset identified in HuLNs. CONCLUSION This 3D FRC-DC organotypic model highlights the influence and importance of FRCs for DC functioning in a more realistic HuLN microenvironment. As such, this work provides a starting point for the development of an in vitro HuLN.
Collapse
Affiliation(s)
- Andrew I Morrison
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Aleksandra M Mikula
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Michael de Kok
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Alsya J Affandi
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Charlotte M de Winde
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jasper J Koning
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Susan Gibbs
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.
| |
Collapse
|
99988
|
Ishikawa Y, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Tokodai K, Fujishima F, Kawanabe S, Katabami T, Ikeya A, Yamashita M, Oki Y, Nanjo H, Satoh F, Ito A, Unno M, Kamei T, Sasano H, Suzuki T. Histopathological analysis of tumor microenvironment in adrenocortical carcinoma: Possible effects of in situ disorganized glucocorticoid production on tumor immunity. J Steroid Biochem Mol Biol 2024; 238:106462. [PMID: 38232786 DOI: 10.1016/j.jsbmb.2024.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Adrenocortical carcinoma (ACC) patients with glucocorticoid excess have been reported to be associated with decreased tumor-infiltrating immune cells, but the effects of in situ glucocorticoid production on tumor immunity have remained unknown. In addition, ACC was also known to harbor marked intra-tumoral heterogeneity of steroidogenesis or disorganized steroidogenesis. Therefore, in this study, we immune-profiled tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) and pivotal steroidogenic enzymes of glucocorticoid biosynthesis (CYP17A and CYP11B1) to explore the potential effects of in situ glucocorticoid production and intra-tumoral heterogeneity/disorganized steroidogenesis on tumor immunity of ACC. We also studied the correlations of the status of tumor immunity with that of angiogenesis and tumor grade to further explore the tumor tissue microenvironment of ACC. TILs (CD3, CD4, CD8, and FOXP3), TAMs (CD68 and CD163), key steroidogenic enzymes of glucocorticoid (CYP17A and CYP11B1), angiogenesis (CD31 and vasohibin-1 (VASH-1)), tumor grade (Ki-67 and Weiss score) were immunohistochemically evaluated in 34 ACCs. Increased CYP17A immunoreactivity in the whole tumor area was significantly positively correlated with FOXP3-positive TILs (p = 0.021) and negatively with CD4/CD3 ratio (p = 0.001). Increased CYP11B1 immunoreactivity in the whole tumor area was significantly positively correlated with CD8/CD3 (p = 0.039) and CD163/CD68 ratios (p = 0.006) and negatively with CD4-positive TILs (p = 0.036) and CD4/CD3 ratio (p = 0.001). There were also significant positive correlations between CYP17A and CD8 (r = 0.334, p < 0.001) and FOXP3-positive TILs (r = 0.414, p < 0.001), CD8/CD3 ratio (r = 0.421, p < 0.001), and CD68-positive TAMs (r = 0.298, p < 0.001) in randomly selected areas. Significant positive correlations were also detected between CYP11B1 and CD8/CD3 ratio (r = 0.276, p = 0.001) and negative ones detected between CYP11B1 and CD3- (r = -0.259, p = 0.002) and CD4-positive TILs (r = -0.312, p < 0.001) in those areas above. Increased micro-vessel density (MVD) -VASH-1 was significantly positively correlated with CD68- (p = 0.015) and CD163-positive TAMs (p = 0.009) and CD163/CD68 ratio and the high VASH-1 with CD163-positive TAMs (p = 0.042). Ki-67 labeling index was significantly positively correlated with MAD-VASH-1 (p = 0.006) and VASH-1 (p = 0.006) status. Results of our present study indicated that in situ glucocorticoid production did influence the status of tumor immunity in ACC. In particular, increased levels of CYP17A and CYP11B1, both involved in glucocorticoid producing immunoreactivity played different effects on tumor immunity, i.e., reflecting the involvement of intra-tumoral heterogeneity and disorganized steroidogenesis of ACC, which also did indicate the importance of in situ approaches when analyzing tumor immunity of ACC.
Collapse
Affiliation(s)
- Yuki Ishikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yuta Tezuka
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kei Omata
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yoshikiyo Ono
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan; Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kazuaki Tokodai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Kawanabe
- Department of Metabolism and Endocrinology, St. Marianna University Yokohama Seibu Hospital, Yokohama, Japan; Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Takuyuki Katabami
- Department of Metabolism and Endocrinology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Akira Ikeya
- Division of Endocrinology & Metabolism, Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Miho Yamashita
- Division of Endocrinology & Metabolism, Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yutaka Oki
- Diabetes & Endocrinology Center, Hamamatsu-Kita Hospital, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Hospital, Akita, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
99989
|
Alejandre C, Calle-Espinosa J, Iranzo J. Synergistic epistasis among cancer drivers can rescue early tumors from the accumulation of deleterious passengers. PLoS Comput Biol 2024; 20:e1012081. [PMID: 38687804 PMCID: PMC11087069 DOI: 10.1371/journal.pcbi.1012081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/10/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Epistasis among driver mutations is pervasive and explains relevant features of cancer, such as differential therapy response and convergence towards well-characterized molecular subtypes. Furthermore, a growing body of evidence suggests that tumor development could be hampered by the accumulation of slightly deleterious passenger mutations. In this work, we combined empirical epistasis networks, computer simulations, and mathematical models to explore how synergistic interactions among driver mutations affect cancer progression under the burden of slightly deleterious passengers. We found that epistasis plays a crucial role in tumor development by promoting the transformation of precancerous clones into rapidly growing tumors through a process that is analogous to evolutionary rescue. The triggering of epistasis-driven rescue is strongly dependent on the intensity of epistasis and could be a key rate-limiting step in many tumors, contributing to their unpredictability. As a result, central genes in cancer epistasis networks appear as key intervention targets for cancer therapy.
Collapse
Affiliation(s)
- Carla Alejandre
- Centro de Astrobiología (CAB) CSIC-INTA, Torrejón de Ardoz, Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Jorge Calle-Espinosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Jaime Iranzo
- Centro de Astrobiología (CAB) CSIC-INTA, Torrejón de Ardoz, Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
99990
|
Kwon HJ, Lee S, Han YB, Lee J, Kwon S, Kim H, Chung JH. Genomic Landscape of Pulmonary Sarcomatoid Carcinoma. Cancer Res Treat 2024; 56:442-454. [PMID: 37973906 PMCID: PMC11016656 DOI: 10.4143/crt.2023.764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Pulmonary sarcomatoid carcinoma (PSC) is a rare aggressive subtype of non-small cell lung cancer (NSCLC) with limited therapeutic strategies. We attempted to elucidate the evolutionary trajectories of PSC using multiregional and longitudinal tumor samples. MATERIALS AND METHODS A total of 31 patients were enrolled in this study and 11 longitudinal samples were available from them. Using whole exome sequencing data, we analyzed the mutational signatures in both carcinomatous and sarcomatous areas in primary tumors of the 31 patients and longitudinal samples obtained from 11 patients. Furthermore, digital droplet polymerase chain reaction (ddPCR), and programmed death-ligand 1 (PD-L1) immunohistochemistry using the Ventana SP263 assay were performed. RESULTS TP53 was identified as the most frequently altered gene in the primary (74%) and metastatic (73%) samples. MET exon 14 skipping mutations, confirmed by ddPCR, and TP53 mutations were mutually exclusive; whereas, MET exon 14 skipping mutations frequently co-occurred with MDM2 amplification. Metastatic tumors showed dissimilar genetic profiles from either primary component. During metastasis, the signatures of APOBEC decreased in metastatic lesions compared with that in primary lesions. PSC showed higher MET and KEAP1 mutations and stronger PD-L1 protein expression compared with that recorded in other NSCLCs. CONCLUSION Decreased APOBEC signatures and subclonal diversity were detected during malignant progression in PSC. Frequent MET mutations and strong PD-L1 expression distinguished PSC from other NSCLCs. The aggressiveness and therapeutic difficulties of PSC were possibly attributable to profound intratumoral and intertumoral genetic diversity. Next-generation sequencing could suggest the appropriate treatment strategy for PSC.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sejoon Lee
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yeon Bi Han
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeonghyo Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soohyeon Kwon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Artificial Intelligence Institute of Seoul National University, Seoul, Korea
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
99991
|
Pascuali N, Pu Y, Waye AA, Pearl S, Martin D, Sutton A, Shikanov A, Veiga-Lopez A. Evaluation of Lipids and Lipid-Related Transcripts in Human and Ovine Theca Cells and an in Vitro Mouse Model Exposed to the Obesogen Chemical Tributyltin. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47009. [PMID: 38630605 PMCID: PMC11023052 DOI: 10.1289/ehp13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Exposure to obesogenic chemicals has been reported to result in enhanced adipogenesis, higher adipose tissue accumulation, and reduced ovarian hormonal synthesis and follicular function. We have reported that organotins [tributyltin (TBT) and triphenyltin (TPT)] dysregulate cholesterol trafficking in ovarian theca cells, but, whether organotins also exert lipogenic effects on ovarian cells remains unexplored. OBJECTIVE We investigated if environmentally relevant exposures to organotins [TBT, TPT, or dibutyltin (DBT)] induce lipid dysregulation in ovarian theca cells and the role of the liver X receptor (LXR) in this effect. We also tested the effect of TBT on oocyte maturation and neutral lipid accumulation, and lipid-related transcript expression in cumulus cells and preimplantation embryos. METHODS Primary theca cell cultures derived from human and ovine ovaries were exposed to TBT, TPT, or DBT (1, 10, or 50 ng / ml ). The effect of these chemical exposures on neutral lipid accumulation, lipid abundance and composition, lipid homeostasis-related gene expression, and cytokine secretion was evaluated using liquid chromatography-mass spectrometry (LC-MS), inhibitor-based methods, cytokine secretion, and lipid ontology analyses. We also exposed murine cumulus-oocyte complexes to TBT and evaluated oocyte maturation, embryo development, and lipid homeostasis-related mRNA expression in cumulus cells and blastocysts. RESULTS Exposure to TBT resulted in higher intracellular neutral lipids in human and ovine primary theca cells. In ovine theca cells, this effect was dose-dependent, independent of cell stage, and partially mediated by LXR. DBT and TPT resulted in higher intracellular neutral lipids but to a lesser extent in comparison with TBT. More than 140 lipids and 9 cytokines were dysregulated in TBT-exposed human theca cells. Expression of genes involved in lipogenesis and fatty acid synthesis were higher in theca cells, as well as in cumulus cells and blastocysts exposed to TBT. However, TBT did not impact the rates of oocyte maturation or blastocyst development. DISCUSSION TBT induced dyslipidemia in primary human and ovine theca cells, which may be responsible for some of the TBT-induced fertility dysregulations reported in rodent models of TBT exposure. https://doi.org/10.1289/EHP13955.
Collapse
Affiliation(s)
- Natalia Pascuali
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yong Pu
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Anita A. Waye
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, Michigan, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, Michigan, USA
| | - Allison Sutton
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
- The Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
99992
|
Wen Q, Wang H, Haacke EM, Jiang Q, Hu J. Contribution of Direct Cerebral Vascular Transport in Brain Substance Clearance. Aging Dis 2024; 15:584-600. [PMID: 37611901 PMCID: PMC10917538 DOI: 10.14336/ad.2023.0426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 08/25/2023] Open
Abstract
The accumulation of harmful substances has long been recognized as a likely cause of many neurodegenerative diseases. The two classic brain clearance pathways are cerebrospinal fluid (CSF) and vascular circulation systems. Since the discovery of the glymphatic system, research on the CSF pathway has gained momentum, and impaired CSF clearance has been implicated in virtually all neurodegenerative animal models. However, the contribution of the direct participation of vascular transport across the blood-brain barrier in clearing substances is often ignored in glymphatic papers. Supportive evidence for the direct involvement of parenchymal vasculature in substance clearance is accumulated. First, multiple mechanisms have been proposed for the vascular drainage of exogenous and endogenous substances across the blood-brain barriers. Second, the "traditional" role of arachnoid villi and granulations as the main site for CSF draining into the vasculature system has been questioned. Third, MRI studies using different CSF tracers indicate that parenchymal vasculature directly participates in tracer efflux, consistent with immunohistochemical findings. Here we will review evidence in the literature that supports the direct participation of the parenchymal vascular system in substance clearance, in addition to the CSF clearance pathways.
Collapse
Affiliation(s)
- Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA.
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI 48201 USA.
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202 USA.
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48201 USA.
| |
Collapse
|
99993
|
Schoeffl I, Raming R, Tratzky JP, Regensburger AP, Kraus C, Waellisch W, Trollmann R, Woelfle J, Dittrich S, Heiss R, Knieling F, Weigelt A. Cardiopulmonary function in paediatric post-COVID-19: a controlled clinical trial. Eur J Pediatr 2024; 183:1645-1655. [PMID: 38193996 PMCID: PMC11001705 DOI: 10.1007/s00431-024-05421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Recently, the importance of post-COVID-19 in children has been recognized in surveys and retrospective chart analysis. However, objective data in the form of cardiopulmonary exercise test as performed in adults suffering from this condition are still lacking. This study aimed to investigate the cardiopulmonary effects of post-COVID-19 on children and adolescents. In this cross-sectional study (the FASCINATE study), children fulfilling the criteria of post-COVID-19 and an age- and sex-matched control group underwent cardiopulmonary exercise testing on a treadmill and completed a questionnaire with regard to physical activity before, during and after the infection with SARS-CoV-2. We were able to recruit 20 children suffering from post-COVID-19 (mean age 12.8 ± 2.4 years, 60% females) and 28 control children (mean age 11.7 ± 3.5 years, 50% females). All participants completed a maximal treadmill test with a significantly lowerV ˙ O 2 peak in the post-COVID-19 group (37.4 ± 8.8 ml/kg/min vs. 43.0 ± 6.7 ml/kg/min. p = 0.019). This significance did not persist when comparing the achieved percentage of predictedV ˙ O 2 peak . There were no significant differences for oxygen pulse, heart rate, minute ventilation or breathing frequency. Conclusion: This is the first study to investigate post-COVID-19 in children using the cardiopulmonary exercise test. Although there was a significantly reducedV ˙ O 2 peak in the post-COVID-19 group, this was not true for the percent of predicted values. No pathological findings with respect to cardiac or pulmonary functions could be discerned. Deconditioning was the most plausible cause for the experienced symptoms. Trial registration: clinicaltrials.gov, NCT054445531, Low-field Magnetic Resonance Imaging in Pediatric Post Covid-19-Full Text View-ClinicalTrials.gov. What is Known: • The persistence of symptoms after an infection with SARS-CoV 2, so-called post-COVID-19 exists also in children. • So far little research has been conducted to analyze this entity in the pediatric population. What is New: • This is the first study proving a significantly lower cardiopulmonary function in pediatric patients suffering from post-COVID-19 symptoms. • The cardiac and pulmonary function appear similar between children suffering from post-COVID-19 and those who don't, but the peripheral muscles seem affected.
Collapse
Affiliation(s)
- Isabelle Schoeffl
- Department of Pediatric Cardiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany.
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS13HE, UK.
| | - Roman Raming
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Jan-Philipp Tratzky
- Department of Pediatric Cardiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Calvin Kraus
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Wolfgang Waellisch
- Department of Pediatric Cardiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Sven Dittrich
- Department of Pediatric Cardiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Rafael Heiss
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Annika Weigelt
- Department of Pediatric Cardiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany.
| |
Collapse
|
99994
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H, Sun L. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res 2024; 43:96. [PMID: 38561776 PMCID: PMC10985944 DOI: 10.1186/s13046-024-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.
Collapse
Affiliation(s)
- Fei Ren
- Department of Geriatrics, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Qian Fei
- Department of Oncology, Shengjing Hospital of China Medical University, Shen Yang, 110000, China
| | - Kun Qiu
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Yuanjie Zhang
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shen Yang, 110000, China.
| | - Lei Sun
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China.
| |
Collapse
|
99995
|
Okawa H, Tanaka Y, Takahashi A. Network of extracellular vesicles surrounding senescent cells. Arch Biochem Biophys 2024; 754:109953. [PMID: 38432566 DOI: 10.1016/j.abb.2024.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Extracellular vesicles (EVs) are small lipid bilayers released from cells that contain cellular components such as proteins, nucleic acids, lipids, and metabolites. Biological information is transmitted between cells via the EV content. Cancer and senescent cells secrete more EVs than normal cells, delivering more information to the surrounding recipient cells. Cellular senescence is a state of irreversible cell cycle arrest caused by the accumulation of DNA damage. Senescent cells secrete various inflammatory proteins known as the senescence-associated secretory phenotype (SASP). Inflammatory SASP factors, including small EVs, induce chronic inflammation and lead to various age-related pathologies. Recently, senolytic drugs that selectively induce cell death in senescent cells have been developed to suppress the pathogenesis of age-related diseases. This review describes the characteristics of senescent cells, the functions of EVs released from senescent cells, and the therapeutic effects of EVs on age-related diseases. Understanding the biology of EVs secreted from senescent cells will provide valuable insights for achieving healthy longevity in an aging society.
Collapse
Affiliation(s)
- Hikaru Okawa
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Division of Cellular and Molecular Imaging of Cancer, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Yoko Tanaka
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Akiko Takahashi
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
| |
Collapse
|
99996
|
Yuan Z, Yang X, Hu Z, Gao Y, Wang M, Xie L, Zhu H, Chen C, Lu H, Bai Y. Fraxetin pretreatment alleviates cisplatin-induced kidney injury by antagonizing autophagy and apoptosis via mTORC1 activation. Phytother Res 2024; 38:2077-2093. [PMID: 38558449 DOI: 10.1002/ptr.8073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 04/04/2024]
Abstract
Cisplatin-induced kidney injury (CKI) is a common complication of chemotherapy. Fraxetin, derived from Fraxinus bungeana A. DC. bark, has antioxidant, anti-inflammatory, and anti-fibrotic effects. This study aims to investigate fraxetin's effects on CKI and its underlying mechanism in vivo and in vitro. Tubular epithelial cells (TECs) and mice were exposed to cisplatin with and without fraxetin preconditioning assess fraxetin's role in CKI. TECs autophagy was observed using transmission electron microscopy. Apoptosis levels in animal tissues were measured using TUNEL staining. The protective mechanism of fraxetin was explored through pharmacological and genetic regulation of mTORC1. Molecular docking was used to identify potential binding sites between fraxetin and mTORC1. The results indicated that fraxetin pretreatment reduced cisplatin-induced kidney injury in a time- and concentration-dependent way. Fraxetin also decreased autophagy in TECs, as observed through electron microscopy. Tissue staining confirmed that fraxetin pretreatment significantly reduced cisplatin-induced apoptosis. Inhibition of mTORC1 using rapamycin or siRNA reversed the protective effects of fraxetin on apoptosis and autophagy in cisplatin-treated TECs, while activation of mTORC1 enhanced fraxetin's protective effect. Molecular docking analysis revealed that fraxetin can bind to HEAT-repeats binding site on mTORC1 protein. In summary, fraxetin pretreatment alleviates CKI by antagonizing autophagy and apoptosis via mTORC1 activation. This provides evidence for the potential therapeutic application of fraxetin in CKI.
Collapse
Affiliation(s)
- Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengsi Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
99997
|
Narayan SM, Wan EY, Andrade JG, Avari Silva JN, Bhatia NK, Deneke T, Deshmukh AJ, Chon KH, Erickson L, Ghanbari H, Noseworthy PA, Pathak RK, Roelle L, Seiler A, Singh JP, Srivatsa UN, Trela A, Tsiperfal A, Varma N, Yousuf OK. Visions for digital integrated cardiovascular care: HRS Digital Health Committee perspectives. CARDIOVASCULAR DIGITAL HEALTH JOURNAL 2024; 5:37-49. [PMID: 38765620 PMCID: PMC11096652 DOI: 10.1016/j.cvdhj.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Affiliation(s)
| | - Elaine Y Wan
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | | | | | | | | | | | - Ki H Chon
- University of Connecticut, Storrs, Connecticut
| | | | | | | | | | - Lisa Roelle
- Washington University School of Medicine, Saint Louis, Missouri
| | | | - Jagmeet P Singh
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Anthony Trela
- Lucile Packard Children's Hospital, Palo Alto, California
| | - Angela Tsiperfal
- Stanford Arrhythmia Service, Stanford Healthcare, Palo Alto, California
| | | | - Omair K Yousuf
- Inova Heart and Vascular Institute; Carient Heart and Vascular; and University of Virginia Health, Fairfax, Virginia
| |
Collapse
|
99998
|
Lopez-Jimenez F, Kapa S, Friedman PA, LeBrasseur NK, Klavetter E, Mangold KE, Attia ZI. Assessing Biological Age: The Potential of ECG Evaluation Using Artificial Intelligence: JACC Family Series. JACC Clin Electrophysiol 2024; 10:775-789. [PMID: 38597855 DOI: 10.1016/j.jacep.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 04/11/2024]
Abstract
Biological age may be a more valuable predictor of morbidity and mortality than a person's chronological age. Mathematical models have been used for decades to predict biological age, but recent developments in artificial intelligence (AI) have led to new capabilities in age estimation. Using deep learning methods to train AI models on hundreds of thousands of electrocardiograms (ECGs) to predict age results in a good, but imperfect, age prediction. The error predicting age using ECG, or the difference between AI-ECG-derived age and chronological age (delta age), may be a surrogate measurement of biological age, as the delta age relates to survival, even after adjusting for chronological age and other covariates associated with total and cardiovascular mortality. The relative affordability, noninvasiveness, and ubiquity of ECGs, combined with ease of access and potential to be integrated with smartphone or wearable technology, presents a potential paradigm shift in assessment of biological age.
Collapse
Affiliation(s)
- Francisco Lopez-Jimenez
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | - Suraj Kapa
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eric Klavetter
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kathryn E Mangold
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Zachi I Attia
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
99999
|
Nguyen TLL, Nguyen DV, Heo KS. Potential biological functions and future perspectives of sialylated milk oligosaccharides. Arch Pharm Res 2024; 47:325-340. [PMID: 38561494 DOI: 10.1007/s12272-024-01492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Sialyllactoses (SLs) primarily include sialylated human milk oligosaccharides (HMOs) and bovine milk oligosaccharides (BMOs). First, the safety assessment of 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) revealed low toxicity in various animal models and human participants. SLs constitute a unique milk component, highlighting the essential nutrients and bioactive components crucial for infant development, along with numerous associated health benefits for various diseases. This review explores the safety, biosynthesis, and potential biological effects of SLs, with a specific focus on their influence across various physiological systems, including the gastrointestinal system, immune disorders, rare genetic disorders (such as GNE myopathy), cancers, neurological disorders, cardiovascular diseases, diverse cancers, and viral infections, thus indicating their therapeutic potential.
Collapse
Affiliation(s)
| | - Dung Van Nguyen
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
100000
|
van Doorn ECH, Amesz JH, Sadeghi AH, de Groot NMS, Manintveld OC, Taverne YJHJ. Preclinical Models of Cardiac Disease: A Comprehensive Overview for Clinical Scientists. Cardiovasc Eng Technol 2024; 15:232-249. [PMID: 38228811 PMCID: PMC11116217 DOI: 10.1007/s13239-023-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
For recent decades, cardiac diseases have been the leading cause of death and morbidity worldwide. Despite significant achievements in their management, profound understanding of disease progression is limited. The lack of biologically relevant and robust preclinical disease models that truly grasp the molecular underpinnings of cardiac disease and its pathophysiology attributes to this stagnation, as well as the insufficiency of platforms that effectively explore novel therapeutic avenues. The area of fundamental and translational cardiac research has therefore gained wide interest of scientists in the clinical field, while the landscape has rapidly evolved towards an elaborate array of research modalities, characterized by diverse and distinctive traits. As a consequence, current literature lacks an intelligible and complete overview aimed at clinical scientists that focuses on selecting the optimal platform for translational research questions. In this review, we present an elaborate overview of current in vitro, ex vivo, in vivo and in silico platforms that model cardiac health and disease, delineating their main benefits and drawbacks, innovative prospects, and foremost fields of application in the scope of clinical research incentives.
Collapse
Affiliation(s)
- Elisa C H van Doorn
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jorik H Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amir H Sadeghi
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja M S de Groot
- Translational Electrophysiology Laboratory, Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Yannick J H J Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|